Реактивный двигатель маленький: Высококачественные мини-реактивные двигатели — Alibaba.com

Что это — реактивный двигатель?

Сегодня мы поговорим о том, что же такое реактивный двигатель и каково его значение для современной авиации. С самого своего появления на Земле Человек устремлял свой взор к небу. С какой невероятной легкостью птицы парят в восходящих потоках теплого воздуха! Причем не только маленькие экземпляры, но даже такие крупные, как пеликаны, журавли и многие другие. Попытки подражать им, применяя примитивные летательные аппараты, основанные на мускульной силе самого летчика, если и приводили к своеобразному «полету», то все равно о массовом внедрении разработки речь идти не могла – уж очень ненадежными были конструкции, слишком много ограничений накладывалось на человека, их использующего.

Затем появились двигатели внутреннего сгорания и пропеллерные моторы. Они оказались настолько успешными, что современный реактивный двигатель и винтово-моторный (пропеллерный) до сих пор параллельно сосуществуют. Конечно, претерпев ряд модификаций.

Как появился реактивный двигатель

Большинство технических решений, изобретение которых приписывается Человеку, на самом деле были подсмотрены у природы. К примеру, созданию дельтаплана предшествовало наблюдение за полетом птиц, парящих в небе. Обтекаемые формы рыб и птиц также были блестяще аргументированы, но уже в рамках технических средств. Подобная история не обошла стороной и реактивный двигатель. Данный принцип движения используют многие морские обитатели – осьминоги, кальмары, медузы и пр. О подобном двигателе высказывался Циолковский. Даже более – он теоретически обосновал возможность создания дирижабля для полетов в межпланетном пространстве.

Реактивное движение лежит в основе ракетных двигателей. А ракеты были известны еще в Древнем Китае. Можно сказать, что идея создания реактивного мотора «витала в воздухе», требовалось лишь увидеть ее и воплотить в технике.

Строение двигателя и принцип работы

В основе любого реактивного мотора лежит камера с выходом, заканчивающимся трубкой-раструбом. Внутрь камеры подается топливная смесь, воспламеняется там, превращаясь в газ высокой температуры. Так как его давление распространяется равномерно во все стороны, давя на стенки, то покинуть камеру газ может только через раструб, ориентированный в противоположную сторону желаемого направления движения. Это создает движущую силу. Сказанное легче понять на примере: на льду стоит человек, держа в руках тяжелый лом. Но стоит ему отбросить лом в сторону, как он получит импульс ускорения и заскользит по льду в противоположную броску сторону. Различие в дальности полета лома и смещения человека объясняется только их массой, сами же силы равны, а векторы противоположны. Проводя аналогию с реактивным двигателем: человек – это летательный аппарат, а лом – перегретый газ из раструба камеры.

При всей своей простоте данная схема обладает несколькими существенными недостатками – большим расходом топлива и огромным давление на стенки камеры. Для снижения потребления используют различные решения: в качестве горючего применяют сжиженный газ и окислитель, которые, изменяя свое агрегатное состояние, более предпочтительны, чем жидкое топливо; другой вариант – окисляемый порошок вместо жидкости.

Но наилучшим решением является прямоточный реактивный двигатель. Он представляет собой сквозную камеру, с входом и выходом (условно говоря – цилиндр с раструбом). При движении аппарата в камеру под давлением попадает воздух внешней среды, нагревается и сжимается. Подающаяся топливная смесь воспламеняется и сообщает сжатому воздуху дополнительную температуру. Далее он вырывается через раструб и создает импульс, как в обычном реактивном моторе. В этой схеме топливо является вспомогательным элементом, поэтому его затраты существенно ниже. Именно такой тип двигателя использован в самолетах, где можно увидеть лопасти турбины, нагнетающей воздух в камеру.

Керосин в реактивных двигателях | Андрей Смирнов

Развивая тракторную промышленность, наша страна не могла не наращивать производства керосина — уже не только «фотогена», но и горючего для тракторов. В непрерывных керосиновых батареях того времени в керосин превращали примерно третью часть поступавшей в них нефти. Батарея состояла из 15—20 перегонных кубов, установленных в ряд таким образом чтобы каждый следующий куб был сантиметров на пятнадцать ниже предыдущего. Подогретая нефть могла передвигаться по системе самотеком.

В керосине прямой гонки, кроме углеводородов — предельных, непредельных, циклических, ароматических,— есть примесь нафтеновых кислот, смол, сернистых соединений. Все они, как, впрочем, и непредельные углеводороды, для керосина вредны. Не очищенный от них керосин, сгорая, коптит, а при хранении желтеет. Со временем в нем появляется осадок, в основном смолы — продукт полимеризации непредельных углеводородов.

Керосину как горючему для двигателей внутреннего сгорания эти примеси «противопоказаны» не только потому, что способствуют образованию нагара. Некоторые из примесей, в первую очередь органические кислоты и сернистые соединения, вызывают коррозию металла при высоких температурах, развивающихся в процессе работы двигателя. Поэтому керосин обязательно очищают. О том, как это делается,— чуть позже. Заметим только, что очистку обязательно проходит и керосин, полученный в современных трубчатых установках для непрерывной перегонки нефти.

Как топливо для тракторов керосин применяют и в наши дни, но не это сегодня главное: керосин стал необходим авиации.

Какими только прозвищами не награждали ПО-2, немало потрудившийся до войны и в годы войны маленький биплан конструкции Н. Н. Поликарпова. «Небесный тихоход», «кукурузник», даже «керосинка»… Последнее, кстати, совершенно неверно.

ПО-2 летал на чистом авиационном бензине, а керосинкой скорее можно назвать ТУ-154 или любой другой реактивный лайнер. Трудно поверить, не правда ли?

Обратимся за помощью хотя бы к Краткой химической энциклопедии. В IV томе находим такие строки: «Наиболее распространенными топливами для реактивных двигателей являются керосиновые фракции нефти…» Керосиновые! Вот почему так возросла в последние десятилетия потребность в керосине. Ведь реактивных двигателей все больше и больше, причем не только на самолетах. А первый газотурбинный двигатель, который можно считать дальним предшественником двигателей Ил-18 и многих других самолетов гражданской авиации, был построен инженером П. Д. Кузьминским еще в 1897 г. Топливом для этого двигателя служил керосин, как и в наши дни.

Почему предпочли керосин бензину? Потому же, почему люди предпочитают рюкзаки с http://4youbags.ru/ школьным ранцам других производителей. А именно за такие качества как надежность и стойкость. Прежде всего для реактивной авиации совершенно неприемлемо поведение бензина в условиях повышенных температур и пониженных давлений. Температура кипения керосинов при нормальных условиях— от 150 до 315 °С, а бензинов — от 40 до 180°С. Если бы реактивные самолеты летали на бензине, их «потолок» был бы намного ниже. Или пришлось бы сверхтщательно герметизировать баки и топливную систему, а это—усложнило бы конструкцию, увеличило бы массу.

При полете с большими скоростями топливо заметно нагревается. Даже при скоростях меньше скорости звука в топливных насосах и топливно-масляном радиаторе оно может нагреться до 100—120 °С. Но ведь есть еще и аэродинамический нагрев— от трения самолета о воздух, и чем больше скорость, тем этот нагрев больше. При скорости 2300 километров в час топливо разогревается до 200—230 °С. Бензин — в таких условиях закипел бы. Керосин — нет! Очищенный керосин прямой гонки (с определенными присадками) удовлетворяет требованиям авиаторов. К тому же, керосин дешевле бензина, и при прямой перегонке нефти его образуется больше, это тоже важно. Реактивное топливо расходуется в огромных количествах. Всего за один час работы современный реактивный двигатель «пожирает» до 18 тонн горючего!

Керосин, на основе которого готовят реактивное топливо, обязательно проходит стадию гидроочистки. Когда слышишь это слово впервые, кажется, что оно означает очистку от воды или очистку водой — гидро… Но вода тут ни при чем: гидроочистка — это гидрирование, насыщение водородом. Водородом как бы облагораживают различные соединения, содержащиеся в нефтепродуктах. Гидроочистка — процесс каталитический, идет в атмосфере водорода при температуре 300—425 °С и под давлением. В ходе гидроочистки непредельные соединения, склонные к полимеризации и образованию смолистого осадка, превращаются в предельные. Частично разрушаются циклические молекулы, а это тоже хорошо — ароматические углеводороды дают больший нагар, чем углеводороды метанового ряда, и их содержание в топливе не должно превышать 20—25%. В реактивных топливах, даже полученных из сернистых нефтей, не должно быть элементарной серы; ГОСТом ограничивается и содержание сернистых соединений — не больше 0,25%. В процессе гидроочистки элементарная сера и большая часть связанной серы превращается в сероводород и удаляется из топлива…

Может возникнуть вопрос: почему авиация в качестве топлива использует керосин, а не более тяжелые нефтяные фракции? Ведь при скорости в 3000 километров в час аэродинамический нагрев способен заставить «вскипеть» и керосин… Но пока таких скоростей в гражданской авиации не предвидится. Есть в нашей стране топлива «расширенного фракционного состава», но они ближе к бензину, чем к дизельным топливам. Их создавали, чтобы расширить топливные ресурсы реактивной авиации. У этих горючих немало достоинств, и все же главным авиационным топливом по-прежнему остается керосин.

Бывший «фотоген» превратился в горючее не только для реактивных самолетов, но и для ракет. Известно, что в американских ракетах «Атлас» горючим служит смесь керосиновой и бензиновой фракции нефти, а первые ступени ракет «Сатурн» и «Авангард» работают на чистом керосине. В павильоне Космос на ВДНХ был выставлен реактивный двигатель. Такие двигатели выводили на орбиту вокруг Земли космические корабли «Восток». Рядом с двигателем была табличка с техническими характеристиками: в графе «топливо» напечатано — керосин…

Класс 1: Микроджеты — Миниджеты

Перейти к содержимому

Представленные здесь микрореактивные двигатели имеют мощность от 0 до 100 кг тяги и использовались на самолетах

Пионером этих легких маломощных микрореактивных двигателей, несомненно, является американский инженер Макс Дреер, который в 1960-х гг. построил целую серию небольших турбин для военного или гражданского применения.

Французская компания JPX, вероятно, является той, кто запустил его широкомасштабное использование для моделистов по всему миру. С тех пор, конкурируя со многими другими компаниями по всему миру, JPX отказалась от этого сектора, чтобы сосредоточиться на двигателях внутреннего сгорания для легкой авиации.

Номинальная мощность в сравнении с годовым рейтингом

L’AMT AT-450 на заводе по AMT USA (Aviation Microjet Technology), американском обществе, базирующемся в Огайо, который производит небольшие турбины для газовых двигателей: двигательная установка модели радиоуправления,…

L’AMT Olympus является фабрикой по линии общества AMT в Нидерландах, которая занимается сбором и производством малых турбореактивных двигателей, предназначенных для двигателей: двигателей, вертолетов, беспилотных летательных аппаратов, радиоуправляемых летательных аппаратов, экспериментальных летательных аппаратов, де самолеты в диспозитивах d’envol…

Компания L’AMT Titan создала уникальную центрифугу с компрессором и турбину с осевым потоком. Le temps nécessaire au Titan pour monter et downre les ségimes de min à max est благоприятное влияние на faible…

Le petit turboréacteur BMW 8025 développé by BMW Triebwerkbau GmbH (Мюнхен Аллах). Он готов к происхождению турбины для группы электродвигателей BMW 6002, выпущенной в 1959 году.0004 Турбоактер BMW 8026 создан на базе Bmw Triebwerkbau Gmbh de Munchen-Allach. Директива, выданная BMW 8025, является прежним для использования дроном, ракетным портом, или коммерсантом…

Турбомашина J.E.T Cobra для создания контракта с D.James et J.Walles et construit par la James Engineering ООО «Турбинес» (JET). A l’original ce n’était pas un moteur destiné à propulser un avion, mais ses performance ont été si intéressantes…

Le réacteur JetCat P160 ete initialement conçu pour la propulsion de modele reduit. В состав центрифуги компрессора входит установка, которая включает в себя аспирацию воздуха, лейка, в которой воспламеняется система впрыска карбюратора…

JetCAt produit une Famille de turbo réacteur qui est l’une dès plus Complete du Marché. Elle est composée de plusieurs models dont les puissances s’échelonnaient Entre 20 et 150 kg de poussée. Le Jetcat P200 – это…

Le Jetcat P300 – это турбореактивный двигатель с простым потоком класса 30 кг. Он является составной частью центрифуги компрессора, осевой турбины и кольцевой камеры сгорания. Il a été Commercialisé en…

A l’Original, le JFS-100 etait un groupe de démarrage conçu et produit par la Société Garrett. Il a été utilisé, Entre autre sur les chasseurs A7, F16 и F15. Il offrait une puissance de 90 Hp à  72…

Kingtech — производитель малых газотурбинных реактивных двигателей, выпускающий двигатели для высокотехнологичных моделей самолетов с дистанционным управлением и беспилотных авиационных систем. Kingtech вышла на рынок в 2009 году после четырех лет разработки. С…

В ходе военной деятельности, Люлька производит маленький турбореактивный двигатель ТС-31, который весит 23 кг и имеет мощность 55 кг. Il ne fut utilisé que sur le moto-planeur Антонов А-13. Использование(я)

Часть проектов самолетов, основанная на использовании двигателей, созданных миром, микротурбин для моделей радиоуправления, которые не имеют сертификатов. Depuis quelques années, некоторые автомобилисты…

Первоначальным продуктом Microturbo была стартерная турбина «Noelle», которая привела к появлению ряда стартеров/ВСУ, таких как «Emeraude», «Espadon» и «Saphir». Emeraude привел к созданию первого турбореактивного двигателя компании,…

Le TJ-20a appartient à une série de petits turboréacteurs qui benéficient des dernières technology développees pour des moteurs plus puissant. Il est Architecture autour d’un Compresseur Centrifuge à un étage, d’un диффузорная центрифуга и осевой, d’une…

TJ40 (версии G1 и G2) был разработан для приведения в движение систем БПЛА, таких как дроны-мишени, дроны-ловушки или небольшие разведывательные дроны. Он также может оборудовать планеры или сверхлегкие самолеты. Его преимуществом является малый вес 3,8 кг и. .. Il aurait pour origine un moteur de groupe électrogène militaire éprouvé. Sa taille, son poids,…

В 1963 году Макс Дреер начал работу над концепцией премьер-министра, le TJD-76 Baby Mamba. Conçu налить двигатель ип planeur, il avait ипе poussée statique де 55 фунтов. L’objectif était de faire un moteur simple et aussi…

Маленький паровозик, который не смог | Журнал Air & Space

Т-37 Cessna получил прозвище Tweety Bird за пронзительные самолеты Teledyne CAE J-69.
ВВС США

26 АВГУСТА 2002 ГОДА ЯСНЫМ ЖАРКИМ УТРОМ в Альбукерке Интернэшнл Санпорт. На взлётно-посадочной полосе 17 готовится к взлёту небольшой бело-оранжевый двухмоторный реактивный самолет, несущий тяжёлый груз ажиотажа и надежды. В пресс-релизе его производителя говорится, что первый полет этого прототипа совершит не что иное, как «навсегда изменить ландшафт транспорта». Обещанная цена Eclipse 500 в размере 837 500 долларов — поразительно низкая цифра, едва ли вчетверо меньше, чем у следующего самого дешевого самолета, — и прямые эксплуатационные расходы в 56 центов за милю привлекли депозиты для более чем 2000 самолетов, что потенциально делает его лучшим. продажа частного самолета в истории еще до того, как он взлетит.

Из хвостовой части фюзеляжа вырастают две гондолы двигателей, тонкие, как дымоходы, и едва ли четыре фута в длину. Они держат ключ к замечательным заявлениям Eclipse о цене и производительности: пара вентиляторных реактивных двигателей Williams International EJ22, революционных силовых установок, разработанных Сэмом Уильямсом, известным гуру малых реактивных двигателей. Используя то, что Eclipse называет «подрывной» технологией, EJ22 выдал 770 фунтов тяги в наземных испытаниях, но при 85 фунтах вы могли бы его поднять. Это беспрецедентное соотношение тяги к весу 9: 1, почти вдвое больше, чем у любого коммерческого реактивного двигателя. Это прорыв, благодаря которому Eclipse 500 изменит ландшафт.

Башня Альбукерке разрешает N500EA взлетать, и летчик-испытатель Билл Бабб отпускает тормоза и толкает двойные рычаги управления двигателем вперед. EJ22 разворачиваются в мягкий свист , и самолет начинает разгоняться по взлетно-посадочной полосе.

Но что-то не так. Ускорение вялое, особенно для легко загруженного самолета. В горячем, разреженном воздухе высотой в милю EJ22 могут генерировать едва ли половину своей номинальной тяги. После неторопливого разбега на высоте более 3000 футов самолет отрывается и начинает плавный набор высоты, параллельно горам Сангре-де-Кристо за левым крылом. Около часа Бабб проводит запланированные испытания, проверяя общие характеристики управляемости и работу систем. В целом полет прошел без серьезных сбоев.

И все же, когда маленький реактивный самолет выруливает обратно к ликующим сотрудникам в ангаре Eclipse, уже ясно, что новые двигатели EJ22 его не взломают.

Eclipse 500 больше никогда не летал с EJ22. Три месяца спустя Eclipse Aviation объявила: «EJ22 не является жизнеспособным решением для самолета Eclipse 500, и компания Williams International не выполнила свои договорные обязательства». Williams признала, что столкнулась с «рядом проблем» с EJ22, но настаивала на том, что выполнила условия контракта, подразумевая, что самолет просто стал слишком тяжелым.

Eclipse поспешно подписала контракт с Pratt & Whitney на разработку уменьшенной версии более обычного двигателя. PW610F развивает тягу 900 фунтов, но весит 260 фунтов — в три раза больше веса EJ22. Дополнительная мощность дала бы Eclipse 500 немного лучшую скорость и набор высоты, но у него был большой недостаток: увеличение веса пустого на 700 фунтов и 20-процентное увеличение расхода топлива. Замечательные прогнозы цены и стоимости в конечном итоге выросли до 1,3 миллиона долларов и 89центов за милю. Три года спустя летные испытания Eclipse 500 с двигателем P&W проходят гладко, но до сих пор неясно, изменит ли это ландшафт транспорта.

Неспособность Williams EJ22 пройти сертификацию Федерального авиационного управления для Eclipse и исчезновение двигателя из поля зрения общественности стали горьким разочарованием для тех, кто на протяжении десятилетий стремился к сертифицированному двигателю, который мог бы привести к созданию нового поколения небольших и доступных самолетов. . Неудача стала также ударом по репутации его создателя Сэма Уильямса, которому сейчас 84 года, который, по сути, изобрел небольшой турбовентиляторный двигатель в 1919 году.60-х годов и оставался его неоспоримым вдохновителем более трех десятилетий.

Уильямс не был первым, кто построил крошечный реактивный двигатель. Еще в начале 1950-х построенный во Франции Turboméca Palas с тягой 330 фунтов вдохновил на создание полдюжины эксцентричных экспериментальных мини-реактивных двигателей Euro. Palas превратился в серию Marboré (от 660 до 1058 фунтов тяги), которая приводила в действие ряд небольших военных самолетов, таких как четырехместный Morane-Saulnier 760 Paris и учебно-тренировочный Cessna T-37. (Последний использовал J-69, версия Marboré, сделанная американской компанией Teledyne CAE.) В 1970-х годах французская фирма Microturbo снизила планку с 220-фунтовой тягой TRS 18, которая летала на итальянском планере Caproni A21J и на самолете американского конструктора Джима Беде. Самолет БД-5Ж для авиашоу. Всего 24 дюйма в длину, TRS 18 по-прежнему остается самым маленьким реактивным двигателем, когда-либо приводившим в действие пилотируемый самолет.

Однако у первых мини-двигателей была проблема. Как и все турбореактивные двигатели, они потребляли огромное количество топлива. Хуже того, небольшие самолеты страдают от безжалостной экспоненциальной математики уменьшения масштаба: длина самолета уменьшается вдвое, а внутренний объем для топлива уменьшается в восемь раз. BD-5J имел запас хода около часа и дальность полета около 300 миль.

Чтобы быть коммерчески жизнеспособным, небольшой реактивный двигатель должен быть экономичным. Это означало, что это должен быть турбовентилятор. В то время как Pratt & Whitney и Rolls-Royce начали продвигать турбовентиляторные технологии в больших двигателях в 1960-х годах, молодой выпускник Purdue и бывший инженер Chrysler по имени Сэм Уильямс решил создать небольшой, экономичный турбовентилятор.

Уильямс покинул Chrysler в 1954 году, чтобы основать собственную компанию. Его первый реактивный двигатель, прозаически названный Jet No. 1, совершил свой первый запуск в 1957 при скудных 60 фунтах тяги. Он весил всего 23 фунта; на старой рекламной фотографии Williams изображен улыбающийся двойник Джун Кливер, держащий его в одной руке. Усовершенствованная версия, WR2, была запущена в 1962 году. По аналогии с турбореактивным двигателем Фрэнка Уиттла 1930 года, WR2 имел одноступенчатый центробежный компрессор и одноступенчатую турбину. В справочнике Jane’s All the World’s Aircraft двигатель описывается как «простой по конструкции, почти до такой степени, что он кажется грубым». В 1964 году более мощная версия WR2 стала первым реактивным самолетом Williams, совершившим полет на самолете Canadair CL-89.разведывательный дрон. Последующая серия WR24, несмотря на ужасное потребление топлива, стала первым крупным коммерческим успехом Williams, в конечном итоге установив более 6000 дронов-мишеней Northrop ближнего действия.

В 1967 году компания Williams завершила разработку революционного двигателя. WR19, турбовентиляторный двигатель, основанный на ядре WR2, производил 430 фунтов тяги, весил всего 67 фунтов и был почти в два раза более экономичным, чем WR2. Он приводил в действие два недолговечных изобретения 1970-х годов: летающий пояс Bell Jet, реактивный рюкзак в стиле Базза Лайтера; и летающая платформа WASP II, своего рода воздушный Segway Human Transporter.

WR19 также привлекла внимание военных проектировщиков, изучающих концепцию крылатой ракеты большой дальности. Время Уильямса было идеальным; WR19 был единственным небольшим двигателем с топливной экономичностью, необходимой для полета крылатой ракеты. Усовершенствованная версия WR19, F107 с тягой 600 фунтов, в конечном итоге стала основным двигателем для крылатых ракет воздушного базирования «Томагавк» ВМС и ВВС, с производством более 6500 двигателей за 30 лет. За создание F107 компания Williams была удостоена высшей авиационной награды Collier Trophy в 1919 году.79.

Уильямс начал возиться с небольшим гражданским турбовентиляторным двигателем, основанным на его технологии крылатых ракет, еще в 1971 году. Но было бы огромным шагом сделать специализированную силовую установку «Томагавк», которая должна была запуститься только один раз и проработать три или три часа. четыре часа и адаптировать технологию для производства коммерчески жизнеспособного двигателя.

Небольшой размер сам по себе создает множество проблем при проектировании. Лопасти турбины можно уменьшить, а молекулы воздуха — нет; в результате поверхностное трение и эффекты пограничного слоя пропорционально больше. (С точки зрения инженеров, небольшой двигатель по своей природе менее эффективен, потому что он работает при низком числе Рейнольдса, аэродинамическом коэффициенте, который связывает размер компонента с эффектами инерции и вязкости воздуха.) Зазоры лопаток компрессора и турбины пропорционально больше, что приводит к большему потери наконечника. Чтобы поддерживать наиболее эффективные скорости вращения лопаток турбины и компрессора, небольшие двигатели должны вращаться быстрее. Маленькие лопатки турбины также труднее охлаждать. Масляные каналы сужаются, что затрудняет смазку. Производственные допуски уменьшаются до масштаба часовщика.

В 1978 году компания Williams подписала контракт на разработку WR44, двигателя с тягой 850 фунтов для пятиместного самолета Foxjet 600, очень похожего на Eclipse, но обреченного на статус макета. Последующее заигрывание с злополучной американской Jet Industries Hustler также ни к чему не привело, и только в 1988 году двигатель Williams, наконец, взлетел с человеком на борту. Пара FJ44 с тягой 1800 фунтов приводила в движение Triumph Берта Рутана, экспериментальный прототип легкого бизнес-джета Beech.

Однако именно Cessna ухватилась за концепцию легкого реактивного самолета, и в 1992 году Cessna CitationJet с парой сертифицированных FAA FJ-44-1A, тягой 1900 фунтов и весом 450 фунтов стал первым серийный самолет с двигателями Williams. По выгодной цене в 3,2 миллиона долларов он быстро стал самым продаваемым бизнес-джетом в истории. В очередной раз Уильямс запустил совершенно новый класс самолетов, и снова он занял эту нишу.

Но неуловимая категория Foxjet все еще манила. В начале 19В 90-х годах компания Williams начала разработку фанджета класса тяги 700 фунтов. Новый двигатель станет полным отходом от философии постепенной эволюции и усовершенствования, которой руководствовался 35-летний путь от Jet No. 1 до FJ44. Разработка этой новой технологии обошлась бы дорого, но, опять же, время, выбранное Уильямсом, было безупречным. Инициатива General Aviation Propulsion (GAP), любимая программа администратора НАСА Дэна Голдина, обещала оживить умирающую индустрию легких самолетов с помощью инновационных технологий двигателей. В 1996 Уильямс объединилась с НАСА для четырехлетней работы стоимостью 100 миллионов долларов, чтобы «снизить стоимость малых газотурбинных двигателей в десять раз и революционизировать концепцию личного воздушного транспорта», как говорится в пресс-релизе НАСА.

Когда инженеры НАСА впервые увидели радикально новую разработку Williams GAP, FJX-2, они отнеслись к этому скептически. «Мы не были уверены, смогут ли они это сделать, — вспоминает Лео Буркардт, руководитель программы GAP. «Их предполагаемая производительность, вес и стоимость были настолько лучше, чем у других предложений, что даже если бы они достигли только половины пути, это все равно было бы лучше, чем у кого-либо еще».

Джон Адамчик, старший технолог НАСА, участвовавший в проекте, до сих пор помнит свой шок, когда впервые увидел разложенные части FJX-2. «Я только покачал головой в изумлении от того, насколько все это было маленьким. Похоже, кто-то собирал швейцарские часы». Пятиступенчатый компрессор от FJX-2, который Уильямс продемонстрировал в 1997 году на авиашоу в Ошкоше, штат Висконсин, больше походил на бизнес-конец Cuisinart, чем на семена авиационной революции. Каждая ступень, искусно вырезанная из цельного куска титана, весила один фунт три унции. «Его можно было держать на ладони», — вспоминает Адамчик, все еще пребывая в благоговении.

Но сомнения развеялись где-то через год в программе, после первого испытания главного компрессора. «Все цифры совпали с нашим анализом, — вспоминает Адамчик. «В тот момент это действительно загустело». Полный двигатель впервые заработал в августе 1999 года и вскоре достиг прогнозируемых значений тяги. В общей сложности четыре двигателя наработали почти 900 пусков и более 500 часов наработки в испытательной камере. Давая показания перед Конгрессом в 2000 году, Сэм Уильямс объявил FJX-2 «крупным успехом». Адамчик, ветеран с 30-летним стажем, работавший над многочисленными проектами реактивных двигателей, называет FJX-2 «одной из вершин моей карьеры».

Все это время Уильямс продвигал концепцию очень легкого реактивного самолета (VLJ), который в конечном итоге мог бы использовать его новый двигатель. В 1996 году он нанял Берта Рутана для создания демонстрационного самолета — четырехместного V-Jet II. Контракт Уильямса с НАСА предусматривал полет V-Jet II с парой самолетов FJX-2 в качестве завершающего элемента проекта GAP. Но первоначально он летал с FJX-1, версиями двигателя крылатой ракеты F107, рассчитанными на человека, с тягой 550 фунтов. В присутствии Голдина V-Jet II произвел фурор в Ошкоше в 1919 году.97 с шумными маломощными FJX-1. Среди тысяч любителей самолетов с слюнотечением в зале был богатый пилот и бизнесмен по имени Верн Рабурн.

Рабурн, один из первых руководителей и акционеров Microsoft, только что оставил работу по надзору за технологическими инвестициями миллиардера, соучредителя Microsoft Пола Аллена, ради которого он летал по стране на самолете CitationJet с двигателем Williams. У Рэберна была беспокойная душа предпринимателя, и он долгое время лелеял то же видение, что и Уильямс: небольшой недорогой реактивный самолет. Воодушевленный V-Jet II и сообщениями о необычном маленьком FJX-2, Раберн подписал контракт с Williams 19 мая.98 для совместной разработки пяти- или шестиместного VLJ. Он будет оснащен сертифицированной FAA версией FJX-2, которая будет называться EJ22. Вместе Сэм Уильямс и Верн Рэбурн собирались произвести революцию в авиации.

Имея 60 миллионов долларов в деньгах инвесторов, совет директоров, усеянный тяжеловесами высокотехнологичных корпораций, и эксклюзивную сделку с Williams на EJ22, Рабурн запустил Eclipse Aviation в марте 2000 года. Уильямс, ссылаясь на сделку с Eclipse, убедил НАСА пропустить полеты FJX-2 на V-Jet II. Это позволило Williams быстрее получить окончательный платеж GAP и немедленно приступить к задаче по преобразованию своей испытательной ячейки в жизнеспособный двигатель, сертифицированный FAA.

Как именно такой маленький двигатель достиг таких выдающихся характеристик? Официально никто не говорит. Компания Williams, частная и имеющая долгую историю военных проектов, хранит в секрете технические детали. Люди NASA и Eclipse, которые работали над проектом, связанные соглашениями о конфиденциальности, навязанными Уильямсом, также хранят молчание.

«Я думаю, что могу сказать вам, что главная причина легкого веса двигателя — это архитектура», — говорит чемпион НАСА по авиации общего назначения Брюс Холмс, имея в виду конфигурацию вентилятора реактивного двигателя, компрессоров, камеры сгорания и турбин. «Но я бы сел в тюрьму, если бы рассказал вам, что это за архитектура».

Холмс может спать спокойно. Мне все же удалось разгадать архитектурный секрет FJX-2: вместо обычных двух компрессоров у него было три, каждый из которых вращался независимо со своей оптимальной скоростью на одном из трех концентрических валов и приводился в движение собственной турбиной. Конструкторы называют эту необычную конфигурацию трехвальным или трехзолотниковым двигателем (см. «Золотники» выше).

Подарок находится на приборной панели оригинального Eclipse 500. Большинство форсунок имеют две индикации: N1 для компрессора/вентилятора низкого давления (LP) и N2 для компрессора высокого давления (HP), расположенного ниже по потоку. У Eclipse был манометр N3, что указывает на наличие третьего компрессора среднего давления (IP). Эд Лейс, отставной инженер Williams, не связанный никакими соглашениями о секретности, подтверждает, что FJX-2 имел трехвальную конструкцию.

Трехконтурный двигатель может быть очень эффективным. «Это дает вам большую гибкость в подборе компрессоров и турбин», — говорит Буркардт («Я не говорю, что FXJ-2 был или не был трехспулерным», — добавляет он покорно). Тем не менее, трехвальный двигатель механически сложен, с «подшипниками и уплотнениями, исключающими инь-янь», по словам опытного конструктора Teledyne CAE Джерри Меррилла. Только два трехконтурных двигателя когда-либо были сертифицированы для коммерческого использования: семейство двигателей для авиалайнеров Rolls-Royce RB.211, впервые сертифицированное в 70-х годах, и Garrett ATF3, устрашающе сложный и проблемный двигатель для бизнес-джетов, который провалился на рынке10. лет спустя.

Решение отказаться от простой, хорошо зарекомендовавшей себя двухвальной конфигурации всех предыдущих фанджетов Williams вызвало споры внутри компании. «Некоторые из тех, кто работал над FJ44, не очень доверяли EJ22», — говорит Лейс, объясняя, что одним из толчков к созданию трехвальной конструкции был сын Сэма Уильямса Грегг, в то время вице-президент Williams и теперь президент компании, который два года работал с Rolls-Royce над RB.211. «Тогда Грегг увлекался трехконтурными двигателями, — вспоминает Лейс.

Осевой компрессор высокого давления, продемонстрированный на выставке Oshkosh, также был новшеством компании Williams, которая использовала центробежные компрессоры во всех своих предыдущих двигателях (см. «Компрессоры», стр. 23). Другие, по слухам, конструктивные особенности — компактные встроенные камеры сгорания, крошечные встроенные аксессуары, установленные непосредственно на главном валу — не будут раскрыты до следующего года, когда истечет пятилетнее эмбарго НАСА на выпуск технических публикаций FJX-2.

Ключом к необычайно легкому весу FJX-2 была технология производства. Компания Williams, обладающая многолетним опытом создания двигателей крылатых ракет, подобных драгоценным камням, не имеет себе равных в своей способности с высокой точностью изготавливать крошечные и прочные детали реактивных двигателей. Буркардт цитирует одного из проигравших участников программы GAP на выставке в Ошкоше, где компания Williams продемонстрировала свой крошечный компрессор. «Парень сказал мне: «Теперь я знаю, почему ты выбрал их, а не нас», — вспоминает Буркардт. «Ни одна другая компания не смогла бы построить этот двигатель».

Но сможет ли Уильямс получить сертификат? В то время как FJX-2 просто должен был создать тягу в испытательной камере, EJ22 должен был пройти ряд тестов FAA, чтобы доказать, что он может надежно запускаться, работать без сбоев в течение тысяч часов, подавать отбираемый воздух для наддува и дегазации. обледенения, запускать генератор, быть простым в обслуживании и ремонте и выдерживать реальное проглатывание гравия, льда и птиц. (Птицы также не уменьшаются в масштабе; EJ22, проглатывающий четырехфунтовую птицу, предписанную FAA, эквивалентен двигателю Boeing 777, проглатывающему маленькую корову.)

Пока компания Williams боролась с этими проблемами, Eclipse приступила к созданию первых испытательных планеров. К лету 2002 года планер N500EA был готов к работе. Williams, хотя и отставала от графика, сообщала о хорошем прогрессе в разработке двигателя. Таким образом, около 50 сотрудников Eclipse собрались в темноте двух часов ночи, чтобы поприветствовать реактивный грузовой самолет Falcon, который подъехал к ангару Eclipse. Первый EJ22 был разгружен, распакован и аккуратно поставлен на пол ангара. «Он был красивым, новым и блестящим, и все просто сидели и гладили его», — вспоминает Рэберн. «Это было восхитительно.»

Однако эйфория умерла, когда двигатель отказался заводиться. Потребовалась импровизированная регулировка смеси, несмотря на возражения инженеров Williams, чтобы запустить двигатель. И это было только начало. Стартер перегрелся и вышел из строя. Потекли уплотнения. Потрескались кожухи. Лопасти вентилятора сломались. Были проблемы с топливным контроллером. Серьезные проблемы преследовали интеграцию двигателей в планер. «В течение нескольких дней мы поняли, что движок сильно незрелый, — вспоминает Рабурн.

Что еще хуже, EJ22 не был предназначен для ремонта или обслуживания в полевых условиях. «Нам приходилось отгружать двигатели обратно в Williams 15 или 20 раз за первые 9 лет.0 дней», — говорит Рабурн. «Компания грузовых авиаперевозок просто базировала здесь свой самолет. Пилоты сказали нам: «Мы не летим домой, потому что знаем, что через несколько дней мы вам снова понадобимся». . (Тем не менее, на официальную церемонию запуска никто не пошел, поэтому самолет пришлось отбуксировать из ангара для встречи с авиационной прессой.) ​​Компания Eclipse обнаружила, что при высокой мощности EJ22 перегревались и не могли достичь ожидаемых результатов. тяги без превышения межступенчатых температурных пределов турбины. Во время того анемичного первого взлета именно сочетание температурных ограничений и высоты по плотности снизило тягу двигателя едва ли до половины номинальных 770 фунтов.

Разочаровавшись в Williams, Eclipse привлекла стороннего консультанта, который пришел к выводу, что до сертификации двигателя осталось в лучшем случае два или три года. У Eclipse не было ни времени, ни денег на столь длительные усилия. «Основная проблема заключалась в том, что EJ22 был радикально сложнее, чем все, что когда-либо делала Williams», — говорит Раберн. «Он был таким крошечным и таким сложным, что мы пришли к выводу, что он никогда не сможет быть достаточно надежным, чтобы работать так, как его собирались использовать наши клиенты. Это должен быть пуленепробиваемый двигатель, который просто работает, работает и работает. EJ22 никогда не собирался этого делать. Это было похоже на Ferrari V-12 в нью-йоркском автобусе».

После того, как Eclipse сбросил EJ22, он быстро исчез из поля зрения общественности. Williams удалила все упоминания о нем с веб-сайта компании и прекратила попытки его сертификации. «Для этого нет самолета», — объясняет Сэм Уильямс, странным образом переворачивая смелую философию «Если вы его построите, они придут», которая привела компанию к доминированию на рынке крылатых ракет и легких бизнес-джетов.

Тем не менее, компания продолжает работать над технологией EJ22. «У нас была такая конфигурация с тягой до 1000 фунтов», — говорит Уильямс, предположительно имея в виду несколько похожий двигатель, который компания разрабатывает для VAATE Министерства обороны США (Versatile Affordable Advanced Turbine Engine), своего рода военной версии GAP. программа. На деньги Министерства обороны США можно было бы возобновить сертификацию EJ22, если бы появился подходящий самолет.

Почему произошел сбой EJ22? Возможно, Williams перестаралась, отказавшись от основной философии дизайна, заключающейся в простоте и постепенных изменениях, которые так хорошо служили компании на протяжении многих лет. Примечательно, что в прошлом году Williams вернулась к этим основным ценностям, выпустив самый маленький в истории компании двигатель, сертифицированный FAA: FJ33. Ничего особенного, просто простой, прочный двухвальный двигатель с тягой от 1000 до 1500 фунтов, который по сути представляет собой уменьшенную версию FJ44. Вокруг него уже проектируется полдюжины новых VLJ.

Несмотря на окончательную неудачу коммерческого двигателя, EJ22 стал концептуальным прорывом. Он вдохновил категорию VLJ, парк которой, по прогнозам НАСА, к 2025 году вырастет до 13 500, точно так же, как более ранние двигатели Williams вдохновили категории крылатых ракет и легких бизнес-джетов. Без EJ22 не было бы Eclipse 500, не было бы реальной надежды на то, что реактивные самолеты будут доступны тысячам новых клиентов.