Ракетный самодельный двигатель: Как сделать двигатель для самодельных ракет

Содержание

Самодельный ракетный двигатель для начинающего. Как сделать топливо для самодельной ракеты Как сделать ракетное топливо в домашних условиях

|
| |
| р-с |
т-у | ф-ц
| ш-я


Состав №1: 60% (9KNO 3)
+ 30% (9СОРБИТА) + 10%(9S)9 —

более высокая
пластичность

Состав №2: 63% (KNO 3)
+ 27% (СОРБИТА) + 10%(S)


максимальная удельная тяга

Это ракетное топливо является новой и
значительно более усовершенствованной разновидностью сорбитового топлива. Его
более высокая скорость горения и высокий удельный импульс, позволяют
использовать его как в средних, так и в больших ракетных двигателях.
Разработано оно было мною недавно, т.е. доработано, т.к. использовать сорбит в
качестве связующего придумал не я. Однако подобные ему составы были опубликованы
на некоторых веб-страничках Интернета. Но они так и не стали популярными среди
ракетостроителей. И я думаю, что вы знайте почему.

В состав нового сорбитового топлива
входит сера, которая участвует в реакции горения:

6C 6 H 14 O 6
+ 26KNO 3 +13S
= 13K 2 S + 36CO 2
+ 13N 2 + 42H 2 O
(теоретически)

На самом деле реакция протекает по более сложному механизму, по
окислительно-восстановительным свойствам элементов можно утверждать, что в самом
начале, реакция будет протекать именно по простому механизму, а уже потом
продукты реакции будут взаимодействовать между собой, давая уже другие
соединения. Правильное соотношение компонентов обеспечивает высокую
эффективность этого топлива. Данное топливо обладает сравнительно высокими
энергетическими характеристиками. Дело в том, что
сера участвует
здесь как восстановитель и вытесняет оставшийся атом кислорода из молекулы
K 2 O
, вследствие чего увеличивается
энергетический выход реакции. К тому же
K 2 S
не забирает СO 2
,
как это делает
K 2 O
. Выделяющейся энергии хватает на то
чтобы сместить равновесие в сторону образования таких
низкомолекулярных продуктов, как CO
и

H 2
. Это способствует значительному увеличению удельной тяги
топлива. Таким образом КПД двигателя в среднем повышается на
15 — 20%
(по грубым
прикидкам), а может и больше. Так
что можно сказать что данное ракетное топливо является достойной заменой пороху
и обычной карамели.

Недостатками этого топлива
по сравнению с обычным сорбитовым, являются: сложность в изготовлении, низкая
пластичность, невозможность заливки состава в корпус двигателя, быстрая
скорость затвердевания, при недостаточном нагревании сорбита топливо быстро
затвердевает. Опыт показал, что данное топливо хорошо
приготавливать и использовать в холодное время года, так как влажность в воздухе
значительно ниже, чем в летнее время. Пожалуй самой главной проблемой этого
топлива является быстрая скорость затвердевания и невозможность заливки топлива
прямо в корпус двигателя. Ещё у этого топлива есть очень неприятная вещь — при
недостаточном уплотнении массы внутри топливного заряда образуются пустоты, что
сильно сказывается на равномерности горения всего заряда. Проще говоря,
структура становится пористой, что способствует возникновению
аномального горения
— неустойчивое прерывистое горение,
вызванное уменьшением подвода тепла к непрореагировавшему топливу, длящееся от
нескольких долей до 2 секунд
. Особенно эта проблема характерна
только для малых двигателей, с зарядом топлива
30 — 35 грамм
— запрессовка
«Мощной карамели»

в такие
двигатели — работа весьма кропотливая и сложная, ну а на больших
двигателях такая вещь практически не сказывается, т. к относительно всего объёма
топлива воздушные пустоты незначительны. Хоть это топливо и быстро затвердевает,
но эту проблему можно легко устранить, поставив ёмкость с топливом на разогретую
песчаную баню. Это очень удобный способ, ну смотрите не переборщите с
температурой, а то сера в топливе расплавится и смесь станет неоднородной.

ИЗГОТОВЛЕНИЕ

По началу, при его
изготовлении, возникали серьёзные проблемы. Трудно было найти баланс между
температурой плавления сорбита и температурой плавления серы, а при
смешивании расплавов обоих компонентов топливо получалось крайне не однородным.
Был рассмотрен вариант с использованием глицерина, чтобы масса сохраняла
пластичность длительное время. Но использование глицерина приводило к снижению
прочности топливной шашки и повышенной гидроскопичности.

Сорбит при сильном нагревании и последующим охлаждении затвердевает не сразу и
сохраняет пластичность достаточно длительное время, которого хватает на заправку

2 — 3
небольших двигателей. Сорбит должен быть разогрет до достаточно высокой
температуры (около t кип). Когда я его
разогреваю до такой температуры, то он немного дымит, становится прозрачным (слегка желтоватым), и на
дне образуются небольшие пузырьки, что свидетельствует о начале кипения.

Перед тем, как вы начнёте плавить сорбит следует заранее приготовить все
компоненты.

1.
Сначала отвесьте необходимую порцию сорбита и отложите его подальше от места
работы

2.
Далее
вам нужно будет измельчить нитрат калия. Перед помолом его следует тщательно
просушить, можно на батарее, но я просушивал в печке при
t ≈
200 0 C
, больше этой температуры нельзя, т.к. начинается его
плавление и затем разложение. Просушенный нитрат калия легче измельчается и
меньше прилипает к стенкам электрокофемолки, нежели влажный. Помол я производил
в электрокофемолке где-то секунд 40
. Если он прилип к стенкам, то его можно
соскоблить ватными палочками или руками, только не голыми, а используя
одноразовые перчатки.

3.
После помола отвесьте необходимую порцию селитры и поместите в чистую баночку, я
использовал пластиковую, т.к. к стеклу он у меня прилипал.

Сера, которая я используется в топливе, содержит уголь в следующем соотношении:
100% (S)
+ 5% (С) (по массе)
.
При использовании угля масса образует меньше комочков, становится более
рассыпчатой и практически не прилипает к стенкам электрокофемолки во время
помола. Однако нужно молоть с перерывами, чтобы сера не расплавилась от
излишнего трения. После помола она остаётся сильно наэлектризованной и будет
образовывать комочки. Как я заметил, требуется достаточно длительное
время, чтобы сера стала рассыпчатой после помола, так что производить её помол
следует заранее. ()

5.
Только после того, как вы всё отмерили можно плавить сорбит. Для этих целей я
использовал мою любимую миниатюрную печь, но когда у меня её не было я обходился
плитой. Сорбит помещается в металлическую ёмкость, а лучше в
ёмкость из нержавеющей стали (лично я использую кружку из нержавейки, которую я
приобрёл в магазине «Всё для рыбалки и охоты»
)
и нагревается до температуры, приближённой к температуре его кипения.

6.
Затем в него
добавляется мелкоизмельчённый и просушенный нитрат
калия (калийная селитра). Перед тем как вы её будете засыпать, хорошенько
встряхните пузырёк с селитрой, чтобы она стала более рассыпчатой.

7.
Смесь перемешивается до полной однородности.
При таком соотношении селитры и сорбита смесь начинает быстро затвердевать,
поэтому вам придётся снова разогреть содержимое стакана, до тех пор пока смесь
не станет пригодной к перемешиванию.

8.
После
того как смесь остынет до
температуры, которая ниже температуры плавления серы, в неё добавляют саму серу.
Температуру можно проверить, бросив небольшое количество серы в выше полученную
смесь селитры и сорбита, если температура слишком велика, то сера будет плавиться и образовывать
мелкие, блестящие капельки на поверхности.
Перемешивать все компоненты нужно очень быстро, чтобы смесь не успела
затвердеть.

10.
После этого вытащить пластичную массу (желательно использовать
одноразовые полиэтиленовые перчатки) ножом или другим металлическим предметом.
Смесь также следует соскоблить и со стенок кружки и всё ещё раз перемять руками
для большей однородности (использовать
полиэтиленовые перчатки!).

Хочу заметить, что топливо начинает быстро затвердевать, поэтому я снова помещаю
его кружку и ставлю в прогретую печь, но только уже выключенную, т.к. она
сохранила в себе тепло и отлично помогает сохранять температуру расплава
топлива и оно не остаётся пластичным достаточно долгое время. В печь можно также
положить какие-нибудь теплоёмкие материалы: чистый сухой песок, металлически
гайки, гвозди, отлично подойдёт свинец. По мере необходимости кусочки топлива
отщипываются от основной массы и тщательно запрессовываются в корпус двигателя.

Производить
запрессовку топлива следует малыми порциями, потому
что если топливо запрессовывать не под достаточным давлением, то внутри
топливной шашки останется много пузырьков воздуха. Как показал опыт для
запрессовки лучше использовать графитовую палочку пропитанную парафином, и с
отполированным кончиком. Для этих целей так же подойдёт фторопласт, однако
топливо всё равно к нему прилипает и желательно иметь по рукой тряпочку с
помощью которой вы будете удалять налёт. Все работы желательно
проводить в сухом
помещении. Как я уже отметил, данное топливо больше подойдёт на
изготовление крупных топливных зарядов (от 70г
) для больших двигателей.


От автора:
Я не знаю,
станет ли данное топливо популярным среди ракетостроителей и химиков, но в ходе
длительной работы с ним я пришёл, что это единственное мощное топливо,
которое можно получить без особого труда, по сравнению с перхлоратным. А более
низкое содержание сорбита делают его немного более выгодным в использовании,
если конечно у вас сера стоит дешевле, чем сорбит. С первого раза, приготовить
его так как надо, у вас не получится, но в ходе длительной работы с ним, вы
действительно увидите разницу. Возможно вам покажется, что данный способ
изготовления этого топлива небезопасен, но за всю мою практику не было ни одного

ЧП
, потому что я строго соблюдаю чистоту реактивов и не допускаю попадания
веществ, которые воспламеняются ниже 200 0 C
.
При строгом соблюдении чистоты рабочего места данный способ является
сравнительно безопасным.

Внимание!

Если у вас есть
какие-то замечания, вопросы или предложения по данной теме, просьба сообщить
мне об этом.

Мало кто из моих ровесников не увлекался постройкой моделей ракет. Может,
сказывалось всемирное увлечение человечества пилотируемыми полетами,
а может,
кажущаяся простота постройки модели. Картонная трубка с тремя стабилизаторами и головным обтекателем из пенопласта или бальсы,
согласитесь,
намного проще даже элементарной модели самолета или автомобиля. Правда,
энтузиазм большинства молодых Королевых,
как правило,
улетучивался на этапе поиска ракетного двигателя. Оставшимся ничего не оставалось,
как осваивать азы пиротехники.

Александр Грек

Между Главным конструктором наших ракет Сергеем Королевым и Главным конструктором наших ракетных двигателей Валентином Глушко шла негласная борьба за звание Самого Главного: кто же действительно важнее, конструктор ракет или двигателей для них? Глушко приписывают крылатую фразу, якобы брошенную им в разгар такого спора: «Да я к своему двигателю забор привяжу — он на орбиту выйдет!» Впрочем, эти слова — отнюдь не пустое бахвальство. Отказ от «глушковских» двигателей привел к краху королевской лунной ракеты H-1 и лишил СССР каких-либо шансов на победу в лунной гонке. Глушко же, став генеральным конструктором, создал сверхмощную ракету-носитель «Энергия», превзойти которую до сих пор никому не удается.

Двигатели из патронов

Та же закономерность работала и в любительском ракетостроении — выше летала ракета, у которой был более мощный двигатель. Несмотря на то что первые ракетомодельные двигатели появились в СССР еще до войны, в 1938 году, Евгений Букш, автор вышедшей в 1972 году книги «Основы ракетного моделизма», взял за основу такого двигателя картонную гильзу охотничьего патрона. Мощность определялась калибром исходной гильзы, а производились двигатели двумя пиротехническими мастерскими ДОСААФ вплоть до 1974 года, когда было принято решение об организации в стране ракетомодельного спорта. Для участия в международных соревнованиях потребовались двигатели, подходящие по своим параметрам под требования международной федерации.

Их разработка была поручена Пермскому НИИ полимерных материалов. Вскоре была выпущена опытная партия, на основе которой и начал развиваться советский ракетомодельный спорт. С 1982 года с перебоями заработало серийное производство двигателей на государственном казенном заводе «Импульс» в украинской Шостке — в год выпускали 200−250 тысяч экземпляров. Несмотря на жесткий дефицит таких двигателей, это был период расцвета советского любительского модельного ракетостроения, который закончился в 1990 году одновременно с закрытием производства в Шостке.

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.

А в чем, собственно, сложность производства? По своей сути ракетомодельный двигатель — простейшее устройство: картонная трубка с запрессованным внутри дымным порохом марки ДРП-3П (дымный ружейный порох 3-й состав для прессованных изделий) с керамической заглушкой с соплом-дыркой с одной стороны и пыжом с вышибным зарядом — с другой. Первая проблема, с которой не справлялось серийное производство, — точность дозировки, от которой зависел и конечный суммарный импульс двигателя. Вторая — качество корпусов, которые часто давали трещины при прессовании под давлением в три тонны. Ну и третья — собственно, качество запрессовки. Впрочем, проблемы с качеством возникали не только в нашей стране. Не блещут им и серийные ракетомодельные двигатели другой великой космической державы — США. А лучшие модельные двигатели делают микроскопические предприятия в Чехии и Словакии, откуда их контрабандой провозят для особо важных мероприятий.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел. Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве. Слава богу, пальцы и глаза у всех остались на месте.

Из всех искусств

Из всех искусств для нас важнейшим является кино, любил поговаривать Ильич. Для ракетомоделистов-любителей середины прошлого века — тоже. Ибо кино- и фотопленка того времени делалась из целлулоида. Туго свернутая в небольшой рулончик и засунутая в бумажную трубку со стабилизаторами, она позволяла взлететь простейшей ракете на высоту пятиэтажного дома. У таких двигателей было два главных недостатка: первый — небольшая мощность и, как следствие, высота полета; второй — невозобновимость запасов целлулоидной пленки. Например, фотоархива моего отца хватило всего на пару десятков запусков. Сейчас, кстати, жалко.

Максимальная высота при фиксированном суммарном импульсе двигателя достигалась при кратковременном четырехкратном скачке мощности на старте и дальнейшем переходе на ровную среднюю тягу. Скачок тяги достигался формированием отверстия в топливном заряде.

Второй вариант двигателей собирался, так сказать, из отходов деятельности Советской армии. Дело в том, что при стрельбах на артиллерийских полигонах (а один из них как раз находился неподалеку от нас) метательный заряд при выстреле выгорает не до конца. И если хорошенько поискать в траве перед позициями, можно было найти довольно много трубчатого пороха. Самая несложная ракета получалась в результате простого заворачивания такой трубки в обычную фольгу от шоколадки и поджигания с одного конца. Летала такая ракета, правда, невысоко и непредсказуемо, зато весело. Мощный двигатель получался при собирании длинных трубок в пакет и заталкивании их в картонный корпус. Из обожженной глины изготавливалось и примитивное сопло. Работал такой двигатель очень эффектно, поднимал ракету довольно высоко, но часто взрывался. К тому же на артиллерийский полигон не особо походишь.

Третий вариант представлял собой попытку почти промышленного изготовления ракетомодельного двигателя на самодельном дымном порохе. Делали его из калиевой селитры, серы и активированного угля (он постоянно заклинивал родительскую кофемолку, на которой я его измельчал в пыль). Признаюсь честно, мои пороховые двигатели работали с перебоями, поднимая ракеты всего на пару десятков метров. Причину я узнал лишь пару дней назад — запрессовывать двигатели нужно было не молотком в квартире, а школьным прессом в лаборатории. Но кто бы, спрашивается, меня в седьмом классе пустил запрессовывать ракетные двигатели?!

Два редчайших двигателя, которые удалось достать «ПМ»: МРД 2, 5−3-6 и МРД 20−10−4. Из советских запасов ракетомодельной секции в Детском доме творчества на Воробьевых горах.

Работа с ядами

Вершиной же моей двигателестроительной деятельности стал довольно ядовитый двигатель, работавший на смеси цинковой пыли и серы. Оба ингредиента я выменял у одноклассника, сына директора городской аптеки, на пару резиновых индейцев, самую конвертируемую валюту моего детства. Рецепт я почерпнул в жутко редкой переводной польской ракетомодельной книжке. И двигатели набивал в папином противогазе, который хранился у нас в кладовке, — в книжке особый упор делался на токсичность цинковой пыли. Первый пробный запуск был проведен в отсутствие родителей на кухне. Столб пламени из зажатого в тисках двигателя с ревом устремился к потолку, прокоптив на нем пятно диаметром в метр и наполнив квартиру таким вонючим дымом, с каким не сравнится и коробка выкуренных сигар. Вот эти-то двигатели и обеспечили мне рекордные запуски — метров, наверное, на пятьдесят. Каково же было мое разочарование, когда через двадцать лет я узнал, что детские ракеты нашего научного редактора Дмитрия Мамонтова летали в разы выше!

1, 2, 4) При наличии заводского ракетного двигателя с постройкой простейшей ракеты справится и школьник начальных классов. 3) Продукт самодеятельного творчества — двигатель из патронной гильзы.

На удобрениях

Двигатель Дмитрия был проще и технологичнее. Основной компонент его ракетного топлива — это натриевая селитра, которая продавалась в хозяйственных магазинах как удобрение в мешках по 3 и 5 кг. Селитра служила окислителем. А в качестве горючего выступала обычная газета, которая и пропитывалась перенасыщенным (горячим) раствором селитры, а затем высушивалась. Правда, селитра в процессе сушки начинала кристаллизоваться на поверхности бумаги, что приводило к замедлению горения (и даже гашению). Но тут вступало в действие ноу-хау — Дмитрий проглаживал газету горячим утюгом, буквально вплавляя селитру в бумагу. Это стоило ему испорченного утюга, но зато такая бумага горела очень быстро и стабильно, выделяя большое количество горячих газов. Набитые свернутой в тугой рулон селитрованной бумагой картонные трубки с импровизированными соплами из бутылочных пробок взлетали на сотню-другую метров.

Карамель

Параноидальный запрет российских властей на продажу населению разных химреактивов, из которых можно изготовить взрывчатку (а ее можно изготовить практически из всего, хоть из древесных опилок), компенсируется доступностью через интернет рецептов практически всех видов ракетного топлива, включая, например, состав горючего для ускорителей «Шаттла» (69,9% перхлората аммония, 12,04% полиуретана, 16% алюминиевой пудры, 0,07% оксида железа и 1,96% отвердителя).

Картонные или пенопластовые корпуса ракет, топливо на основе пороха кажутся не очень серьезными достижениями. Но как знать — может, это первые шаги будущего конструктора межпланетных кораблей?

Безусловным хитом любительского ракетного двигателестроения сейчас являются так называемые карамельные двигатели. Рецепт топлива прост до неприличия: 65% калиевой селитры KNO3 и 35% сахара. Селитра подсушивается на сковородке, после чего измельчается в обычной кофемолке, медленно добавляется в расплавленный сахар и застывает. Итогом творчества становятся топливные шашки, из которых можно набирать любые двигатели. В качестве корпусов двигателей и форм прекрасно подходят стреляные гильзы от охотничьих патронов — привет тридцатым! Гильзы в неограниченном количестве есть на любом стрелковом стенде. Хотя признанные мастера рекомендуют использовать не сахарную, а сорбитовую карамель в тех же пропорциях: сахарная развивает большее давление и, как следствие, раздувает и прожигает гильзы.

Назад в будущее

Ситуация, можно сказать, вернулась в 1930-е годы. В отличие от других видов модельного спорта, где недостаток отечественных двигателей и прочих комплектующих можно компенсировать импортом, в ракетомодельном спорте это не проходит. У нас ракетомодельные двигатели приравниваются к взрывчатым веществам, со всеми вытекающими условиями по хранению, транспортировке и провозе через границу. Не родился еще на земле русской человек, способный наладить импорт таких изделий.

Выход один — производство на родине, благо технология тут вовсе не космическая. Но заводы, имеющие лицензии на производство таких изделий, за них не берутся — им этот бизнес был бы интересен лишь при миллионных тиражах. Вот и вынуждены начинающие ракетомоделисты из крупнейшей космической державы летать на карамельных ракетах. Тогда как в Соединенных Штатах сейчас стали появляться уже многоразовые модельные ракетные двигатели, работающие на гибридном топливе: закись азота плюс твердое горючее. Как вы думаете, какая страна лет через тридцать полетит к Марсу?

Недостатками этого топлива по сравнению с обычным сорбитовым, являются: сложность в изготовлении, низкая пластичность, невозможность заливки состава в корпус двигателя, быстрая скорость затвердевания, при недостаточном нагревании сорбита топливо быстро затвердевает. Опыт показал, что данное топливо хорошо приготавливать и использовать в холодное время года, так как влажность в воздухе значительно ниже, чем в летнее время. Пожалуй самой главной проблемой этого топлива является быстрая скорость затвердевания и невозможность заливки топлива прямо в корпус двигателя. Ещё у этого топлива есть очень неприятная вещь — при недостаточном уплотнении массы внутри топливного заряда образуются пустоты, что сильно сказывается на равномерности горения всего заряда. Проще говоря, структура становится пористой, что способствует возникновению аномального горения — неустойчивое прерывистое горение, вызванное уменьшением подвода тепла к непрореагировавшему топливу, длящееся от нескольких долей до 2 секунд. Особенно эта проблема характерна только для малых двигателей, с зарядом топлива 30 — 35 грамм — запрессовка «Мощной карамели» в такие двигатели — работа весьма кропотливая и сложная, ну а на больших двигателях такая вещь практически не сказывается, т.к относительно всего объёма топлива воздушные пустоты незначительны. Хоть это топливо и быстро затвердевает, но эту проблему можно легко устранить, поставив ёмкость с топливом на разогретую песчаную баню. Это очень удобный способ, ну смотрите не переборщите с температурой, а то сера в топливе расплавится и смесь станет неоднородной.
ИЗГОТОВЛЕНИЕ

По началу, при его изготовлении, возникали серьёзные проблемы. Трудно было найти баланс между температурой плавления сорбита и температурой плавления серы, а при смешивании расплавов обоих компонентов топливо получалось крайне не однородным. Был рассмотрен вариант с использованием глицерина, чтобы масса сохраняла пластичность длительное время. Но использование глицерина приводило к снижению прочности топливной шашки и повышенной гидроскопичности.

Сорбит при сильном нагревании и последующим охлаждении затвердевает не сразу и сохраняет пластичность достаточно длительное время, которого хватает на заправку 2 — 3 небольших двигателей. Сорбит должен быть разогрет до достаточно высокой температуры (около tкип). Когда я его разогреваю до такой температуры, то он немного дымит, становится прозрачным (слегка желтоватым), и на дне образуются небольшие пузырьки, что свидетельствует о начале кипения.

Перед тем, как вы начнёте плавить сорбит следует заранее приготовить все компоненты.

1. Сначала отвесьте необходимую порцию сорбита и отложите его подальше от места работы
Перед тем, как вы начнёте плавить сорбит следует заранее приготовить все компоненты

2. Далее вам нужно будет измельчить нитрат калия. Перед помолом его следует тщательно просушить, можно на батарее, но я просушивал в печке при t ≈ 2000C, больше этой температуры нельзя, т.к. начинается его плавление и затем разложение. Просушенный нитрат калия легче измельчается и меньше прилипает к стенкам электрокофемолки, нежели влажный. Помол я производил в электрокофемолке где-то секунд 40. Если он прилип к стенкам, то его можно соскоблить ватными палочками или руками, только не голыми, а используя одноразовые перчатки.
Далее вам нужно будет измельчить нитрат калия

Помол я производил в электрокофемолке где-то секунд 40

3. После помола отвесьте необходимую порцию селитры и поместите в чистую баночку, я использовал пластиковую, т.к. к стеклу он у меня прилипал.
После помола отвесьте необходимую порцию селитры и поместите в чистую баночку

4. Затем вам нужно отвесить серу.
Затем вам нужно отвесить серу

Сера, которая я используется в топливе, содержит уголь в следующем соотношении: 100% (S) + 5% (С) (по массе).
При использовании угля масса образует меньше комочков, становится более рассыпчатой и практически не прилипает к стенкам электрокофемолки во время помола. Однако нужно молоть с перерывами, чтобы сера не расплавилась от излишнего трения. После помола она остаётся сильно наэлектризованной и будет образовывать комочки. Как я заметил, требуется достаточно длительное время, чтобы сера стала рассыпчатой после помола, так что производить её помол следует заранее.

5. Только после того, как вы всё отмерили можно плавить сорбит. Для этих целей я использовал мою любимую миниатюрную печь, но когда у меня её не было я обходился плитой. Сорбит помещается в металлическую ёмкость, а лучше в ёмкость из нержавеющей стали (лично я использую кружку из нержавейки, которую я приобрёл в магазине «Всё для рыбалки и охоты») и нагревается до температуры, приближённой к температуре его кипения.

Только после того, как вы всё отмерили можно плавить сорбит

6. Затем в него добавляется мелкоизмельчённый и просушенный нитрат калия (калийная селитра). Перед тем как вы её будете засыпать, хорошенько встряхните пузырёк с селитрой, чтобы она стала более рассыпчатой.

Затем в него добавляется мелкоизмельчённый и просушенный нитрат калия (калийная селитра).

7. Смесь перемешивается до полной однородности. При таком соотношении селитры и сорбита смесь начинает быстро затвердевать, поэтому вам придётся снова разогреть содержимое стакана, до тех пор пока смесь не станет пригодной к перемешиванию.

Смесь перемешивается до полной однородности

8. После того как смесь остынет до температуры, которая ниже температуры плавления серы, в неё добавляют саму серу. Температуру можно проверить, бросив небольшое количество серы в выше полученную смесь селитры и сорбита, если температура слишком велика, то сера будет плавиться и образовывать мелкие, блестящие капельки на поверхности. Перемешивать все компоненты нужно очень быстро, чтобы смесь не успела затвердеть.

После того как смесь остынет до температуры, которая ниже температуры плавления серы, в неё добавляют саму серу

10. После этого вытащить пластичную массу (желательно использовать одноразовые полиэтиленовые перчатки) ножом или другим металлическим предметом. Смесь также следует соскоблить и со стенок кружки и всё ещё раз перемять руками для большей однородности (использовать полиэтиленовые перчатки!).

Хочу заметить, что топливо начинает быстро затвердевать, поэтому я снова помещаю его кружку и ставлю в прогретую печь, но только уже выключенную, т. к. она сохранила в себе тепло и отлично помогает сохранять температуру расплава топлива и оно не остаётся пластичным достаточно долгое время. В печь можно также положить какие-нибудь теплоёмкие материалы: чистый сухой песок, металлически гайки, гвозди, отлично подойдёт свинец. По мере необходимости кусочки топлива отщипываются от основной массы и тщательно запрессовываются в корпус двигателя.

После этого вытащить пластичную массу (желательно использовать одноразовые полиэтиленовые перчатки) ножом или другим металлическим предметом

Производить запрессовку топлива следует малыми порциями, потому что если топливо запрессовывать не под достаточным давлением, то внутри топливной шашки останется много пузырьков воздуха. Как показал опыт для запрессовки лучше использовать графитовую палочку пропитанную парафином, и с отполированным кончиком. Для этих целей так же подойдёт фторопласт, однако топливо всё равно к нему прилипает и желательно иметь по рукой тряпочку с помощью которой вы будете удалять налёт. Все работы желательно проводить в сухом помещении. Как я уже отметил, данное топливо больше подойдёт на изготовление крупных топливных зарядов (от 70г) для больших двигателей.

От автора: Я не знаю, станет ли данное топливо популярным среди ракетостроителей и химиков, но в ходе длительной работы с ним я пришёл, что это единственное мощное топливо, которое можно получить без особого труда, по сравнению с перхлоратным. А более низкое содержание сорбита делают его немного более выгодным в использовании, если конечно у вас сера стоит дешевле, чем сорбит. С первого раза, приготовить его так как надо, у вас не получится, но в ходе длительной работы с ним, вы действительно увидите разницу. Возможно вам покажется, что данный способ изготовления этого топлива небезопасен, но за всю мою практику не было ни одного ЧП, потому что я строго соблюдаю чистоту реактивов и не допускаю попадания веществ, которые воспламеняются ниже 2000C. При строгом соблюдении чистоты рабочего места данный способ является сравнительно безопасным.

Иногда хочется чего-то странного. Вот, недавно меня потянуло на ракетомоделизм. Так как я строю ракеты на нубовском уровне, для меня ракета состоит из двух частей – двигателя и корпуса. Да, я знаю, что все намного сложнее, но даже с таким подходом ракеты летают. Естественно, вам интересно, как делается двигатель.

Хочу предупредить, что если вы соберетесь повторить то, что написано в этой статье, то будете делать это на свой страх и риск. Я не гарантирую точность или безопасность предложенной методики.

Для корпуса двигателя я использую толстостенные ПВХ трубы диаметром 3/4 дюйма. Трубы такого диаметра относительно дешевы и широкодоступны. Лучше всего трубы режутся специальными ножницами. Я очень много намучался, пытаясь резать такие трубы электролобзиком – всегда получалось очень криво.

Трубу я размечаю так:

Все размеры в дюймах. кто не знает, размер в дюймах нужно умножить на 2.54 и получится размер в сантиметрах. Эти размеры я нашел в замечательной книге

Там есть и куча других конструкций. Верхний кусок двигателя (который пустой) я не делаю. Там должен быть вышибной заряд для парашюта, мне пока далеко до этого.

Отрезанный кусок трубы вставляется в специальную приспособу. Покажу все приспособы сразу, дабы не возникало вопросов:

Длинная палка играет роль “пестика” Ей утрамбовывается глина и топливо. Вторая деталька – это кондуктор. Он служит для того, чтобы просверлить сопло точно по центру двигателя. Вот их чертежи:

Сверло используется длинное – длинной 13см. Его как раз хватает для того, чтобы просверлить канал через все топливо.

Теперь нужно замешивать топливо. Я использую стандартную “карамельку” – сахар и селитра в соотношении 65 селитры/35сахара. Плавить карамель я не хочу – занятие это рискованное, да и не стоит это того геморроя. Я не пытаюсь вытянуть из топлива все возможное. Это ведь любительское ракетостроение. Я просто смешиваю сахарную пудру и селитру в порошках:

Забиваем порошок по разметку. Бить нужно довольно сильно.

Забивка топлива и заглушки ничем не отличается. Кажется, что по топливу стучать опасно, но карамелька трудно воспламеняется даже от спички. Естественно, базовые меры предосторожности соблюдать стоит – не склонятся над двигателем, работать в защитной маске, итп.

Последние 5мм заглушки я оставляю для термоклея. Я несколько раз пробовал сделать ракету без заглушки из термоклея, верхнюю пробку вырывало давлением. Термоклей обладает отличной адгезией к пластику и не успевает расплавится при горении двигателя.

Сверлим сопло через кондуктор:

Топливо очень плохо сверлится – сахар плавится и липнет на сверло, поэтому его приходится часто вытаскивать и счищать налипшее топливо. Проверяем сопло:

Заливаем последние 5мм трубки и ее торец термоклеем

Все, двигатель готов. Вот так выглядит двигатель на статических испытаниях. К сожалению, видео не показательно – в этом двигателе канал был просверлен на половину, и фотоаппарат не правильно записал звук. В реале “рев” двигателе очень громкий и серьёзный, а не такой игрушечный как на записи.

Классикой ракетомоделисты называют топливо, состоящее по весу из 35% сорбита и 65% калийной селитры, без каких-либо добавок. Это топливо достаточно хорошо изучено, имеет характеристики не хуже, чем у черного пороха, но изготовить его гораздо проще, чем правильный порох.
Для классики годится только калийная селитра. Если вы не найдете ее в продаже, придется изготовить самостоятельно из натриевой или аммиачной и сульфата или хлорида калия. Все это легко купить в магазинах,
торгующих минеральными удобрениями. Раньше в фотомагазинах продавали еще поташ (карбонат калия), он тоже годится для получения калийной селитры из аммиачной. При смешивании горячих насыщенных растворов натриевой селитры и хлорида калия калийная селитра сразу выпадет в осадок. Самодельную селитру придется очистить перекристаллизацией, для этого ее нужно растворить в небольшом количестве горячей кипяченой воды, профильтровать через вату и поставить раствор в холодильник. Затем слить раствор, селитру высушить на батарее, а потом и в духовке при примерно 150°С один-два часа. Тут главное — соблюдение температурного режима. При более высокой температуре селитра расплавится и станет непригодна к дальнейшему процессу. Сорбит (заменитель сахара] продается и в аптеках, и в продуктовых супермаркетах. Температура плавления чистого сорбита — 125°С, и по этой температуре его можно отличить от моногидрата сорбита, который иногда продается тоже под видом сорбита. Моногидрат плавится при 84°С и для топлива не годится.
Несмотря на несерьезное название, карамельное ракетное топливо — это в первую очередь ракетное топливо, и обращаться с ним надо уважительно. Первое и главное правило техники безопасности — ни в коем случае не готовьте карамель на открытом огне! Только электроплитка с закрытым нагревателем и регулятором температуры. Если нет подходящей электроплитки, можно воспользоваться обычным утюгом, только нужно сделать подставку, удерживающую его в перевернутом положении, подошвой вверх. Положение регулятора «три точки» отлично подходит для изготовления карамели.
Не следует отмеривать компоненты на глазок или по объему — только на весах. На вид кучки в 35 г сорбита и 65 г калийной селитры по объему почти одинаковы. И это нам на руку, так как легче смешивать топливо. Если селитра крупная, ее придется растолочь в ступке или смолоть в кофемолке. Но не перестарайтесь: кристаллики должны быть как у мелкой соли — если смолоть селитру в пыль, с топливом будет трудно работать, так как оно станет слишком вязким. 20 секунд — то что надо.
Теперь можно смешать порошки селитры и сорбита и выложить слоем не больше сантиметра толщиной на сковороду. Желательно мешать смесь непрерывно. Для перемешивания удобно использовать деревянную палочку от эскимо. Постепенно сорбит начнет плавиться, через некоторое время, по мере перемешивания, порошок превратится в однородную субстанцию, похожую на жидкую манную кашу. В расплавленном сорбите часть селитры растворяется, поэтому готовое топливо остается достаточно жидким и при 95°С. Перегревать топливо не следует, потому что при 140°С растворимость селитры скачком увеличивается и так же, скачком, увеличивается вязкость этого состава.
Как только последние комочки селитры размешаны, топливо готово — теперь его надо заливать в форму. Идеальная простота! Хорошо бы и двигатель сделать максимально простым, и такой вариант существует -если не требуются рекордные параметры, предпочтительным становится бессопловик. Он состоит только из корпуса и заряда. Несмотря на то что без сопла часть энергии топлива расходуется впустую, за счет экономии веса корпуса и сопла можно залить больше топлива и скомпенсировать потери.
Для корпуса понадобится картонная трубка с толщиной стенок 1-2 мм. Диаметр ее может быть от сантиметра до трех, но для первых опытов лучше брать не самую маленькую, так как с маленькими двигателями неудобно работать — и топливо застывает быстрее, и сложно его упаковать в маленькую трубку. Длина ее должна быть в 7-15 раз больше диаметра. Можно и в 20, но заливать топливо уже очень неудобно.
Еще потребуется стержень для формирования канала в топливе — в двигателях на карамели топливо горит по поверхности канала, а не с торца заряда, у торца не хватает площади. А для центрирования стержня потребуется деревянная или пластиковая бобышка, подходящая по диаметру и к картонной трубе, и к центральному стержню. Диаметр канала должен быть примерно втрое меньше внутреннего диаметра трубы.
Вставив бобышку в нижний конец трубы и стержень в нее, в оставшееся пространство заливаем «манную кашу» из селитры и сорбита. Топливо остывает и затвердевает, но не до конца. Из его остатков надо скатать палочку-образец — обычно размером с мужской мизинец. По ней измеряют скорость горения получившегося топлива — для этого ее снимают на видео и по видео засекают время. Конечно, длину палочки надо измерить до поджигания. Нормально изготовленная сорбитовая карамель должна гореть со скоростью от 2,6 до 2,8 мм/с, то есть палочка длиной 5 см сгорит за 17-19 с.
Примерно через шесть часов — пока топливо еще мягкое — нужно вынуть бобышку и стержень. Осталось сделать заглушку из эпоксидной смолы там, где была бобышка: на обнажившуюся поверхность топлива наклеить кружок скотча, чтобы прикрыть канал, и из скотча сделать бортик вокруг картонной трубки, после чего залить туда эпоксидную смолу с отвердителем. Уровень смолы должен быть на 0,5 см выше края трубки, чтобы смола впиталась в торец. Иногда еще делают
три-четыре отверстия диаметром 3 мм, в свободной от топлива части трубки, чтобы эпоксидная пробка лучше держалась.
После затвердевания клея двигатель к запуску готов. Для его воспламенения отлично подходят китайские «электрические спички», продающиеся в интернет-магазинах, надо лишь удлинить провода и вставить запал в двигатель до упора, до эпоксидной заглушки — если двигатель загорится в середине, полной тяги он не выдаст.
Но, полетав на «классике», ракетолюбитель часто чувствует потребность ее как-то усовершенствовать. Тут и начинается изобретение разных составов и технологий. Волшебное слово «перхлорат» волнует сердца конструкторов-самодельщиков. Но напрямую заменить нитрат калия на перхлорат калия не получится — топливо будет иметь другие характеристики. Без третьего компонента — катализатора — состав демонстрирует пульсирующее горение вплоть до взрыва. А с катализатором плавить топливо опасно, вот и приходится использовать вакуумное прессование с подогревом и прочую экзотику.

Как сделать двигатель для самодельной ракеты

Я собираю модель, имитирующую настоящий реактивный мини двигатель, даже если мой вариант электрический. На самом деле всё просто и каждый может построить реактивный двигатель своими руками в домашних условиях.

То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.

Основные части реактивного модельного двигателя:

  • Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
  • Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
  • Реостат, такой же какой продаётся для настройки яркости лампочек.
  • Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
  • Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
  • Амперметр или вольтметр.
  • Потенциометр примерно на 50К.
  • Катушка электромагнита из соленоида или любого другого источника.
  • 4 диода.
  • 2 или 4 постоянных магнита.
  • Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
  • Наполнитель кузовов для авто, для создания экстерьера.
  • Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
  • Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
  • Белая, серебряная и черная краска.

Любительское ракетостроение, как я делаю ракеты и мои ошибки на которых я учусь (part 1)

Написанное в этой статье не является инструкцией к применению. Вы всё делаете на свой страх и риск. Соблюдайте технику безопасности

Корпус — варианты материала и различные факторы выбора корпуса

Корпус каждый для своей ракеты выбирает свой и для каждого в приоритете свои факторы выбора материала. Я выбираю корпуса с учётом на наименьший вес и наибольшую прочность. Вес нужно уменьшать для более стабильного и высокого полёта, а прочность нужна что-бы корпус в полёте не расплавился и не разлетелся от давления.

Читать еще:  Двигатели с числом оборотов больше 3000

Сначала я выбирал ПВХ трубки для корпусов ракет. Они достаточно прочны, но весят не то что-бы сильно много, но вес нужно сводить к минимуму. Именно из-за веса я потерпел фиаско в пробных запусках, но об этом позже.

После я искал другие материалы или новую технику изготовления корпуса и нашёл технику склеивания бумаги в тубус. После суток клей застывает и корпус становиться прочным как ПВХ труба и в теории легче. Пока-что я эту технику не проверял, но в теории всё звучит достаточно заманчиво.

Виды топлива и двигателей

Топливо

Чаще всего в любительском ракетостроении используются твердотопливные двигатели. Так как для жидкого топлива нужны системы трубопроводов, отдельная камера сгорания, для твёрдого топлива сам двигатель является камерой сгорания и больше ничего от двигателя не требуется.

Есть много твёрдого ракетного топлива, но для любительского ракетостроения подходит больше всего карамельное топливо. Оно достаточно лёгкое в изготовлении и не такое уж и милое как его название.

Это топливо достаточно мощное и при правильном его изготовлении выдаёт внушительную тягу.

Состав этого топлива следующий: 70% калиевой селитры, 25% сахарной пудры и 5% древесного угля. Это топливо сильно воспламеняется при малых температурах. Будьте максимально аккуратны.

Двигатели

Давайте сначала разъясним каких размеров сам двигатель и куда он ставится. Двигатель не должен быть размером во весь корпус. Лично я выбираю вариант размера двигателя разделяя высоту основного корпуса на 1.5.

В корпусе должно оставаться ещё место для электроники, парашюта, и разных датчиков температур и высоты. Это свободное место называется «Отсек полезной нагрузки».

Сам корпус для двигателя выбирается по тому-же принципу как и основной корпус, нужна наименьшая масса и наибольшая прочность.

Пробные запуски и возможная причина неудач

Вот видео первого пробного запуска двигателя от моей ракеты Starship-1

В видео видно что в начале двигателю не хватает тяги и он поднимается только когда заканчивается топливо. Скорее всего проблема недостатка тяги возникла из-за маленького отверстия под сопло.

В результате была маленькая струя подачи тяги и двигатель поднялся в воздух только когда заканчивалось топливо. Но проблема скорее всего не только в подаче тяги, но и в массе двигателя.

Эта тяга не могла поднять ПВХ трубу ещё и топливо в нагрузку.

Читать еще:  Что такое система блокировки запуска двигателя

Вывод: проблемы с двигателем возникли в результате:

  1. Малой тяги из-за мелкого отверстия под сопло.
  2. Массы топлива и ПВХ трубы.

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.

А в чем, собственно, сложность производства? По своей сути ракетомодельный двигатель — простейшее устройство: картонная трубка с запрессованным внутри дымным порохом марки ДРП-3П (дымный ружейный порох 3-й состав для прессованных изделий) с керамической заглушкой с соплом-дыркой с одной стороны и пыжом с вышибным зарядом — с другой. Первая проблема, с которой не справлялось серийное производство, — точность дозировки, от которой зависел и конечный суммарный импульс двигателя. Вторая — качество корпусов, которые часто давали трещины при прессовании под давлением в три тонны. Ну и третья — собственно, качество запрессовки. Впрочем, проблемы с качеством возникали не только в нашей стране. Не блещут им и серийные ракетомодельные двигатели другой великой космической державы — США. А лучшие модельные двигатели делают микроскопические предприятия в Чехии и Словакии, откуда их контрабандой провозят для особо важных мероприятий.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел.

Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве.

Слава богу, пальцы и глаза у всех остались на месте.

Термореактивы

Реактопласты применяются в автомобиле реже термопластичных материалов, но они встречаются и в интерьере, и во внешней отделке автомобилей. Почти всегда они твердые и не эластичные. Они никак не реагируют на нагрев.

То есть убрать с них царапину феном обычно не удается, чаще помогает полировка абразивными материалами. Учтите, что иногда большую царапину на пластике не обязательно зашлифовывать на всю глубину.

Бывает достаточно частично уменьшить ее и сгладить края – и она станет почти незаметной, особенно если периодически обрабатывать деталь правильно подобранным полиролем.

Читать еще:  В чем различие двухтактного двигателя от четырехтактного

Опытные специалисты по детайлингу обычно знают, какие детали в той или иной модели авто можно полировать, а какие – нежелательно

Несколько советов по царапинам на пластике

  • Если вы не имеете большого опыта в оценке типа пластика и его свойств, протестируйте способы борьбы с царапиной на незаметном участке детали.
  • Иногда, чтобы убрать или скрыть мелкие царапины и потертости на пластике, достаточно хорошо наполировать его качественным полиролем для пластиковых поверхностей. Хорошо, если полироль будет цветным – с подкрашивающим эффектом. Некоторые автомобилисты используют для этого копировальную бумагу черного цвета.
  • Имейте в виду, что у некоторых моделей авто черные или темно-серые детали экстерьера на самом деле не являются пластиком в чистом виде, а таки имеют лакокрасочное покрытие (например, официальные Hyundai Tucson I в Украине).

Как видите, способов освежить пластиковые детали немало, хоть и не все из них эффективны и безопасны для деталей. Но наиболее надежный вариант – беречь некрашеные пластиковые части от царапин. Особенно помните об этом при выездах на природу и при перевозке негабаритных предметов в багажнике и салоне.

В любом случае старый пластик будет хорошо выглядеть, если постоянно ухаживать за ним

Рекомендация Авто24

Собираясь полировать пластик, красить или греть его феном, вспомните про еще один вариант – замену детали новой или подержанной в хорошем состоянии.

На украинских шротах-разборках сейчас немало автомобилей, из которых раскупают в первую очередь компоненты “жизненно важных” систем.

При этом элементы отделки в основном пользуются меньшим спросом, поэтому есть неплохие шансы приобрести пластиковую деталь без повреждений или следов износа.

Полировальная машинка для авто своими руками: как сделать

Пороховой ракетный двигатель

Для модели ракеты вам требуется изготовить пороховой двигатель. Для такого двигателя удобно использовать картонную ружейную гильзу 12-го калибра под капсюль «Жевело». Внутрь гильзы набивается смесь дисперсной серы, калийной селитры и древесного угля. Вместо древесного угля можно использовать угольные таблетки «Кар­болен».

Приготовление смеси и набивка ею патрона является самой сложной операцией при изготовлении модели ракеты. Каждая из составных частей этой смеси в отдельности не опасна. Так, например, се­литра не горит, а сера и уголь горят очень мед­ленно. Если же эти вещества смешать, то их свой­ства к воспламенению изменяются. Нам надо при­готовлять смесь с большим содержанием угля, иначе она может вспыхнуть от малейшей искры. Необходимо помнить, что запуск моделей ракет — дело совершенно безопасное лишь в том случае, если вы строго соблюдаете все правила приготов­ления заряда двигателя и его запуска при старте модели. О них вы узнаете из этой статьи.

Смесь для двигателя модели ракеты должна со­стоят из 75 г селитры, 12 г серы и 35 г угля. Пред­варительно, до смешивания, все компоненты дол­жны быть тщательно размельчены в порошок в фарфоровой ступке либо в кожаном мешочке. Образовавшийся порошок следует просеять через мелкое сито. Чем мельче крупинки составных час­тей, тем полнее будет использоваться энергия топлива для полета ракеты.

Начинать приготовление заряда надо с угля, а затем готовить селитру в серу. Уголь и селитра обладают способностью впитывать влагу, поэтому готовый состав следует хорошо просушить до сы­пучести и сохранять в сухом месте. Когда подго­товка отдельных составных частей закончена, можно приступать к взвешиванию и смешиванию.

Взвешивать полученный порошок каждой состав­ной части надо на аптекарских весах и подгонять вес составных частей в соответствии с указан­ным выше весом (75, 12, 35 г). После взве­шивания смесь тщательно перемешивается на листке бумаги, пока весь состав не будет одноро­ден.

Затем перед набивкой эту смесь смачивают спиртом (на каждые 100-150 г смеси 3-5 г спир­та). Сухой, не смоченный спиртом состав не следует употреблять в дело. После смачивания спиртом смесь тщательно перетирается и перемешивается. При изготовлении смеси нельзя спешить.

При этой операции надо особенно строго соблюдать все меры предосторожности и особенно порядок выполнения работ.

Для того чтобы приготовленной смесью набить гильзу, необходимо заготовить следующие приспо­собления: штырь (рис. 1), матрицу (рис. 2), фиксатор (рис. 3), молоток весом 400 г, два на­бойника — один с отверстием (рис. 4, справа), другой без него (слева) и охотничью «закрутку» (рис. 6).

Закрутку можно купить в магазине охотничьих принадлежностей. В матрицу встав­ляется гильза, в которую снизу вводится штырь, закрепляющийся в матрице фиксатором. Поверх­ность верхней шпильки штыря должна быть тща­тельно обработана и отшлифована, так как иначе канал в заряде двигателя может осыпаться.

Ниж­няя шпилька стержня вставляется в массивный деревянный чурбак или пень. В гильзу надо засы пать 2-3 г смеси. Затем взять набойник с отвер­стием (рис. 4, справа), вставить его в гильзу и 15—20 раз ударить по нему молотком; причем вна­чале нанести 3—4 слабых удара, чтобы вышел воздух, находящийся в составе, а затем более сильные.

Примерное размещение всех приспособ­лений и деталей для сборки двигателя показано на рисунке 5.

Чтобы набивка получилась одинаковой плот­ности, количество ударов молотка по набойнику на каждую засыпку должно быть одинаковым. Пользуются набойником с отверстием лишь до тех пор, пока не утоплена шпилька штыря.

Как только уплотненная смесь полностью закроет шпильку штыря, надо продолжать набивку на­бойником, но уже без отверстия. Состав смеси за­прессовывают в гильзу так, чтобы он не доходил до краев на 10 мм.

На запрессованный состав на­кладывается картонный пыж с отверстием 4-5 мм в центре.

Гильза извлекается из матрицы. Для этого вы­нимается фиксатор, а затем с легким поворотом вниз убирается штырь и снимается матрица с гильзы. После этого гильзу вставляют в закрутку и заправляют. При этом пыж прижимают сверху, а кромки гильзы загибают внутрь пробкой закрутки. Эта пробка опускается на винте. Дви­гатель готов.

Несколько слов о запуске порохового ракетно­го двигателя. Для воспламенения состава, находя­щегося внутри гильзы, надо применять электро­воспламенитель, или, как его называют, элек­трозапал. Простейший электрозапал состоит из низковольтного трансформатора, проводов, зажимов и вилки (рис. 8). Тонкая проволока, способ­ная накаливаться докрасна, вводится в канал дви­гателя.

Включается ток, и двигатель начинает работать. Расстояние от стартующей ракеты до включателя тока должно быть не меньше 10 м. На площади этого радиуса перед стартом никого не должно быть. Если нельзя подключить переменный ток, то можно сделать батарейный электрозапал.

На рисунке 9 изображена схема устройства элект­розапала с контрольной лампочкой для проверки цепи и с миниатюрным рубильником.

По материалам журнала «Юный моделист-конструктор»

Как сделать ракетный двигатель из гильзы

Для самодельной модели ракеты немаловажным моментом является двигатель…

Среди многообразия вариантов его изготовления самым распространенным является использование отработанных гильз от охотничьих патронов.

Попробовал такой вариант моторчика и я. Результат превзошел самые оптимистичные ожидания!

Итак, строим мотор из гильзы

в калибрах я слабо разбираюсь, на металлической части этой гильзы написано «12», а на пластике корпуса «12/70». Внешний диаметр около 20 мм, длина 70 мм.

Изнутри отверткой выбиваем остатки капсюля, получается как бы сопло диаметром чуть меньше 6 мм.

Делаем подставку для установки гильзы для заливки в нее топлива. Это кусок фанерки толщиной 8 мм. В ней сверлим дыру 4 мм и ввинчиваем в нее винт М5 длиной 50 мм. Получаем примерно следующее:

Оборачиваем резьбу винта газетой (3-4 слоя) и скотчем. Эти процедуры нужны для облегчения изъятия получившегося стержня из гильзы.

Надеваем на конструкцию гильзу:

Теперь она ровно стоит, а стержень внутри расположен строго вертикально и по центру будущего двигателя. Готовим карамель (процесс много где описан, если коротко, то смешиваем измельченную калиевую селитру с сорбитом (пропорция по массе 65/35) и плавим ее на сковородке до состояния жидкой кашицы).

Заливаем ее в гильзу, периодически постукивая по ее корпусу «тяжеленьким предметом» — это нужно для устранения пустот в топливной массе.

В верхней части оставляем миллиметров 7-10 незаполненными. Это пространство надо чем-нибудь заткнуть…

Верхнюю заглушку делаем из эпоксидной смолы. На следующий день снимаем гильзу с «нашего станка», вынимаем газету со скотчем двумя спицами. В верхней части шилом делаем дырки в корпусе гильзы: это даст возможность эпоксидной смоле затечь в них и более надежно «заткнуть» гильзу.

Оборачиваем скотчем верхний край гильзы, подготовив, тем самым, «ванночку» для смолы. Заливаем эпоксидный клей, получаем следующее:

Еще через день все застывает — двигатель готов!

Теоретические расчеты показывают следующие параметры мотора 

Тяга — целый килограмм! Честно говоря, не верилось!

Масса пустой гильзы 6,8 г; масса готового двигателя 28,8 г. Топлива — всего 22 грамма! Теория на уровне 5 класса средней школы показывает, что ракету массой 150 грамм этот движок может зашвырнуть аж на 300 м!

В реальности результат был скромнее. Но, главное! ракета вообще смогла оторваться от земли. Например, РП-8 (140 грамм) залетела на 130 м. 

  • ИТОГ: очень легко, из подручного (по полям России таких гильз можно мешок насобирать в охотсезон) материала можно изготовить вполне приличный двигатель!
  • Замечу, что после полета от такого двигателя останется только «сопло»
  • и эпоксидная верхняя заглушка
  • пластиковый корпус гильзы исчезает ????
  • Позднее металлические остатки пригодились при изготовлении двигателя из корпусов отработанных БРДП20-ххх
  • Подробное описание изготовления такого мотора в седьмом полете РП-8.

Ракетные двигатели в домашних условиях. Как сделать топливо для самодельной ракеты

Пилотирование самолетов стало увлечением, объединившим взрослых и детей со всего мира. Но с развитием данного развлечения развиваются и движители для мини самолетов. Самый многочисленный двигатель для самолетов такого типа является электрический. Но с недавних пор на арене двигателей для RC авиамоделей появились реактивные двигатели (РД).

Они постоянно дополняется всевозможными инновациями и придумками конструкторов. Задача перед ними стоит довольно сложная, но возможная. После создания одной из первых моделей уменьшенного двигателя, которая стала значимой для авиамоделирования, в 1990-х годах изменилось многое.

Первый ТРД был 30 см в длину, около 10 см в диаметре и весом в 1,8 кг, но за десятки лет, у конструкторов получилось создать более компактную модель.

Если основательно взяться за рассмотрение их строения, то можно поубавить сложностей и рассмотреть вариант создания собственного шедевра.

Устройство РД

Турбореактивные двигатели (ТРД) работают благодаря расширению нагретого газа. Это самые эффективные двигатели для авиации, даже мини работающие на углеродном топливе. С момента появления идеи создания самолета без пропеллера, идея турбины стала развиваться во всем обществе инженеров и конструкторов. ТРД состоит из следующих компонентов:

  • Диффузор;
  • Колесо турбины;
  • Камера сгорания;
  • Компрессор;
  • Статор;
  • Конус сопла;
  • Направляющий аппарат;
  • Подшипники;
  • Сопло приема воздуха;
  • Топливная трубка и многое другое.

Принцип работы

В основе строения турбированного двигателя лежит вал, который крутится при помощи тяги компрессора и нагнетает быстрым вращением воздух, сжимая его и направляя из статора. Попав в более свободное пространство, воздух сразу же начинает расширяться, пытаясь обрести привычное давление, но в камере внутреннего сгорания он подогревается топливом, что заставляет его расшириться еще сильней.

Единственный путь для выхода воздух под давлением — выйти из крыльчатки.

С огромной скоростью он стремится на свободу, направляясь в противоположную от компрессора сторону, к крыльчатке, которая раскручивается мощным потоком, и начинает быстро вращаться, придавая тяговой силы всему движку.

Часть полученной энергии начинает вращать турбину, приводя в действие компрессор с большей силой, а остаточное давление освобождается через сопло двигателя мощным импульсом, направленным в хвостовую часть.

Чем больше воздуха нагревается и сжимается, тем сильней нагнетаемое давление, и температура внутри камер. Образовываемые выхлопные газы раскручивают крыльчатку, вращают вал и дают возможность компрессору постоянно получать свежие потоки воздуха.

Виды управления ТРД

Существует три вида управления двигателем:

XII Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке

Овсянников И.С. 11Муниципальное общеобразовательное учреждение -Средняя школа № 10 с углубленным изучением отдельных предметов
Добрынина Т. Ю.

11Муниципальное общеобразовательное учреждение -Средняя школа № 10 с углубленным изучением отдельных предметов

Текст работы размещён без изображений и формул.

Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение.

Гуляя летом по ВДНХ, мы попали в интереснейший музей – музей «Космонавтики». Меня очень впечатлил этот музей. Чего там только нет. Я увидел знаменитых собак Белку и Стрелку , скафандр, в котором А.А. Леонов совершил первый выход в космос , ракетные двигатели и конечно же космические корабли.

Рядом с музеем космонавтики стоит макет ракеты «Восход» и ракетоноситель. Рассмотрев ракету, я озадачился вопросом, как же она летает? Есть ли у нее двигатели как у самолета или какая сила способна поднять ее в воздух?

  • Приложение №1.
  • Цель проекта:
  • изучить строение ракеты, создать свою модель ракеты и осуществить ее запуск.
  • Задачи проекта:
  • — расширить знания об истории освоения космоса
  • — познакомиться с устройством ракет
  • -узнать какие законы физики помогают ракете летать
  • Объект:
  • Созданная своими руками модель ракеты
  • Предмет:
  • Процесс создания ракеты своими руками
  • Актуальность:
  • С помощью анкетирования одноклассников я определил, что 80% ребят знают, что такое ракета и 100% ребят хотели бы узнать , как можно самому создать ракету и осуществить ее запуск .
  • Немного истории.

Люди всегда мечтали летать, как птицы. Сначала появились воздушные шары, на которых можно было подняться в небо. Чуть позже изобрели первые двигатели и появились дирижабли. На смену воздухоплаванью пришла авиация. Но полететь в космос на самолете или вертолете невозможно. Потому что в космосе нет атмосферы. Там вакуум, а самолетам необходим воздух. [4]

Спустя годы люди сумели покорить воздушное пространство Земли. Изобрели космический корабль. Первыми в космос отправились собаки. Космический корабль с Белкой и Стрелкой облетел вокруг Земли 18 раз . 12 апреля 1961 года в космос полетел Ю.А. Гагарин. Это был трудный и опасный полет. [4]

1.1 Кто же придумал ракету?

Ракеты появились очень давно. Их придумали в Китае много сотен лет назад. Китайцы использовали их, чтобы сделать фейерверк. Китайцы долго держали в секрете устройство ракет, им нравилось удивлять чужестранцев. В 13 веке впервые китайцы применили ракеты как оружие. Называли их огненные стрелы. При Петре I была создана сигнальная ракета. Она поднималась на высоту до 1 км. [4]

Первым, кто придумал использовать ракету для передвижения, был Н.И.Кибальчич. Он считал, что именно ракета откроет человеку путь в небо. В ХХ веке мысли о полете в космос впервые появились у К. Э. Циолковского.

Он мечтал о том, как человек будет летать в космос. Он Основоположником, создателем отечественной космонавтики является С. П. Королев – выдающийся конструктор и ученый.

Под его руководством были осуществлены запуски первого искусственного спутника Земли и первого космонавта Ю.А. Гагарина. [3]

1.3 Устройство ракеты.

Ракета – летательный аппарат, движущийся под действием реактивной силы, возникающей при отбросе массы сгорающего ракетного топлива. Ракеты бывают одноступенчатые и многоступенчатые.

Форма ракеты связаны только с тем, что ей приходится по дороге в космос пролетать через воздух.

Воздух мешает лететь быстро и чтобы уменьшить воздушное сопротивление форму ракеты делают гладкой, обтекаемой. [1]

Приложение №2.

Наша планета – это огромный магнит, который притягивает к себе людей, предметы, здания, растения и все остальное. Этот магнит называется – земным притяжением. Чтобы преодолеть это притяжение ракете надо много энергии, много топлива. [4]

В любой ракете имеется оболочка и топливо с окислителем. Мы видим, что оболочка ракеты включает в себя полезный груз (космический корабль), приборный отсек и двигатель (камера сгорания, насосы и.т.д.) Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода). [4]

В ракете топливо и окислитель смешиваются в камере сгорания . В результате образуется высокотемпературный газ, находящийся под огромным давлением. Газы из камеры сгорания мощной струей устремляются наружу через трубку специальной формы, называемую соплом ракеты.

Назначение сопла состоит в том, чтобы повысить скорость струи. Все это прекрасный пример третьего закона Ньютона, который я открыл для себя, так как физику еще не изучал. На каждое действие (газ давит вниз) существует равная и противоположная реакция (ракета вверх).

Чем уже сопло и чем больше давление внутри камеры, тем больше тяга. [4]

В практике космических полетов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полетов, чем одноступенчатые.

После того, как топливо и окислитель первой ступени будут израсходованы, эта ступень автоматически отбросится и в действие вступает двигатель второй ступени.

Уменьшение общей массы, путем отбрасывания ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты. Аналогично и со второй ступенью. Скорость таких ракет составляет в среднем 33 м/с.

Процесс взлета ракеты выглядит так : ракета стоит на бетонном стартовом поле. По команде из пункта управления включаются двигатели, мы видим пламя внизу , слышим нарастающий рев.

И вот ракета в клубах дыма отрывается от Земли сначала медленно, а потом все быстрее и быстрее устремляется вверх. [3] Через минуту она уже на такой высоте, куда не могут подняться самолеты, а еще через минуту в безвоздушном пространстве.

Выглядит это очень захватывающе и я решил попробовать воспроизвести запуск самодельной ракеты.

Практическая часть.

Простейшую ракету можно сделать из подручных материалов. Это будет пневмогидравлическая ракета – ракета, использующая в качестве рабочего тела воду , вытесняемую из корпуса ракеты через сопло давлением сжатого воздуха. [2]

Для начала нужно определиться каких размеров будет ракета. Основой ее корпуса будет простая пластмассовая бутылка из-под воды. Основной узел в ракете будет клапан, от него будет зависеть эффективность всей конструкции.

  1. Для сборки мне понадобились следующие материалы:
  2. — пластиковые бутылки из под воды
  3. — картон
  4. — краски
  5. — клей горячий
  6. — винтики, уголки , гайки
  7. — две деревянных палочки
  8. — пластиковое ведро
  9. — насос с манометром
  10. — быстросъемный соединитель для шлангов
  11. — нипель от автошины

Сначала подготовим основной узел ракеты. С помощью клапана в бутылку нагнетается и удерживается воздух. Возьмем быстросъемный соединитель для садового шланга и вставим в н его нипель от автопокрышки.

Приложение №3.

Далее берем 2 бутылки объемом 1,5 литра. Отрезаем от одной верхушку и крепим небольшой утяжелитель с помощью горячего клея.

Далее отрезаем дно от второй бутылки и крепим на это место верхушку ракеты с утяжелителем. Берем картон и наклеиваем его поверх основы ракеты. Из картона я вырезал стабилизаторы ракеты.

Также из маленьких бутылочек от воды я сделал подобие сопла. Вот такая заготовка получилась.

  • Приложение №4.
  • Далее из аэрозольного баллончика я покрасил ракету в красный и серебряный цвет.
  • Приложение №5.

Теперь осталось собрать пусковую площадку. Для сборки мне потребовалась помощь родителей. Для этого папа помог мне просверлить отверстие внутрь ведра для того, чтобы вставить наш клапан. Крепим упоры для запуска ракеты. Сбоку мы прорезаем отверстие для того, чтобы подключить насос.

Приложение №6.

Наша ракета готова.

Основной принцип запуска, как я уже узнал, будет крыться в третьем законе Ньютона. Нам необходимо наполнить ракету водой на 1/3 от основного объема.

Если залить воды больше, то для воздуха останется слишком мало места, а во втором случае слишком много места. Тяга двигателя будет слабой , а время полета –непродолжительным.

При открытии клапана сжатый воздух начнет выбрасывать воду через сопло, в результате чего возникает тяга и ракета сможет развить скорость до 12 м/с.

Итак, когда все готово можно выйти на поле и осуществить запуск ракеты. Вместе с ракетой нам понадобится насос с манометром и бутылка воды. Устанавливаем стартовую площадку так, чтобы ракета стояла строго вертикально.

Подключаем насос к клапану, в бутылку заливаем воды на 1/3 от основного объема. У нас бутылка 1,5 литра, мы заливаем 500 мл. Быстро устанавливаем ракету на клапан, так чтобы клапан плотно вошел в горлышко бутылки.

Теперь взводим спусковой механизм.

Приложение №7.

Заключение

Моя исследовательская работа была очень интересной и познавательной. Я с большим интересом изучил историю появления ракет и механизм их запуска.

Для себя открыл неизвестный мне ранее принцип действия реактивной силы, известный в физике как третий закон Ньютона, который основан на том, что из корпуса ракеты под давлением вытесняется струя воды, заставляю ракету двигаться в противоположном направлении. Создание макета ракеты оказалось очень увлекательным и познавательным занятием.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Интернет источники

ru.m.wikipedia.org

  1. SdelaySam-SvoimiRukami.ru
  2. Kartaslov.ru
  3. Историиземли.рф
  4. ПРИЛОЖЕНИЯ
  5. Приложение №1.
  6. Приложение №2.
  7. Приложение №3.
  8. Приложение №4.
  9. Приложение №5.
  10. Приложение №6.
  11. Приложение №7.

Самодельный клиновоздушный ракетный двигатель | REAA

FlyCat
43 регион