Содержание
Пульсирующий воздушно-реактивный двигатель | Техника и человек
Пульсирующий воздушно-реактивный двигатель (ПуВРД) – это одна из трех основных разновидностей воздушно-реактивных двигателей (ВРД), особенностью которой является пульсирующий режим работы. Пульсация создает характерный и очень громкий звук, по которому легко узнать эти моторы. В отличие от других типов силовых агрегатов ПуВРД имеет максимально упрощенную конструкцию и небольшой вес.
Строение и принцип действия ПуВРД
Устройство ПуВРД
Пульсирующий воздушно-реактивный двигатель – это полый канал, открытый с двух сторон. С одной стороны – на входе – установлен воздухозаборник, за ним – тяговый узел с клапанами, дальше расположена одна или несколько камер сгорания и сопло, через которое выходит реактивный поток. Поскольку работа двигателя циклична, можно выделить основные ее такты:
- такт впуска, во время которого входной клапан открывается, и в камеру сгорания под действием разряжения в ней попадает воздух. В это же время через форсунки впрыскивается топливо, в результате чего образуется топливный заряд;
- полученный топливный заряд воспламеняется от искры свечи зажигания, в процессе горения образуются газы с высоким давлением, под действием которого закрывается впускной клапан;
- при закрытом клапане продукты сгорания выходят через сопло, обеспечивая реактивную тягу. Вместе с тем в камере сгорания при выходе отработанных газов образуется разряжение, входной клапан автоматически открывается и впускает во внутрь новую порцию воздуха.
Входной клапан двигателя может иметь разные конструкции и внешний вид. Как вариант, он может быть выполнен в виде жалюзи – прямоугольных пластин, закрепленных на раме, которые под действием перепада давления открываются и закрываются. Другая конструкция имеет форму цветка с металлическими «лепестками», расположенными по кругу. Первый вариант более эффективный, зато второй более компактный и может использоваться на небольших по размеру конструкциях, например, при авиамоделизме.
Подача топлива осуществляется форсунками, которые имеют обратный клапан. Когда давление в камере сгорания снижается, подается порция топлива, когда же давление увеличивается за счет горения и расширения газов, подача топлива прекращается. В некоторых случаях, например на маломощных моторах от авиамоделей, форсунок может и не быть, а система подачи топлива при этом напоминает карбюраторный двигатель.
Свеча зажигания расположена в камере сгорания. Она создает серию разрядов, и когда концентрация топлива в смеси достигает нужного значения, топливный заряд воспламеняется. Поскольку двигатель имеет небольшие размеры, его стенки, выполненные из стали, в процессе работы быстро нагреваются и могут поджигать топливную смесь не хуже свечи.
Нетрудно понять, что для запуска ПуВРД нужен первоначальный «толчок», при котором первая порция воздуха попадет в камеру сгорания, то есть такие двигатели нуждаются в предварительном разгоне.
История создания
Первые официально зарегистрированные разработки ПуВРД относятся ко второй половине XIX века. В 60-е годы сразу двое изобретателей независимо друг от друга сумели получить патенты на новый тип двигателя. Имена этих изобретателей – Телешов Н.А. и Шарль де Луврье. В то время их разработки не нашли широкого применения, но уже в начале ХХ века, когда для самолетов подыскивали замену поршневым двигателям, на ПуВРД обратили внимание немецкие конструкторы. Во время Второй мировой войны немцы активно использовали самолет-снаряд ФАУ-1, оснащенный ПуВРД, что объяснялось простотой конструкции этого силового агрегата и его дешевизной, хотя по своим рабочим характеристикам он уступал даже поршневым двигателям. Это был первый и единственный раз в истории, когда этот тип двигателя использовался в массовом производстве самолетов.
Фау-1
После окончания войны ПуВРД остались «в военном деле», где нашли применение в качестве силового агрегата для ракет типа «воздух-поверхность» КБ Южное . Но и здесь со временем они утратили свои позиции из-за ограничения по скорости, необходимости первоначального разгона и низкой эффективности. Примерами использования ПуВРД являются ракеты Fi-103, 10Х, 14Х, 16Х, JB-2. В последние годы наблюдается возобновление интереса к этим двигателям, появляются новые разработки, направленные на его усовершенствование, так что, возможно, в скором будущем ПуВРД вновь станет востребованным в военной авиации. На данный момент пульсирующий воздушно-реактивный двигатель возвращают к жизни в области моделирования, благодаря использованию в исполнении современных конструкционных материалов.
Современное исполнение ПуВРД
Особенности ПуВРД
Главной особенностью ПуВРД, которая отличает его от его «ближайших родственников» турбореактивного (ТРД) и прямоточного воздушно-реактивного двигателя (ПВРД), является наличие впускного клапана перед камерой сгорания. Именно этот клапан не пропускает обратно продукты сгорания, определяя их направление движения через сопло. В других типах моторов нет необходимости в клапанах – там воздух поступает в камеру сгорания уже под давлением за счет предварительно сжатия. Этот, на первый взгляд, незначительный нюанс играет огромную роль в работе ПуВРД с точки зрения термодинамики.
Второе отличие от ТРД – это цикличность работы. Известно, что в ТРД процесс сжигания топлива проходит практически беспрерывно, что и обеспечивает ровную и равномерную реактивную тягу. ПуВРД работает циклично, создавая колебания внутри конструкции. Для достижения максимальной амплитуды необходимо синхронизировать колебания всех элементов, чего можно добиться путем подбора нужной длины сопла.
В отличие от прямоточного воздушно реактивного двигателя пульсирующий воздушно реактивный двигатель может работать даже на низких скоростях и находясь в неподвижном положении, то есть когда нет встречного потока воздуха. Правда, его работа в таком режиме не способна обеспечить величину реактивной тяги, необходимой для пуска, поэтому самолеты и ракеты, оснащенные ПуВРД, нуждаются в первоначальном ускорении.
Маленькое видео запуски и работы ПуВРД.
youtube.com/embed/dAVXuDSj4Hk?feature=oembed» frameborder=»0″ allowfullscreen=»»>
Типы ПуВРД
Кроме обычного ПуВРД в виде прямолинейного канала с входным клапаном, что описывались выше, есть и его разновидности: бесклапанный и детонационный.
Бесклапанный ПуВРД, как понятно по его названию, не имеет входного клапана. Причиной его появления и использования стал тот факт, что клапан является довольно уязвимой деталью, которая очень быстро выходит из строя. В этом же варианте «слабое звено» устранено, поэтому и срок службы мотора продлен. Конструкция бесклапанного ПуВРД имеет форму буквы U с концами, направленными назад по ходу реактивной тяги. Один канал длиннее, он «отвечает» за тягу; второй короче, по нему поступает воздух в камеру сгорания, а при горении и расширении рабочих газов часть их выходит через этот канал. Такая конструкция позволяет осуществлять лучшую вентиляцию камеры сгорания, не допускает утечки топливного заряда через входной клапан и создает дополнительную, пусть и незначительную, тягу.
без клаппаный вариант исполнения ПуВРД
без клапанный U-образный ПуРВД
Детонационный ПуВРД предполагает сжигание топливного заряда в режиме детонации. Детонация предусматривает резкое повышение давления продуктов горения в камере сгорания при постоянном объеме, а сам объем увеличивается уже при движении газов по соплу. В этом случае повышается термический КПД двигателя в сравнении не только с обычным ПуВРД, но и с любым другим двигателем. На данный момент этот тип моторов не используется, а находится на стадии разработок и исследований.
детонационный ПуРВД
Достоинства и недостатки ПуВРД, сфера применения
Основными преимуществами пульсирующих воздушно-реактивных двигателей можно считать их простую конструкцию, что тянет за собой их невысокую стоимость. Именно эти качества и стали причиной их использования в качестве силовых агрегатов на военных ракетах, беспилотных самолетах, летающих мишенях, где важны не долговечность и сверхскорость, а возможность установки простого, легкого и дешевого мотора, способного развить нужную скорость и доставить объект к цели. Эти же качества принесли ПуВРД популярность среди любителей авиамоделизма. Легкие и компактные двигатели, которые при желании можно сделать самостоятельно или же купить по приемлемой цене, прекрасно подходят для моделей самолетов.
Недостатков у ПуВРД немало: повышенный уровень шума при работе, неэкономный расход топлива, неполное его сгорание, ограниченность по скорости, уязвимость некоторых конструктивных элементов, таки как входной клапан. Но, несмотря на такой внушительный перечень минусов, ПуВРД по-прежнему незаменимы в своей потребительской нише. Они – идеальный вариант для «одноразовых» целей, когда нет смысла устанавливать более эффективные, мощные и экономичные силовые агрегаты.
пульсирующие воздушно-реактивные двигатели — все патенты категории
Категория
Воздушно-реактивный двигатель пульсирующего действия
Класс фбц, I Мв 66161 ссср ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВ E „,ca@„, ;осщяосц. А. И, Болдырев, Е И. Болдырев и H. В. Филиппов ВОЗДУШНО-PEAKTHBHblA ДВИГАТЕЛЬ ПУЛЬСИРУЮЩЕГО ДЕЙСТВИЯ Заявлено 20 декабря 1944 г. за 1в 9821/335881 в Народный Комиссариат авиационной промышленности Изобретение относится к воздушно-реактивным двигателям пульсирую1цсго действия с предвари…
66161
Патент ссср 70730
Л 7О7ЗО Класс 46, 1 СССР 1 .с «e li СПОСОБ Э К С П Л УАТА Ц И И П УЛ Ь С И Р УЮ 1Ц И Х ВОЗДЖйН?9 РЕАКТИВНЫХ ДВИГАТЕЛЕЙ ДЛЯ САМОЛЕТОВ ИЛИ САМОЛ ЕТОВ-СНАРЯДОВ Заявлено 2 ноября 1946 г. за № 349428 в Министерство авиационной промышленности СССР Известные способы эксплуатации пульсирующих воздушно-реактивных двигателей для самолетов или самолетов-снарядов требуют для разб…
70730
Пульсирующий воздушно-реактивный двигатель
М 88284 Класс 46@, ОПИСАНИЕ ИЗОБРЕТЕНИЯ Х АВТОРСКОМУ СВИДЕТЕЛЬСТВУ В. С. Давыдов ЙУЛЪСИРУЮЩИ Й ВОЗДУННО-PEAKTWBHblA ДВИГАТЕ ПЪ Заявлено 20 сентября 1949 г. за _#_» 404584 в Гостехнику СССР Предлагаемый пульсирующий воздушно-реактивный двигатель предназначен, например, для геликоптеров, летающих моделей самолетов, учебных моделей и т. и. Известные подобнь е двигате;и., со…
88284
Волновой бесклапанный пульсирующий воздушно-реактивный двигатель
М 106500 Класс 46g 1 СССР ОПИСАНИК ИЗОЬ КТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ Д. А. Шитов ВОЛНОВОЙ БЕСКЛАПАННЫЙ ПУЛЬСИРУЮЩИЙ ВОЗДУШ НО-РЕАКТИВ Hbl Й ДВИ ГАТЕЛ Ь Заявлено 25 июня !956 г. за л1е 553789 в Комитет по делам изобретений и открытий при Совете Министров СССР Пульсирующие воздушно-реактивные двигатели бесклапанной схемы известны. Известно также применение испарителей топли. ..
106500
Способ стабилизации зоны горения в камерах горения воздушно- реактивных двигателей
Класс 46, 2р № 131162 СССР ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ Подписная группа ¹ 198 Ю. К. Застела, В, А, Костерин, Э. А. Петров, Е, В. Ржевский, А. Я, Хисматуллин, А. А. Булавкин, А. Г, Евтюгин, В. П. Смирнов, А. В. Шипулина и Л. Г. Миропольская СПОСОБ СТАБИЛИЗАЦИИ ЗОНЫ ГОРЕНИЯ В КАМЕРАХ ГОРЕНИЯ ВОЗДУ1ИНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ Заявлено 8 июля 1958 г. за № 469300/…
131162
Способ работы силовой установки транспортного средства и силовая установка транспортного средства
Изобретение относится к машиностроению и позволяет повысить эффективность . Во впускной трубопровод поршневого двигателя 1 подают воздух , приготавливают горючую смесь и Наполняют этой смесью цилиндры.Воспламеняют горючую смерь в цилиндрах И используют работу расширения для привода .транспортного средства. Поочередно периодически выпускают отработавшие газы из цилиндров в камеру…
1384808
Прямоточный воздушно-реактивный двигатель и способ его работы
Использование: авиационное двигателестроение. Сущность изобретения; камера сгорания снабжена генератором электромагнитной силы, состоящим из пары противолежащих электродов, подключенных к нагрузке, системы инициирования плазменного поршня и электромагнита. Подачу топлива в камеру сгорания осуществляют в область ударно-сжатого воздуха, возникающего перед поршнем, вверх по потоку. …
1803595
Летательный аппарат с пульсирующим воздушно-реактивным двигателем u-образной схемы
СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК Г СУДАРСТВЕННОЕ ПАТЕНТНОЕ В ДОМСТВО СССР (оспАтент сссР) 1 Kl АВТОРСКОМУ СВИДЕТЕЛЬСТВУ I» ( ( ( ( ( ( о (1),4786115/23 2) 29.01.90 6) 30.08.93. Бюл. hb 32 1) Опытно-конструкторское бюро «Сокол» 2) В.Н.Побежимов и Ю.В.Колесников 6) Патент США М 2675196, кл. 244-74, ублик. 1955. 4) ЛЕТАТЕЛЬНЫЙ АППАРАТ С ПУЛЬСИЮЩИМ ВОЗДУШНО-РЕАК…
1837037
Регулируемая камера пульсирующего двигателя с детонационным горением
Использование: в пульсирующих воздушно-реактивных двигателях с резонансной камерой сгорания. Сущность изобретения: регулируемая камера состоит из корпуса с насадком, полузамкнутой полости и узла подвода продуктов газогенерации. Отличительной ее чертой является то, что насадок выполнен составным из подпружиненных телескопических стаканов, а узел подвода продуктов газогенерации представляет…
2059857
Комбинированная камера пульсирующего двигателя детонационного горения
Использование: в реактивных двигательных установках, а также в устройствах управления положением летательного аппарата в воздухе. Сущность изобретения: комбинированная камера состоит из полости, выполненной в центральном теле камеры сгорания, корпуса с насадком, узла подвода продуктов газогенерации и устройства для создания ударных волн, состоящего из струйного ускорителя и твердого обтек. ..
2080466
Механический колебательный контур
Использование: в авиационной технике и может быть использовано в качестве механического контура для программного управления режимом работы спаренного пульсирующего воздушно-реактивного двигателя. Сущность изобретения: в прямоточной камере головной части двигателя помещен механический колебательный контур в виде газодинамического маятника адаптационного типа, представляющего собой участок…
2080467
Камера пульсирующего двигателя детонационного горения
Использование: в пульсирующих воздушно-реактивных двигателях с резонансными камерами сгорания, а также в устройстве для сжигания топлива. Сущность изобретения: камера состоит из соосно расположенных в одном корпусе сверхзвукового сопла и резонатора Гартмана. Они располагаются таким образом, что между внутренней поверхностью корпуса и наружной поверхностью сопла образована полость, являюща…
2084675
Детонационная камера пульсирующего воздушно-реактивного двигателя
Изобретение относится к пульсирующим воздушно-реактивным двигателям с резонансными камерами сгорания. Детонационная камера состоит из корпуса 1 и инициаторов детонации 2. Корпус представляет собой желоб 3, расширяющийся от дна к открытому краю и разделенный перегородками 4 на множество секций, каждая из которых снабжена инициатором детонации. Форма перегородок выбирается такой, что секция…
2106509
Реактивный двигатель
Реактивный двигатель для летательных аппаратов и судов на воздушной подушке содержит камеры сгорания, механизм газораспределения и рабочие каналы. Камеры сгорания снабжены форсунками-детонаторами и топливными форсунками, выполненными в виде цилиндрических камер, сообщающихся с одной стороны с камерами сгорания, а с другой — с патрубком, в котором размещен электрод и шнек. Патрубок с внутр…
2157907
Маршевый пульсирующий ракетный двигатель
Маршевый пульсирующий ракетный двигатель содержит блок камер сгорания, каждая из которых имеет форсунки для подачи топлива, и сопло Лаваля. Двигатель выполнен работающим на самовоспламеняющемся топливе. Блок камер сгорания, имеющий возможность выдерживать давление до 1000 атм, выполнен в виде единой конструкции, состоящей из двух плит, формирующих камеры сгорания с соплами и скрепленных м…
2183283
Пульсирующий детонационный двигатель
Пульсирующий детонационный двигатель содержит выполненные в виде отдельных модулей камеру сгорания, реактор и детонационный резонатор, соединенные между собой с возможностью замены. Внутри камеры сгорания и реактора, вдоль продольной оси двигателя, размещен воздушный канал второго контура. Изобретение позволяет использовать детонационный двигатель в качестве модели для проведения различного вида и…
2249121
Пульсирующий воздушно-реактивный двигатель
Пульсирующий воздушно-реактивный двигатель содержит ограниченную боковой стенкой камеру сгорания, на входе в которую расположен воздухозаборник, а на выходе — сопло, систему подачи топлива с баком, форсунками и каналом подачи топлива, соединяющим бак с форсунками, а также узел зажигания с электронным блоком управления и источник электропитания. Боковая стенка камеры сгорания выполнена упругоподатл…
2279562
Способ работы и устройство энергосиловой детонационной установки
Способ работы энергосиловой детонационной установки включает в каждый рабочий цикл: впрыск в инициирующую детонационную трубу топлива, инициирование топлива с одного из торцов детонационной трубы, распространение вдоль детонационной трубы процесса горения с переходом в режим детонационного горения. После инициирования очередной порции топлива, благодаря геометрии и конструкции инициирующих детонац…
2285142
Пульсирующий детонационный двигатель с магнитогидродинамическим управлением потоком (варианты) и способ управления детонацией
Изобретение относится к пульсирующим детонационным двигателям, в которых используется магнитогидродинамическое управление потоком. Пульсирующий детонационный двигатель включает трубу (12), имеющую открытый передний конец (16) и открытый задний конец (18), и топливно-воздушный вход (20), выполненный в трубе (12) на переднем конце (16). Зажигатель (24) расположен в трубе (12) в месте, находящемся ме…
2287713
Камера пульсирующего двигателя детонационного горения
Изобретение относится к области авиастроения и может быть использовано при проектировании летательных аппаратов различного назначения, в двигателестроении самолетов. Камера пульсирующего двигателя детонационного горения включает корпус, воздухозаборник окружающего воздуха, устройства для инжекции окислителя и горючего в камеру, устройство инициирования детонационного горения. Тяговая стенка у каме…
2293866
Способ получения тяги
Способ получения тяги включает разложение углеводородного топлива в присутствии катализатора с получением водородсодержащей смеси (синтез-газа) и последующим сжиганием синтез-газа в смеси с кислородсодержащим компонентом. Сжигание синез-газа проводят в циклическом детонационном режиме с частотой несколько циклов в секунду, создавая при этом тягу за счет выбросов продуктов детонации. Синтез-газ для…
2330979
Способ увеличения силы тяги пульсирующего воздушно-реактивного двигателя вертикального взлета (варианты)
Способ увеличения силы тяги пульсирующего воздушно-реактивного двигателя вертикального взлета заключается в использовании реакции газов, выбрасываемых из резонаторной трубы, и эжектировании атмосферного воздуха. Во время цикла всасывания дополнительно используют энергию возвратного течения газов в резонаторную трубу посредством установки поворотного колена опущенным внутрь эжектора для создания на…
2333378
Демпфер детонации для двигателей импульсной детонации (варианты)
Двигатель и его вариант содержат, по меньшей мере, одну камеру импульсной детонации, сконфигурированную для получения и детонирования топлива и окислителя. Камера импульсной детонации имеет выпускной конец и содержит пористый вкладыш, приспособленный для устанавливания в пределах внутренней поверхности камеры импульсной детонации около выпускного конца, и кожух, вмещающий упомянутую, по меньшей ме…
2340784
Гиперзвуковой пульсирующий детонационный двигатель и способ его функционирования
Гиперзвуковой пульсирующий детонационный двигатель содержит корпус, воздухозаборник, полузамкнутую детонационную камеру сгорания, сопловой аппарат, топливную систему и систему управления. Воздухозаборник выполнен кольцевым. Центральным телом является корпус с топливным баком, теплообменником и активной теплозащитой. Полузамкнутая детонационная камера сгорания сформирована торцевой стенкой централь…
2347097
Способ работы сверхзвукового пульсирующего прямоточного воздушно-реактивного двигателя и сверхзвуковой пульсирующий прямоточный воздушно-реактивный двигатель
Способ работы сверхзвукового пульсирующего прямоточного воздушно-реактивного двигателя включает подачу и сжигание топлива в сверхзвуковом потоке в расширяющемся канале камеры сгорания. Подачу и сжигание топлива осуществляют в нескольких расширяющихся участках камеры сгорания в импульсно-периодическом режиме. Камера сгорания выполнена из последовательно размещенных друг за другом расширяющихся учас. ..
2347098
Импульсный реактивный двигатель | Военная Вики | Fandom
Схема импульсного двигателя
{|class=»infobox»
! колспан = «2» |
|-
|}
Импульсный реактивный двигатель (или импульсный реактивный двигатель ) представляет собой тип реактивного двигателя, в котором сгорание происходит импульсами. Пульсирующие воздушно-реактивные двигатели могут быть изготовлены с несколькими [1] или без движущихся частей, [2] [3] [4] и могут работать в статике.
Импульсные реактивные двигатели представляют собой облегченную форму реактивного движения, но обычно имеют плохую степень сжатия и, следовательно, дают низкий удельный импульс.
Одно известное направление исследований импульсных реактивных двигателей включает двигатель с импульсной детонацией, который включает в себя повторяющиеся детонации в двигателе и потенциально может обеспечить высокую степень сжатия и хороший КПД.
Содержимое
- 1 Типы
- 1.1 Импульсные форсунки с клапаном
- 1.2 Бесклапанные импульсные форсунки
- 2 История
- 2.1 Аргус Ас 109-014
- 3 Операция
- 4 Функция
- 4.1 Клапанная конструкция
- 4.2 Бесклапанная конструкция
- 4.3 Использование в будущем
- 5 См. также
- 6 Примечания
- 7 Каталожные номера
- 8 Внешние ссылки
Типы
Существует два основных типа импульсных реактивных двигателей, оба из которых используют резонансное сгорание и используют расширяющиеся продукты сгорания для формирования пульсирующей выхлопной струи, которая периодически создает тягу.
Импульсные реактивные двигатели с клапанами
Импульсные реактивные двигатели с клапанами используют механический клапан для управления потоком расширяющихся выхлопных газов, заставляя горячий газ выходить из задней части двигателя только через выхлопную трубу и позволяя свежему воздуху и большему количеству топлива поступать через впускное отверстие .
Импульсный реактивный двигатель с клапаном включает впуск с односторонним расположением клапана. Клапаны предотвращают выход взрывоопасного газа воспламененной топливной смеси в камере сгорания и нарушение потока всасываемого воздуха, хотя во всех практических клапанных импульсных двигателях существует некоторый «обратный выброс» при статической работе и на низкой скорости, поскольку клапаны не могут закрыться достаточно быстро, чтобы остановить весь газ от выхода из впуска. Перегретые выхлопные газы выходят через акустически резонансную выхлопную трубу. Расположение клапанов обычно гирляндный клапан или язычковый клапан. Гирляндный клапан менее эффективен, чем прямоугольная сетка клапанов, хотя его легче построить в небольшом масштабе.
Бесклапанные импульсные реактивные двигатели
Бесклапанные импульсные воздушно-реактивные двигатели не имеют движущихся частей и используют только свою геометрию для управления потоком выхлопных газов из двигателя. Бесклапанные импульсные двигатели выбрасывают выхлопные газы как из впускных, так и из выхлопных газов, хотя большинство старается, чтобы большая часть выхлопных газов выходила через более длинную выхлопную трубу для более эффективного движения.
Бесклапанный импульсный двигатель работает по тому же принципу, что и импульсный двигатель с клапаном, но «клапан» — это геометрия двигателя. Топливо в виде газа или паров жидкости либо смешивается с воздухом на впуске, либо непосредственно впрыскивается в камеру сгорания. Для запуска двигателя обычно требуется подача воздуха и источник воспламенения, например свеча зажигания, для топливно-воздушной смеси. С современными конструкциями двигателей почти любую конструкцию можно сделать самозапускающейся за счет обеспечения двигателя топливом и искрой зажигания, запуска двигателя без сжатого воздуха. После запуска двигателю требуется только подача топлива для поддержания самоподдерживающегося цикла сгорания.
История
Первый запатентованный импульсный реактивный двигатель (прообраз современного реактивного двигателя) был изобретен русским изобретателем и офицером-артиллеристом Н. Телешовым в 1864 году.
Кроме того, шведский изобретатель Мартин Виберг утверждает, что изобрел первую импульсную струю в Швеции, но точные детали патента неясны.
Первый работающий импульсный реактивный двигатель был запатентован в 1906 году русским инженером В.В. Караводин, завершивший действующую модель в 1907 году.
Французский изобретатель Жорж Марконне запатентовал свой бесклапанный пульсирующий реактивный двигатель в 1919 г.08, что, по мнению многих комментаторов, [ необходима атрибуция ] оказало большое влияние на летающую бомбу Фау-1 благодаря инженеру Паулю Шмидту, который впервые разработал более эффективную конструкцию, основанную на модификации впускных клапанов (или закрылков), что принесло ему государственную поддержку от Министерство авиации Германии в 1933 году. [5]
Один из первых импульсных реактивных двигателей, когда-либо построенных, был разработан Рамоном Казановой в Риполле, Каталония, в 1913 году, когда ему был 21 год, и запатентован в Барселоне в 1917. Для получения дополнительной информации см. http://www.youtube.com/watch?v=0VKL9o2bn28&feature=youtu.be
Рамон Казанова и импульсный реактивный двигатель, который он сконструировал и запатентовал в 1917 г. а независимый дизайнер и изобретатель из Мюнхена Пауль Шмидт предложил Министерству авиации Германии «летающую бомбу», приводимую в действие импульсным реактивным двигателем Шмидта. Маделунг был одним из изобретателей ленточного парашюта, устройства, используемого для стабилизации Фау-1 во время его конечного пикирования. Прототип бомбы Шмидта не соответствовал спецификациям Министерства авиации Германии, особенно из-за плохой точности, дальности действия и высокой стоимости. В оригинальной конструкции Шмидта импульсный реактивный двигатель размещался в фюзеляже, как у современного реактивного истребителя, в отличие от возможного Фау-1, в котором двигатель располагался над боеголовкой и фюзеляжем.
Компания «Аргус» начала работу на основе работы Шмидта. Другими немецкими производителями, работавшими над аналогичными импульсными реактивными двигателями и летающими бомбами, были The Askania Company, Robert Lusser из Fieseler, доктор Фриц Госслау из Argus и компания Siemens, которые объединились для работы над V-1. [5]
Теперь, когда Шмидт работает на Argus, импульсный реактивный двигатель был усовершенствован и официально известен под своим обозначением RLM как Argus As 109-014. Первое падение без двигателя произошло в Пенемюнде 28 октября 19 г.42 и первый полет с двигателем 10 декабря 1942 г.
Импульсный реактивный двигатель был оценен как превосходный по соотношению цены и функциональности: простая конструкция, которая хорошо себя зарекомендовала при минимальных затратах. [5] Он мог работать на любом сорте нефти, а система затвора зажигания не была рассчитана на срок службы более одного часа при нормальном полете Фау-1. Хотя он создавал недостаточную для взлета тягу, резонансный реактивный двигатель Фау-1 мог работать, стоя на стартовой рампе. Простая резонансная конструкция, основанная на отношении (8,7: 1) диаметра к длине выхлопной трубы, функционировала так, чтобы увековечить цикл сгорания, и достигла стабильной резонансной частоты на уровне 43 циклов в секунду. Двигатель создавал 500 фунтов силы (2200 Н) статической тяги и примерно 750 фунтов силы (3300 Н) в полете. [5]
Зажигание в As 014 обеспечивалось одной автомобильной свечой зажигания, установленной примерно в 75 см (30 дюймов) за передней группой клапанов. Искра работала только для запуска двигателя; Argus As 014, как и все импульсные реактивные двигатели, не требовал катушек зажигания или магнето для зажигания — источником воспламенения был хвост предшествующего огненного шара во время полета. Вопреки распространенному мнению, [ citation required ] корпус двигателя не обеспечивал достаточного нагрева, чтобы вызвать дизельное воспламенение топлива, поскольку в импульсно-реактивном двигателе происходит незначительное сжатие.
Блок клапанов Argus As 014 был основан на системе заслонок, которая работала с частотой двигателя от 43 до 45 циклов в секунду.
Три воздушных сопла в передней части Argus As 014 были подключены к внешнему источнику высокого давления для запуска двигателя. Топливом, используемым для зажигания, был ацетилен, и техникам приходилось помещать перегородку из дерева или картона в выхлопную трубу, чтобы остановить диффузию ацетилена до полного воспламенения. После запуска двигателя и достижения минимальной рабочей температуры внешние шланги и разъемы были сняты.
V1, будучи крылатой ракетой, не имел шасси, поэтому Argus As 014 запускался по наклонной рампе, приводимой в движение паровой катапультой с поршневым приводом. Энергия пара для запуска поршня создавалась в результате бурной экзотермической химической реакции, возникающей при объединении перекиси водорода и перманганата калия (называемых T-Stoff и Z-Stoff).
Технический персонал Райт Филд реконструировал Фау-1 из останков Фау-1, который не взорвался в Британии. Результатом стало создание JB-2 Loon с планером, построенным компанией Republic Aviation, и репродукцией импульсно-реактивного двигателя Argus As 014 производства Ford Motor Company.
Генерал Генри Харли «Хэп» Арнольд из ВВС США был обеспокоен тем, что это оружие может быть построено из стали и дерева за 2000 человеко-часов и приблизительно за 600 долларов США (в 1943 году). [5]
В основном импульсный реактивный двигатель использовался в военных целях при серийном производстве установки Argus As 014 (первый импульсный реактивный двигатель в серийном производстве) для использования с летающей бомбой Фау-1. За характерный гудящий звук двигателя его прозвали «жужжащей бомбой» или «жуком-болваном». Фау-1 — немецкая крылатая ракета, использовавшаяся во время Второй мировой войны, наиболее известной из которых стала бомбардировка Лондона в 1919 году.44. Импульсные реактивные двигатели, будучи дешевыми и простыми в изготовлении, были очевидным выбором для конструкторов Фау-1, учитывая нехватку материалов у немцев и перегруженность промышленности на том этапе войны. Конструкторы современных крылатых ракет не выбирают для движения импульсно-реактивные двигатели, отдавая предпочтение турбореактивным или ракетным двигателям.
Операция
Анимация импульсного реактивного двигателя.
Пульсирующие воздушно-реактивные двигатели отличаются простотой, дешевизной конструкции и высоким уровнем шума. Топливная эффективность импульсных реактивных двигателей является предметом горячих споров, поскольку эффективность является относительным понятием. Хотя тяговооружённость превосходна, удельный расход топлива по тяге, как правило, очень низкий. В импульсном реактивном двигателе используется цикл Ленуара, в котором отсутствует внешний сжимающий привод, такой как поршень цикла Отто или компрессионная турбина цикла Брайтона, который вызывает сжатие с акустическим резонансом в трубе. Это ограничивает максимальное (перед сгоранием) соотношение давлений, возможно, до 1,2: 1.
Высокий уровень шума обычно делает их непрактичными для других целей, кроме военных и других подобных ограниченных применений. [6] Тем не менее, импульсные струйные двигатели широко используются в качестве промышленных сушильных систем, и возник новый всплеск изучения и применения этих двигателей в таких приложениях, как высокопроизводительное отопление, преобразование биомассы и альтернативные энергетические системы. Импульсные реактивные двигатели могут работать практически на всем, что горит, включая твердые частицы, такие как опилки или угольный порошок.
Импульсные реактивные двигатели использовались для приведения в действие экспериментальных вертолетов, двигатели которых были прикреплены к концам лопастей несущего винта. [7] Импульсные реактивные двигатели как авиационная силовая установка имеют преимущество перед газотурбинными двигателями, заключающееся в том, что они не создают крутящий момент на фюзеляже. Вертолет может быть построен без хвостового винта и связанной с ним трансмиссии и приводного вала, что упрощает самолет (хотя по-прежнему необходимо поворачивать фюзеляж относительно винтов, чтобы он был направлен в одном направлении). Эта концепция рассматривалась еще в 1945. [ цитирование требуется ] Вертолет Hiller с законцовкой несущего винта, более известный как Hiller Powerblade, был первым в мире реактивным ротором горячего цикла в 1949 году, однако Hiller YH-32 Hornet был прямоточным реактивным двигателем, а не импульсный двигатель. [8] По оценкам, винтокрылая тяга снизит стоимость производства винтокрылых самолетов до 1/10 стоимости обычных винтокрылых самолетов. [6] Pulsejets также использовались как в линиях управления, так и в радиоуправляемых моделях самолетов. Рекорд скорости для модели самолета с линией управления превышает 200 миль в час (323 км/ч), хотя длинные линии управления создают 70 % сопротивления системы.
Свободно летающий радиоуправляемый импульсный реактивный двигатель ограничен конструкцией воздухозаборника двигателя. На скорости около 450 км/ч (280 м/ч) системы клапанов большинства двигателей с клапанами перестают полностью закрываться из-за напора воздуха, что приводит к снижению производительности. Одна компания, Beck Technologies, разработала клапанную импульсно-реактивную конструкцию с изменяемой геометрией впуска, позволяющую открывать и закрывать впуск для управления напорным воздушным потоком и позволять двигателю развивать полную мощность на любой скорости. Бесклапанные конструкции не так сильно подвержены напорному давлению воздуха, как другие конструкции, поскольку они никогда не предназначались для остановки потока, выходящего из впускного отверстия, и могут значительно увеличивать мощность на скорости.
Еще одна особенность импульсных реактивных двигателей заключается в том, что их тяга может быть увеличена за счет канала специальной формы, расположенного позади двигателя. Воздуховод действует как кольцевое крыло, которое выравнивает пульсирующую тягу за счет использования аэродинамических сил в выхлопе пульсирующего реактивного двигателя. Канал, обычно называемый аугментером, может значительно увеличить тягу импульсного реактивного двигателя без дополнительного расхода топлива. Возможно увеличение тяги на 100%, что приводит к гораздо более высокой эффективности использования топлива. Однако, чем больше воздуховод аугментатора, тем большее сопротивление он будет производить, и он может быть эффективен только в определенных диапазонах скоростей. Большинство транспортных средств будут ограничены сопротивлением на гораздо более низкой скорости, чем скорость, при которой аугментер малого или среднего размера перестанет производить положительное увеличение тяги.
Функция
Схема импульсной струи. Первая часть цикла: воздух проходит через впуск (1) и смешивается с топливом (2). Вторая часть: клапан (3) закрыт, и воспламененная топливно-воздушная смесь (4) приводит в движение корабль.
Цикл сгорания включает пять или шесть фаз: индукция, сжатие (в некоторых двигателях) впрыск топлива, зажигание, сгорание и выпуск.
При воспламенении в камере сгорания возникает высокое давление при сгорании топливно-воздушной смеси. Сжатый газ от сгорания не может выйти вперед через односторонний впускной клапан и поэтому выходит только назад через выхлопную трубу.
Инерционная реакция этого газового потока заставляет двигатель создавать тягу, эта сила используется для приведения в движение планера или лопасти несущего винта. Инерция движущихся выхлопных газов вызывает низкое давление в камере сгорания. Это давление меньше, чем давление на входе (перед односторонним клапаном), поэтому начинается фаза индукции цикла.
В простейших импульсно-реактивных двигателях этот впуск осуществляется через трубку Вентури, которая обеспечивает всасывание топлива из системы подачи топлива. В более сложных двигателях топливо может впрыскиваться непосредственно в камеру сгорания. Когда идет фаза индукции, топливо в распыленной форме впрыскивается в камеру сгорания для заполнения вакуума, образовавшегося при вылете предыдущего огненного шара; распыляемое топливо пытается заполнить всю трубу, включая выхлопную трубу. Это вызывает «вспышку» распыленного топлива в задней части камеры сгорания при контакте с горячими газами предшествующего столба газа — эта возникающая в результате вспышка «захлопывает» язычковые клапаны или, в случае бесклапанных конструкций, останавливает подачу топлива до тех пор, пока не образуется вакуум и цикл повторяется.
Конструкция с клапаном
Существует два основных типа импульсных форсунок. Первый известен как клапанная или традиционная импульсная струя и имеет набор односторонних клапанов, через которые проходит входящий воздух. Когда воздушно-топливная смесь воспламеняется, эти клапаны захлопываются, что означает, что горячие газы могут выходить только через выхлопную трубу двигателя, создавая таким образом тягу вперед.
Частота циклов в первую очередь зависит от длины двигателя. Для небольшого двигателя модельного типа частота может составлять около 250 импульсов в секунду, тогда как для более крупного двигателя, такого как тот, который использовался на немецкой летающей бомбе Фау-1, частота была ближе к 45 импульсам в секунду. Из-за производимого низкочастотного звука ракеты получили прозвище «жужжащие бомбы».
Бесклапанная конструкция
Основная статья: Бесклапанная импульсная струя
Второй тип импульсной струи известен как бесклапанная импульсная струя. [9] Технически этот двигатель называется импульсным реактивным двигателем акустического типа или импульсным реактивным двигателем с аэродинамическим клапаном.
Бесклапанные импульсные форсунки бывают разных форм и размеров, причем разные конструкции подходят для разных функций. Типичный бесклапанный двигатель будет иметь одну или несколько впускных труб, секцию камеры сгорания и одну или несколько секций выхлопной трубы.
Впускная трубка всасывает воздух и смешивает его с топливом для сгорания, а также контролирует выброс выхлопных газов, подобно клапану, ограничивая поток, но не останавливая его полностью. При горении топливно-воздушной смеси большая часть расширяющихся газов вытесняется из выхлопной трубы двигателя. Поскольку впускная труба (трубы) также вытесняет газ во время выхлопного цикла двигателя, в большинстве бесклапанных двигателей впускные отверстия обращены назад, так что создаваемая тяга увеличивает общую тягу, а не уменьшает ее.
При сгорании образуются два фронта волны давления, один из которых проходит по длинной выхлопной трубе, а другой — по короткой впускной трубе. Правильно «настроив» систему (правильно спроектировав размеры двигателя), можно добиться резонирующего процесса сгорания.
В то время как некоторые бесклапанные двигатели известны тем, что они чрезвычайно прожорливы к топливу, другие конструкции потребляют значительно меньше топлива, чем импульсные реактивные двигатели с клапанами, и правильно спроектированная система с передовыми компонентами и технологиями может соперничать или превосходить топливную экономичность небольших турбореактивных двигателей.
В 1909 году Жорж Марконне разработал первую пульсирующую камеру сгорания без клапанов. Это был дедушка всех бесклапанных импульсных реактивных двигателей. Бесклапанный импульсный реактивный двигатель экспериментировал с французской исследовательской группой SNECMA (Société Nationale d’Étude et de Construction de Moteurs d’Aviation) в конце 1940-х годов.
Бесклапанный импульсный реактивный двигатель впервые широко использовался в голландском беспилотнике Aviolanda AT-21 [10] Правильно спроектированный бесклапанный двигатель превосходно летает; поскольку у него нет клапанов, давление набегающего воздуха при движении на высокой скорости не приводит к остановке двигателя, как у двигателя с клапаном. Они могут развивать более высокие максимальные скорости, а некоторые усовершенствованные конструкции способны работать на скорости 0,7 Маха или, возможно, выше.
Преимуществом импульсной струи акустического типа является простота. Поскольку нет движущихся частей, которые могут изнашиваться, их легче обслуживать и проще конструировать.
Использование в будущем
Импульсные реактивные двигатели сегодня используются в беспилотных летательных аппаратах-мишенях, моделях самолетов с линией управления (а также в радиоуправляемых самолетах), генераторах тумана, а также в промышленном сушильном и домашнем оборудовании для обогрева. Поскольку импульсные струйные двигатели представляют собой эффективный и простой способ преобразования топлива в тепло, экспериментаторы используют их для новых промышленных применений, таких как преобразование топлива из биомассы, системы котлов и обогревателей и другие приложения.
Некоторые экспериментаторы продолжают работать над улучшением конструкции. Двигатели трудно интегрировать в конструкции коммерческих пилотируемых самолетов из-за шума и вибрации, хотя они превосходны на беспилотных транспортных средствах меньшего размера.
Импульсно-детонационный двигатель (ИДД) знаменует собой новый подход к реактивным двигателям периодического действия и обещает более высокую эффективность использования топлива по сравнению с ТРДД, по крайней мере, на очень высоких скоростях. У Pratt & Whitney и General Electric теперь есть активные исследовательские программы PDE. Большинство исследовательских программ PDE используют импульсные реактивные двигатели для проверки идей на ранней стадии проектирования.
Компания Boeing разработала запатентованную технологию импульсных реактивных двигателей под названием Pulse Ejector Thrust Augmentor (PETA), которая предлагает использовать импульсные реактивные двигатели для вертикального подъема в военных и коммерческих самолетах вертикального взлета и посадки. [11]
См.
также
- Импульсно-детонационный двигатель
- Бесклапанный импульсный жиклер
- Список авиадвигателей
Примечания
- ↑ http://gofurther.utsi.edu/Projects/PulseDE.htm
- ↑ http://news.google.com/patents/about?id=vOZsAAAAAEBAJ
- ↑ http://www.google.com/patents?vid=USPAT6216446
- ↑ http://www.home.no/andreas.sunnhordvik/English/mechanical/valveless_e.htm
- ↑ 5.0 5.1 5.2 5.3 5.4 Джордж Миндинг, Роберт Болтон: Актические ракеты Airforce US: 1949-1969 : Pioneers , Lul. -7. стр.6-31
- ↑ 6.0 6.1 Ян Роскам, Чуан-Тау Эдвард Лан; Аэродинамика и характеристики самолета DARcorporation: 1997: ISBN 1-884885-44-6: 711 страниц
- ↑ http://en.wikipedia.org/wiki/XH-26_Jet_Jeep
- ↑ Джозеф Лоуренс Нейлер, Эрнест Оуэр; Авиация: ее техническое развитие , Издательство Dufour Editions, 1965 г. , 290 стр.
- ↑ Гэн, Т.; Шон, Массачусетс; Кузнецов, А. В.; Робертс, WL (2007). «Комбинированное численное и экспериментальное исследование 15-сантиметрового бесклапанного импульсного двигателя». стр. 17–33. Цифровой идентификатор объекта: 10.1007/s10494-006-9032-8.
- ↑ Ян Роскам, Чуан-Тау Эдвард Лан; Аэродинамика и характеристики самолета , DARcorporation: 1997 ISBN 1-884885-44-6 : 711 страниц
- ↑ Диас, Хесус (2011-07-28). «Тысячелетний сокол Боинга плавает с использованием нацистских технологий». http://www.wired.com/dangerroom/2011/07/boeings-millennium-falcon-floats-using-nazi-technology/.
Ссылки
- Обзор авиационной техники , Институт авиационных наук (США): 1948, том. 7.
- Джордж Миндлинг, Роберт Болтон: Тактические ракеты ВВС США: 1949-1969 : Пионеры , Lulu.com, 200: ISBN 0-557-00029-7. стр. 6–31
Внешние ссылки
- http://www.pulse-jets.com/ — международный сайт, посвященный импульсным реактивным самолетам, включая проектирование и эксперименты. Включает чрезвычайно активный форум, состоящий из знающих энтузиастов.
- http://www.PulseJetEngines.com/ — сайт, посвященный реактивным двигателям для хобби, особенно импульсным реактивным двигателям с клапанами и без клапанов. Они предлагают множество бесплатных импульсных реактивных самолетов и содержат много полезной информации.
- Видео испытаний импульсно-струйного двигателя Argus As 014, построенного в 21 веке в Германии
- http://www.frenchgeek.com/pulsejet.php — подробное руководство, документирующее все шаги, необходимые для создания собственного Pulsejet. Пример, созданный на этом сайте, в конечном итоге устанавливается на самодельный карт и тестируется.
- Pulsejets в авиамоделях
- Популярная ассоциация вертолетостроения [1]
- Импульсный реактивный велосипед [2]
- Апокалиптическая группа робототехники Survival Research Labs использует набор импульсных реактивных двигателей в некоторых своих творениях, включая Hovercraft, V1 и Flame Hurricane. [3]
- PETA (Pulse-Ejector-Thrust-Augmentors), статья [4]
На этой странице используется лицензионный контент Creative Commons из Википедии (просмотр авторов). |
Импульсный реактивный бензиновый двигатель HobbyKing «Red Head» с системой зажигания
Вероятно, в вашем браузере отключен JavaScript.
Для использования функций этого веб-сайта в вашем браузере должен быть включен JavaScript.
Перейти к кассе
Общая стоимость
$0.00
Корзина
0
хотите БЕСПЛАТНУЮ доставку? Нажмите здесь, чтобы узнать больше!
{{/findAutocomplete}}
Артикул:
{{артикул}}
{{#isFreeshippingEnabled}}
Бесплатная доставка соответствующих требованиям заказов
{{/isFreeshippingEnabled}}
{{#isDiscountFlag1Enabled}}
{{/isDiscountFlag1Enabled}}
{{#isDiscountFlag2Enabled}}
{{/isDiscountFlag2Enabled}}
{{#isDiscountFlag3Enabled}}
{{/isDiscountFlag3Enabled}}
{{#isDiscountFlag4Enabled}}
{{/isDiscountFlag4Enabled}}
{{#isDiscountFlag5Enabled}}
{{/isDiscountFlag5Enabled}}
{{#isDiscountFlag6Enabled}}
{{/isDiscountFlag6Enabled}}
{{#isDiscountFlag7Enabled}}
9запрещено}}
Посмотреть детали
{{/запрещено}}
{{/is_combo_product}}
{{#запрещено}}
К сожалению, этот продукт недоступен в вашей стране
{{/запрещено}}
{{#hbk_price.