Паровой двигатель своими руками чертежи: подробное описание, чертежи Производство современных паровых поршневых машин

Содержание

Паровая машина из старого двигателя. Паровой двигатель без станков и инструментов. Представители электростанций заводского изготовления

Всем привет! С вами снова kompik92!
И сегодня и мы будем делать паровой двигатель!
Думаю каждому было когда-то хотелось сделать паровой двигатель!
Ну так давайте сделаем ваши мечты реальностью!

У меня есть два варианта его сделать: лёгкая и сложная. Оба варианта очень классные и интересные и если вы думаете что тут будет только один вариант, то вы правы. Второй вариант я выложу немного позже!

И давайте сразу к инструкции!

Но сначала….

Правила безопасности:

  1. Когда двигатель работает, и вы хотите его перенести, используйте щипцы, толстые перчатки или не проводящий тепло материал!
  2. Если вы хотите сделать двигатель сложнее или мощнее, лучше узнать у кого- либо чем экпериментировать! Неправильная сборка может привести к взрыву котла!
  3. Если вы хотите взять работающий двигатель, не направляйте пар на людей!
  4. Не блокируйте пар в банке или трубке, паровой двигатель может взорваться!

А вот и инструкция для варианта №1:

Нам понадобится:

  • Банка из под Колы или Пепси из алюминия
  • Плоскогубцы
  • Ножницы по металлу
  • Дырокол для бумаги (не путать с дроколом)
  • Маленькая свечка
  • Фольга из алюминия
  • Трубка из меди 3мм
  • Карандаш
  • Салатница или большая миска

Давайте приступим!
1. Вам нужно отрезать дно банки с высотой в 6.35 см
. Для лучшего среза, сначала нарисуйте карандашом линию а потом ровно по ней срежьте дно банки. Таким образом мы получаем корпус нашего двигателя.

2. Уберите острые края.
Для безопасности, уберите острые края дна используя плоскогубцы. Заверните не больше 5мм! Это поможет нам дальше работать с двигателем.

3. Продавите дно.
Если у банки не плоское дно, продавите его при помощи пальца. Это нужно чтобы наш двигатель хорошо плавал, если этого не сделать, то там будет оставаться воздух которые может нагреться и перевернуть платформу. Также это поможет стоять нашей свечке.

4. Сделайте два отверстия.
Сделайте два отверстия как показано на картинке. Между краем и дыркой должно быть 1.27см и сама дырка должна быть диаметром не меньше 3.2 мм. Дырки должны находиться на против друг-друга! В данные отверстия мы просунем нашу медную трубку.

5. Поставьте свечку.
Используя фольгу поставьте свечку так, чтобы она не двигалась в корпусе. Сама свечка должна быть металлической подставке. Мы поставили котёл, который будет нагревать нашу воду, и тем самым обеспечивая работу двигателя.

6. Создайте змеевик.
Сделайте три четыре мотка в середине трубки при помощи карандаша. С каждой стороны должно быть не меньше 5 см. Мы сделали змеевик. Не знаете что это?

Вот вам цитата из википедии.

Змеевик — длиная металлическая, стеклянная, фарфоровая (керамическая) или пластиковая трубка, изогнутая некоторым регулярным или иррегулярным способом, предназначенная для того, чтобы в минимальном объёме пространства обеспечить максимальный теплообмен между двумя средами, разделёнными стенками змеевика. Исторически сложилось, что такой теплообмен изначально применялся для конденсации проходящих через змеевик паров.

Думаю стало легче, но если всё равно не стало легче то я объясню сам. Змеевик это трубка в которой протекает жидкость чтобы её нагревали или охлаждали.

7. Разместите трубку.
Разместите трубку используя сделанные дырки, и проследите за тем, чтобы змеевик находился ровно рядом с фитилём свечки! Таким образом мы почти закончили с двигателем, у нас уже может работать нагрев.

8. Согните трубку.
Согните концы трубки используя плоскогубцы так, чтобы они смотрели в разные стороны и были согнуты на 90 градусов от змеевика. Мы получили выходы для нашего горячего воздуха.

9. Подготовка к работе.
Опустите наш двигатель в воду. Он должен хорошо плавать на поверхности, и если трубки не погружены в воду как минимум на 1 см, то утяжелите корпус. Мы сделали выход трубок в воду чтобы она могла двигаться.

10. Ещё чуть-чуть.
Наполните нашу трубку, окуните одну трубку в воду, а второю потянуть как через трубочку для коктейлей. Мы почти сделали двигатель!

Начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.

Кроме такой конструкции, можно собрать паровой но это материал для совершенно отдельной статьи.

Давно хотел написать свою статейку в Пакфлаере и вот наконец-то решился.
Одним из первых моих серьезных проектов, — было изготовление парового двигателя, начал я его в лет 12 и продолжал порядка 7 лет, по мере увеличения инструментов и выравнивания кривых рук.

Начало всему положили видео и статьи про паровые двигатели, после которых решил, а чем я хуже. Как тогда помню, хотелось его построить для вырабатывания электроэнергии для настольной лампы. Как мне тогда казалось, он должен был быть красив, мал в размере, работать на стружках от карандашей и стоять на подоконнике для вывода горячих газов на улицу через просверленное отверстие в окошке (до этого дело не дошло).
В итоге, одни из первых моделей, которые были начерчены на скорую руку и построены с помощью напильника, деревяшек, эпоксидки, гвоздей и дрели были уродливы и нерабочие.

После чего пошла череда усовершенствований и работа над ошибками. За то время, пришлось попробовать себя не только литейщиком, выплавляя маховик (который в последствии оказался не нужным), но и научится работать в чертежных программах KОМПАС 3D, AutoCAD (что пригодилось в институте).

Но как бы я не старался всё время что — то шло наперекосяк. Постоянно не мог добиться нужной точности в изготовлении поршней и цилиндров, что приводило к заеданиям или не создавало компрессии и делало двигатели недолго рабочими или вообще не рабочими.
Особой проблемой вызывало создание парового котла для двигателя. Первый мой котел я решил сделать по простенькой схеме увиденной где-то. Была взята обычная жестяная банка с запаянной, с открытого конца, крышкой с выведенной трубкой для двигателя. Главным минусом котла был в том, что нельзя давать воде выкипать т.к. повышение температуры может привести расплавлению пайки. Ну и конечно как это всегда бывает, в ходе эксперимента был передержан нагрев, что привело к мини-взрыву и выбросу горячего пара и ржавой воды по стенам и потолку….

В дальнейшем изготовление парового двигателя и котла на несколько месяцев прекратилось.

Существенно продвинуться с мертвой точки в создание паровика помогла покупка моим отцом хоббийного токарного станка. Детали пошли как по маслу и по качеству и по скорости изготовления, но вследствие того, что с самого начало не было четкого плана постройки паровика, всё менялось в процессе, что привело к скоплению множества всевозможных деталей, которые были забракованы по каким-либо причинам.

И это только часть того, что на сегодняшний день осталось.

Дабы не повторить печальную учесть первого котла, было решено сделать его супер-мега надежным:

А для ещё большей безопасности был установлен манометр

Минус все же у этого котла есть, чтобы разогреть такую бандуру до рабочей температуры приходится минут 20 греть газовой горелкой.
В итоге, с кровью и потом, на конец-то был изготовлен СВОЙ паровой двигатель, работающий, правда, не на стружках от карандашей и не отвечающий самым первоначальным требования, но как говорится: «и так сойдет».

Ну и видео:

В книге О.Курти «Постройка моделей судов», которую полностью можно скачать тут depositfiles.com/files/3b9jgisv9 есть пара интересных чертежей машин для привода моделей пароходов.
Вот они:

ПАРОВАЯ МАШИНА С КАЧАЮЩИМСЯ ЦИЛИНДРОМ ПРОСТОГО ДЕЙСТВИЯ И ПАРОРАСПРЕДЕЛИТЕЛЬНОЙ ПЛИТОЙ (С КЛАПАННЫМ УПРАВЛЕНИЕМ)

Машины этого типа наиболее часто применяют в судомоделизме (рис. 562, а, b). Обычно детали изготовляют из латуни; цилиндр, чтобы не смазывать, — из фосфористой бронзы, а поршень — из стали. Крепят машину на квадратном или прямоугольном фунда­менте в зависимости от места установки в корпусе. На фундамент ставят L-образную стойку, к которой прикрепляют парораспреде­лительную плиту с отверстиями (окнами) для впуска и выпуска пара. Эти окна располагают по дуге, длина которой равна круго­вому пути, проходимому качающимся цилиндром. Цилиндр выпол­няют из куска латунной трубки и припаивают к опорной плите. Посредине плиты и цилиндра имеется отверстие, через которое впускается и выпускается пар. Болт в плите, служащий осью ка­чания цилиндра, имеет пружину. Ее натяжение регулируется гайкой, благодаря чему удается достичь хорошего прилегания опорной плиты к парораспределительной плите.
В поршень, изготовленный из круглого куска бронзы, ввинчи­вают шток и присоединяют его к мотылю болтом с гайкой.
Приводной вал выполняют из круглого стерженька латуни, на концах которого делают нарезку. Один конец вала ввертывают в мотыль, затем вал пропускают через пустотелый винт, поддержи­вающий его в L-образной стойке, а на второй конец навинчивают маховик.
Паровые трубки для подвода и отвода пара делают из латунных или медных трубок и крепят к небольшим штуцерам, которые, в свою очередь, припаяны к парораспределительной плите. Детали паровой машины такого типа имеют следующие средние размеры:
цилиндр: внутренний диаметр — 12-15 мм, длина — 30- 45 мм;
стойка: высота — 40-60 мм, ширина — 40-50 мм;
маховик: диаметр — 35-45 мм, толщина — 12-15 мм;
трубопроводы: 5хб мм (внутренний и внешний диаметры).
На рис. 562, c и d приведена паровая машина, подобная опи­санной, но с цилиндром двойного действия, поэтому на парорас­пределительной плите просверлены еще два небольших отверстия для впуска и выпуска пара, а на цилиндре — второе небольшое отверстие.

Рис. 562.
Паровая машина с качающимся цилиндром для модели: a) -конструктивный чертеж; b) – вид по деталям; c) – вид машины с цилиндром двойного действия; d) – принципиальная работа машины с цилиндром двойного действия.
1 – фундаментная плита; 2 – стойка; 3 – плита парораспределительных окон; 4 – деталь крепления впускной и выпускной трубок; 5 – опорная плита крепления цилиндра; 6 – цилиндр; 7 – крышка цилиндра; 8 – поршень; 9 – шток; 10 – мотыль; 11 – пустотелый винт; 12 – приводной вал; 13 – маховик; 14 – пружина с гайкой; 15 – трубка для подвода пара; 16 – трубка для отвода пара; 17 – штуцер для соединения с трубкой подвода пара от котла; 18 – контрольный болт на цилиндре; 19 – выход пара; 20 – подвод пара.

ПАРОВАЯ МАШИНА С НЕПОДВИЖНЫМ ЦИЛИНДРОМ ПРОСТОГО ДЕЙСТВИЯ И ЗОЛОТНИКОВЫМ ПАРОРАСПРЕДЕЛИТЕЛЕМ

Машина сконструирована так, что ее можно устанавливать как в горизонтальном, так и вертикальном положениях (рис. 563, а). Цилиндр укреплен на фундаментной плите и представляет собой прямоугольный латунный брусок со сквозными отверстиями для поршня, а также для впуска и выпуска пара. В верхней части цилиндра находится парораспределительная коробка с золотни­ком. Сбоку цилиндр закрывают крышкой, устанавливаемой на че­тырех болтах.
Поршень выполняют из куска круглой бронзы. Внутри пор­шень полый. Один конец шатуна соединяют с поршнем при помощи поршневого пальца и двух опорных колец; другой — с цилиндри­ческим латунным мотылем.
Приводной вал вращается в двух опорных латунных подшипни­ках, которые при помощи сквозных болтов закреплены на фунда­менте. На приводном валу кроме мотыля установлен эксцентрик, соединенный со штоком золотника вилкой, причем движение экс­центрика сдвинуто по фазе относительно движения поршня. На конце приводного вала находится маховик. Выполнить золотник, как видно из рис. 563, несложно.
Входные и выходные паровые трубопроводы обычно изготов­ляют из медных или латунных трубок.
Средние размеры деталей машины:
цилиндр: длина — 45-55 мм, высота — 35-45 мм, ширина — 35-45 мм;
фундаментная плита: длина — 100-120 мм, ширина — 65- 85 мм;
маховик: диаметр — 45-50 мм, толщина — 12-15 мм.
трубопроводы: 5×6 мм.
Изменить направление вращения у паровой машины легко, для этого достаточно применить реверсивный клапан (рис. 563, b).

Рис. 563.
Паровая машина с золотниковым парораспределителем: а — контруктивный чертеж; b — реверсивный клапан для изменения направления вращения машины; с — детали.
1 — цилиндр; 2 — крышка цилиндра; 3 — поршень; 4 — шатун; 5 — маховик с соединительным болтом для крепления на приводном валу; 6 — цилиндрический мотыль; 7 — крепление опорного подшипника коленчатого вала; 8 — эксцентрик; 9 — поршневой палец; 10 — парораспределительная камера; 11 — золотник; 12 — сальник для уплотнения штока золотника;
13 — уплотнительное кольцо; 14 — шток золотника; ментная плита для горизонтального расположения машины; 15 — приводной вал; 16 — вилка для соединения штока с эксцентриком; 17 — фундаментиая плита для горизонтального расположения машины; 18 — дополнительная опорная плита для вертикального расположения машины;19 — поступление пара; 20 — назад; 21 — вперед; 22 — выход пара.

Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.

В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.

От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.

Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты

Источник: youtu.be/EKdnCHNC0qU

Как сделать рабочую модель парового двигателя на дому

Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно. Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop. com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.

Как создать свой собственный паровой двигатель?

Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.

Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.

Котел отопления своими руками: описание и чертежи

Содержание статьи

  • Пиролизные котлы длительного горения
  • Как изготовить паровой котёл своими руками
  • Заключение

Проектируя систему отопления для частного дома, многие владельцы для того, чтобы сократить расходы на покупку оборудования, предпочитают самодельные котлы отопления заводским. Действительно, заводские агрегаты стоят достаточно дорого, а сделать котёл на дровах своими руками вполне по силам, если у вас имеются грамотные чертежи и есть навыки обращения с инструментами для механической обработки материалов, а также со сварочным аппаратом.

Схема работы водогрейных котлов, как правило, универсальна – тепловая энергия, которая выделяется при сгорании топлива, передаётся на теплообменник, откуда идёт на отопительные приборы для обогрева дома. Конструкция агрегатов может быть самой разной, как используемое топливо и материалы для изготовления.

Пиролизные котлы длительного горения

Схема работы пиролизного устройства длительного горения основана на процессе пиролиза (сухой перегонки). В процессе тления дров выделяется древесный газ, который сгорает при очень высокой температуре. При этом выделяется большое количество тепла – оно идёт на обогрев водяного теплообменника, откуда поступает через магистраль в отопительные приборы для обогрева дома.

Твердотопливные пиролизные котлы – достаточно дорогое удовольствие, поэтому многие владельцы для своего дома предпочитают изготовить самодельный котёл отопления.

Конструкция такого агрегата довольно проста. Твердотопливные пиролизные котлы состоят из следующих элементов:

  • Камера загрузки дров.
  • Колосник.
  • Камера сгорания летучих газов.
  • Дымосос – средство обеспечения принудительной тяги.
  • Теплообменник водяного типа.

Дрова помещают в загрузочную камеру, поджигают и закрывают заслонку. В герметичном пространстве при тлении дров образуются азот, углерод и водород. Они поступают в специальный отсек, где сгорают – при этом выделяется большое количество теплоты. Она используется для нагревания водяного контура, откуда вместе с нагретым теплоносителем идёт на отопление дома.

Время сгорания топлива у такого водогрейного устройства составляет около 12 часов – это достаточно удобно, поскольку нет необходимости часто к нему наведываться для загрузки новой порции дров. По этой причине твердотопливные котлы пиролизного действия очень высоко ценятся среди владельцев домов частного сектора.

Чертёж на схеме наглядно демонстрирует все особенности конструкции водогрейных котлов пиролизного действия.

Для того, чтобы самостоятельно изготовить подобный аппарат, понадобятся болгарка, сварочный аппарат и следующие расходные материалы:

  • Лист металла толщиной в 4 мм.
  • Металлическая труба диаметром в 300 мм с толщиной стенки 3 мм.
  • Металлические трубы, диаметр которых составляет 60 мм.
  • Металлические трубы, диаметр которых составляет 100 мм.

Пошагово алгоритм изготовления выглядит следующим образом:

  • Отрезаем участок длиной 1 м из трубы диаметром 300 мм.
  • Далее необходимо приделать дно из листового металла – для этого нужно вырезать участок необходимого размера и сварить с трубой. Подставки можно сварить из швеллера.
  • Далее делаем средство для забора воздуха. Вырезаем из листового металла круг диаметром 28 см. В середине сверлим отверстие размером 20 мм.
  • Размещаем с одной стороны вентилятор – лопасти должны быть 5 см по ширине.
  • Далее ставим трубку, диаметр которой 60 мм и длина более 1 м. С верхней стороны крепим люк для того, чтобы была возможность регулировки воздушного потока.
  • В нижней части котла необходимо отверстие для топлива. Далее нужно сварить и прикрепить люк для герметичного закрывания.
  • Сверху размещаем дымоход. Он ставится вертикально на расстоянии 40 см, после чего его пропускают через теплообменник.

Твердотопливные пиролизные устройства водогрейного типа очень эффективно обеспечивают отопление частного дома. Их самостоятельное изготовление помогает сэкономить очень существенную сумму денег.

Как изготовить паровой котёл своими руками

Схема действия паровых систем отопления построена на использовании тепловой энергии горячего пара. При сгорании топлива образуется определённое количество теплоты, которое поступает на водогрейный участок системы. Там вода превращается в пар, который под высоким давлением поступает с водогрейного участка в магистраль отопления.

Такие аппараты могут быть одноконтурными и двухконтурными. Одноконтурный аппарат используется только для отопления. Двухконтурный обеспечивает ещё и наличие горячего водяного снабжения.

Паровая система отопления состоит из следующих элементов:

  • Водогрейного парового устройства.
  • Стояков.
  • Магистрали.
  • Радиаторов отопления.

Чертёж на рисунке наглядно демонстрирует все нюансы конструкции парового котла.

Читайте также: Газовый самодельный котел отопления.

Сварить такой агрегат своими руками можно, если иметь некоторые навыки в обращении со сварочным аппаратом и инструментами для механической обработки материалов. Самой важной частью системы является барабан. К нему подсоединяем трубы водяного контура и приборы для контроля и измерений.

В верхнюю часть агрегата при помощи насоса нагнетается вода. Вниз направлены трубы, по которым вода поступает в коллекторы и подъёмный трубопровод. Он проходит в зоне сгорания топлива и там происходит нагревание воды. По сути здесь задействован принцип сообщающихся сосудов.

Для начала необходимо хорошо продумать систему и изучить все её элементы. Потом необходимо закупить все необходимые расходные материалы и инструменты:

  • Трубы из нержавейки диаметром 10-12 см.
  • Стальной лист из нержавейки толщиной в 1 мм.
  • Трубы диаметром 10 мм и 30 мм.
  • Предохранительный клапан.
  • Асбест.
  • Инструменты для механической обработки.
  • Сварочный аппарат.
  • Приборы для контроля и измерений.

Далее изготовление агрегата выглядит следующим образом:

  • Делаем корпус из трубы длиной 11 см с толщиной стенки 2,5 мм.
  • Делаем 12 дымогарных труб длиной 10 см.
  • Делаем жаровую трубку 11 см.
  • Из листа нержавейки изготавливаем перегородки. В них проделываем отверстия для дымогарных трубок – их крепим к основанию при помощи сварки.
  • Привариваем к корпусу предохранительный клапан и коллектор.
  • Теплоизоляцию выполняем при помощи асбеста.
  • Оснащаем агрегат приборами контроля и регулировки.

Заключение

Как показывает практика, изготовление котлов для систем отопления частных домов достаточно распространено. При правильном выполнении всех теплотехнических расчётов, при наличии грамотно составленного чертежа и схемы разводки магистрали такие аппараты достаточно эффективно справляются со своей задачей и позволяют сэкономить значительную сумму денег, поскольку подобные устройства заводского изготовления стоят достаточно дорого.

Изготовление отопительных аппаратов своими силами – задача скрупулёзная, сложная и трудоёмкая. Для того, чтобы с ней справиться, нужно уметь пользоваться сварочным аппаратом и иметь навыки владения инструментами для механической обработки материалов. Если же вы таких навыков не имеете, такой случай будет неплохим поводом научиться – и вы своими руками сумеете обеспечить своё жильё теплом и комфортом.

Читайте также

  • Как выбрать котел отопления для дома?

  • Котел отопления своими руками

  • Отзывы владельцев о пеллетных котлах

  • Котел длительного горения своими руками

Принципы работы парового двигателя

Принцип действия парового двигателя

Rīga 2011

Содeржание

Аннотация

Ведение

1. Теоретическая часть

1. 1 Временная цепочка

1.2 Паровой двигатель

1.2.1 Паровой котёл

1.2.2 Паровые турбины

1.3 Паровые машины

1.3.1 Первые пароходы

1.3.2 Зарождение двухколесного транспорта

1.4 Применение паровых двигателей

1.4.1 Преимущество паровых машин

1.4.2 Коэффициент полезного действия

2. Практическая часть

2.1 Построение механизма

2.2 Способы улучшения машины и ее КПД

2.3 Анкетирование

Заключение

Список используемой литературы

Приложение

паровой двигатель полезное действие

Данная научная работа состоит из 32 листов. Она включает в себя теоретическую часть, практическую часть, приложение и заключение. В теоретической части вы узнаете о принципе работы паровых двигателей и механизмов, об их истории и о роли их применения в жизни. Практической части подробно рассказано о процессе конструирования и испытаниях парового механизма в домашних условиях. Данная научная работа может служить наглядным примером работы и использования энергии пара.

Введение

Мир покорных любым капризам природы, где машины приводятся в действие мускульной силой или силой водяных колёс и ветряных мельниц — таким был мир техники до создания парового двигателя.

Еще в древние времена человек обратил внимание на то, что струя водяного пара, вырываясь из сосуда, поставленного на огонь, способна сместить препятствие (например, лист бумаги), оказавшееся на ее пути.

Это заставило человека задуматься над тем, как можно использовать в качестве рабочего тела пар. В результате этого после множества опытов появился паровой двигатель.

И представьте себе заводы с дымящимися трубами, паровые машины и турбины, паровозы и пароходы — весь сложный и могучий мир паротехники созданный человеком

Паровая машина была практически единственным универсальным двигателем и сыграла огромную роль в развитии человечества.

Изобретение паровой машины послужило толчком для дальнейшего развития средств передвижения. В течение ста лет она была единственным промышленным двигателем, универсальность которого позволяла использовать ее на предприятиях, железных дорогах и на флоте.

Изобретение парового двигателя является огромным рывком, стоявшим на рубеже двух эпох. И через столетия, ещё острее ощущается вся значимость этого изобретения.

Гипотеза:

Возможно, ли построить своими руками простейший механизм, работавший на пару.

Цель работы: сконструировать механизм способный двигаться на пару.

Задача исследования:

1. Изучить научную литературу.

2. Сконструировать и построить простейший механизм, работавший на пару.

3. Рассмотреть возможности увеличения КПД в дальнейшем.

Данная научная работа будет служить пособием на уроках физики для старших классов и для тех, кого интересует данная тема.

Паровой двигатель — тепловой поршневой двигатель, в котором потенциальная энергия водяного пара, поступающего из парового котла, преобразуется в механическую работу возвратно-поступательного движения поршня или вращательного движения вала.

Пар является одним из распространенных теплоносителей в тепловых системах с нагреваемым жидким или газообразным рабочим телом наряду с водой и термомаслами. Водяной пар имеет ряд преимуществ, среди которых простота и и гибкость использования, низкая токсичность, возможность подведения к технологическому процессу значительного количества энергии. Он может использоваться в разнообразных системах, подразумевающих непосредственный контакт теплоносителя с различными элементами оборудования, эффективно способствуя снижению затрат на энергоресурсы, сокращению выбросов, быстрой окупаемости.

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы.

3000 лет до н. э. — в Древнем Риме появились первые дороги.

2000 лет до н. э. — колесо приобрело более привычный для нас вид. У него появились ступица, обод и соединяющие их спицы.

1700 г. до н. э. — появились первые дороги, мощенные деревянными брусками.

312 г. до н. э. — в Древнем Риме построены первые дороги с каменным покрытием. Толщина каменной кладки достигала одного метра.

1405 г. — появились первые рессорные конные экипажи.

1510 г. — конный экипаж приобрел кузов со стенами и крышей. Пассажиры получили возможность защититься от непогоды во время поездки.

1526 г. — немецкий ученый и художник Альбрехт Дюрер разработал интересный проект «безлошадной повозки», приводимой в действие мышечной силой людей. Люди, идущие сбоку экипажа, вращали специальные рукоятки. Это вращение с помощью червячного механизма передавалось колесам экипажа. К сожалению, повозка не была изготовлена.

1600 г. — Симон Стевин построил яхту на колесах, двигающуюся под действием силы ветра. Она стала первой конструкцией безлошадной повозки.

1610 г. — кареты претерпели два существенных усовершенствования. Во-первых, ненадежные и слишком мягкие ремни, укачивающие пассажиров во время поездки, были заменены стальными рессорами. Во-вторых, была усовершенствована конная упряжь. Теперь лошадь тянула карету не шеей, а грудью.

1649 г. — прошли первые испытания по использованию в качестве движущей силы пружины, предварительно закрученной человеком. Карету с приводом от пружины построил Йоханн Хауч в Нюрнберге. Однако историки эти сведения ставят под сомнение, поскольку существует версия, что вместо большой пружины внутри кареты сидел человек, который и приводил механизм в движение.

1680 г. — в крупных городах появились первые образцы конного общественного транспорта.

1690 г. — Стефан Фарффлер из Нюрнберга создал трехколесную повозку, передвигающуюся с помощью двух ручек, вращаемых руками. Благодаря этому приводу конструктор повозки мог перемещаться с места на место без помощи ног.

1698 г. — англичанин Томас Севери построил первый паровой котел.

1741 г. — русский механик-самоучка Леонтий Лукьянович Шамшуренков послал в Нижегородскую губернскую канцелярию «доношенье» с описанием «самобеглой коляски».

1769 г. — французский изобретатель Кюньо построил первый в мире паровой автомобиль.

1784 г. — Джеймс Уатт создал первую паровую машину.

1791 г. — Иван Кулибин сконструировал трехколесную самоходную коляску, вмещавшую двух пассажиров. Привод осуществлялся с помощью педального механизма.

1794 г. — паровую машину Кюньо сдали в «хранилище машин, инструментов, моделей, рисунков и описаний по всем видам искусств и ремесел» в качестве очередной механической диковинки.

1800 г. — существует мнение, что именно в этом году в России был построен первый в мире велосипед. Его автором был крепостной Ефим Артамонов.

1808 г. — на улицах Парижа появился первый французский велосипед. Он был изготовлен из дерева и состоял из перекладины, соединяющей два колеса. В отличие от современного велосипеда, у него не было руля и педалей.

1810 г. — в Америке и странах Европы начала зарождаться каретная промышленность. В крупных городах появились целые улицы и даже кварталы, заселенные мастерами-каретниками.

1816 г. — немецкий изобретатель Карл Фридрих Драйз построил машину, напоминающую современный велосипед. Едва появившись на улицах города, она получила название «беговой машины», так как ее хозяин, отталкиваясь ногами, фактически бежал по земле.

1834 г. — в Париже проводились испытания парусного экипажа, сконструированного М. Хакуетом. Этот экипаж имел мачту высотой 12 м.

1868 г. — считается, что в этот год французом Эрне Мишо был создан прообраз современного мотоцикла.

1871 г. — французский изобретатель Луи Перро разработал паровую машину для велосипеда.

1874 г. — в России построен паровой колесный тягач. В качестве прототипа был использован английский автомобиль «Эвелин Портер».

1875 г. — в Париже прошла демонстрация первой паровой машины Амадея Бдлли.

1884 г. — американец Луис Копленд построил мотоцикл, на котором паровой мотор был установлен над передним колесом. Такая конструкция могла разогнаться до 18 км/ч.

1901 г. — в России построен легковой паромобиль московского велосипедного завода «Дукс».

1902 г. — Леон Серполле на одном из своих паровых автомобилей установил мировой рекорд скорости — 120 км/ч.

Годом позже он установил еще один рекорд — 144 км/ч.

1905 г. — американец Ф. Мариотт на паровом автомобиле превысил скорость 200 км

1.2 Паровой двигатель

Двигатель, приводимый в действие силой пара. Пар, получаемый путем нагрева воды, используют для движения. В некоторых двигателях сила пара заставляет двигаться поршни, расположенные в цилиндрах. Таким образом создается возвратно-поступательное движение. Подсоединенный механизм обычно преобразует его во вращательное движение. В паровозах (локомотивах) используются Поршневые двигатели. В качестве двигателей используют также паровые турбины, которые дают непосредственно вращательное движение, вращая ряд колес с лопатками. Паровые турбины приводят в действие генераторы электростанций и винты кораблей. В любом паровом двигателе происходит превращение тепла, вырабатываемого при нагреве воды в паровом котле (бойлере) в энергию движения. Тепло может подаваться от сжигания топлива в печи или от атомного реактора. Самый первый в истории паровой двигателей представлял собой род насоса, при помощи которого откачивали воду, заливающую шахты. Его изобрел в 1689 г. Томас Сэйвери. В этой машине, совсем простой по конструкции, пар конденсировался, превращаясь в небольшое количество воды, и за счет этого создавался частичный вакуум, благодаря чему отсасывалась вода из шахтного ствола. В 1712 г. Томас Ньюкомен изобрел поршневой насос, приводимый в действие паром. В 1760-е гг. Джеймс Ватт улучшил конструкцию Ньюкомена и создал намного более эффективные паровые двигатели. Вскоре их стали использовать на фабриках для приведения в действие станков. В 1884 г. английский инженер Чарльз Пар-соне (1854-1931) изобрел первую применимую на практике паровую турбину. Его конструкции были настолько эффективны, что ими вскоре стали заменять паровые двигатели возвратно-поступательного действия на электростанциях. Наиболее удивительным достижением в области паровых двигателей было создание полностью замкнутого, работающего парового двигателя микроскопических размеров. Японские ученые создали его, используя методы, служащие для изготовления интегральных схем. Небольшой ток, проходящий по электронагревательному элементу, превращает каплю воды в пар, который движет поршень. Теперь ученым предстоит открыть, в каких областях это устройство может найти практическое применение.

Паровые двигатели, такие как раньше использовались в локомотивах, работают на производимом при нагревании воды паре. На Рис(1.) показана угольная или дровяная топка (1) нагревает котел, напол-ненный водой (2), который производит пар. Пар поднимается и через сухопарник(3) выталкивается через трубы в цилиндр (4), где он вызывает обратное движение поршня (5). Связанный с поршнем рычаг (6) это золотниковый клапан (7), который сначала позволяет пару попасть в цилиндр (как показано), закрывая выпускное окно (8). Это создает давление, которое двигает поршень вперед и приводит к тому, что золотниковый клапан становится в такое положение, когда выпускное окно открывается и пар выходит наружу. Движение колес заставляет поршень двигаться назад, и все начинается снова.

Первый паровой котел был построен англичанином Томасом Севери в 1698 г. Это был железный бак, под которым в топке разводили огонь. Через некоторое время вместо бака стали применять длинный (до 10 м) цилиндр диаметром около 1,5 м. Его окружали каменной кладкой, а под ним разводили огонь. Поверхность, омываемая горячими газами, у таких котлов была очень маленькой. Поэтому пара они производили очень мало, а из-за того, что горячие газы в основном уходили в трубу, эффективность такого котла была очень низкой. Большая часть топлива при этом сгорала впустую.В начале XVIII в. конструкция парового котла была изменена. Горячие газы начали пускать по трубам, со всех сторон окруженным водой. Такие котлы получили название «газотрубных» и стали широко применяться в паровозах и пароходах.В конце XIX в. были изобретены прямоточные котлы. Вода в них превращалась в пар по мере движения по трубам: с одной стороны в трубы подается вода, а с другой — выходит пар.

1.2.2 Паровые турбины

Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в нее подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания. Основной сферой применения паровых турбин является выработка электроэнергии (около 86% мирового производства электроэнергии производится паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.

Теоретически задача постройки автомобиля, то есть повозки, которая бы ездила сама, была уже почти решена. Необходимо было лишь построить экипаж с механизмом управления, приводимый в движение находящимся в нем двигателем. В XVIII в. таким двигателем могла стать только паровая машина.

Впервые эту идею высказали Дени Папен и Томас Севе-ри — авторы единицы мощности «лошадиная сила», но, к сожалению, они не могли подтвердить свои мысли практически. Реализация оставшихся в теории английских проектов Севери и Уатта удалась французу Никола Жозефу Кюньо. Кюньо родился в 1725 г. в Лотарингии. Он был хорошо образован и с детства проявил исключительный интерес к технике. Инженер детально интересовался приспособлением паровой машины для привода «безлошадного экипажа», досконально знал конструкцию машины Папена и ряда паровых машин Уатта. К сожалению, слишком большие размеры этих конструкций не позволяли разместить их на повозке. Кюньо начал постройку собственной паровой машины небольших размеров. Но так как получавшиеся конструкции все равно были слишком велики, изобретатель вскоре был вынужден прекратить работы, на которые уже не хватало средств, а попытки добиться дополнительного финансирования от правительства не дали результата.

На рисунке(2.), выполненном неизвестным художником согласно указаниям Исаака Ньютона, показано устройство упрощенного экипажа, использующего для движения реактивную силу струи пара.Однако в 1764 г., когда изобретатель был готов полностью отказаться от исполнения своей мечты, ему улыбнулась удача. Подаваемая много раз просьба об аудиенции у министра обороны была удовлетворена. Естественно, министр не имел намерения интересоваться работой и проектами Кюньо, а поручил генералу де Грибьеву, знающему толк в механике, ознакомиться с изобретением. Генерал, исключительно интеллигентный и умный человек, сразу понял, какой переворот может совершить в армии «механический мул» в качестве артиллерийского тягача. Он поддержал идею построения опытного образца машины Кюньо. Однако первых пробных поездок пришлось ждать пять лет. Они с полным успехом прошли в Брюксе в присутствии небольшого числа зрителей. Результат этих испытаний позволил устроить демонстрацию машины в Париже, на которую был приглашен министр обороны Франции.

Первый автомобиль, так называемая малая телега Кюньо, с собственным именем «Фардье», развивал на дороге скорость 4,5 км/ч, но только в течение 12 мин, поскольку на большее не хватало ни воды, ни пара. Необходимо было наполнить котел водой и вновь разжечь под ним костер, так как у первого автомобиля отсутствовала даже топка. Несмотря на свои недостатки, телега так понравилась министру, что он приказал тотчас же приступить к постройке улучшенного и увеличенного экземпляра, который можно было бы изготовлять в больших количествах для использования в войсках для транспортировки пушек. На Рис.(3.) показан первый в мире паровой автомобиль, построенный в 1769 г. Кюньо.

Известный французский изобретатель Никола Жозеф Кюньо одним из первых попытался использовать паровую машину для нужд транспорта. Построенный Кюньо в 1769 г. паровой экипаж в настоящее время хранится в Музее искусств и ремесел в Париже, а его изображение стало эмблемой французского общества автомобильных инженеров.

Получив в свое распоряжение 20 000 франков в качестве вознаграждения за первую конструкцию, Кюньо с энтузиазмом взялся за дело. В конце 1770 г. были проведены испытания нового, более мощного парового автомобиля Кюньо в присутствии официальных военных экспертов. Они дали похвальное заключение, когда тягач полностью выполнил поставленные перед ним задачи, хотя его скорость не превышала 4 км/ч вместо требуемых 15. Движение было непрерывным, поскольку котел имел собственную топку и не требовалось разжигать на земле костер. К тому же Кюньо уже придумал, как увеличить скорость хотя бы до скорости марша войсковых колонн, чтобы артиллерия не оставалась позади. Лишь в 20-х гг. XIX в., после значительного улучшения качества дорог, паровые повозки вновь стали появляться в Англии.Со временем к дилижансу присоединили повозку с запасами топлива и воды. Это позволило пятнадцатиместным паровым дилижансам совершить около 700 рейсов и преодолеть почти 7 тыс. км со скоростью 30 км/ч. Правительство ввело налоги на паровые автомобили. Сокрушительным ударом по владельцам любых механических повозок стал принятый парламентом «Закон о дорожных локомотивах», который уничтожил самое главное преимущество парового транспорта — скорость, ограничив ее до 15 км/ч.Паровоз — локомотив с самостоятельной паросиловой установкой (паровой котел и паровая машина), движущийся по проложенным рельсам. Первые паровозы были созданы в Великобритании в 1803 г. Р. Тревитиком и в 1814 г. — Дж.Стефенсоном. В России первый паровоз построен в 1833 г. отцом и сыном Черепановыми. Рисунок (4.)показывает «дорожного локомотива», построенного Тревитиком и Виваном в 1803 г.В 1865 г., когда железные дороги покрыли своей сетью основную часть территории Англии, их владельцы совместно с владельцами конного транспорта нанесли окончательный удар по паровым каретам. Начиная с этого года паровые машины должны были на загородных участках дороги двигаться со скоростью 7 км/ч, в пределах города — до 4 км/ч. Кроме этого, перед паровой повозкой обязательно должен был бежать специальный человек с красным флажком, предупреждая всех о приближающейся опасности.Так, в Англии на несколько десятилетий был уничтожен такой вид транспорта, как паровые дилижансы. Однако паровозы, приводимые в движение тем же паровым двигателем, беспрепятственно и с выгодой для их владельцев продолжали катить по рельсам. Принятый закон был смягчен лишь в 1878 г. и полностью отменен в 1896 г., когда по дорогам Европы ездили десятки сотен автомобилей с бензиновыми двигателями. Первый паровой колесный тягач в России был построен в 1874 г. на Мальцевском заводе в Людиново. В качестве прототипа был взят английский автомобиль «Эвелин Портер», однако русский тягач получился мощнее и тяжелее. Кроме этого, он был приспособлен к работе на дровах, а не на угле. Всего было построено семь таких тягачей.Как и во Франции, большой интерес к паровым тягачам в России проявило военное ведомство. Как только в России появился первый рутьер, приобретенный бароном Буксгев-деном для своего имения под Ригой, военные провели его испытания. Паровой тягач «системы Томсона» достойно выдержал испытания, и в 1876 г. после испытаний еще нескольких моделей рутьеров было принято решение об их закупке для нужд российской армии. На рис.(5.)-Рутьер — паровой тягач, способный буксировать специальные вагоны, платформы или прицепы.

Следующим паровым автомобилем после рутьеров Мальцевского завода был построенный в 1901 г. легковой паромобиль московского велосипедного завода «Дукс». На машине этой довольно удачной конструкции был совершен не только пробег в Крым и обратно, но и восхождение на Ай-Петри. Однако паровым автомобилям так и не удалось прижиться в России. Последней попыткой в этом направлении стала постройка в конце 1949 г. двух паровых грузовых автомобилей НАМИ-012. Испытания подтвердили работоспособность и долговечность машин, при этом их ходовые качества были не хуже, чем у дизельного грузовика. Лесовозный автопоезд с тягачом НАМИ-012 показан на рисунке.(6.).Максимальная скорость — 42 км/ч, запаса дров в бункерах хватало на 80 км пробега.

Вернемся во Францию конца XIX в. Здесь в это время паровые автомобили пережили свое второе рождение. Двигатели оснастили керосиновыми горелками вместо угольных топок, теперь они не нуждались в запасе угля и долгом разогреве. Леон Серполле (1858—1907) в своей модели парового экипажа заменил водяной котел длинной многократно изогнутой трубой — змеевиком. Это была настоящая удача, поскольку такая замена позволила уменьшить объем используемой воды. Кроме этого, на повозке Серполле были установлены эластичные шины, повышающие комфорт поездки, и специальный механизм, соединяющий вал паровой машины и ведущие колеса — кардан. Он получил свое название от имени итальянского изобретателя Джероламо Кардано и позволял передать вращение от неподвижно закрепленной паровой машины к покачивающимся на рессорах колесам повозки.В1875 г. первая паровая машина Болли была продемонстрирована в Париже. Она представляла собой паровой дилижанс, рассчитанный на 12 мест, и получила название «Послушная». Имея общую массу 5 т, паровик расходовал на 1 км пути 2,5 кг угля и 14 л воды. По этим показателям Болли удалось опередить подобные паровые омнибусы англичан в 1,5—2 раза. Впереди сидел управляющий поездом (по терминологии тех лет — кондуктор), а сзади — кочегар (шофер), который обслуживал паровой котел. Четырехцилиндровая паровая машина (точнее, две двухцилиндровые) давала возможность на ровной горизонтальной дороге развивать скорость до 40 км/ч.Его новая модель, изготовленная в 80-х гг. XIX в. и получившая название «Новая», имела еще более высокие показатели. Масса омнибуса составляла 3,5 т, при этом на 1 км пути ей требовалось 1,5 кг угля и 7 л воды. По своим скоростным характеристикам машина Болли могла соревноваться даже с только что появившимися бензиновыми автомобилями. Кстати, если отбросить паровой двигатель, то по конструкции и внешнему виду повозка Болли больше была похожа на современный автомобиль, чем первые бензиновые «безлошадные экипажи», официально считающиеся автомобилями. В ее конструкции присутствовали даже такие элементы, как независимая подвеска колес и металлический кузов, получившие распространение на автомобилях лишь в середине 30-х гг. XX в.В дальнейшем часто использовали паровую машину в качестве двигателя легких трех- и четырехколесных повозок. Во Франции этим занимались Леон Серполле и фабрика «Де Дион-Бутон и Трепарду». Использование вертикального трубчатого котла намного меньшего размера, чем обычные, позволило уменьшить массу двигателя, упростить обслуживание и устранить опасность взрыва. Получившиеся в результате усовершенствования небольшие, похожие на брички четырехместные паровые экипажи были очень популярны в начале XX в. во Франции и особенно в США, где паровые автомобили выпускались до начала 30-х гг.Но несмотря на все усовершенствования, паровые автомобили второй половины XIX в. оставались весьма неудобными для эксплуатации. Водитель должен был владеть теми же знаниями и сноровкой, что и машинист на железной дороге.

Это привело к тому, что паровая машина была практически недоступна массовому потребителю. Несмотря на это, именно она сыграла важную роль в развитии автомобильной техники. Благодаря этой машине была доказана реальная возможность механического передвижения экипажа, опробованы и усовершенствованы различные механизмы будущего автомобиля. Со времен паровых автомобилей нам осталось и слово «шофер» (его раньше писали через два «ф»), что в переводе с французского означает «кочегар». И хотя на автомобиле давно уже нет ни котла, ни топки, часто современного водителя называют шофером. К началу XX в. паровые двигатели могли достигать мощности 15 млн. Вт, а скорость вращения их вала составляла 1000 об/мин. На одной из своих поздних машин Серполле в 1902 г. установил мировой рекорд скорости автомобиля — 120 км/ч. Годом позже он установил еще один рекорд — 144 км/ч. А еще через два года, в 1905 г., американец Ф. Мариотт на паровом автомобиле превысил скорость 200 км/ч.В 80-х гг. XIX в. появились автомобили с бензиновыми двигателями. Их главное преимущество заключалось в малой массе и быстром запуске, хотя они были не лишены ряда недостатков, от которых уже «вылечились» паровые машины.

Несмотря на все старания ученых и инженеров спасти паровики, они уже не соответствовали современным требованиям. Паровые двигатели были тяжелыми, громоздкими, требовали большого количества топлива и воды и не обещали дальнейшего повышения экономичности. На транспорте их все больше вытесняли появившиеся в конце XIX в. двигатели внутреннего сгорания.

1. 3.1 Первые пароходы

Началом применения паровых двигателей «на воде» был 1707 год, когда французский физик Дени Папен сконструировал первую лодку с паровым двигателем и гребными колесами. Предположительно после успешного испытания ее сломали лодочники, испугавшиеся конкуренции. Через 30 лет англичанин Джонатан Халлс изобрел паровой буксир. Э ксперимент закончился неудачно: двигатель оказался тяжелым и буксир затонул.В 1802 году шотландец Уильям Саймингтон продемонстрировал пароход «Шарлотта Дундас» на рисю(7.)Широкое использование паровых машин на судах началось в 1807 году с рейсов пассажирского парохода «Клермонт», построенного американцем Робертом Фултоном. С 1790-х годов Фултон занялся проблемой использования пара для приведения в движение кораблей. В 1809 году Фултон запатентовал конструкцию «Клермонта» и вошел в историю как изобретатель парохода. Газеты писали, что многие лодочники в ужасе закрывали глаза, когда «чудовище Фултона», изрыгающее огонь и дым, двигалось по Гудзону против ветра и течения. Уже через десять-пятнадцать лет после изобретения Р. Фултона пароходы серьезно потеснили парусные суда. В 1813 г. в Питтсбурге в США заработали два завода по производству паровых двигателей. Через год к Нью-Орлеанскому порту было приписано 20 пароходов, а в 1835 г. на Mиссисипи и ее притоках работало уже 1200 пароходов. Речной пароход США 1810-1830гг- на рис.(8.)К 1815 г. в Англии на р. Клайд (Глазго) работало уже 10 пароходов и семь или восемь на р. Темзе. В том же году был построен первый морской пароход «Argyle», который выполнил переход из Глазго в Лондон. В 1816 г. пароход «Majestic» выполнил первые рейсы Брайтон — Гавр и Дувр — Кале, после чего начинали открываться регулярные морские паровые линии между Великобитанией, Ирландией, Францией и Голландией.В 1813 г. Фултон обратился к русскому правительству с просьбой предоставить ему привилегию на постройку изобретенного им парохода и употребление его на реках Российской империи. Однако в России пароходов Фултон не создал. Начало 19 века и в России отмечается строительством первых судов с паровыми машинами. В 1815 году владельцем механико-литейного завода в Петербурге Карлом Бердом был построен первый колесный пароход «Елизавета» на рис.(9.) На деревянную «тихвинку» была установлена изготовленная на заводе паровая машина Уатта мощностью 4 л. с. и паровой котел, приводившие в действие бортовые колеса. Машина делала 40 оборотов в минуту. После успешных испытаний на Неве и перехода из Петербурга в Кронштадт пароход совершал рейсы на линии Петербург — Кронштадт. Этот путь пароход проходил за 5 ч 20 мин со средней скоростью около 9,3 км/ч.К 20-м годам 19 века в Черноморском бассейне был всего лишь один пароход — «Везувий», не считая примитивного парохода «Пчелка» мощностью 25 л.с., построенного киевскими крепостными крестьянами, который через два года был проведен через пороги в Херсон, откуда и совершал рейсы до Николаева.Крупный сибирский золотопромышленник Мясников,. получивший привилегию на организацию пароходства по оз. Байкал и рекам Оби, Тоболу, Иртышу, Енисею, Лене и их притокам, в марте 1843г. спустил на воду пароход “Император Николай I” мощностью 32 л. с., который в 1844 г. был выведен на Байкал. Вслед за ним был заложен и в 1844 г. закончен постройкой второй пароход мощностью 50 л. с., получивший название “Наследник Цесаревич”, который также был переведен на оз. Байкал, где оба парохода и использовались на перевозках.В 40-50-е годы 19века пароходы стали регулярно ходить по Неве, Волге, Днепру и другим рекам. К 1850 г. в России было около 100 пароходов.

В 1819 американское парусное почтовое судно на рис.(10.)-«Саванна», дооборудованное паровой машиной и съемными бортовыми колесами вышло из г. Саванна США на Ливерпуль и совершило переход через Атлантику за 24 дня. В качестве двигателя на «Саванне» использовалась одноцилиндровая паровая машина низкого давления, простого действия. Мощность машины составляла 72 л.с., скорость при работе двигателя — 6 узлов (9 км/час). Двигателем пароход ьпользовался не более 85 часов и только в пределах прибрежной зоны.Рейс «Саванны» проводился для оценки необходимых запасов топлива на океанских маршрутах, т. к. сторонники парусного флота утверждали, что ни один пароход не сможет вместить достаточно количество угля для перехода через Атлантику. После возвращения судна в Соединенные Штаты паровой двигатель был демонтирован, а судно до 1822 г. использовалось на линии Нью-Йорк – СаваннаЛегендарный гигант «Титаник» .В котельных помещениях судна было установлено 29 паровых котлов — каждый весом в 100 тонн, которые разогревались жаром 162 топок. Угольные печи разогревали воду в котлах, чтобы получить пар. Затем пар подавался на поршневые двигатели. Как только пар попадал в один из четырех цилиндров двигателя, вырабатывалось необходимое усилие для вращения одного из гребных винтов. Лишний или потеряный пар конденсировался в испарителях и полученная вода могла быть возвращена в котлы для повторного нагревания. Изменение количества пара, поданного надвигатели управляло скоростью судна. Дым от топок и выхлопы двигателей выбрасывались через 3 первых трубы. Четвертая труба была фальшивой и использовалась для вентиляции. На «Титанике» все соответствовало последнему слову техники того времени. Первый военный пароход был построен в США по проекту Р. Фултона в 1815г. Он предназначался для охраны акватории Нью-Йоркского порта и представлял из себя батарейный катемаран. Военные моряки называли его паровым фрегатом, однако Р. Фултон предпочитал называть его паровой батареей и дал ему имя «Demologos» («Глас народа»). В 1829 г. пароход взорвался на рейде Нью-Йорка из-за неосторожного обращения матросов с огнем. В России первый пароходофрегат «Богатырь», ставший предтечей крейсеров, был построен в 1836 г.Применение паровой машины на подводной лодке откладывалось в течение многих лет. Главной проблемой была подача воздуха для сжигания топлива в топке парового котла при нахождении лодки в подводном положении, т.к. при работе машины расходовалось топливо и изменялась масса подводной лодки, а она должна быть постоянно готовой к погружению. Несмотря на препятствия в истории изобретательства подводных кораблей было много попыток построить подводную лодку, снабженную паровым двигателем. Проект подводной лодки с паровой машиной первым разработал в 1795 г. французский революционер Арман Мезьер, но ему не удалось осуществить его. В 1815 году Роберт Фултон построил в Нью-Йорке большое подводное судно, снабженное мощной паровой турбиной, длиной восемьдесят футов и шириной двадцать два фута с экипажем в 100 человек. Однако Фултон умер до того, как «Mute» был спущен на воду, и эта подводная лодка пошла на слом.Летом 1866 г. была создана подводная лодка талантливого русского изобретателя И. Ф. Александровского. Она испытывалась в течение нескольких лет в Кронштадте на рис.(11.). Было вынесено решение о ее непригодности ее для военных целей и нецелесообразности проведения дальнейших работ по устранению недостатков.

1.3.2 Зарождение двухколесного транспорта

Параллельно с развитием первых автомобилей изобретатели продолжали совершенствовать конструкции мотоциклов и установленных на них моторов. Наиболее интересными работами в этой области были аппараты французского инженера Луи Гийома Перро, который создал собственный паровой мотоцикл. Начал он, как и его соотечественник Эрне Мишо, с велосипеда, оснастив его в 1868 г. большим маховиком, благодаря чему ездок мог определенное время двигаться по инерции. Через год Перро стал применять в своих конструкциях одинарную трубчатую раму.Революционным стал велосипед, разработанный Луи Перро, с электроприводом на заднем колесе. А ведь это было во времена, когда электротехника только зарождалась и хороших электромоторов не существовало, поэтому фантастический для того времени проект тик и остался на бумаге.Итогом всех этих изобретений стала паровая машина для велосипеда, разработанная Перро в 1871 г. Через некоторое время мотоцикл был изготовлен и опробован на ходу. Топливом для горелки должны были служить винный спирт, керосин или растительное масло. Двигатель — одноцилиндровая паровая машина. Вдоль рамы крепился рабочий цилиндр, а бачки для топлива и воды располагались поперек рамы. С помощью специального регулятора можно было менять количество подаваемого в цилиндр пара, изменяя тем самым скорость мотоцикла. Тормоза на машине Перро не было.Основой рамы была толстая изогнутая труба, которая крепилась к рулевой колонке и проходила к заднему колесу. Обода колес были деревянными, заделанными снаружи металлом. Металлическими были и спицы. Седло крепилось на длинной рессоре и могло перемещаться вдоль машины — вперед летом, дабы отодвинуться от горячего мотора, а зимой назад, чтобы согреться от него. На рис.(12.)-Перро предлагал свое детище за три тысячи франков. Но, к сожалению, накануне франко-прусской войны его изобретение не смогло завоевать поклонников и принести прибыль.Мотоцикл Перро имел трубчатую раму с закрепленным на ней рабочим цилиндром и бачками для топлива и воды что виднно на рисунке (13.).Стоит упомянуть еще об одном изобретателе «пароциклов» — американце Луисе Копленде. В 1884 г. он поставил провой мотор впереди водителя над маленьким передним колесом, чтобы разгрузить заднее (масса водителя плюс масса двигателя). Этот мотоцикл мог разогнаться до 18 км/ч, несясь по улицам, как «исчадие ада», и пугая граждан. Позднее Копленд основал собственную фирму по производству мотоциклов.В дальнейшем развитие мотоциклов приостановилось. Люди, занимавшиеся их изготовлением, столкнулись с той же проблемой, что и автомобильные мастера, — с отсутствием легкого и экономичного двигателя. Лишь появление двигателя внутреннего сгорания в корне изменило ситуацию, дав мощный толчок дальнейшему развитию этого оригинального вида транспорта.

1.4 Применение паровых двигателей

Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Позднее паровые машины были вытеснены двигателями внутреннего сгорания, паровыми турбинами и электромоторами, КПД которых выше.Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86% электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.

1.4.1 Преимущество паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей. Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т.д. В результате такие паровозы имеют на 60% меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса.

1.4.2 Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен

,

где

Wout — механическая работа, Дж;

Qin — затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 — 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 — 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере. Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т.н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100°С.

В практической части была сделана попытка сконструировать механизм, способный двигаться на пару.

Для работы мы использовали различные материалы, которые можно купить в хозяйственном магазине.

Механизм состоял из различных подручных средств.

Были использованы такие материалы как:

железная платформа размером,

банка из-под освежителя воздуха,

различные металлические крепежи,

металлический винт,

различного диаметра трубочки,

различные держатели,

металлическая проволока,

свеча,

сухой спирт.

В первую очередь чтобы собрать механизм мы приготовили основание, на чем будет стоять наш механизм выбор пал металлическую платформу размерами (11*23)см.

Металлическая платформа по своим качествам и свойствам: прочная, способная выдержать длительные нагрузки и приличный вес механизма, а так же, способна выдержать длительный жар и не деформироваться под его воздействием.

Потом мы подготовили емкость, в которую будет наливаться вода и в дальнейшем нагреваться. Для емкости мы использовали банку из под освежителя воздуха размерами в высоту 12см и в 7см в диаметре.

Так как нам продеться её нагревать, наружный металлический корпус идеально подходил для этого. А так же плюсы этой емкости были в том, что она была практически герметична. Подача воздуха и выход пара происходил через одно отверстие. Была приделана металлическая узкая трубочка на выходе из емкости, чтобы увеличить давление в ней при нагревании и создать как можно больший поток пара на выходе из емкости.

Для того чтобы установить емкость на металлической платформе были использованы металлические крепежи.

Металлические крепежи были сделаны специально из толстого металла, для того чтобы они были способны выдержать вес емкости с водой, а так же стойкими к огню.

Так как при нагревании емкости выходящий из неё пар сконцентрирован в одном месте и создает горячий поток воздуха. Именно эту особенность мы решили использовать и по закону сохранения энергии, что энергия может переходить из одной формы в другую.

И возникла идея превратить пар в механическую энергию.

Чтобы это сделать, был использован металлический винт.

Поток пара направленный на лопасть винта заставил бы его крутиться винт вокруг своей оси, что наглядно показывало на переход энергии в механическую.

Ось винта с одной стороны должна быть с удлинением 2-3 см. Поскольку на неё будет крепиться резинка, соединяющая ее с колесом механизма. И за счет того, что винт будет крутиться под напором пара, то через резинку это движение будет переходить на колесо. Что в конечно итоге должно заставить медленно двигаться механизм.

Одно из важнейших особенностей этого механизма это нагревание воды в емкости. Были использованы 2 вида источника тепла: первый это обычная свечка, которая даем не достаточно теплоты, чтобы заставить воду кипеть и сухой спирт, который значительно больше дает теплоты, но тоже не способная быстро выпаривать воду.

2.2 Способы улучшения машины и ее КПД

В предыдущем прототипе мы при благоприятных условиях могли бы получить от 1-3% КПД, но при данном улучшении КПД должен увеличиться до 3-6%.Идея очень простая и работает за счет давления пара образованного в емкости.

Улучшения заключается в том, что изменяется положение емкости и способ перехода энергии. На емкости в том месте, где выходит пар, приделана трубочка внутри которой находиться металлический шарик, который закрывает емкость. Шарик подпирает пружинка, которая соединяет шарик и поршень. В самой трубочке образованны отверстия, чтобы пару было куда уйти. И принцип заключается в том, что в емкости при нагревании образуется пар и в момент увеличения давления, когда давление увеличивается до определенного момента, давление вытесняет шарик. Вытесненный шарик по цепной реакции задействует пружинку, а она в свою очередь переходит на поршень и так через рычаги механическая энергия переходит на колеса. И так продолжается пока в емкости может образоваться давление для вытеснения шарика. Таким образом, если урегулировать механизм мы можем, получит частое поднятие шарика, а это приведет к созданию скорости.

2.3 Анкетирование

Результаты анкетирования показали, что из 20 учеников 2 классов на 10 вопросов правильно ответили 65% учеников.

На самые актуальные вопросы сделана таблица на рис.(20.) для наглядного сравнения.

Заданные вопросы:

1.Как вы думаете, какой будет КПД у этой машины и почему? на рисунке (21.)

2. В каких промышленных предприятиях используют паровой двигатель?

3. В каком году французский изобретатель Кюньо построил первый в мире паровой автомобиль?

4. Кто такой англичанин Томас Севери?

5. Какую максимальную скорость развивал паровой автомобиль?

Заключение

После написания работы были сделаны выводы, что паровая техника до сих пор окружает нас и используется и по сей день: паровозы сравнимы с современными дизельными и электрическими локомотивами, насосные станциями и множество других мест. Проанализировав научную литературу, стало очевидно, что именно паровой двигатель изменил наш мир, и наши жизни, поскольку именно с его открытия настала эра развития технологий и разного вида транспорта.

Изучив принцип работы паровых двигателей, сконструировали и построили простейший механизм, работавший на пару. Рассмотрели возможности увеличения КПД в дальнейшем.

В работе при создании механизма мы столкнулись с рядом проблем, которые помешали добиться желаемого результата и что, в конечном счете, привело к малой мощности нашего механизма. Что частично опровергает нашу гипотезу. Чрезмерное влияние внешних факторов и большая потеря тепла, энергии впустую, были причинами неудачи. Так же не достаточное быстрое и малое количество образования пара привело к тому, что не создавалось нужное давление и что в последствии привело нехватке мощности.

При конструировании механизма следующего поколения большинство факторов было учтено, чтобы избежать прежней участи. Чертежи были основанные, для того чтобы улучшить механизм и добиться желаемого результата.

По этой работе можно судить, что в мире паровых технологий и по сей день, есть куда стремиться и развиваться. И может именно эта технология станет самой экономичной, экологической и мощной в дальнейшем в мире.

Список используемой литературы

Статья основана на материалах Большой советской энциклопедии 2-го издания.eo:Vapormaŝinohu:Gőzgéplt:Garo mašinann:Dampmaskin

В полёт, паролёт? аммиачно-паровой двигатель для авиации.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее – более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:

  • Двигатель «α – Стирлинг»:

Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

Двигатель «β – Стирлинг»:

Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

Двигатель «γ – Стирлинг»:

Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Некоторые силовые установки не похожи на основные виды двигателей:

Роторный двигатель Стирлинга.

Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.

Термоакустический двигатель Стирлинга.

Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.

Как сделать рабочую модель парового двигателя на дому

Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно.  Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop.com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.

Как создать свой собственный паровой двигатель?

Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.

Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.

Шатун треугольника

Шаг 1
Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.

Треугольник и золотник
Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.

Подпорки
Далее нужно сделать подпорки из брусков, размеры опциональны.

Кривошипы
Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника – 4 мм.

Паровой котёл
Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.Вот фото:

Фото двигателя в сборе

Собираем двигатель на деревянной платформе, размещая каждый элемент на подпорке

Видео работы парового двигателя

Цикл

Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.

Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальные круговые явления:

  • 1-2 Изменение линейных размеров вещества с постоянной температурой;
  • 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
  • 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
  • 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Из расчёта (моль) вещества:

Подводимое тепло:

Получаемое охладителем тепло:

Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):

R – Универсальная постоянная газа;

СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.

За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.

КПД кругового явления:

ɳ =

Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.

Представители электростанций заводского изготовления

Отметим, что указанные варианты – термоэлектрогенератор и газогенератор сейчас являются приоритетными, поэтому выпускаются уже готовые станции для использования, как бытовые, так и промышленные.

Ниже приведено несколько из них:

  • Печь «Индигирка»;
  • Печь туристическая «BioLite CampStove»;
  • Электростанция «BioKIBOR»;
  • Электростанция «Эко» с газогенератором «Куб».

Печь «Индигирка».

Обычная бытовая твердотопливная печь (сделанная по типу печи «Буржайка»), оснащенная термоэлектрогенератором Пельтье.

Отлично подойдет для дачных участков и небольших домов, поскольку достаточно компактна и ее можно перевозить в авто.

Основная энергия при сгорании дров идет на обогрев, но при этом имеющийся генератор позволяет получить также электроэнергию напряжением 12 В и мощностью 60 Вт.

Печь «BioLite CampStove».

Тоже использует принцип Пельтье, но она еще более компакта (вес всего 1 кг), что позволяет брать ее в туристические походы, но и количество энергии, вырабатываемой генератором – еще меньше, но ее будет достаточно зарядить фонарь или телефон.

Электростанция «BioKIBOR».

Тоже используется термоэлектрогенератор, но это уже – промышленный вариант.

Производитель по заказу может изготовить устройство, обеспечивающие на выходе электроэнергию мощностью от 5 кВт до 1 МВт. Но это влияет на размеры станции, а также потребляемое количество топлива.

К примеру, установка, выдающая 100 кВт, расходует 200 кг дров в час.

«Эко».

А вот электростанция «Эко» — газогенераторная. В ее конструкции используется газогенератор «Куб», бензиновый двигатель внутреннего сгорания и электрогенератор мощностью 15 кВт.

Помимо промышленных уже готовых решений, можно отдельно купить те же термоэлектрогенераторы Пельтье, но без печки и использовать его с любым источником тепла.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Особенности и преимущества

Конструктивные решения позволяют отнести машину к классу низкорамных. Сборка производится крупными блоками, что сокращает количество соединений и повышает прочность техники. Опционально на грузовик ТАТА-613 можно установить на нее различные виды фургона:

  • эвакуатор;
  • хлебный;
  • изотермический;
  • промтоварный;
  • тентовая или бортовая платформа;
  • термический.

Это повышает универсальность грузовика и гарантирует возможность его использования в городском, сельском и коммунальном хозяйстве.

Tata 613 может оборудоваться рефрижератором, который используется в развозке пищевых продуктов с малым сроком годности и лекарственных препаратов со специальными условиями хранения.

К основным достоинствам техники относятся:

  • небольшие габариты, позволяющие работать в городской черте;
  • рефрижераторы, оборудованные специальным покрытием, простым в уходе и санитарной обработке;
  • экономичность, обусловленная установкой дизельного двигателя.

К недостаткам машины относятся небольшая грузоподъемность и малая вместимость.

История двигателя Стирлинга

Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.

Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.

Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:

P*V=n*R*T

здесь

  • P – сила действия газа в двигателе на единицу площади;
  • V – количественная величина, занимаемая газом в пространстве двигателя;
  • n – молярное количество газа в двигателе;
  • R – постоянная газа;
  • T – степень нагрева газа в двигателе К,

Модель двигателя Стирлинга:

За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см

Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Плюсы и минусы электростанции на дровах

Электростанция на дровах – это:

  • Доступность топлива;
  • Возможность получить электроэнергию в любом месте;
  • Параметры получаемой электроэнергии – самые разные;
  • Можно сделать устройство и самому.
  • Среди недостатков же отмечается:
  • Не всегда высокое КПД;
  • Громоздкость конструкции;
  • В некоторых случаях получение электроэнергии – лишь побочный эффект;
  • Для получения электроэнергии для промышленного использования нужно сжечь большое количество топлива.

В целом, изготовление и использование электростанций, работающих на твердом топливе – вариант, заслуживающий внимания, и он может стать не только альтернативой электросетям, но еще и помочь в местах, удаленных от цивилизации.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Морские паровые машины

(В первой редакции простые ПМ не рассматривал.До первого коммента ( погибшего).Действительно — никто не мешает сделать тотж «Новик» аж на 4х винтах , влепив 4 компаунда. Но одноцилиндровая — все таки на мой взгляд перебор)
Выбрасывать воду в виде пара на море- довольно расточительно. Корабль- не мельница на речке- пресной воды нет (те конечно есть — но её достаточно мало). Можно, конечно, питать котлы заборной водой, но сразу встает вопрос засоления трубок котлов. И придумали оригиальну вещь . Пар из первого цилиндра ( раширившись и совершив какую-то работу) идет во второй цилиндр и делает уже работу там . Опять расширившись он не выбрасывается в атмосферу а идет в холодильник , где конденсируется до состояния воды и идет обратно в котел. Так появились машины двойного расширения. Добавив третий цилиндр- получили машины тройного расширения.
Потом подобный девайс еще усовершенствовали- разделили цилиндр низкого давления на два .

Эту схему,применяли гтам, де один цилиндр низкого давления становился слишком большим при литье. Это также удобно для более действенной балансировки двигателя.

Устройство

В базовую комплектацию грузовика входят следующие компоненты:

  • ветровики;
  • моющиеся коврики из поливинилхлорида;
  • формованные конструкции для крыши;
  • IRVM;
  • усилитель привода сцепления;
  • гидроусилитель рулевого колеса;
  • механическая подвеска кресла машиниста.

Фургон Tata 613 Ex2

Основная несущая конструкция – лестничная, в качестве лонжеронов выступают швеллеры, соединенные с помощью заклепок и болтов. В качестве опции выступает установка фургона из профлиста белого цвета. Двери устанавливаются двухстворчатые, крепятся они с помощью 6 петель. Ширина – 2,14 м, высота – 1,07 м.

Внутри фургона автомобиля ТАТА-613 устанавливается пара осветительных приборов, провода закрыты пластиковым коробом или гофрированными нишами, что обеспечивает их безопасность. Для вентиляции в передней стенке устраиваются отверстия. Износостойкость напольного покрытия обеспечивается свойствами материала, из которого оно изготовлено. Это бакелит мощностью 4 мм.

Для безопасности при ночной езде предусмотрена установка по периметру авто габаритных огней. Опционально в салон может устанавливаться кондиционер.

Расчет скорости корабля в зависимости от мощности.( Формулы интересны скорее заклепочникам )

V-скорость в узлах, D-водоизмещение, Н- мощность и. л.с, С-константа ( да.1/3 заменять на 0,33 и 2/3 заменять на 0,66 не рекомендую.Погрешность в полузла вылазит)

ТЕ приведены три константы

Для больших и быстрых (пассажирских)пароходов — 250

Для грузовых пароходов — 235

Для крейсеров и броненосцев- 225

Я лично для малых крейсеров в 2800-3300 т предлагаю — 200

Такто эта константа пишется и обозначается как «коэффициент Адмиралтейства» или «Адмиралтейский коэффициент».И таблицы есть. Но врядли ктото из присутствующих станет конструировать яхту.

( ктото не согласен или хочет внести свои коэффициенты ( миноносцев вот нет пока) — пожалста, только аргуметируйте расчетом- поменяем)

Те вполне можно посчитаь нужную мощность ПМ в табличном редакторе и построить очень красивые графики.

Компаундный паровой двигатель

Упрощённая схема паровой компаунд-машины тройного расширения:
Пар высокого давления (красный цвет) от котла проходит через двигатель, выходя в конденсатор при низком давлении (голубой цвет).

Большим минусом компаунд-машины, который выявило применение на паровозах, является невозможность трогания, если поршень в цилиндре высокого давления остановился в мертвой точке. Чтобы преодолеть этот недостаток паровозы с компаундной паровой машиной получили сложные приборы трогания, подающие кратковременно свежий пар сразу в два цилиндра.

На паровозах использовалось несколько вариантов компаундов:

  • цилиндры высокого и низкого давления располагаются параллельно один под другим снаружи рамы и работают на общий ползун. Данную схему имели паровозы американской постройки серий «B» и «X»;
  • цилиндры располагаются последовательно на общем длинном штоке (тандем-машина). По такой схеме строились российские паровозы серий «Р» и «П»;
  • Система де Глена — дополнительные цилиндры располагаются внутри рамы и работают на коленчатую ось. По данной схеме выпускались паровозы серии «У», а также опытный чехословацкий паровоз «18-01».
    В поздних сериях паровозов компаунд-машины не применялись из-за присущих им недостатков, добиваясь экономичности за счет перегрева пара.

Существенный вклад в изучение и применение паровой компаунд-машины на паровозах внёс российский инженер Александр Парфеньевич Бородин.

Начало новой эры в механике

В середине 60-х годов 18 века талантливый механик Джеймс Уатт работал в университете Глазго. Однажды ему поступил заказ на ремонт паровой машины Ньюкомена, и, разобравшись в конструкции агрегата, Уатт решил попробовать ее немного усовершенствовать. Он предположил, что можно будет сократить расход недешевого топлива, если цилиндр паровой машины будет постоянно оставаться в нагретом состоянии. Ведь до этого поршень двигался вниз и совершал полезную работу благодаря тому, что емкость с паром охлаждалась при помощи впрыска воды. Но чтобы воплотить в жизнь данную идею, следовало разобраться с проблемой конденсации пара, которую Уатт решил достаточно элегантно.
 

Если верить историческим источникам, мысль о том, как можно сконденсировать пар, пришла Уатту в голову совершенно случайно, когда он увидел, как под давлением вырываются его струи из котлов прачечных. Джеймс сообразил, что пар – это обыкновенный газ, который из цилиндра можно легко направить в другую емкость, создав в ней меньшее давление. Для этих целей Уатт решил использовать откачивающий насос и систему металлических отводящих трубок, которые забирали из цилиндра пар.

Паровая машина Джеймса Уатта

Следующее усовершенствование было направлено на то, чтобы заставить поршень в цилиндре совершать полезную работу не за счет атмосферного давления, а с помощью давления пара. Основная сложность состояла в том, чтобы сделать всю конструкцию герметичной, ведь добиться этого в то время было непросто. Но Уатт и здесь продемонстрировал отличную работу мысли – в своей машине он использовал в качестве уплотнителя пеньковую веревку, пропитанную маслом. Она по специальным углублениям наматывалась вокруг поршня, что позволило в большей части решить эту проблему.

Как работает паровая турбина?

В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать энергию топлива в электричество, иногда – в тепло.

На данный момент этот способ считается экономически выгодным. Технологически это происходит следующим образом:

  • твердое или жидкое топливо сжигается в паровой котельной установке. В результате рабочее тело (вода) обращается в пар;
  • полученный пар дополнительно перегревается и достигает температуры 435 ºС при давлении 3.43 МПа. Это необходимо для того, чтобы добиться максимального КПД работы всей системы;
  • по трубопроводам рабочее тело доставляется к турбине, где равномерно распределяется по соплам с помощью специальных агрегатов;
  • сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Таким образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть принцип действия паровой турбины;
  • вал генератора, представляющего собой «электродвигатель наоборот», вращается ротором турбины, в результате чего вырабатывается электроэнергия;
  • отработанный пар попадает в конденсатор, где от соприкосновения с охлажденной водой в теплообменнике переходит в жидкое состояние и насосом снова подается в котел на прогрев.

Чтобы не допускать снижения эффективности работы, на валу ротора располагается максимальное расчетное число лопаток. При этом между ними и корпусом статора обеспечивается наименьший зазор посредством специальных уплотнений. Простыми словами, чтобы пар «не крутился вхолостую» внутри корпуса, все зазоры минимизируются. Лопатка сконструирована таким образом, чтобы расширение пара продолжалось не только на выходе из сопла, но и в ее углублении. Как это происходит, отражает рабочая схема паровой турбины:

Следует отметить, что рабочее тело, чье давление после попадания на лопатки снижается, после рабочего цикла в первом блоке не сразу попадает в конденсатор. Ведь оно еще располагает достаточным запасом тепловой энергии, а потому по трубопроводам пар отправляется во второй блок низкого давления, где снова воздействует на вал посредством лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может предусматривать несколько таких блоков:

1 – подача перегретого пара; 2 – рабочее пространство блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.

Для справки. Скорость вращения ротора генератора может достигать 30 000 об/мин, а мощность паровой турбины – до 1500 МВт.

Классический вариант

Как уже отмечено, в электростанции на дровах используется несколько технологий для получения электричества. Классической среди них является энергия пара, или попросту паровой двигатель.

Здесь все просто – дрова или любое другое топливо сгорая, разогревает воду, в результате чего она переходит в газообразное состояние – пар.

Полученный пар подается на турбину генераторной установки, и за счет вращения генератор вырабатывает электроэнергию.

Поскольку паровой двигатель и генераторная установка соединены в единый закрытый контур, то после прохождения турбины пар охлаждается, снова подается в котел, и весь процесс повторяется.

Такая схема электростанции – одна из самых простых, но у нее имеется ряд существенных недостатков, одним из которых является взрывоопасность.

После перехода воды в газообразное состояние давление в контуре значительно повышается, и если его не регулировать, то высока вероятность порыва трубопроводов.

И хоть в современных системах применяются целый набор клапанов, регулирующих давление, но все же работа парового двигателя требуется постоянного контроля.

К тому же обычная вода, используемая в этом двигателе, может стать причиной образования накипи на стенках труб, из-за чего понижается КПД станции (накипь ухудшает теплообмен и снижает пропускную способность труб).

Но сейчас эта проблема решается использованием дистиллированной воды, жидкостей, очищенных примесей, выпадающих в осадок, или же специальных газов.

Но с другой стороны эта электростанция может выполнять еще одну функцию – обогревать помещение.

Здесь все просто – после выполнения своей функции (вращения турбины) пар необходимо охладить, чтобы он снова перешел в жидкое состояние, для чего нужна система охлаждения или попросту – радиатора.

И если разместить этот радиатор в помещении, то в итоге от такой станции получим не только электроэнергию, но еще и тепло.

Как сделать поршень с шатуном

Шаг 1
Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.

Шаг 2
Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.

Шаг 3
Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).

Шаг 4
Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.

Шаг 5
Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.
Спицу с двух концов подклеиваем, чтобы не выпала.

Мастер сделал сам паровой двигатель

Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.

В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.

От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.

Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты

паровой двигатель своими руками в домашних условиях .

Делаем самый простой паровой двигатель из мусора своими руками! “Мелкий Рик”

Нажми для просмотра

Обучающий
ролик о том
как
сделать
паровой
двигатель
своими
руками из
хлама и
мусора!
Чертежи
имеются!…
 
 
 
Тэги:
 
Бесплатная энергия. Паровой двигатель своими руками

Нажми для просмотра

вечный
двигатель,
двигатель,
свободная
энергия,
вечный
двигатель
своими
руками,
вечный
двигат…
 
 
 
Тэги:
 
Как сделать простой паровой двигатель из 2 тактного без токарного и фрезерного станков

Нажми для просмотра

Всё, чем я
располагаю
в
хозяйстве –
сварка,
болгарка,
дрель и
менее
высокоточн
ые
инструмент
ы. Тем не
менее…
 
 
 
Тэги:
 
ПАРОВОЙ ДВИГАТЕЛЬ – ПЕРВЫЙ ВЫЕЗД

Нажми для просмотра

Мы в Instagram
Наш LIFE
канал
(приколы со
съемок и не
только) …
 
 
 
Тэги:
 
Самодельный паровой двигатель в домашних условиях

Нажми для просмотра

Чтобы
ускорить
выход
видео –
поддержите
пожалуйста
мой проект.
Деньги
пойдут
исключител
ьно на
покупку
дета…
 
 
 
Тэги:
 
Двигатель Стирлинга

Нажми для просмотра

Фильм
рассказыва
ет о
том,кем был
Роберт
Стирлинг,к
к изобрел
свой
двигатель,
сновные
принципы
работы и…
 
 
 
Тэги:
 
ПАРОВОЙ МОТОР СВОИМИ РУКАМИ из ПАРЫ БАНОК

Нажми для просмотра

Самая
настоящая
паровая
Машина
сделана
очень
просто из
пары
пустых
банок.
Провозился
я с нею
долго, но
получ…
 
 
 
Тэги:
 
Паровой двигатель своими руками! // Steam engine!

Нажми для просмотра

Зарабатыва
йте с AIR
Биржа
криптовалю
т: …
 
 
 
Тэги:
 
Собираем паровой двигатель своими руками из всякого мусора и хлама! |ПАРОВОЙ МОНСТР “Винни”|

Нажми для просмотра

Подробное
видео, о
том как
сделать
паровой
двигатель
своими
руками!
Чертежи
имеются!
Чертежи
JPEG: …
 
 
 
Тэги:
 
Современная паровая машина

Нажми для просмотра

Современна
я паровая
машина.
 
 
 
Тэги:
 
Паровой двигатель своими руками

Нажми для просмотра

Чтобы
ускорить
выход
видео –
поддержите
пожалуйста
мой проект.
Деньги
пойдут
исключител
ьно на
покупку
дета…
 
 
 
Тэги:
 
Паровой багги своими руками. Часть 1. Двигатель.

Нажми для просмотра

Как
сделать
паровой
двигатель
из ДВС. Как
сделать
парогенера
тор для
парового
двигателя.
Первый…
 
 
 
Тэги:
 
Паровой двигатель двс 1часть

Нажми для просмотра

Будет
продолжени
я с
генераторо
м…….8_9
БАР…..
2часть 6-Бар
.. 3-часть
5-Бар …
 
 
 
Тэги:
 
Как сделать паровой двигатель (паровую машину) Steam machine

Нажми для просмотра

Наша
группа
Решил я
сделать
подробнейш
ее видео о
том как
можно
сделать
самостояте
льно …
 
 
 
Тэги:
 
Как сделать одноцилиндровый электродвигатель своими руками?

Нажми для просмотра

Мой
инстаграм:
Группа в ВК
 
 
 
Тэги:
 
Паровой двигатель двс своими руками 4-часть

Нажми для просмотра

Все
просто!!!
паровой
двс 5-часть
.
 
 
 
Тэги:
 
Паровой двигатель голыми руками. (Steam Engine Barehanded.)

Нажми для просмотра

Постройка
самодельно
го
парового
двигателя
без
станков и
инструмент
ов. Model steam
engine made …
 
 
 
Тэги:
 
Паровой двигатель с качающимся цилиндром. История, теория и практика.

Нажми для просмотра

Модель и
принцип
действия
парового
двигателя
с
качающимся
цилиндром.
Oscillating cylinder
steam engine.
 
 
 
Тэги:
 
САМЫЙ МАЛЕНЬКИЙ ДВИГАТЕЛЬ В МИРЕ Всё гениальное просто! Simple diy Engine Игорь Белецкий

Нажми для просмотра

Как
сделать
уникальный
двигатель
на воде
своими
руками.
Очень
простая
конструкци
я, соберет
даже
ребенок!…
 
 
 
Тэги:
 
Паровой двигатель из компрессора холодильника (часть 2)

Кабина водителя

Салон рассчитан на троих пассажиров, он характеризуется комфортом и эргономичностью. Кабина изготавливается из цельного металлического листа и может иметь семь различных цветов исполнения. Для обеспечения комфорта водителя предусмотрена дверь шириной 0,9 м, поручни и низкая подножка. Большие окна предназначены для обеспечения безопасности при движении по дорогам общего пользования, а также территории складов. Боковые стойки отличаются маленькой шириной, а зеркала – большой площадью.

Кресло имеет возможность регулировки по четырем параметрам. Ручки для его настройки расположены в торце подушки. В стандартную комплектацию авто ТАТА-613 входит маячок, который срабатывает, если водитель начал движение и не пристегнул ремень безопасности. Пассажирские сидения такой функцией не оборудованы.

К преимуществам салона стоит отнести высокую звукоизоляционную способность. Это обеспечивается обивкой, на полу она представлена ковролином серого цвета. На дверях устанавливаются резиновые уплотнители. Панель приборов позволяет легко отслеживать состояние машины, она не загромождена излишними датчиками и индикаторами. По центру расположен спидометр, вокруг которого расположены цветовые датчики. На циферблатах указываются уровни давления в тормозных контурах. К недостаткам приборной панели относится отсутствие тахометра.

Пластик характеризуется высоким качеством, как и замки на бардачках. Подсветка приборной панели не яркая, позволяет различить, какие индикаторы активированы. Рулевое колесо изготовлено из не скользкого пластика.

Список источников

  • ElektrikExpert.ru
  • motoran.ru
  • diyworkplace.ru
  • alternathistory.com
  • izobreteniya.net
  • tehnolen.ru
  • funer.ru
  • cotlix.com
  • www.letopis.info
  • justdepot.ru
  • icarbio.ru

Мои модели стирлингов

  • ГЛАВНАЯ
  • Стирлинги

    • Что это и как это работает
    • Низкотемпературные
    • На солнечной энергии
    • Термоакустические
    • Свободнопоршневые
    • Фотогалерея1
    • Фотогалерея2
    • Делаем Стирлинг сами
    • Схемы движков
    • МОИ МОДЕЛИ
    • ВИДЕОУРОКИ
    • PLANS — ЧЕРТЕЖИ
    • Мир Стирлингов
    • Стирлинг УДС-1-гамма
    • Альфа — тип
    • Бетта — тип
    • Sun Runner — бетта
    • Солнечные водокачки
    • Робинсоны и Эриксоны
    • Дикий, Дикий Вест
    • Пульсогенератор
    • TMG генератор
    • ГЕНЕРАТОРЫ
    • ФОРУМ
  • Занимательные игрушки
    по теме:

    • Термодинамика
    • Магнетизм
    • Гироскопический эфект
    • Концентраторы
    • Всякие интересности
    • Мои игрушки
  • Альтернативная энергетика
  • Информация от пользователей сайта
  • Познавательная литература
  • Полезные ссылки

  • Мои контакты

ИЗБРАННОЕ:

 

 

 

 

В этой рубрике я буду рассказывать и показывать всё о Стирлингах, которые мне удалось собрать своими руками. Надо отметить, что ранее к этому творчеству я относился как к хобби, уделяя лишь малую часть свободного от работы и других важных дел времени, т.е. примерно несколько часов в неделю. Что крайне мало, потому что собрать приличную модель с первого раза, не имея подобного опыта очень тяжело.

Например, я свой первый Стирлинг в таком темпе ваял почти год, начал в начале 2007года , а закончил зимой 2008, и только к лету, того же года, полностью довел его до идеала. И это не шутка, просто это оказался настолько непредсказуемый, творческий процесс, что заранее, даже с полным знанием теории не знаешь заработает оно или нет. Я переделывал и менял конструкцию, наверное раз двадцать, прежде чем пришел к нормальному рабочему варианту. Так что то, что Вы увидите ниже всего лишь вершина айсберга, так сказать — венец.

Фоток поэтапной сборки тоже нет, так как тогда я еще не думал что буду делать сайт по этой теме, но дальше они будут начиная с четвертой модели. И еще, не судите строго — это же мой первый Стирлинг.

Ну вот собственно и он.

Собирался практически из подручных материалов, потратиться пришлось только на алюминиевые пластины для корпуса и красивые болтики.

Конкретно этот движок работает от одной свечки — таблетки, ниже будет ссылка на видео, все будет понятно.

Признаюсь сборка несколько грубовата, но для первой модели сойдет.

После ряда мелких доработок этот старичок начал работать на порядок шустрее, смотрим следующее видео.

Идём дальше. Научить работатьСтирлинг от свечки лишь первый этап и самый простой, как оказалось. Эта одна свечка, способна создать разницу температур, между нагреваемой и охлаждаемой сторонами двигателя, более сотни градусов, а это может заставить работать даже очень плохо собранный Стирлинг. Другое дело научить этот движок высасывать энергию из практически дармовых источников, работать на перепаде температур буквально в несколько градусов.

И вот, мой второй Стирлинг, работал уже от солнца. Как видно на фото, схема двигателя всё таже, с той лишь разницей, что теперь у нас нагреваемая сторона расположена сверху, лицом к солнцу так сказать, и выполнена из оргстекла. Благодаря этому световая энергия передаётся выкрашенной в черный цвет, верхней стороне поршня вытеснителя, это главная изюминка этого проекта. Ведь можно было просто сделать верхнюю часть из того же альминия, выкрасить его в черный цвет и двигатель тоже бы работал (в более мене теплую погоду), но в схеме с оргстеклом используется тепличный эффект т.е. такой движок будет работать даже зимой (естественно при наличие солнца).

ниже будет видео, все будет понятно.

Опять используем всё те же подручные материалы, в чём я вижу особую прелесть подобных моделек. Главное проявить фонтазию и все у вас получится.

 

 

Свой третий Стирлинг я решил собрать по хитрой магнитной схеме, и заставить его работать от избыточного тепла, окружающих нас в повседневной жизни предметов, ну например чашки с горячим чаем или кофе.

А вот и собственно схемка и видео два в одном, изучайте.

Все казалось бы просто, два куска алюминия, гильза, поршень , пара магнитов, диск, болтики, резиночка но попробуй всё это сложить так, что бы оно заработало, да…

Низкотемпературный стирлинг, с магнитной связью между рабочим поршнем и вытеснителем, работает от тепла горячей воды, настольный вариант для кухни. Ставим на чашку горячего кофе или чая и получаем удовольствие от трансформации тепловой энергии в механическую.

 

. …..

……

…….

Вот они три первых красавца

Смотрим дальше

 

Назад

bgcolor=»#CCCCCC»>

Вперед

Страницы 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
На главную

СМОТРИ МОИ ВИДЕОУРОКИ на YouTube

Оказать финансовую помощь моим разработкам и сайту

 

 

 

 

 

 

 

Мои контакты : Physicstoys@yandex. ru; ник в Skype «Physicstoys «, моб тел. (+38) 067- 393-13- 82 Игорь. Харьков

схема сборки простейшего электромотора из подручных материалов, готовый проект устройства

В древние времена люди использовали животных для приведения в действие простейших механизмов. Позже для плавания на парусных суднах и для того чтобы заставить вращаться ветряные мельницы, делающие из зерна муку, стала использоваться сила ветра. Затем люди научились использовать силу течения речной воды для того, чтобы заставить вращаться водяные колёса, перекачивающие и поднимающие воду или приводящие в действие разнообразные механизмы.

Тепловые двигатели появились в далёком прошлом, в том числе и двигатель Стирлинга. Сегодня технологии значительно усложнились. Так, например, человечество изобрело двигатель внутреннего сгорания, который является довольно сложным механизмом. На основе ДВС в настоящее время работает большинство современных автомобилей и другой необходимой для человека техники. Функция, которую выполняет тепловое расширение внутри двигателя внутреннего сгорания, очень сложна, но без неё работа ДВС невозможна.

В механическом устройстве, называемом двигателем внутреннего сгорания, энергия сгорающего топлива преобразуется в механическую. Для того чтобы сделать двигатель внутреннего сгорания своими руками, необходимо знать основные принципы его действия.

Процесс переделывания в генератор

Алгоритм последовательности действий следующий:

  • Ротор изымается после снятия крышки;
  • Остаются прежние статорные обмотки, не осуществляется перемотка;
  • Для того чтобы он стал сборным в отличие от своего изначального цельного состояния, его надо стачивать до заранее оговоренного размера;
  • На ротор запрессовывается стакан из стали толщиной пять миллиметров;
  • Одной из наиболее сложных операций считается разметка, которая проводится для того, чтобы приклеить магнитные элементы на ротор согласно шаблону. Размерность индивидуально подбирается под каждый двигательный агрегат;
  • Магнитные элементы из неодима клеят суперклеем и укрепляются дополнительно нитяной капроновой сеткой;
  • Все обматывается при помощи скотча и проводится опалубка для герметизации, а затем заливка эпоксидкой;
  • Стекая вниз, смола застывает, после чего скотч необходимо снять;
  • Ротор загоняется в генераторную часть со всеми предосторожностями, чтобы ротор «встал», а не «влетел» в статор благодаря силе магнитов;
  • Конструкция собирается и закрывается крышкой;
  • Проводится проверка работоспособности при помощи дрели.

Мотор Стирлинга из консервной банки

Для его изготовления вам понадобятся подручные материалы: банка из под консервов, небольшой кусок поролона, CD-диск, два болтика и скрепки.

Читать также: Лампочки в птф ланос

Поролон – одни из самых распространенных материалов, которые используются при изготовлении моторов Стирлинга. Из него делается вытеснитель двигателя. Из куска нашего поролона вырезаем круг, диаметр его делаем на два миллиметров меньше внутреннего диаметра банки, а высоту немного больше ее половины.

В центре крышки просверливаем отверстие, в которое вставим потом шатун. Для ровного хода шатуна делаем из скрепки спиральку и припаиваем ее к крышке.

Поролоновый круг из поролона пронизываем посередине винтиком и застопориваем его шайбой сверху и снизу шайбой и гайкой. После этого присоединяем путем пайки отрезок скрепки, предварительно распрямив ее.

Теперь втыкаем вытеснитель в сделанное заранее отверстие в крышке и герметично пайкой соединяем крышку и банку. На конце скрепки делаем небольшую петельку, а в крышке просверливаем еще одно отверстие, но чуть-чуть больше, чем первое.

Из жести делаем цилиндр, используя пайку.

Присоединяем с помощью паяльника готовый цилиндр к банке, так, чтобы не осталось щелей в месте пайки.

Из скрепки изготавливаем коленвал. Разнос колен нужно сделать в 90 градусов. Колено, которое будет над цилиндром по высоте на 1-2 мм больше другого.

Из скрепок изготавливаем стойки под вал. Делаем мембрану. Для этого на цилиндр надеваем полиэтиленовую пленку, немного продавливаем ее внутрь и закрепляем на цилиндре ниткой.

Шатун который нужно будет приделать к мембране, изготавливаем из скрепки и вставляем его в обрезок резины. По длине шатун нужно сделать таким, чтобы в нижней мертвой точке вала мембрана была втянута внутрь цилиндра, а в высшей – напротив – вытянута. Второй шатун настраиваем так же.

Шатун с резиной приклеиваем к мембране, а другой присоединяем к вытеснителю.

Присоединяем паяльником ножки из скрепок к банке и на кривошип пристраиваем маховик. Например, можно использовать СД-диск.

Двигатель Стирлинга в домашних условиях сделан. Теперь осталось под банку подвести тепло – зажечь свечку. А через несколько секунд дать толчок маховику.

Нюансы процесса перемотки

Асинхронная работа двигателя позволяет выдерживать постоянной частоту, с которой вращается роторная часть, даже при разной нагрузке. Если говорить о принципе перемотки электродвигателей, то он общий в части технологии выполнения. А вот отдельные нюансы могут при этом различаться.

Вышедшее из строя устройство лучше всего отвезти в мастерскую, но в отдельных случаях предпочтительнее, оказывается, перемотать двигатель в условиях дома. Только с условием, что определенные навыки в этом деле все-таки имеются, несмотря на относительную легкость процесса.

Для движков есть два типа для обмотки:

  • Роторной части;
  • Статорной.

С учетом различий в размерах устройств и их конструкции можно воспользоваться обобщенной инструкцией по перемотке с наглядными фотографиями и описательной частью.

Немного про паровой двигатель и принцип его действия

Паровой двигатель/паровая машина – тепловой двигатель внешнего сгорания, использует и преобразует энергию водяного пара во вращательно-поступательную механическую работу поршня и вала.

Паровым двигателем можно считать любой двигатель внешнего сгорания, что преобразует энергию пара в механическую работу.

Принцип работы парового двигателя весьма прост: путём сгорания топлива нагревается вода и превращается в водяной пар, который различными способами приводят поршень в движения, поршень же вращает вал, и на выходе мы имеем механическую работу от вала.

Основные положения инструкции

После обнаружения поломки, двигатель необходимо изначально вынуть из прибора.

Далее работы ведутся в следующей последовательности:

  • Определяются проводные параметры, и общее число витков катушки в процессе осматривания двигательной части;
  • Очищается наиболее уцелевший участок обмоточного фрагмента;
  • Нагар убирается при помощи растворителя или обжигом;
  • Выступающая верхняя часть укладки срезается соответствующим инструментом, в зависимости от площади сечения провода. Затем она раскладывается на отдельные проводки, чтобы суметь узнать число витков;
  • Все обнаруженные неровности на поверхности железа, куда была намотана обмотка, необходимо полностью зачистить, чтобы придать поверхности гладкость. В противном случае новый пробой не заставит себя ждать;
  • Сечение нового провода должно быть идентичным старому или максимально приближено к нему;
  • Из картона изготавливается шаблон, соответствующий размеру железа, по которому проводится намотка. При проведении обмотки пользуются специальным станком.

Как же изготовить «Ветерок»?

Начинать изготовление двигателя надо с самой главной детали — цилиндра. Цилиндр состоит из головки, втулки, болта, слюдяных прокладок, калильной нити, гайки и клиньев.

Сама головка изготовляется из материала Д16Т диаметром 20 мм. Пруток зажимается в кулачковый патрон, и производится полная обработка по чертежу той стороны прутка, где должна быть сферическая выемка. Далее сверлятся отверстия диаметром 4 и 22 мм. Сферическая выемка полируется пастой ГОИ. Затем деталь отрезается от заготовки. Обратная сторона детали обрабатывается в специальной оправке, которая зажимается в кулачковый патрон станка. Затем размечаются и сверлятся отверстия под винты крепления к цилиндру.

Болт точится из стали У5 по чертежу. В головке болта высверливается глухое отверстие диаметром 0,6 мм под медный клин для заделки калильной нити.

Это отверстие сверлится под углом к телу болта. Гайка и втулка точатся соответственно из латуни и дюралюминия Д16Т по чертежу.

Калильные нити можно делать из платиновой, родиевой или иридиевой проволоки. Возможно использование проволоки от старых термопар нагревательных термических печей, причем их необходимо калибровать фильерами.

Фильер представляет собой пластинку из нержавеющей нагартованной стали (или из стали У8) толщиной 0,3 мм. В этой пластинке нужно пробить отверстие обломанной иглой с помощью молотка. Иглу держите плоскогубцами. Протяжка проволоки для нити показана на рисунке 3 в.

Нить наматывается в спираль на оправке диаметром 1 мм. Шаг намотки 0,6-0,7 мм.

Особенно хорошо работают спирали, свитые из двойной или тройной проволочки платины толщиной 0,05 мм

Зачем нужен плавный пуск

Плавный пуск электродвигателя дает возможность по снижению ощутимых недостатков электромашин.

Кроме того:

  • Снижаются ремонтные затраты, так как любой пусковой ток всегда перегревает обмотку, тем самым снижая общий ресурс эксплуатационного срока для машины;
  • Рывки практически отсутствуют, что хорошо сказывается на уменьшении износа шестеренок в передаточных механизмах, а также возможности гидроудара в сети при подаче жидкости;
  • В большой степени снижается потребление электрической энергии, так как проводимый прямой запуск, требует немалое количество электрической энергии. Надо знать, что возможность просадок напряжения в случаях с ограничением мощности в сети, могут негативно сказаться на каждое из подключенных устройств;
  • Общий расход на коммутационное оборудование существенно снижается. Технические электрические устройства для привода с асинхронным принципом действия выбираются с достаточным запасом по мощности. Наличие плавного спуска делает возможным проведение подключения более бюджетных аппаратов по защите и коммутации.

Наличие разгона после проведения плавного старта способствует в существенном расширении прикладной сферы деятельности электрических двигателей асинхронного типа.

Проведение якорной обмотки

Для обмотки якоря электродвигателя требуется провод из меди с большим сечением. Применяется вариант с проводом не изолированным с прямоугольным сечением и изолированным, где сечение круглое.

В первом случае провод предназначен для мощностных стартеров с возможностью токовой проводимости от шестисот и более Ампер.

  • Провод с изоляцией используют при обмотке стартеров с низкой мощностью.
  • Обмотка одновитковая, состоящая из определенного числа проводников.
  • В сердечнике они проложены петлями. Одна петля – один виток. Бандаж с обеих сторон выходов за пределы сердечника фиксирует части обмотки.

Зачем собирать паровой двигатель в 21-ом веке

Итак, сейчас 21-ое столетие, цифровая эпоха, век высоких компьютерных технологий, можно задаться вопросом «Зачем вообще кому-то собирать паровой двигатель сейчас?».

Есть люди, которые говорят, что хотят сделать модель паровоза, паровой генератор для дома и использовать его для своих нужд – всё это чушь.

Если бы эти нужды были реально важны для них, они бы использовали скорее более эффективный двигатель внутреннего сгорания.

На самом деле в нынешнее время паровые двигатели строят для удовольствия от инженерного дела, удовольствия от моделирования и удовольствия от полученного опыта – того самого опыта, который был у великих изобретателей древности.

Фото самодельного электродвигателя

Поделитесь с друзьями

Общие — Архив | планы паровых двигателей | Практик-механик

Дик Шуфорд
Алюминий