Самый мощный реактивный двигатель: We’re sorry that the document you requested cannot be found.

Содержание

сравним тягу. Реактивный самолет Применение реактивной техники в гражданской авиации

Самый большой в мире реактивный двигатель April 26th, 2016

Тут и так то летаешь с неким опасением, и все время оглядываешься в прошлое, когда самолеты были маленькие и могли запросто планировать при любой неполадке, а тут все больше и больше. В продолжении процесса пополнения копилочки почитаем и посмотрим на такой авиационный двигатель.

Американская компания General Electric в данный момент проводит тестирование самого большого в мире реактивного двигателя. Новинка разрабатывается специально для новых Boeing 777X.

Вот подробности…

Фото 2.

Реактивный двигатель-рекордсмен получил имя GE9X. С учетом того, что первые Боинги с этим чудом техники поднимутся в небо не ранее 2020 года, компания General Electric может быть уверена в их будущем. Ведь на данный момент общее число заказов на GE9X превышает 700 единиц. А теперь включите калькулятор. Один такой двигатель стоит $29 миллионов. Что касается первых тестов, то они проходят в окрестностях городка Пиблс, штат Огайо, США. Диаметр лопасти GE9X составляет 3,5 метра, а входное отверстие в габаритах равно 5,5 м х 3,7 м. Один двигатель сможет выдавать реактивной тяги на 45,36 тонны.

Фото 3.

По словам GE, ни один из коммерческих двигателей в мире не имеет такую высокую степень сжатия (степень сжатия 27:1), как GE9X. В конструкции двигателя активно используются композиционные материалы.

Фото 4.

GE9X компания GE собирается устанавливать на широкофюзеляжный дальнемагистральный самолет Boeing 777X. Компания уже получила заказы от авиакомпаний Emirates, Lufthansa, Etihad Airways, Qatar Airways, Cathay Pacific и других.

Фото 5.

Сейчас проходят первые испытания полного двигателя GE9X. Испытания начались еще в 2011 году, когда велась проверка компонентов. По словам GE, эта относительно ранняя проверка была проведена с целью получения испытательных данных и запуска процесса сертификации, так как компания планирует установить такие двигатели для летных испытаний уже в 2018 году.

Фото 6.

Камера сгорания и турбина выдерживают температуры до 1315 °C, что дает возможность более эффективно использовать топливо и снизить его выбросы.

В дополнение GE9X оснащен топливными форсунками, напечатанными на 3D-принтере. Эту сложную систему аэродинамических труб и углублений компания хранит в тайне.

Фото 7.

На GE9X установлены турбина компрессора низкого давления и редуктор привода агрегатов. Последний приводит в действие насос для подачи горючего, маслонасос, гидравлический насос для системы управления ЛА. В отличие от предыдущего двигателя GE90, у которого было 11 осей и 8 вспомогательных агрегатов, новый GE9X оснащен 10 осями и 9 агрегатами.

Уменьшение количества осей не только снижает вес, но и уменьшает количество деталей и упрощает логистическую цепочку. Второй двигатель GE9X планируется подготовить для проведения испытаний в следующем году

Фото 8.

В конструкции двигателя GE9X использовано множество деталей и узлов, изготовленных из легковесных и термоустойчивых композитных керамических материалов (ceramic matrix composites, CMC). Эти материалы способны выдерживать огромную температуру и это позволило значительно поднять температуру в камере сгорания двигателя. «Чем большую температуру можно получить в недрах двигателя, тем большую эффективность он демонстрирует» — рассказывает Рик Кеннеди (Rick Kennedy), представитель компании GE Aviation, — «При более высокой температуре происходит более полное сгорание топлива, оно меньше расходуется и уменьшаются выбросы вредных веществ в окружающую среду».

Большое значение при изготовлении некоторых узлов двигателя GE9X сыграли современные технологии трехмерной печати. При их помощи были созданы некоторые детали, включая инжекторы топлива, столь сложной формы, которую невозможно получить путем традиционной механической обработки. «Сложнейшая конфигурация топливных каналов — это тщательно охраняемая нами коммерческая тайна» — рассказывает Рик Кеннеди, — «Благодаря этим каналам топливо распределяется и распыляется в камере сгорания наиболее равномерным способом».

Фото 9.

Следует отметить, что недавние испытания являются первым разом, когда двигатель GE9X был запущен в его полностью собранном виде. А разработка этого двигателя, сопровождавшаяся стендовыми испытаниями отдельных узлов, производилась в течение нескольких последних лет.

И в заключении следует отметить, что несмотря на то, что двигатель GE9X носит титул самого большого в мире реактивного двигателя, он не является рекордсменом по силе создаваемой им реактивной тяги. Абсолютным рекордсменом по этому показателю является двигатель предыдущего поколения GE90-115B, способный развивать тягу в 57.833 тонны (127 500 фунтов).

Фото 10.

Фото 11.

Фото 12.

Фото 13.

источники

GE Aviation разрабатывает революционно новый реактивный двигатель, который сочетает в себе лучшие черты турбореактивных и турбовентиляторных двигателей, при этом обладает сверхзвуковой скоростью и эффективно использует топливо, сообщает zitata.org.

В настоящее время в рамках проекта USAF ADVENT разрабатываются новые двигатели, которые экономят топливо на 25 процентов и снабжены новыми возможностями.

В авиации существуют два основных вида реактивных двигателей: турбовентиляторные с низкой степенью двухконтурности, как правило, их называют турбореактивными двигателями и ТРД с высокой степенью двухконтурности. Турбореактивные двигатели с низкой степенью двухконтурности оптимизированы для высокой производительности, толкая различные истребители, но при этом используя невероятно много топлива. Результат производительности стандартного турбореактивного зависит от нескольких элементов (компрессор, камера сгорания, турбины и сопла).

Напротив, ТРД с высокой степенью двухконтурности, являются мощнейшими устройствами гражданской авиации, оптимизированными для сверхмощных толчков с эффективным использованием топлива, но плохо зарекомендовавшими себя на сверхзвуковых скоростях. Обычный турбореактивный двигатель низкого давления получает воздушный поток от вентилятора, который приводится в действие реактивной турбиной. Затем, поток воздуха поступаемый от вентилятора обходит камеры сгорания, действуя как большой пропеллер.

В ADVENT (ADaptive VErsitile ENgine Technology) двигателе появился третий, внешний байпас, который может быть открыт и закрыт в зависимости от условия полёта. При взлёте для уменьшения степени двухконтурности третий байпас закрыт. В результате этого, для увеличения тяги генерируется большой поток воздуха через компрессор высокого давления. При необходимости открывается третий байпас для увеличения степени двухконтурности и снижения расхода топлива.

Дополнительный обходной канал расположен вдоль верхней и нижней части двигателя. Это третий канал будет открыт или закрыт, как часть переменного цикла. Если канал открыт — степень двухконтурности будет расти, снижая расход топлива и повышая звуковой диапазон до 40 процентов. Если каналы закрыты, дополнительный воздух проходит через компрессора высокого и низкого давлений, что безусловно повышает тягу, увеличивает толчок и обеспечивает сверхзвуковой производительностью при взлёте.

Конструкция двигателя ADVENT основана на новых технологиях производства, таких как 3D печать сложных компонентов охлаждения и супермощных, но лёгкий керамических композитов. Они позволяют производить высокоэффективные реактивные двигатели, работающие при температуре выше температуры плавления стали.

Инженеры разработали новый двигатель для лёгких полётов. «Мы хотим, чтобы двигатель был невероятно надёжным и позволил пилоту сосредоточиться на его миссии», — говорит Abe Levatter, руководитель проекта GE Aviation. Мы взяли на себя ответственность и разработали двигатель, который оптимизирован для любых полётов».

В настоящее время GE тестирует основные компоненты двигателя и планирует запустить его в середине 2013 года. На видео, расположенном ниже можно увидеть новый двигатель ADVENT в действии.

December 10th, 2012

Продолжая цикл статей (лишь потому что мне нужен еще один реферат, теперь по предмету «двигатели») — статья о весьма перспективном и многообещающем проекте двигателя SABRE. В общем то о нем и в рунете немало написано, но по большей части весьма сумбурные заметки и дифирамбы на сайтах новостных агентств, а вот статья на английской википедии мне весьма глянулась, они вообще, приятно богаты деталями и подробностями — статьи на английской википедии.

Так что в основу сего поста (и моего будущего реферата) легла именно статься, в оригинале лежащая по адресу: http://en.wikipedia.org/wiki/SABRE_(rocket_engine) , так же было немного добавлено отсебятины и пояснений, и собран по просторам инета иллюстративный материал (вот чем чем, а богатством картинок статьи на википедии не отличаются)

Ниже следует

SABRE (Synergistic Air-Breathing Rocket Engine) – Синергичный воздушно-реактивный ракетный двигатель – концепт, разрабатываемый компанией Reaction Engines Limited, гиперзвуковой гибридный воздушно реактивный/ракетный двигатель с предварительным охлаждением. Двигатель разрабатывается для обеспечения возможности одноступенчатого выхода на орбиту для аэрокосмической системы Skylon. SABRE представляет собой эволюционное развитие серии LACE и LACE-подобных двигателей, разрабатывавшихся Аланом Бондом в начале/середине 1980 в рамках проекта HOTOL.

Конструктивно это один двигатель с комбинированным рабочим циклом, имеющий два режима работы. В воздушно-реактивном режиме сочетается турбокомпрессор с легким теплообменником-охладителем, расположенным непосредственно за конусом воздухозаборника. На высокой скорости теплообменник охлаждает горячий, сжатый воздухозаборником воздух, что в позволяет обеспечить необычайно высокую степень сжатия в двигателе. Сжатый воздух далее подается в камеру сгорания, как у обычного ракетного двигателя, где он обеспечивает воспламенение жидкого водорода. Низкая температура воздуха позволяет использовать легкие сплавы и снизить общий вес двигателя – что весьма критично для выхода на орбиту. Добавим, что в отличии от LACE концептов, предшествувавших этому двигателю, SABRE не сжижает воздух, что дает большую эффективность.

Рис. 1. Аэрокосмический ЛА Skylon и двигатель SABRE

После закрытия конуса воздухозаборника на скорости М = 5,14 и высоте 28,5 км, система продолжает работать в закрытом цикле высокопроизводительного ракетного двигателя, потребляющего жидкий кислород и жидкий водород с находящихся на борту баков, позволяя Skylon достичь орбитальной скорости после выхода из атмосферы в крутом наборе высоты.

Так же, на основе двигателя SABRE, был разработан воздушно-реактивный, называемый Scimitar, для перспективного гиперзвукового пассажирского авиалайнера А2, разрабатываемого в рамках программы LAPCAT, финансированной Европейским Союзом.

В ноябре 2012 компания Reaction Engines объявила о успешном завершении серии испытаний, которые подтверждают работоспособность системы охлаждения двигателя – одного из главных препятствий на пути к завершению проекта. Европейское космическое агенство (ESA) так же оценило теплообменник-охладитель двигателя SABRE, и подтвердило наличие технологий, необходимых для воплощения двигателя в металле.

Рис.2. Модель двигателя SABRE

История

Идея двигателя с предварительным охлаждением впервые возникла у Роберта Кармайкла в 1955 году. За этим следовала идея двигателя с сжижением воздуха (LACE), первоначально изучалась Marquardt и General Dynamics в 1960х годах, как часть работ US Air Force по проекту Aerospaceplane.
LACE система располагается непосредственно за сверхзвуковым воздухозаборником – таким образом сжатый воздух попадает сразу в теплообменник где моментально охлаждается с использование некоторого количества жидкого водорода, хранящегося на борту в качестве топлива. Полученный жидкий воздух затем обрабатывается, для извлечения жидкого кислорода, который поступает в двигатель. Однако количество прошедшего через теплообменник и нагретого водорода, значительно больше, чем может быть сожжено в двигателе, и его избыток просто сливается за борт (тем не менее он тоже дает некоторый прирост тяги).

В 1989 года, когда финансирование проекта HOTOL было прекращено, Бонд и другие специалисты образуют компанию Reaction Engines Limited для продолжения исследования. Теплообменник двигателя RB545 (который предполагалось использовать в проекте HOTOL) имел некоторые проблемы с хрупкостью конструкции, а так же относительно высоким расходом жидкого водорода. Так же его использование было невозможно – патент на двигатель принадлежал компании Rolls Royce, и самый существенный аргумент – двигатель был объявлен совершенно секретным. По этому Бонд пошел на разработку нового двигателя SABRE, развивая идеи, заложенные в предыдущий проект.

По состоянию на ноябрь 2012 года, было завершено тестирование оборудования в рамках темы «Технология теплообменника, критичная для гибридного ракетного двигателя, питаемого воздухом и жидким кислородом». Это был важный этап в процессе разработки SABRE, который продемонстрировал потенциальным инвесторам жизнеспособность технологии. Двигатель основан на теплообменнике, способном охладить поступающий воздух до -150°C (-238°F). Охлажденный воздух смешивается с жидким водородом и сгорая, обеспечивает тягу для атмосферного полета, перед переключением на жидкий кислород из баков, при полете вне атмосферы. Успешные испытания этой, столь критической технологи, подтвердили что теплообменник может обеспечить потребности двигателя в получении достаточного количества кислорода из атмосферы для работы с высокой эффективностью в условиях низко-высотного полета.

На авиашоу Фарнборо 2012 Дэвид Уиллетс, являющийся министром по делам университетов и науки Объединенного королевства, выступил по этому поводу с речью. В частности, он сказал, что данный двигатель, разработчиком которого является компания Reaction Engines, реально может повлиять на условия игры, действующие в космической отрасли. Успешно завершившиеся испытания системы предварительного охлаждения являются подтверждением высокой оценки концепции двигателя, которую сделало Космическое агентство Великобритании в 2010 году. Министр также добавил, что если однажды им удастся использовать данную технологию для осуществления собственных полетов коммерческого назначения, то это, несомненно, будет фантастическим по своему масштабу достижением.

Министр также отметил, что существует маленькая вероятность того, что Европейское космическое агентство согласится финансировать Skylon, поэтому Великобритания должна быть готова заниматься строительством космолета по большей части на свои средства.

Рис.3. Аэрокосмический ЛА Skylon — компоновка

Следующий этап программы SABRE предусматривает наземные испытания масштабной модели двигателя, способной продемонстрировать полный цикл. ESA выразило уверенность в успешной постройке демонстратора и заявило о том, что он будет представлять собой «важную веху в развитии этой программы и прорыв в вопросе двигательных установок по всему миру»

Конструкция

Рис.4. Компоновка двигателя SABRE

Подобно RB545, конструкция SABRE скорее ближе к традиционному ракетному двигателю, чем к воздушно реактивному. Гибридный Воздушно-реактивный/Ракетный двигатель с предварительным охлаждением использует жидкое водородное топливо в сочетании с окислителем, поставляемым либо в виде газообразного воздуха с помощью компрессора, либо в виде жидкого кислорода, поставляемого из топливных баков с помощью турбонасоса.

В передней части двигателя расположен простой осесимметричный воздухозаборник в виде конуса, который тормозит воздух до дозвуковых скоростей, используя всего два отраженных скачка уплотнения.

Часть воздуха через теплообменник в центральную часть двигателя, а оставшийся проходит через кольцевой канал в второй контур, представляющий собой обычный ПВРД. Центральная часть, расположенная за теплообменником, представляет собой турбокомпрессор, приводящийся в движение газообразным гелием, циркулирующим по замкнутому каналу цикла Брайтона. Сжатый компрессором воздух поступает под высоким давлением в четыре камеры сгорания ракетного двигателя комбинированного цикла.

Рис.5. Упрощенный цикл работы двигателя SABRE

Теплообменник

Поступающий в двигатель на сверх/гиперзвуковых скоростях воздух становится очень горячим после торможения и сжатия в воздухозаборнике. С высокими температурами в реактивных двигателях традиционно справлялись используя тяжелые сплавы на основе меди или никеля, за счет снижения степени сжатия компрессора, а так же снижением оборотов, во избежание перегрева и плавления конструкции. Однако для одноступенчатого КА такие тяжелые материалы неприменимы, и необходима максимально возможная тяга, для выхода на орбиту в кратчайшее время, чтобы минимизировать тяжесть потерь.

При использовании газообразного гелия в качестве теплоносителя, воздух в теплообменнике существенно охлаждается от 1000°C до -150°C, при этом избегая сжижения воздуха или конденсации водяного пара на стенках теплообменника.

Рис.6. Модель одно из модулей теплообменника

Предыдущие версии теплообменника, например применяемые в проекте HOTOL пропускали водородное топливо непосредственно через теплообменник, но использование гелия как промежуточного контура между воздухом и холодным топливом сняло проблему водородной хрупкости конструкции теплообменника. Однако резкое охлаждение воздуха сулит определенные проблемы – необходимо предотвратить блокировку теплообменника замороженным водяным паром и иными фракциями. В ноябре 2012 года был продемонстрирован образец теплообменника, способный охладить атмосферный воздух до -150°C за 0,01 с.
Одной из инноваций теплообменника SABRE служит спиральное размещение трубок с халагентом, что значительно обещает поднять его эффективность.

Рис.7. Опытный образец теплообменника SABRE

Компрессор

На скорости М=5 и высоте 25 километров, что составляет 20% орбитальной скорости и высоты, необходимой для выхода на орбиту, охлажденный в теплообменнике воздух попадает в весьма обыкновенный турбокомпрессор, конструктивно подобный используемым в обычных турбореактивных двигателях, но обеспечивающий необычайно высокую степень сжатия, благодаря крайне низкой температуре входящего воздуха. Это позволяет сжать воздух до 140 атмосфер перед подачей в камеры сгорания основного двигателя. В отличии от турбореактивных двигателей, турбокомпрессор приводится в действие турбиной, расположенной в гелиевом контуре, а не от действия продуктов сгорания, как в обычных турбореактивных двигателей. Таким образом турбокомпрессор работает на тепле, полученным гелем в теплообменнике.

Гелиевый цикл

Тепло переходит от воздуха к гелию. Горячий гелий из теплообменника «гелий-воздух» охлаждается в теплообменнике «гелий-водород», отдавая тепло жидкому водородному топливу. Контур, в котором циркулирует гелий, работает согласно циклу Брайтона, как охлаждая двигатель в критических местах, так и для привода энергетических турбин и многочисленных агрегатов двигателя. Остаток тепловой энергии используется для испарения части водорода, который сжигается в внешнем, прямоточном контуре.

Глушитель

Для охлаждения гелия, его прокачивают через бак с азотом. В настоящее время для тестов используется не жидкий азот а вода, которая испаряется, понижая температуру гелия и глушит шум от выхлопных газов.

Двигатель

Благодаря тому, что гибридный ракетный двигатель обладает далеко не нулевой статической тягой, летательный аппарат может взлететь в обычном, воздушно-реактивном режиме, без посторонней помощи, подобно оснащенным обычными турбореактивными двигателями. При наборе высоты и падении атмосферного давления, все больше и больше воздуха направляется в компрессор, а эффективность сжатия в воздухозаборнике только снижается. В этом режиме реактивный двигатель может работать на намного большей высоте, чем это было возможно в обычном случае.
При достижении скорости М=5.5 воздушнореактивный двигатель становится не эффективным и отключается, и теперь в ракетный двигатель поступает хранящийся на борту жидкий кислород и жидкий водород, так вплоть до достижения орбитальной скорости (соизмеримо с М=25). Турбонасосные агрегаты приводятся тем же гелиевым контуром, который теперь получает тепло в специальных «предварительных камерах сгорания».
Необычное конструкционное решение системы охлаждения камер сгорания — в качестве охлаждающего вещества используется окислитель (воздух/жидкий кислород) вместо жидкого водорода, во избежание перерасхода водорода и нарушения стехиометрического соотношения (соотношение топлива к окислителю).

Второй существенный момент – реактивное сопло. Эффективность работы реактивного сопла зависит от его геометрии и атмосферного давления. В то время как геометрия сопла остается неизменной, давление существенно изменяется с высотой, следовательно сопла, высокоэффективные в нижних слоях атмосферы, существенно теряют свою эффективность с достижением больших высот.
В традиционных, многоступенчатых системах, это преодолевается простым использованием разной геометрии, для каждой ступени и соответствующего этапа полета. Но в одноступенчатой системе мы все время используем одно и то же сопло.

Рис.8. Сравнение работы различных реактивных сопел в атмосфере и вакууме

Как выход планируется использование специального Expansion-Deflection (ED nozzle) – регулируемого реактивного сопла разрабатываемого в рамках проекта STERN , которое состоит из традиционного колокола (правда сравнительно короче обычного), и регулируемого центрального тела, которое отклоняет поток газа к стенкам. Изменяя положение центрального тела, можно добиться того что выхлоп не займет всю площадь донного среза, а лишь кольцеобразный участок, регулируя занимаемую им площадь соответственно атмосферному давлению.

Так же, в многокамерном двигателе, можно регулировать вектор тяги, изменяя площадь сечения, а следовательно и вклад в общую тягу, каждой камеры.

Рис.9. Реактивное сопло Expansion-Deflection (ED nozzle)

Прямоточный контур

Отказ от сжижения воздуха поднял эффективность работы двигателя, снизив затраты теплоносителя путем снижения энтропии. Однако даже простое охлаждение воздуха требует больше водорода, чем может быть сожжено в первом контуре двигателя.

Избыток водорода сливается за борт, но не просто так, а сжигается в ряде камер сгорания, которые расположены в внешнем кольцевом воздушном канале, образующем прямоточную часть двигателя, в которую поступает воздух, пошедший в обход теплообменника. Второй, прямоточный контур снижает потери вследствие сопротивления воздуха, не попавшего в теплообменник, и так же дает некоторую часть тяги.
На низких скоростях в обход теплообменника/компрессора идет очень большое количество воздуха, а с ростом скорости, для сохранения эффективности большая часть воздуха наоборот, попадает в компрессор.
Это отличает систему от турбопрямоточного двигателя, где все обстоит с точностью до наоборот – на малых скоростях большие массы воздуха идут через компрессор, а на больших – в его обход, через прямоточный контур, который становится настолько эффективным, что берет на себя ведущую роль.

Производительность

Расчетная тяговооруженность SABRE предполагается свыше 14 единиц, при этом тяговооруженность обычных реактивных двигателей лежит в пределах 5, и всего лишь 2 для сверхзвуковых прямоточных двигателей. Столь высокая производительность получена благодаря использованию сверхохлажденного воздуха, который становится весьма плотным и требует меньшего сжатия, и, что более существенно, благодаря низким рабочим температурам стало возможным использовать легкие сплавы для большей части конструкции двигателя. Общая производительность обещает быть выше, чем в случае RB545 или сверхзвуковых прямоточных двигателей.

Двигатель имеет высокий удельный импульс в атмосфере, который достигает 3500 сек. Для сравнения обычный ракетный двигатель имеет удельный импульс в лучшем случае около 450, и даже перспективный «тепловой» ядерный ракетный двигатель обещает достичь лишь величины 900 сек.

Комбинация высокой топливной эффективности и низкой массы двигателя дает Skylon возможность достичь орбиты в одноступенчатом режиме, при этом работая как воздушно-реактивный до скорости М=5,14 и высоты 28,5 км. При этом аэрокосмический аппарат достигнет орбиты с большой полезной нагрузкой относительно взлетного веса, какая не могла быть ранее достигнутой ни одним, неядерным транспортным средством.

Подобно RB545, идея предварительного охлаждения увеличивает массу и сложность системы, что в обычных условиях служит антитезисом принципу конструирования ракетных систем. Также теплообменник очень агрессивная и сложная часть конструкции двигателя SABRE. Правда следует отметить что масса этого теплообменника предполагается на порядок ниже существующих образцов, и эксперименты показали что это может быть достигнуто. Экспериментальный теплообменник добился теплообмена почти в 1 ГВт/м2, что считается мировым рекордом. Небольшие модули будущего теплообменника уже изготовлены.

Потери от дополнительного веса системы компенсируются в закрытом цикле (теплообменник-турбокомпрессор) также как дополнительный вес крыльев Skylon увеличивая общий вес системы, так же способствуют общему увеличению эффективности больше, чем снижению ее. Это большей частью компенсируется разными траекториями полета. Обычные ракеты-носители стартуют вертикально, с крайне низкими скоростями (если говорить о тангенциальной а не нормальной скорости), этот, на первый взгляд неэффективных ход, позволяет быстрей пронзить атмосферу и набирать тангенциальную скорость уже в безвоздушной среде, не теряя скорость на трении о воздух.

В то же время большая топливная эффективность двигателя SABRE позволяют очень пологий подъем (при котором растет больше тангенциальная, чем нормальная составляющая скорости), воздух скорее способствует чем тормозит систему (окислитель и рабочее тело для двигателя, подъемная сила для крыльев), дает в итоге намного меньший расход топлива для достижения орбитальной скорости.

Некоторые характеристики

Тяга в пустоте – 2940 кН
Тяга на уровне моря – 1960 кН
Тяговоруженность (двигателя) – около 14 (в атмосфере)
Удельный импульс в вакууме – 460 сек
Удельный импульс на уровне моря – 3600 сек

Преимущества

В отличии от традиционных ракетных двигателей, и подобно иным типам воздушно-реактивных двигателей, гибридный реактивный двигатель может использовать воздух, для сжигания топлива, снижая необходимый вес ракетного топлива, и тем увеличивая вес полезной нагрузки.

ПВРД и ГПВРД должны провести большое количество времени в нижних слоях атмосферы, чтобы достичь скорости, достаточной для выхода на орбиту, что выводит на передний план проблему интенсивного нагрева на гиперзвуке, а так же потери в следствии значительно веса и сложности теплозащиты.

Гибридный реактивный двигатель подобный SABRE нуждается только в достижении низкой гиперзвуковой скорости (напомним: гиперзвук – все что после М=5, следовательно М = 5,14 это самое начало гиперзвукового диапазона скоростей) в нижних слоях атмосферы, перед переходом на закрытый цикл работы и крутом подъеме с набором скорости в ракетном режиме.

В отличии от ПВРД или ГПВРД, SABRE способен обеспечить высокую тягу от нулевой скорости и до М=5,14, от земли и до больших высот, с высокой эффективностью во всем диапазоне. Кроме того, возможность создания тяги при нулевой скорости означает возможность испытаний двигателя на земле, что значительно сокращает стоимость разработки.

Так же вашему вниманию предлагается некоторое число ссылок

Реактивный самолет – это летательный аппарат, который осуществляет полет в воздухе за счет использования в своей конструкции воздушно-реактивных двигателей. Они могут быть турбореактивными, прямоточными, пульсирующего типа, жидкостными. Также реактивные самолеты могут быть укомплектованы двигателем ракетного типа. В современном мире самолеты с реактивными двигателями занимают большую часть всех современных летательных аппаратов.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый – конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

Первые прототипы и наработки

Конечно же, самолеты с турбореактивной силовой установкой имеют значительно больше преимуществ, нежели летательные аппараты с поршневыми двигателями.

    Самолет германского происхождения под обозначением He 178 был впервые поднят в воздух 27.08.1939 года.

    В 1941 году в небо поднялся подобный аппарат британских конструкторов с названием Gloster E.28/39.

Аппараты с ракетными двигателями

    He 176, созданный в Германии, осуществил первый отрыв от ВПП 20.07.1939 года.

    Советский летательный аппарат БИ-2 взлетел в мае 1942 года.

Самолеты с многокомпрессорным двигателем (их считают условно пригодными к полетам)

    Campini N.1 – изготовленный в Италии самолет впервые поднялся в воздух в конце августа 1940 года. была достигнута скорость полета в 375 км/час, а это еще меньше, чем поршневого аналога.

    Японский самолет «Ока» с двигателем Tsu-11 был предназначен для разового использования, поскольку это был самолет-бомба с пилотом-камикадзе на борту. Из-за поражения в войне так и не было окончательно доделана камера сгорания.

    За счет заимствованной технологии во Франции американцы также смогли изготовить собственную модель самолета с реактивным двигателем, которым стал Bell P-59. Машина имела два двигателя реактивного типа. Впервые отрыв от ВПП зафиксирован в октябре 1942 года. Нужно отметить, что эта машина была достаточно успешной, поскольку ее изготовление велось серийно. Аппарат имел некоторые преимущества над поршневыми аналогами, но все же в боевых действиях он участия не принимал.

Первые успешные реактивные прототипы

Германия:

    Созданный двигатель Jumo-004 был применен для нескольких экспериментальных и серийных самолетов. Нужно отметить, что это первая силовая установка в мире, которая имела осевой компрессор, как и современные истребители. США и СССР подобный тип двигателя получил значительно позже.

    Самолет Me.262 с установленным двигателем типа Jumo-004 впервые поднялся в воздух 18. 07.1942 года, а уже через 43 месяца осуществил свой первый боевой вылет. Преимущества в воздухе данного истребителя были значительными. Была задержка запуска в серию из-за некомпетентности руководства.

    Реактивный разведчик-бомбардировщик типа Ar 234 изготовлен летом 1943 года, также был оснащен двигателем Jumo-004. Он активно применялся в последние месяцы войны, поскольку только он мог работать в ситуации с сильным преобладанием сил противника.


Великобритания:

  • Первым реактивным истребителем, изготовленным британцами, стал самолет Gloster Meteor, который был создан в марте 43-го года, а на вооружение его приняли 27.07.1944 года. В конце войны основной задачей истребителя был перехват самолетов Германии, которые несли крылатые ракеты типа Фау-1.

США
:

    Первым реактивным истребителем в США стал аппарат под обозначением Lockheed F-80. Впервые отрыв от ВПП зафиксирован в январе 1944 года. На самолете был установлен двигатель типа Allison J33, который считается доработанной версией двигателя, установленного на аппарате Gloster Meteor. Боевое крещение произошло в Корейской войне, но вскоре он был заменен на самолет F-86 Sabre.

    Первый палубный истребитель с реактивным двигателем был готов в 1945 году, он обозначался как FH-1 Phantom.

    Реактивный бомбардировщик в США был готов в 1947 году, это был B-45 Tornado. Дальнейшее развитие позволило создать машину B-47 Stratojet с двигателем AllisonJ35. Этот двигатель был самостоятельной разработкой без внедрения технологий других стран. В итоге был изготовлен бомбардировщик, который эксплуатируют и сейчас, а именно В-52.

СССР:

    Первым реактивным самолетом в СССР стал МиГ-9. Первый взлет – 24.05.1946 года. Всего с заводов поступило 602 таких самолета.

    Як-15 – это истребитель с реактивным двигателем, который стоял на вооружении в ВВС. Этот самолет считается переходной моделью от поршневых к реактивным.

    МиГ-15 изготовлен в декабре 1947 года. Активно применялся в военном конфликте в Корее.

    Реактивный бомбардировщик Ил-22 изготовлен в 1947 году, он был первым в дальнейшем развитии бомбардировщиков.

Сверхзвуковые реактивные самолеты

    Единственный в истории авиастроения палубный бомбардировщик с возможностями сверхзвукового движения – самолет A-5 «Виджилент».

    Сверхзвуковые истребители палубного типа — F-35 и Як-141.

В гражданской авиации был создано только два пассажирских самолета с возможностью полета на сверхзвуковых скоростях. Первый был изготовлен на территории СССР в 1968 году и обозначался как Ту-144. Было изготовлено 16 таких самолетов, но после серии катастроф машина была снята с эксплуатации.

Второй пассажирский аппарат данного типа изготовила Франция и Великобритания в 1969 году. Всего было построено 20 самолетов, эксплуатация продолжалась с 1976 по 2003 год.

Рекорды реактивных самолетов

    Airbus A380 может расположить на своем борту 853 человека.

    Boeing 747 на протяжении 35 лет был самым большим пассажирским самолетом с пассажировместительностью в 524 человека.

Грузовые
:

    Ан-225 «Мрия» – единственная машина в мире, которая обладает грузоподъемностью в 250 тонн. Первоначально был изготовлен для перевозки космической системы «Буран».

    Ан-124 «Руслан» – один из самых крупных самолетов мира с грузоподъемностью в 150 тонн.

    Был самым крупным грузовым самолетом до появления «Руслана», грузоподъемность равна 118 тоннам.

Максимальная скорость полета

    Летательный аппарат Lockheed SR-71 достигает скорости в 3 529 км/ч. Изготовлены 32 самолета, не может произвести взлет с полными баками.

    МиГ-25 – нормальная скорость полета в 3 000 км/ч, возможен разгон до 3 400 км/ч.

Будущие прототипы и разработки

Пассажирские:

Крупные:

  • High Speed Civil.
  • Ту-244.

Бизнес-класс:

    SSBJ, Ту-444.

    SAI Quiet, Aerion SBJ.

Гиперзвуковые:

  • Reaction Engines A2.

Управляемые лаборатории
:

Беспилотные:

  • Х-51
  • Х-43.

Классификация самолетов:

А
Б
В
Г
Д
И
К
Л

Тут и так то летаешь с неким опасением, и все время оглядываешься в прошлое, когда самолеты были маленькие и могли запросто планировать при любой неполадке, а тут все больше и больше. Почитаем и посмотрим на такой авиационный двигатель.
Американская компания General Electric
в данный момент проводит тестирование самого большого в мире реактивного двигателя. Новинка разрабатывается специально для новых Boeing 777X.

Реактивный двигатель-рекордсмен получил имя GE9X. С учетом того, что первые Боинги с этим чудом техники поднимутся в небо не ранее 2020 года, компания General Electric может быть уверена в их будущем. Ведь на данный момент общее число заказов на GE9X превышает 700 единиц.
А теперь включите калькулятор. Один такой двигатель стоит $29 миллионов. Что касается первых тестов, то они проходят в окрестностях городка Пиблс, штат Огайо, США. Диаметр лопасти GE9X составляет 3,5 метра, а входное отверстие в габаритах равно 5,5 м х 3,7 м. Один двигатель сможет выдавать реактивной тяги на 45,36 тонны.

По словам GE, ни один из коммерческих двигателей в мире не имеет такую высокую степень сжатия (степень сжатия 27:1), как GE9X.
В конструкции двигателя активно используются композиционные материалы, выдерживающие температуры до 1,3 тысячи градусов Цельсия. Отдельные детали агрегата созданы с использованием 3D-печати.

GE9X компания GE собирается устанавливать на широкофюзеляжный дальнемагистральный самолет Boeing 777X. Компания уже получила заказы на более чем 700 двигателей GE9X на сумму 29 миллиардов долларов от авиакомпаний Emirates, Lufthansa, Etihad Airways, Qatar Airways, Cathay Pacific и других.

Сейчас проходят первые испытания полного двигателя GE9X. Испытания начались еще в 2011 году, когда велась проверка компонентов. По словам GE, эта относительно ранняя проверка была проведена с целью получения испытательных данных и запуска процесса сертификации, так как компания планирует установить такие двигатели для летных испытаний уже в 2018 году.
Двигатель GE9X разработан для авиалайнера 777X и будет установлен на 700 самолетах. Это обойдется компании в 29 млрд долларов США. Под кожухом двигателя находятся 16 лопастей четвертого поколения из графитового волокна, которые нагнетают воздух в 11-ступенчатый компрессор. Последний повышает давление в 27 раз. Источник: «Агентство по инновациям и развитию»,

Камера сгорания и турбина выдерживают температуры до 1315 °C, что дает возможность более эффективно использовать топливо и снизить его выбросы.
В дополнение GE9X оснащен топливными форсунками, напечатанными на 3D-принтере. Эту сложную систему аэродинамических труб и углублений компания хранит в тайне. Источник: «Агентство по инновациям и развитию»

На GE9X установлены турбина компрессора низкого давления и редуктор привода агрегатов. Последний приводит в действие насос для подачи горючего, маслонасос, гидравлический насос для системы управления ЛА. В отличие от предыдущего двигателя GE90, у которого было 11 осей и 8 вспомогательных агрегатов, новый GE9X оснащен 10 осями и 9 агрегатами.
Уменьшение количества осей не только снижает вес, но и уменьшает количество деталей и упрощает логистическую цепочку. Второй двигатель GE9X планируется подготовить для проведения испытаний в следующем году

В конструкции двигателя GE9X использовано множество деталей и узлов, изготовленных из легковесных и термоустойчивых композитных керамических материалов (ceramic matrix composites, CMC). Эти материалы способны выдерживать температуры до 1400 градусов Цельсия и это позволило значительно поднять температуру в камере сгорания двигателя.
«Чем большую температуру можно получить в недрах двигателя, тем большую эффективность он демонстрирует» — рассказывает Рик Кеннеди (Rick Kennedy), представитель компании GE Aviation, — «При более высокой температуре происходит более полное сгорание топлива, оно меньше расходуется и уменьшаются выбросы вредных веществ в окружающую среду».
Большое значение при изготовлении некоторых узлов двигателя GE9X сыграли современные технологии трехмерной печати. При их помощи были созданы некоторые детали, включая инжекторы топлива, столь сложной формы, которую невозможно получить путем традиционной механической обработки.
«Сложнейшая конфигурация топливных каналов — это тщательно охраняемая нами коммерческая тайна» — рассказывает Рик Кеннеди, — «Благодаря этим каналам топливо распределяется и распыляется в камере сгорания наиболее равномерным способом».

Следует отметить, что недавние испытания являются первым разом, когда двигатель GE9X был запущен в его полностью собранном виде. А разработка этого двигателя, сопровождавшаяся стендовыми испытаниями отдельных узлов, производилась в течение нескольких последних лет.
И в заключении следует отметить, что несмотря на то, что двигатель GE9X носит титул самого большого в мире реактивного двигателя, он не является рекордсменом по силе создаваемой им реактивной тяги. Абсолютным рекордсменом по этому показателю является двигатель предыдущего поколения GE90-115B, способный развивать тягу в 57. 833 тонны (127 500 фунтов).

ГЕРМАНСКИЙ ПРОРЫВ. Битва за скорость [Великая война авиамоторов] [Таблицы]

ГЕРМАНСКИЙ ПРОРЫВ

Как же Германия опередила всех, даже США, безусловного лидера в авиационном моторостроении 1930-х гг. и разработчика передовых систем турбонаддува, в создании реактивных двигателей? Конечно, неслучайно. Хотя первые патенты на газотурбинный и прямоточный воздушно-реактивные двигатели получили французские инженеры Жиллом (Charles Guillaume) в 1923 г. и Лоран в 1913 г. (в 1933 г. французский инженер Ледюк запатентовал схему авиационного прямоточного двигателя), по традиции все еще демонстрируя уже уходящее первенство Франции в авиации, огромная реальная работа по «оседланию» начинающейся новой инновационной волны была сделана именно в Германии. Происшедшая смена поколений инженеров, стремление Германии и ее интеллектуальной элиты к возврату былой мощи, большой научный задел в аэродинамике, государственная программа поддержки авиационных инноваций как ключевого фактора победы в будущей войне, грамотно выстроенное (чрезвычайно компетентное) управление ограниченными ресурсами — все эти факторы обеспечили успех. Наконец, поражение всегда лучше учит, чем победа. Технология организации этого прорыва представляет интерес и сегодня как пример успешного проектного подхода при ограниченных ресурсах. Минимум бюрократии, максимум творчества, командная работа. Нечто подобное мы наблюдали в СССР при создании ракетных двигателей в 1960-е гг., чему автор был свидетелем, в частности, в Воронежском конструкторском бюро химавтоматики (так оно называлось по конспиративным соображениям) под руководством Косберга.


Ретроспективно кажется естественным переход от поршневого к турбореактивному двигателю. Ведь поршневые моторы четвертого поколения с турбонаддувом фактически уже были турбопоршневыми: воздух последовательно проходил через центробежный компрессор, затем через поршневую группу и далее через лопатки турбины, приводящей компрессор. Казалось, чего проще: заменить поршневую группу на турбокомпрессор с камерой сгорания — и все дела. В этом случае такты термодинамического цикла поршневой группы функционально и пространственно разделяются: сжатие «поручается» компрессору, горение — камере сгорания, а расширение и произведение работы-турбине. Но конструкторы-поршневики считали, что возможности поршневых моторов еще не исчерпаны. Можно создать еще более мощные моторы пятого поколения. И такие моторы были созданы, например 4000 л.с. мощности 28-цилиндровый мотор ОКБ Швецова АШ-2К, четырехрядная «звезда» со спирально расположенными друг относительно друга рядами цилиндров. Но эти «динозавры» оказались настолько сложны в производстве и доводке и в довершение к этому тяжелы, что всем стало ясно, что эра боевых поршневых авиамоторов закончилась.

А турбореактивными двигателями первыми начали заниматься инженеры совсем другого поколения (рождения 1910-х гг.): Охайн в Германии, Уиттл в Великобритании, Ендрассик в Венгрии, Люлька в СССР. Удивительно, что в США в 1930-е гг. эти работы не велись вообще.

Тому способствовал анализ Национальной академии наук США о бесперспективности установки газовых турбин на самолеты из-за их большого веса (?!) [68], сделанный в январе 1941 г., когда первые самолеты с реактивными двигателями были уже сделаны в «железе». И в Великобритании отсутствовала государственная поддержка развития этого направления по сходной причине: еще в 1419 г. по заказу Министерства авиации был проведен анализ возможности применения газовых турбин в авиации. Результатом был так называемый «доклад Стерна», в котором отмечалось, что «на настоящей стадии развития турбины внутреннего сгорания не подходят для самолетов по весу и расходу топлива» [66]. Пионеры авиационного турбостроения не имели никакого отношения ни к разработке поршневых моторов, ни к официальной системе — они вышли совсем из другой среды.

Как же все начиналось в Германии? После Первой мировой войны небольшую государственную поддержку исследовательским проектам оказывало Министерство связи (!). Первый контракт на исследования пульсирующего воздушно-реактивного двигателя (ПуВРД) получил в 1931 г. инженер Пауль Шмидт. Пульсирующий двигатель тоже кажется естественным переходным звеном от поршневого мотора с горением топлива при постоянном объеме (поршневой камере) к воздушно-реактивному двигателю непрерывного процесса горения при постоянном давлении. Пульсирующий двигатель — это комбинация горения в отдельной камере сгорания при постоянном объеме (для чего необходимы в ней клапаны, рудимент поршневого мотора с его поршнем-синтезатором всех функций обеспечения цикла) и раздельных функций сжатия в компрессоре и расширения в турбине. Кстати, как мы увидим далее, эта схема двигателя (ПуВРД) имеет тенденцию к возрождению сегодня, разумеется, с новым содержанием — созданием высокоэффективного детонационного двигателя.

После прихода Гитлера к власти для эффективного управления авиапромышленностью и исследованиями в 1933 г. создается Министерство авиации во главе с Герингом. К 1935 г. сложилось полноценное управление авиационными разработками в виде отдельной структурной единицы Технического управления минавиации, имевшего пять отделов: исследований, разработок, производства, контрактов и испытаний. В 1936 г. во главе Технического управления стал Эрнст Удет, летчик, инженер, авторитет в области авиации. Было создано семь испытательных центров, старейшим и наиболее известным из которых был Е-Штелле-Рехлин под командованием майора Беренса.

В 1937 г. в отдел исследований был направлен квалифицированный инженер Гельмут Шельп для руководства уже давно идущими программами разработки ПуВРД Шмидта и ракетного двигателя Вальтера. Шельп годом ранее получил звание магистра при обучении в США, а также прошел специальный курс в Германском авиационном экспериментальном институте (DVL) в Берлине для подготовки руководителей авиапромышленности. Этот курс включал в себя и пилотирование самолета. Забегая вперед, можно сказать, что во многом именно благодаря Шельпу германская реактивная авиация достигла таких успехов. Он начал с фундаментальной постановки целей проектирования. Изучая проблему определения оптимальной скорости полета дозвуковых самолетов, он пришел к выводу исходя из законов аэродинамики, что максимальная скорость оптимального самолета должна соответствовать числу М (отношению скоростей полета и распространения звука), равному 0,82, т. е. 850–900 км/час. Этот вывод является фундаментальным и не устарел до сих пор: современные дозвуковые транспортные самолеты летают именно с такой скоростью. После этого Шельп начал изучать проблему силовой установки: какой тип двигателя способен обеспечить требуемую скорость самолета с приемлемым весовым совершенством? Так созрело понимание необходимости разработки Реактивных двигателей: известно, что максимальную удельную (на единицу веса) мощность обеспечивает газовая турбина. Однако, как это часто бывает, окружающие этого не видели.

Шельп уходит из отдела общих исследований в отдел разработки двигателей и находит там союзника в лице Ганса Мауха, отвечающего за ракетные двигатели. Одновременно Шельп и Маух проводят консультации с ведущими моторными фирмами «БМВ», «Даймлер-Бенц», моторным отделением «Юнкерс». Однако конструкторы-поршневики с «БМВ» и «Даймлер-Бенца» придерживаются консервативной позиции, считая потенциал поршневых моторов далеко не исчерпанным. Спустя короткое время они об этом пожалели потенциал у этих фирм был высокий, и при наличии исторического времени (хотя бы пяти лет) и «БМВ» и «Даймлер-Бенц» смогли бы создать уникальные газотурбинные двигатели. Так, БМВ проектировала двигатель тягой 13 000 (!) кг, а «Даймлер- Бенц» создала первый в мире работающий двухконтурный двигатель. Откликнулось на план Шельпа моторное отделение «Юнкерса», и это неслучайно.

Именно Шельп принимает решение, определившее облик современного турбореативного двигателя — осевой тип компрессора как создающий минимальный лоб двигателя и соответственно лобовое сопротивление. Инновационность этого решения можно оценить только ретроспективно после многих лет создания авиационных осевых компрессоров. Как показывает опыт, авиационный осевой компрессор определяет успех или неудачу всего двигателя и хороший компрессор создается годами. Кроме того, течение в осевом многоступенчатом компрессоре плохо поддается расчетам даже сегодня при наличии развитых трехмерных газодинамических моделей. Доводка компрессора требует множества экспериментов как для отдельных ступеней, так и их последующего согласования при работе в системе. Короче, для того времени это был очень смелый и рискованный шаг. Неслучайно и Охайн, и Уиттл для своих первых двигателей выбрали более простые одноступенчатые центробежные компрессоры, по которым был накоплен большой опыт еще при создании нагнетателей.


На что же рассчитывал Шельп, выбирая осевой компрессор для будущего двигателя? Он рассчитывал на передовую научную школу в аэродинамике, сложившуюся к тому времени в Германии. Достаточно назвать лишь некоторые имена ученых первого ряда: Прандтль, Шлихтинг, фон Карман, работавшие в то время в Германии, чтобы понять, что надежды Шельпа были построены не на песке. К этим великим именам следует прибавить и имена доктора Энке и Бетца, специалистов по компрессорам, работавшим в Экспериментальном аэродинамическом институте в Геттингене. Так что обоснованные на первый взгляд опасения оппонентов Шельпа парировались имеющимся научным заделом. Но реально работающего авиационного осевого компрессора действительно не было!

В качестве разработчиков первого турбореактивного двигателя (ТРД) с осевым компрессором были выбраны фирмы «БМВ» и моторное отделение «Юнкерса». Была составлена и первая классификация (матрица) проектируемых типов ТРД, представленная ниже.

класс
Тяга (кг)
Степень повышения давления
Кол-во ступеней турбины ТРД ТВД
1
До 1000
3,5
1 —
2
До 1700
5
23
3
До 3000
6
23
4
До 4000
7
35

Как видно из таблицы, уже тогда задумывалась целая гамма реактивных двигателей, включая и турбовинтовые (ТВД). Предусматривалась и разработка промежуточного (между ТВД и ТРД) класса реактивных двигателей — двухконтурного (ТРДД). Но на него не обратили тогда серьезного внимания и это было понятно: в самостоятельный класс этот вид двигателей оформился позже, когда технологический прогресс позволил сильно поднять температуру газа перед турбиной. Как и в случае с поршневым мотором воздушного охлаждения, именно двухконтурный двигатель является настоящим авиационным газотурбинным двигателем: нигде, кроме авиации, он не применяется. Далее мы увидим, почему.

Управление Шельпа провело большой объем исследовательских работ и по перспективному высокоэкономичному турбовинтовому двигателю с теплообменником для дальнего самолета, летающего со скоростью 1000 км/ч на высоте 10 000 м. План работ по реактивным двигателям был составлен на… 16 лет! Несомненно, к 1950 г. Германия могла иметь передовую, непревзойденную авиацию в мире.

Параллельно с разработкой двигателей в Техническом управлении Министерства авиации в его самолетном отделе велась и разработка планера под новый двигатель. Работы над будущим реактивным самолетом (им оказался Ме-262) велись совместно с фирмой «Мессершмитт».

Пока Министрество авиации определялось со своей структурой, кадрами, планами, выпускник Геттингенского университета факультета прикладной физики и аэродинамики Ганс-Иоахим Пабстфон Охайн увлекся идеей реактивного двигателя и в 1935 г. даже получил патент на изобретение одной из разновидностей двигателя, близкий к патенту Уиттла, полученного им в 1930 г. Одержимый идеей создать такой двигатель, Охайн привлек к этому инженера-механика гаража Bartels und Becker, обслуживавшего его спортивный кар, Макса Хана. Как говорил позже фон Охайн: «Я как физик не имел понятия, что такое болты и гайки». За 1000 марок собственных денег Охайн и Хан сделали «гаражную модель» первого в мире турбореактивного двигателя. Эта модель впечатляла своей простотой: к диску с одной стороны были приклепаны радиальные «лопатки» центробежного компрессора, а с другой — центростремительной турбины. Камера сгорания располагалась над колесом.

Вся «квадратная» (диаметр был примерно равен длине двигателя) конструкция была выполнена из листовых заготовок. По сравнению со сложной кинематикой и динамикой поршневых моторов этот «гадкий утенок» должен был просто ошеломить самолетных инженеров. Так оно и вышло. Автор видел двигатель Охайна в музее авиации в Мюнхене — в сравнении с тяжеленными поршневыми этот мотор кажется игрушкой. Когда автор этих строк поступил в МАИ в 1957 г. и, естественно, услышал о пионерах эры реактивных двигателей, авиация уже прошла огромный путь развития и вся стала реактивной. Казалось, что Охайн давно умер, а его изобретение и образец мотора, судя по чертежам и описанию патента, принадлежит древней истории техники, как вертолет Леонардо да Винчи — настолько ушли вперед конструкции двигателей. А между тем Охайн был не только жив (ему в 1957 г. было всего 46 лет!), но и активно работал в США, куда он перебрался после войны. Но об этом нам никто юг да не говорил, а альтернативных источников информации не было.

Между тем начались испытания «гаражной» модели и появились неизбежные дефекты, в первую очередь связанные с горением. Деньги быстро кончились, надо было искать спонсора. Профессор Роберт В. Поль, хорошо знавший Охайна, в феврале 1936 г. написал рекомендательное письмо Эрнсту Хейнкелю, известному владельцу и конструктору самолетной фирмы. Эрнст Хейнкель (1888–1958), которому в это время еще не было и пятидесяти лет, принадлежал уже к другому поколению инженеров, нежели Гуго Юнкерс. Не имея никакого опыта в разработке авиамоторов, Хейнкель тем не менее всегда следил за новинками в области моторостроения, включая ракетные двигатели. После встречи Охайна с инженерами Хейнкеля первый в том же 1936 г. был приглашен к нему на фирму на работу. Вскоре там же оказался и Макс Хан. Позднее Охайн вспоминал: «Когда я впервые пришел к Хейнкелю, инженеры посчитали меня сумасшедшим специалистом-физиком, который не учитывал проблем, связанных с материалами, их обработкой, литьем и т. п. Меня очень волновали пробелы в моем обучении, и я очень много работал над их устранением, с тем, чтобы стать полноценным инженером. Через два года я уже знал все теоретические вопросы проектирования (как ему казалось. — А.В.) и инженеры Хейнкеля уже не могли сказать мне ничего нового об этом предмете (Кей, с. 20).

Работы по созданию первого в мире турбореактивного двигателя HeS 1 (Heinkel-Strahltriebwerk 1 — реактивный двигатель Хейнкеля-1) велись в отдельном помещении под Ростоком и были строго засекречены. Над проектом работала группа опытных инженеров-конструкторов в количестве восьми человек и такая же по количеству группа опытных слесарей под руководством Хана. Благодаря листовой конструкции мотора его быстро изготовили на местном… судозаводе. К марту 1937 г. демонстрационный HeS 1 был готов и испытан, правда, вместо обычного углеводородного авиационного топлива на первых испытаниях использовался чистый водород из- за проблем с организацией горения. В то время все было внове — и в том числе аэродинамическая схема стабилизации горения с помощью зоны обратных токов, ставшая позднее классической. Ведь в прямоточном потоке воздуха, который имеет место в турбореактивном двигателе, из-за большой разницы скоростей потока и распространения пламени стабилизация пламени невозможна без специальных устройств — пламя будет «сдуваться».


Тут же началась работа по усовершенствованию двигателя, получившего обозначение HeS 3. Это был уже «деловой» двигатель, над которым работало много специалистов. Модификация двигателя Охайна HeS ЗЬ к лету 1939 г. была готова к летным испытаниям. В июле начались летные испытания на «летающей лаборатории» — самолете Не-118, одномоторном моноплане, конкуренте пикирующего бомбардировщика Ю-87. Двигатель Охайна был подвешен под фюзеляжем. Самолет пилотировал капитан ВВС Эрих Варзитц. Двигатель запускался после взлета самолета с помощью поршневого мотора. В августе уже был готов специально спроектированный планер самолета Не-178 для установки на него второго экземпляра двигателя. Первый в мире реактивный самолет Хейнкеля представлял собой одноместный моноплан с верхним расположением крыла и размещением двигателя в фюзеляже с длинным выхлопным каналом. По сравнению с тогдашними самолетами он был необычного вида — отсутствовал винт. Позже, правда, двигатели размещали на самолете в отдельных гондолах.

24 августа 1939 г., буквально накануне Второй мировой войны, состоялся исторический полет первого реактивного самолета, вначале только пролетом вдоль взлетной полосы, а уже 27 августа — полный полет, оставлявшего за собой голубой цвет продуктов сгорания бензина. Максимальная скорость самолета с этим двигателем достигла 600 км/ч. Несомненно, удачная демонстрация реактивного самолета перед официальными лицами Министерства авиации подтолкнула работы в этом направлении. Казалось, что, вырвавшись вперед, фирма Хейнкеля с Охайном сможет занять монопольное положение в этой области. Но были и ограничения, которые не позволили этому тандему выйти на серийное производство реактивных самолетов и занять лидирующее положение.

Во-первых, на фирме Хейнкеля не было производственных мощностей для серийного производства двигателей, во-вторых, достаточного количества опытных инженеров-мотористов для решения проблем доводки, а в-третьих, генеральным направлением развития турбореактивных двигателей Гельмут Шельп определил применение осевых компрессоров, имеющих меньший «лоб». Первую проблему удалось решить, присоединив в 1941 г. к «Хейнкелю» известную фирму «Хирт» — Hirth Motoren GmbH (объединенная фирма стала называться «Хейнкель-Хирт»), занимавшуюся производством нагнетателей. Этому (приобретению контрольного пакета акций «Хирта» «Хейнкелем» через банк) помог Эрнст Удет незадолго до своей гибели. Кроме того, осенью 1939 г. коллектив инженеров «Хейнкеля» существенно усилился: к Хейнкелю — после выбора проекта Юмо-004 (109–004) и подписания госконтракта на его разработку перешел со своим альтернативным проектом из моторного отделения «Юнкерса» возможно, самый выдающийся конструктор турбореактивных двигателей, Макс Адольф Мюллер вместе с большой командой инженеров. Скорее всего, его просто выжили руководитель «Юнкерс Моторен» Отто Мадер и руководитель проекта 109–004 Ансельм Франц. Как известно, все талантливые люди неуживчивы, скорее всего, Мюллер принадлежал к их числу.

Исторический момент: летчик-испытатель Варзитц, Эрнст Хейнкель и фон Охайн после первого в мире полета реактивного истребителя (август 1939 г.).

Следующие модификации двигателя Охайна имели обозначения HeS 6 и HeS 8. Последний, наконец, получил господдержку и соответственно индекс 109–001. Как и первенец Охайна, этот двигатель имел центробежный компрессор: Охайну вообще поручили развивать направление двигателей с центробежными компрессорами, оказавшееся в конечном счете тупиковым. Частично такое разделение было обусловлено и тем, что на самолетной фирме Хейнкеля не было испытательных стендов для исследования и доводки осевых компрессоров. Стенд мощностью 14 Мвт в Ростоке начали строить, но до конца войны закончить строительство не удалось.

HeS 8 предназначался для двухмоторного истребителя Не-280, первый полет которого состоялся в апреле 1941 г. в присутствии официальных лиц — Удета и Шельма. Это был аэродинамически очень красивый самолет: двигатели на этом истребителе устанавливались под крыльями в обтекаемых гондолах, а хвостовое оперение имело два киля. Однако только к началу 1943 г. было изготовлено достаточное количество двигателей. К тому времени вперед уже вырвался Ме-262 с двигателем «Юнкерса» 109–004. И фон Охайн и перешедший к Хейнкелю из «Юнкерса» Мюллер трудились в Ростоке. Последний с 1938 г. работал над проектом 109–006 (или по принятой на «Хейнкеле» системе обозначений — HeS 30), который был задуман еще на «Юнкерсе» и составлял альтернативу двигателю HeS 8. Этот турбореактивный двигатель Мюллера с инновационным осевым компрессором (ступени со степенью реакции 0,5 вместо 1 в компресcopax Энке, что существенно повышало кпд компрессора — проект Рудольфа Фридриха с «Юнкерса») был самым совершенным турбореактивным двигателем до конца 1940-х гг., включая и минимальное лобовое сопротивление, что особенно важно для внешнего по отношению к фюзеляжу расположению двигателей. Однако недостаток производственных мощностей на фирме Хейнкеля, субъективизм Шельпа и в довершение конфликт Мюллера с Хейнкелем привели к тому, что этот замечательный двигатель опоздал. В этом классе тяг (до 1000 кг) к этому времени (начало 1943 г.) уже существовал серийный, ставший знаменитым двигатель 109–004. Его конкурент 109–006 в серию так и не пошел, хотя его испытания шли до конца войны.

И Мюллер, и Охайн не были «поршневиками»: в то время как Мюллер был специалистом по турбонагнетателям и его приход в турбореактивную тематику был естествен, то Охайн, как мы видели, пришел вообще из университетской среды — от чистой идеи такого типа двигателя.

Летом 1941 г. Техническое управление Шельпа выдало техзадание на разработку бомбардировщика с двумя турбовентиляторными двигателями. Шельп лично принимал участие в формировании облика будущего двигателя, в котором предполагалось реализовать много инноваций. В частности, двигатель должен был иметь два компрессора, каждый из которых приводился своей турбиной и камерой сгорания, а третья, силовая турбина приводила закапотированный воздушный винт. То есть это был инновационный проект трехвального турбовинтового двигателя с промежуточным подогревом между турбинами. Этот проект не был тогда реализован; спустя десять лет после войны подобный двигатель (только без второй камеры сгорания) реализовали англичане — турбовинтовой «Тайн» («Tyne»). Но тем не менее основу этого двигателя (т. н. газогенератор, или по англ. core-ядро, сердечник), представляющей собой схему обычного турбореактивного двигателя (компрессор+камера сгорания+турбина) было решено сделать на фирме «Хейнкель-Хирт». Шельп был ярым приверженцем промежуточной (между осевым и центробежным) схемы компрессора, а именно — диагональной, несмотря на имеющиеся отрицательные результаты. Этому были свои причины — Шельп ожидал повышения надежности компрессора при попадании посторонних предметов на входе, засасываемых при взлете. Тонкие, «слабые» лопатки осевого компрессора, как известно, очень чувствительны к этому и сегодня.


Проект с его помощью получил господдержку, ему был присвоен индекс 109–011, и работы начались на заводе Хирт в Штутгарте. Туда же переехал и Охайн, соединившись с группой Мюллера — фирме «Хейнкель-Хирт» было приказано сосредоточиться только на этом проекте — это был проект турбореактивного двигателя, который должен был иметь тягу 1300 кг (т. е. свыше 1000 кг, в следующем классе по классификации Шельпа). Как оказалось, это был самый мощный турбореактивный двигатель, реализованный в металле до конца войны. Фирма «Хирт», как уже отмечалось, имела опыт работы над турбонагнетателями, в частности для проекта поршневого двигателя «Даймлер-Бенц» DB.605G для повышения его высотности до 15 км.

Инноваций в этом двигателе было много, включая освоение изготовления диагональной ступени компрессора вместе с лопатками из цельного куска алюминия. Сегодня такая технология называется «блиск» (от совмещения двух английских слов «blade» — лопатка и «disc» — диск) и требует для своей реализации точных пятикоординатных фрезерных станков с управлением от ЭВМ.

И здесь следует упомянуть о главных проблемах создания турбореактивных двигателей, которые сразу проявились, как только двигатели начали реально длительно испытываться. Как всегда в условиях жестких сроков создания двигателя, это оказалось неожиданностью. Далее мы еще увидим множество примеров подобных «промахов» при проектировании двигателей, несмотря на имеющийся опыт. Как уже отмечалось, основой газотурбинного двигателя является лопаточный компрессор. Лопатки эффективного компрессора представляют собой тонкие аэродинамические профили, что обусловливает их малую жесткость и соответственно низкую собственную частоту (первая форма колебаний 100–300 Гц) и склонность к возбуждению колебаний и автоколебаний (флаттер). С подобной проблемой мы уже встречались при описании истории создания воздушных винтов с тонкими стальными аэродинамическими профилями.

В результате, например, при типичной частоте вращения ротора 100–150 об/сек, неоднородность поля скоростей воздуха на входе, генерируемая двумя-тремя силовыми стойками или боковым ветром, вызывает резонанс периодической вынуждающей силы при прохождении лопатками зон неоднородности и собственной частоты колебаний лопаток, быстро приводящий к их усталостным поломкам. Этот процесс накопления повреждений усиливается в случае забоин на лопатках от посторонних предметов, снижающих их предел выносливости. Не последнюю роль в этом неприятном явлении играет и технологическая наследственность (остаточные напряжения) при их изготовлении. Полностью изжить эти дефекты на газотурбинных двигателях не удается до сих пор, даже после более чем пятидесятилетней истории их создания. Это родовая проблема ГТД. Что же говорить о начале пути? Все немецкие двигатели прошли через это. И здесь выдающуюся роль в решении этой проблемы на двигателях и 109–004 (Юмо), и 109–006 («Хейнкель-Хирт») сыграл немецкий инженер Макс Бентеле.

Руководителем моторного отделения «Юнкерса», как уже упоминалось, был профессор Отто Мадер (умер в 1943 г.), который первоначально не высказывал энтузиазма по отношению к таким инновационным проектам, как турбореактивные двигатели. Но Шельп «уговорил» Мадера заняться этим делом на государственные деньги, предварительно согласовав с ним в 1938 г. контракт, который в 1939 г. получил законную силу, на будущий двигатель 109–004. Почему-то (скорее всего, из-за идеологических соображений — Мадер не любил немцев-нацистов) руководителем проекта был назначен не уже работавший на «Юнкерсе» Мюллер, а доктор Ансельм Франц, австрийский инженер, специалист по нагнетателям и выхлопным системам поршневых моторов. Шельп порекомендовал», что в условиях госфинансирования означало, по сути, приказ, моторному отделению «Юнкерса» заняться продолжением работ над двигателями Мюллера.

Но с одной стороны, Франц решил начать работу с нули (надо думать, при поддержке Мадера), а с другой — Мадер — сосредоточиться только на одном проекте, что и привело, как мы помним, переходу Мюллера к Хейнкелю. Работы по созданию 109–004 начались с создания испытательной базы: были построены уникальные высотные стенды, т. е. испытательные камеры, воспроизводящие условия полета на высоте до 13 000 метров. Совокупная мощность установок составляла 6,5 Мвт. В этом моторное отделение «Юнкерса» уступало только «БМВ». К 1943 г. в Магдебурге на «Юнкерс Моторен» сформировалось мощное КБ в составе 500 инженеров. Осевой компрессор разрабатывали в Геттингене (Экспериментальный аэродинамический институт), а турбину проектировал профессор Крафт из фирмы AEG (Allgemeine I lektrizitats Gesellschaft — Всеобщая электрическая компания). Вначале решили идти академическим путем — изготовить уменьшенную модель двигателя для отработки системных вопросов. Но вскоре выяснилось, что это приведет к большим затратам времени и не так уж много экономит средств. Поэтому вся доводка проводилась на «натуре». И сейчас делается так же.

15 марта 1942 г. двигатель 109-004А был впервые испытан в полете на поршневом Ме-110. Первый реактивный истребитель Ме-262был уже готов в 1941 г., совершая полеты, пока не готовы реактивные двигатели, на поршневых моторах. Тогда же, в 1941 г., его уже пробовали поднять в воздух с двумя двигателями «Хейнкель- Хирт» 109–001 и «БМВ» 109–003, но неудачно. Таким образом, первый реактивный полет Ме-262 совершил с двумя двигателями «Юмо» 109-004А тягой 840 кг 18 июля 1942 г. Всего было изготовлено тридцать опытных двигателей 109-004А, на которых шли интенсивные испытания по доводке узлов и систем. Затем начались модификации. Наиболее массовой была модификация 109–004 В-1. Запуск в серийное производство Ме-262 уже в 1943 г. на полгода еще задержал лично Гитлер, требуя, чтобы истребитель мог нести бомбовую нагрузку. Основными дефектами этого турбореактивного двигателя, как и почти всех двигателей этого типа, были резонансные поломки лопаток. В данном случае — это лопатки третьего ряда статора компрессора и роторные лопатки турбины. Собственные частоты лопаток при их возбуждении в приспособлении определяли на слух, для чего был привлечен профессиональный музыкант.

Приглашенный в качестве эксперта Макс Бентеле определил и источники возбуждения: шесть жаровых труб камеры сгорания и три стойки за турбиной (произведение числа оборотов в секунду — 150 — на количество труб или стоек было как раз равно собственной частоте колебаний лопаток: 450 и 900 герц). Уход от резонанса был осуществлен изменением (снижением на 2,5 %) числа оборотов на длительном режиме работы, а также повышением жесткости лопаток (увеличением собственной частоты). Кроме того, со временем подобрали и правильное соотношение чисел лопаток статора и ротора (35/61): известно еще из опыта паровых турбин, что нужно выбирать простые числа для количества лопаток хотя бы ротора. Как это ни смешно, но на эти «грабли» периодически наступают следующие поколения конструкторов. Где-то это проходит, а где-то история с резонансными поломками вновь и вновь повторяется. Особенностью резонансных поломок компрессорных лопаток сегодня является инициация начального повреждения лопатки от попадания постороннего предмета в двигатель (птица, камешек и т. п.). В результате резко снижается ее усталостная долговечность, особенно чувствительны к этому титановые лопатки. Если к тому же существует «окно» резонансных режимов работы лопатки, то — «пиши пропало». Поэтому для первых трех ступеней компрессора, подверженных такого рода повреждениям, в зоне рабочих режимов резонансы по первой изгибной форме недопустимы вообще, несмотря на кажущуюся малую амплитуду возбуждения в нормальных условиях. Как уже отмечалось, источниками возбуждения компрессорных лопаток, имеющих сравнительно малую жесткость (низкую собственную частоту) из-за их тонких профилей, являются силовые стойки, места отбора воздуха и т. д. Как нарочно, конструкторы, проектирующие эти элементы, тяготеют к окружной симметрии (3 или 6 стоек равномерно по окружности и т. д.), что является потенциальным источником упомянутых проблем с лопатками.


Конечно, межремонтный ресурс этого первого в миро боевого турбореактивного двигателя был небольшой — всего 25 часов, но это был серийный двигатель, и будь у Германии еще немного исторического времени, то, конечно, этот двигатель был бы доведен до совершенства. Двигатель работал устойчиво до высоты 10 000 метров. Сопловые, а вскоре и рабочие (роторные) лопатки турбины двигателя 109–004 уже тогда были сконструированы охлаждаемыми (воздухом). Основная часть лопатки турбины (т. н. «перо») выполнялась полой и ножки не имела, а запрессовывалась и припаивалась к диску. В результате оказалось возможным получать перо лопатки вытяжкой. Для этого Вильямом Примом на фирме его имени в Штольберге был разработан специальный технологический процесс вытяжки тонкостенного пера лопаток турбины на прессах без механической обработки, оказавшийся простым и очень производительным. Начали было строить завод производительностью 300 тыс. (!) лопаток в месяц, но не успели до конца войны. Всего на четырех заводах было выпущено около 6000 двигателей «Юмо» 109–004 до конца войны. Ежемесячное производство этого двигателя начиная с 1945 г., составило около 1000 штук.

В эксплуатацию было принято три типа самолетов: истребитель Ме-262 А-1а Schwalbe («Ласточка»), бомбардировщик Ме-262 А-2а Sturmvogel («Буревестник») и разведчик и бомбардировщик «Арадо-234В». К сентябрю 1944 г. первое многоцелевое реактивно-истребительное подразделение Erprobungkommando 262 завершило этап войсковых испытаний Ме-262, и было создано спецподразделение для проведения боевых испытаний Арадо-234 Sonderkommando Gotz. Первым чисто боевым подразделением Люфтваффе, вооруженным реактивными истребителями, стала, как известно, «Команда Новотны». Эта «команда» в составе 12 истребителей вступила в войну 3 октября 1944 г. Однако первые воздушные бои оказались малоудачными — много самолетов было потеряно в авариях, а некоторые были сбиты при сбросе скорости во время подготовки к атаке. Нужно было менять тактику — вместо маневренного боя с применением пушек использовать ракетное вооружение, применяемое с дальней дистанции на большой скорости. Для этого была сформирована специальная группа JG7. Кроме того, занялись и обучением пилотов на двухместных Ме-262, для чего были созданы учебно-тренировочные центры. Также в сентябре 1944 г. были сформированы и первые бомбардировочные подразделения Ме-262 А-2а: «Команда Шенка» и «Команда Эдельвейс». «Арадо-234» эффективно использовался в качестве разведчика, беспрепятственно летая над Британскими островами и Северной Италией. Во время Арденнского наступления немцев в декабре 1944 г. несколько «Арадо-234» из состава эскадры KG 76 впервые отбомбились по союзникам. Ме-262, будучи неуязвимым, оказался идеальным ближним разведчиком. Всего было построено 1433 Ме-262, из которых около 200 поступило в боевые части.

Между тем работы по модификациям 109–004 шли непрерывно: вслед за первой серией «А» появились «В», «С», «D», «Е», «F», «G», «Н». Особенно интересными модификациями были «Е» и «Н». Первая модификация была с форсажной камерой за турбиной. А вторая — по сути, новый двигатель с 11 — ступенчатым компрессором (степень сжатия 5) и двухступенчатой турбиной — тягой 1800 кг, т. е. в два раза большей, чем у прототипа.

Последней попыткой немцев переломить ход воздушной войны на Западе, где бомбардировки союзников нанесли катастрофический урон военной промышленности Германии, было создание массового, так называемого «народного» истребителя Хейнкеля «Саламандра», серийно производившегося с 1945 г. Особенностью этого самолета была компоновка двигателя «БМВ» 109–003 на самолете: он располагался на «спине» фюзеляжа подобно пульсирующему двигателю на крылатой ракете Фау-1.

Ниже представлена таблица разработок (это только по госконтрактам, не включая инициативные разработки фирм) воздушно-реактивных двигателей в Германии менее чем за 10 лет. Такое обилие самых различных вариантов схем двигателей, размерностей и областей их применения возможно только на первой стадии новой инновационной волны. Сегодня, когда инновационная волна авиационных газотурбинных двигателей прошла, появление нового двигателя является довольно редким, по сути, единичным явлением, воплощающим в себе все мировые технологические достижения.

Индекс двигателя
Фирма-производитель
Тяга двигателя
Применение
Примечание
109-001
Heinkel-Hirth
600
He-280 (первый полет в апреле 1941 г.)
Серийный с центробежным компрессором и центростремительной турбиной
109-002
BMW
700
Проект, изготовлены узлы
Осевой компрессор с противовращением
109-003
BMW
900
Не-162, Volkjager («Народный истребитель») «Саламандра»
Серийный с 1945 г
109-004
Junkers
840
Ме-262 (первый полет в июле 1942 г.), Аг-234
Серийный, выпущено свыше 6 тыс. моторов
109-005
Porsche
500
Проект для крылатой ракеты увеличенной дальности
Одноразовый
109-006
Heinkel-Hirth
900
Опытный для Ме- 262, Аг-234
Проект Мюллера с инновационным компрессором Фридриха
109-007
Daimler-Benz
1275
Опытный (для дальнего Аг-234)
Первый в мире двухконтурный, проект доктора Лейста
109-008
Heinkel-Hirth
900
Опытный
На базе 109–001
109-009
Heinkel-Hirth
900
Опытный
На базе 109–001
109-010
Heinkel-Hirth
900
Опытный
Двухконтурный на базе 109–001
109-011
Heinkel-Hirth
1300
Опытный (для Ме~ 262, Аг-234, Ju- 287)
С диагональным компрессоров (схема Шельпа)
109-012
Junkers
2780
Проект для Ju-287 с крылом обратной стреловидности
109-014
Argus Motoren Gesellschaft
350
Fi-103, «Физелер», крылатая ракета (Фау-1)
Пульсирующий, серийный.
109-015
109-016
Daimler-Benz
13000
Проект
Самый большой двигатель, диаметр 2,0 м.
109-018
BMW
3400
Проект (для Ju-287 с крылом обратной стреловидности)
На базе 109–028 12-ступенчатый компрессор
109-021
Daimler-Benz
Проект
Турбовинтовой на базе 109–011
109-022
Junkers
5000 Л. С.
Проект
Турбовинтовой на базе 109-012
109-028
BMW
8000 Л.С.
Проект для Не-177 «Грейф» и Ме-264, дальних «бомбе- ров» для бомбежки США
Турбовинтовой с двухрядным ВИНТОМ противоположного вращения
109-044
Argus Motoren Gesellschaft
Пульсирующий, развитие 109–014

Особо необходимо отметить инновационные работы германских ученых и инженеров в области прямоточных воздушно-реактивных двигателей, или двигателей Лорана — по имени французского изобретателя. Прямоточный двигатель заманчив своей простотой конструкции — в нем нет роторов, сложных трансмиссий, лопаток с их проблемами. Но этот двигатель имеет и существенный родовой недостаток: для его функционирования как теплового двигателя, т. е. преобразователя тепла в работу расширения рабочего тела и соответственно в движение, необходима начальная скорость. Преобразование скорости в давление (т. е. торможение набегающего потока воздуха) во входном устройстве «прямоточки» с последующим подводом тепла в камере сгорания и расширением газов в сопле позволяет организовать термодинамический цикл и, получив в нем работу, преобразовать ее в тяговую мощность. При этом чем выше скорость, тем эффективнее работает «прямоточка». При числе Маха полета выше 3,5 (область «гиперзвука») степень повышения давления набегающего потока во входном устройстве «прямоточки» настолько превосходит степень повышения давления в компрессоре обычного турбореактивного двигателя, что компрессор становится излишним. Именно поэтому область применения реактивных газотурбинных двигателей ограничена этим предельным числом Маха.

Выше (от М=3,5 до М=6) находится наиболее эффективная область работы прямоточного двигателя. Максимальное число Маха, равное 6, ограничено, в свою очередь, теплотворной способностью топлива (самой энергетической пары водород+воздух): ведь эффективность термодинамического цикла определяется отношением максимальной и минимальной температур в цикле. Поскольку максимальная температура ограничена теплотворной способностью топлива, а температура на входе в камеру сгорания повышается с ростом степени повышения давления, то при числе Мб воздушно-реактивный двигатель вырождается.

Неслучайно поэтому, что еще в 1937 г. прямоточными двигателями в Германии заинтересовались прежде всего Сухопутные силы. Возникла идея (Вольф Троммсдорф) разработки инновационного, так называемого активно-реактивного снаряда большой дальности: из артиллерийского ствола выстреливается снаряд, оснащенный «прямоточкой», после достижения определенной скорости включается подача топлива в прямоточную камеру сгорания, и снаряд летит дальше уже с помощью реактивной силы насколько хватит запаса топлива. Ввиду ограниченности массы снаряда, несущего в том числе и заряд взрывчатого вещества, воздушно-реактивный двигатель, использующий в качестве рабочего тела окружающий воздух, обеспечивает лучшие массовые характеристики снаряда по сравнению с ракетным. К 1938 г. идея Троммсдорфа оформилась в теорию применения снаряда. Ему же была поручена разработка такого снаряда.


Принципиальное различие процессов расширения и сжатия движущегося сверхзвукового потока воздуха заключается в том, что в случае геометрического воздействия на поток (изменением проходного сечения) при расширении (увеличении скорости) волны разрежения расходятся веером, не пересекаясь, а при сжатии (уменьшении скорости) волны сжатия пересекаются, образуя сильные ударные волны. Главной проблемой эффективного преобразования скорости набегающего сверхзвукового потока в давление становится уменьшение интенсивности ударных волн. Если произвести торможение потока в одной ударной волне, то потери давления сведут на нет все преимущества. Таким образом, проектирование оптимального сверхзвукового диффузора становится главной задачей при создании прямоточного реактивного двигателя.

И здесь германская наука вновь оказалась на высоте. Проблемой проектирования сверхзвуковых диффузоров занимался Клаус Осватич под общим руководством Прандтля в Геттингенском авиационном НИИ (Kaiser-Wilhelm- Institut Stromungforschung). Хотя идея многоконусного диффузора с торможением потока в серии последовательных ударных волн слабой интенсивности была не нова, но выбор оптимальной конфигурации потребовал многочисленных экспериментов в аэродинамических трубах. Дело в том, что, как оказалось, оптимальное сочетание (минимальная сумма) внешнего сопротивления и внутренних потерь в ударных волнах реализуется в далеко не очевидной аэродинамической схеме сверхзвукового диффузора, а именно в так называемой «схеме внешнего сжатия с выбитой ударной волной». К 1943 г. Осватич накопил достаточно материалов испытаний, чтобы спроектировать хороший диффузор для «прямоточки», а к концу войны был накоплен задел для проектирования диффузора до гиперзвуковой скорости М=4,4.

В конце 1944 г. КБ Троммсдорфа разработало межконтинентальную крылатую ракету D6000 с прямоточным воздушно-реактивным двигателем. По проекту ракета начинала свободное падение с высоты 14 км при скорости 720 км/час с самолета-носителя. Ракета падала с высоты своего пуска до тех пор, пока отстреливаемые ракетные ускорители, расположенные на концах крыльев, не придавали ей ускорение до числа М=2,8. На этой скорости включался прямоточный двигатель, ускоряя ракету до М=4 и выводя ее на высоту 24 км. Затем ракета продолжала полет на расстояние 5000 км и за 300 км до цели начинала снижение. Дефицит топлива даже для опытного самолета-носителя в конце войны не позволил провести пусковые испытания уже изготовленной крылатой ракеты большой дальности Троммсдорфа.

А что же Пауль Шмидт со своим проектом пульсирующего воздушно-реактивного двигателя? Как мы помним, он начинал самым первым. Долгое время Шмидт работал над проблемой зажигания свежей порции пламени в пульсирующем двигателе: прямоточная схема течения топливовоздушной смеси требовала скорости распространения пламени 100 м/с, чтобы вписаться в приемлемые габариты. Как известно, обычный фронт пламени распространяется с помощью теплопроводного (молекулярного и турбулентного) механизма переноса со скоростью не более 10 м/с, т. е. в десять раз меньше. Шмидт начал экспериментировать с переносом тепла с помощью ударной волны, имеющей существенно большую скорость. К1937 г. Шмидт установил, что отраженная от выхода первоначально инициированная вспышкой ударная волна способна периодически вызывать поджигание свежей смеси без источника зажигания. Так была решена основная проблема пульсирующего (горения с частотой 50 герц) реактивного двигателя.

Проект самолета-снаряда с ПуВРД, представленный в 1934 г. Шмидтом и Маделунгом Министерству авиации, поначалу не получил одобрения. Шмидту оказали поддержку фон Браун и доктор Дорнбергер, известные специалисты-ракетчики. В результате проект получил финансовую господдержку, с помощью которой в Мюнхене небольшая группа конструкторов разработала первый самолет-снаряд. Первый двигатель Шмидта с автоматическим зажиганием с помощью ударной волны прошел испытания в 1938 г. Несмотря на, казалось бы, простую схему пульсирующего реактивного двигателя, при его доводке пришлось решать много сложных задач, оригинальные решения которых нашли отражение в конструкции. Двигатель получил обозначение SR.500, что обозначало инициалы конструкторов (Шмидт и Pop) и диаметр трубы, в которой шло горение, равный 500 мм. В 1942 г. инновационный SR.500 показал на стенде тягу 750 кг, но до летных испытаний дело так и не дошло. Этот двигатель почему-то «не любили»-так бывает даже в таком рациональном мире, как авиационные моторы. Правда, к этому были некоторые основания: двигатель неприятно шумел, более того, своим акустическим воздействием он разрушил аэродинамическую трубу. После этого пульсирующие двигатели испытывали только на открытых (без стен) стендах.

«Германский Октябрь»

«Германский Октябрь»
Если в Эстонии была предпринята всего лишь одна попытка организовать революцию, то в Германии они предпринимались неоднократно. Наиболее подробно и точно рассказано о них в книге четырех немецких авторов во главе с Берндом Кауфманом

Глава 11 «Германский социализм»

Глава 11
«Германский социализм»
Отто Штрассер, немецкий эмигрант, которому нынче стукнуло сорок три года, свое «золотое время» посвятил, как я уже говорил, поискам «немецкого социализма». Я приложил массу усилий, чтобы показать, что это за человек. Теперь же я попробую

1. Германский вермахт

1. Германский вермахт
Пехотная дивизияГерманская пехотная дивизия по штату 1944 года насчитывала 12 352 человека личного состава (до 1944 года 16 860 человек). В ее состав входили 3 пехотных полка, 1 артиллерийский полк и другие части (саперы, связисты, снабженцы, зенитчики).Танковая

Глава 19. 3-Й (германский) танковый корпус СС в Померании

Глава 19. 3-Й (германский) танковый корпус СС в Померании
Фронт между Вислой и Одером откатывался на запад и втягивал в свой водоворот все больше немецких формирований. Повсюду было множество измотанных, отставших от своих частей или наскоро сколоченных боевых групп,

Шведы и англо-германский мир

Шведы и англо-германский мир
Шведы на протяжении столетий (с 1814 г., а до этого воевали очень много. — Ред.) держались позиции «мир любой ценой» и часто прикрывали страх перед войной идеологической завесой пацифизма. В середине 1940 г. «прагматически мыслящие» шведы не могли

Лучший германский агент

Лучший германский агент
Среди более удачливых немецких шпионов стоит отметить агента под кодовым именем Остро. Сотрудничать с абвером Остро начал еще в начале 1930-х, когда из своей штаб-квартиры в Лиссабоне руководил широкой агентурной сетью. После 1933 г. он продолжал

Глава 116 Новый германский флот и британский ответ

Глава 116 Новый германский флот и британский ответ
По условиям Версальского мирного договора Германии разрешалось оставить в составе флота шесть морально устаревших линейных кораблей-додредноутов, каждый из которых должен был прослужить 20 лет. Стандартное

Германский Генеральный штаб

Германский Генеральный штаб
К концу войны Генеральный штаб существовал уже около полутора веков. Созданный в период освободительной войны[61], он приобрел классическую форму при Мольтке-старшем в ходе войн 1864, 1866 и 1870–1871 годов. В первые годы Второй мировой войны его

§ 4.

Германский флот

§ 4. Германский флот
Что касается провинциальных флотов, о которых до сих пор шла речь, то можно лишь утверждать, что они существовали. Как правило, имеются обрывки прямых свидетельств, и исследование в привязке к местности предполагает на выходе их морскую историю лишь в

Германский эскадренный броненосец N[4]

Германский эскадренный броненосец N[4]
Находящийся постройке на верфи “Германия”, в Киле, первый представитель нового судового типа, броненосец N по своему углублению и скорости хода не отличается от судов класса “Брауншвейг”. Все десять эскадренных броненосцев обоих

16-линейный германский гранатомёт образца 1915 года на вооружении РККА

16-линейный германский гранатомёт образца 1915 года на вооружении РККА
Во время первой мировой войны германская армия имела на вооружении 16-линейный гранатомёт образца 1915 года и ружейную гранату для него. Калибр системы – 106 мм. Ствол со стреляющим приспособлением

Мирослав Морозов ТОРПЕДНАЯ АТАКА ПОДЛОДКИ «К-21» НА ГЕРМАНСКИЙ ЛИНКОР «ТИРПИЦ»

Мирослав Морозов
ТОРПЕДНАЯ АТАКА ПОДЛОДКИ «К-21» НА ГЕРМАНСКИЙ ЛИНКОР «ТИРПИЦ»
Атака германского линкора «Тирпиц» советской подводной лодкой «К-21» 5 июля 1942 года до сих пор является одним из наиболее дискуссионных эпизодов в истории советского ВМФ в Великой

Глава 7. БЫЛ ЛИ ГЕРМАНСКИЙ ФЛОТ НА ЧЕРНОМ МОРЕ?

Глава 7.
БЫЛ ЛИ ГЕРМАНСКИЙ ФЛОТ НА ЧЕРНОМ МОРЕ?
Переброска германских ВМС на Черное море не предусматривалась планом «Барбаросса». Но уже в первые месяцы войны германские генералы осознали, что захватить Крым и Кавказ без кригсмарине им не удастся.Пройти через Босфор

ГЕРМАНСКИЙ ОККУПАЦИОННЫЙ РЕЖИМ НА ТЕРРИТОРИИ БЕЛОРУССИИ

ГЕРМАНСКИЙ ОККУПАЦИОННЫЙ РЕЖИМ НА ТЕРРИТОРИИ БЕЛОРУССИИ
«Германия в три руки творила свое преступление над русским народом, — писал эмигрантский мемуарист Александр Казанцев, — армия, Восточное министерство и СС. Все три они были подчинены одной воле Гитлера, но каждая

Первые авиационные воздушно-реактивные двигатели. История науки и техники. Часть 4

Похожие презентации:

Авиационные двигатели

Основы конструирования авиационных двигателей и энергетических установок

Центр истории авиационных двигателей имени академика Н.Д. Кузнецова

Авиационные двигатели как объект производства

Общие сведения о конструкции авиационных газотурбинных двигателей

Авиационные двигатели и их системы управления. Основы устройства силовых установок и их конструкция

Требования к пятому поколению авиационных двигателей

Двигатели боевых самолётов России

Реактивные, турбореактивные и ракетные двигатели. (Тема 6)

Забойные двигатели: Типы, классификация, устройство. Монтаж и эксплуатация бурового оборудования. Лекция 4

ИСТОРИЯ НАУКИ И ТЕХНИКИ
Ч.4
ПЕРВЫЕ АВИАЦИОННЫЕ
ВОЗДУШНО-РЕАКТИВНЫЕ
ДВИГАТЕЛИ
Проф. , д.т.н. В.А. Зрелов
.
Самара
Первая паровая реактивная турбина
I век н. э.
Герон
Александрийский
Эолипил (aolipil)
Устройство для полива газонов

3. Модель реактивного двигателя

3

4. Прямоточные воздушно-реактивные двигатели

Франция
1937- 1946 гг
Самолёт
Рене Ледюка (René Leduc)
4
СССР
1939 г
И.А. Меркулов
1941 г
И-153 «Чайка» с ПВРД ДМ-4
1942 г
Проект «Д» с ПВРД ДМ-12
Як-7Сс ПВРД ДМ-4С
СССР
1942 г
Як-7Б с ПВРД ДМ-4С
М.М. Бондарюк
Ла-126 с ПВРД-430

7. Крылатая ракета «Буря»

СССР
Крылатая ракета «Буря»
1954 -1960 гг
С.А. Лавочкин
Двигатель РД-012У
P=12900 кГс

8. Франция

Мотокомпрессорные двигатели
Франция
А. Коанда (Coandа)
1910 г
Самолёт «Coandа-1910»
МКВРД самолёта «Coandа -1910»
P=220 кГс

9. Италия

1940 г
Секондо Кампини
(Secondo Campini)
Самолёт Campini-Caproni — 1)
N=900 л. с.
Схема двигателя самолёта «Кампини-Капрони №1» (Campini-Caproni — 1)

10. Германия

1938 г
Fw44
Проекты
мотокомпрессорных двигателей
JUMO и BMW
10
Германия
1938 г
Проект мотокомпрессорного двигателя HeS 50
Германия
1938 г
Проект мотокомпрессорного двигателя HeS 60
Германия
1939 г
Опытный мотокомпрессорный двигатель
фирмы Ernest Heinkel AG
СССР
1943 – 1945 гг
Опытный истребитель И-250 с
комбинированной силовой установкой,
включавшей маршевый поршневой
мотор ВК-107А и воздушно-реактивный
компрессорный двигатель (ВРДК)
ЦИАМ
К.В. Холщевников
NΣ=2560 л.с.
ВРДК (изделие Э-30-20)
1944 г
Су-5ВРДК (М-107)
С1-ВРДК-1 (М-82)
1943 г
Як-9ВРДК-1 (М-105Ф)
Як-9ВРДК-1 (АМ-39)
Ла-5ВРДК (М-82)
Япония
«Ishikawajima»
Tsu-11
Ohka-22
Конструктивные схемы ВРД
1940 г.

19. Турбовинтовые двигатели

Венгрия
1940 г
Дьёрдь Ендрашик (György Jendrassik)
N=1000 л. с.
Jendrassik Cs-1
RMI-1 X/H
19

20. «General Electric»

США
«General Electric»
1941 – 1945 гг
N=2300 л.с.
ТВД TG-100
(T31)
Consolidated XP-81

21. Турбореактивные двигатели

Принципиальная схема и основные функциональные модули ТРД
21

22. Великобритания

Фрэнк Уиттл (Frank Whittle)
патент Великобритании № 347206
1930 г
«Power Jets Ltd.»
1937 г
Опытный двигатель W.U.
22
«British Thomson Houston (BTH)»
W.1 (Whittle № 1)
1941 г
Gloster E.28/39 (G-40) Pioneer
P=460 кгс.
А.А. Гриффитс (A. A. Griffith)
«Royal Aircraft Establishment»
«Metropolitan Vickers»
1938 — 1942 гг
CR.1
(contra rotating)
«Rolls-Royce»
ТРДД CR.2
1944 г
24
Германия
«Ernst Heinkel» HeS 1 (Heinkel Strahltriebwerk)
. (1937 г.)
Макс Хан
(M. Hahn)
Ганс Йоахим
Пабст фон Охаин
(Hans von Ohain)
с опытным
двигателем
1935г
P=250 кгс.
He-178
. (1939 г.)
HeS 3
. (1937 г.)
P=450 кгс.
Ohain, E. Heinkel, E. Warsitz
HeS 3. (1937 г.)
HeS 011. (1944 г.)
P= 1300 кгс.
«Junkers Motorenwerke AG»
Г. Вагнер
(H. Wagner)
JUMO-004
. (1942 г.)
А. Франс
(A.Franz)
P= 900 кгс.
«Bayerische Motoren Werke AG»
Первые
проекты
(1938г.)
BMW-003
. (1942 г.)
P= 800 кгс.
Г. Ойстрих
(H.Oestrich)
29
BMW-003
He-162
.
Ar 234 V8
.
BMW-018
. (1945г.)
P= 3000 кгс.
30
«Daimler – Benz AG»
К. Лейст
(K.Leist)
DB 109-007
P= 1370 кгс.
. (1943 г .)
31

31. «Daimler – Benz AG»

Швеция
В 1933 г. инженер А. Лисхольм (A. Lisholm)
запатентовал газотурбинный двигатель. По его проекту в
1934 г. фирма «Бофорс“ (Bofors) изготовила для
проведения стендовых испытаний турбореактивный
двигатель. В годы войны компания «Свенска флюгмоторАВ» — Svenska Flygmotor АВ (SFA) (сейчас Volvo
Aero), под руководством Лисхольма спроектировала ТРД
Р/15-54
с
двухступенчатым
центробежным
компрессором
и
четырехступенчатой
турбиной,
кольцевой камерой сгорания. Тяга двигателя была
порядка 1800 кгс. В 1944-45 гг фирма SAAB
проектировала под этот двигатель истребители RX-1,
RX-2 и R-101
32

32. Швеция

RХ-1
.
RХ-2
.
R-101
.
33
Япония
«Ishikawajima»
Eichi Iwaya
Ne-20
1945 г
P= 475 кгс.
Nakajima Hikoki K K.
J9Y Kikka.
34

34. Япония

СССР
1924 г
В.И. Базаров
. В.В.Уваров
1943 – 1946 гг
ЦИАМ
Э-3080
N=625 л.с.
1929 г
Б.С. Стечкин
А.М. Люлька
1937 г
РТД-1
36
Кировский завод
1941 – 1943 гг
РД-1
1945 г
ТР-1
37
США
Lockheed Aircraft Corporation
Nathan C. Price
1937 – 1943 гг
Westinghouse
Ole Rogers
L-1000
P= 2450 кгс.
19В (“Yankee”)
L-133.
1943 г
P= 600 кгс.
McDonnell XFD-1 Phamtom
ОКБ-300
1946 г
P= 3300 кгс.
А.А. Микулин
АМТКРД-01
Россия/СНГ и мировое
авиадвигателестроение
ТРД АМ-3 (1952г.)
Самый мощный в мире ТРД
P=85,3 кН.
ТВД НК-12М (1954г.)
Самый мощный в мире
ТВД N=11025 кВт.
НК-6 (1958г.)
Самый мощный в
мире ТРДДФ P=215
кН.
ТВаД Д-25В (1958г.)
Самый мощный в мире
ТВаД N=4050 кВт.
ТВаД Д-136 (1982г.)
ТРДФ РД-7М2 (1965г.)
Самый мощный в мире
ТРДДФ Р79В-300 (1977г.) ТРДФ P=162 кН.
Первый в мире
подъёмно-маршевый
двигатель с форсажём
ТРД РД36-51 (1978г.)
Самый мощный в
мире ТВаД N=10290
кВт.
НК-25(1977г.)
Самый мощный в
мире ТРДДФ
P=245 кН.
Самый мощный в
ТРДД НК-88 (1981г.)
мире ТРД P=206 кН. Первый в мире двигатель
на жидком водороде
ТРДД НК-93 (1989г.)
Первый в мире ТРДД со
сверхвысокой степенью
двухконтурности
(m=16,6)
ТВВД Д-27 (1990г.)
Первый в мире
маршевый ТВВД
40

40. Россия/СНГ и мировое авиадвигателестроение

ТВВД НК-110
ТРДД НК-93
ТРДД НК-88

English    
Русский
Правила

Первые и современные реактивные самолеты

Содержание:

  • Первые попытки создания реактивного самолета
  • Начало создания самолетов в СССР
  • Германия – страна первых реактивных аппаратов
  • Дальнейшее развитие советской авиации
  • Первые мировые прототипы
  • Несколько интересных фактов
  • Видео

В наше время вряд ли остался хоть один человек, не знающий о реактивных самолетах и не летавший на них. Но мало кому известно, какой тяжелый путь инженерам со всего мира пришлось пройти, чтобы достичь таких результатов. Еще меньше тех, кто точно знает, что представляют собой современные реактивные воздушные суда, как они работают. Реактивные самолеты – это усовершенствованные, мощнейшие пассажирские или военные суда, работающие посредством воздушно-реактивного двигателя. Главная особенность реактивного самолета – это его невероятная скорость, выгодно выделяющая двигательный механизм от устаревшего винтового.

Внешний вид реактивного самолета

На английском языке слово «реактивный» звучит как «jet». Услышав его, сразу появляются мысли, связанные с какой-либо реакцией, и это вовсе не окисление топлива, ведь такая система движения приемлема для автомобилей с карбюраторами. Что касается авиалайнеров и военных самолетов, то принцип их работы чем-то напоминает взлет ракеты: физическое тело реагирует на выбрасываемую мощную струю газа, в результате чего оно движется в противоположную сторону. Это и есть основной принцип работы реактивных самолетов. Также важную роль в работоспособности механизма, приводящего столь большую машину в движение, играют аэродинамические свойства, крыльевой профиль, разновидность двигателя (пульсирующий, прямоточный, жидкостный и т.д.), схема.

Первые попытки создания реактивного самолета

Поиск более мощного и скоростного двигателя для военных, а в дальнейшем и гражданских самолетов начался еще в далеком 1910 году. За основу были взяты ракетные исследования прошлых веков, где подробно рассказывалось о применении пороховых ускорителей, способных значительно сократить длину форсажа и разбега. Главным конструктором стал румынский инженер Анри Коанда, создавший летательный аппарат, работающий на основе поршневого двигателя.

Как выглядел первый реактивный аэроплан Анри Коанда

Что же отличало первый реактивный самолет 1910 года от стандартных моделей тех времен? Главным отличием было наличие лопастного компрессора, отвечающего за приведение летательного аппарата в движение. Аэроплан «Coanda» был хоть и первой, но очень неудачной попыткой создать самолет с реактивным двигателем. В ходе дальнейших испытаний аппарат сгорел, что подтвердило неработоспособность конструкции.

Последующие изучения выявили возможные причины неудачи:

  1. Неудачное расположение двигателя. Из-за того, что он располагался в передней части конструкции, опасность жизни пилота была весьма велика, так как выхлопные газы попросту не дали бы человеку нормально дышать и вызвали бы удушье;
  2. Выделяющееся пламя попадало прямо на хвостовую часть аэроплана, что могло привести к возгоранию этой зоны, пожару и падению летательного аппарата.

Несмотря на полное фиаско, Анри Коанда утверждал, что именно ему принадлежат первые удачные задумки, касающиеся реактивного двигателя для самолетов. По факту же первые удачные модели были созданы непосредственно перед началом Второй Мировой Войны, в 30-40 годах XX века. Сделав работу над ошибками, инженеры из Германии, США, Англии, СССР создали летательные аппараты, которые никак не угрожали жизни пилота, а сама конструкция была выполнена из жаропрочной стали, благодаря чему корпус был надежно защищен от каких-либо разрушений.

Дополнительная информация. Первооткрывателем реактивного двигателя по праву можно назвать инженера из Англии – Фрэнка Уитла, который предложил первые идеи и получил на них свой патент в конце XIX века.

Начало создания самолетов в СССР

Как сделать необычный самолет из бумаги

Впервые о разработке реактивного движка в России заговорили в начале XX столетия. Теорию о создании мощных аэропланов, способных развить сверхзвуковую скорость выдвинул известный российский ученый К.Э. Циолковский. Воплотить эту задумку в жизнь удалось талантливому конструктору А.М Люльке. Именно он спроектировал первый советский реактивный самолет, работающий посредством турбореактивного движка.

Строение и внешний вид первого турбореактивного двигателя ТР-1

Инженер поведал о том, что данная конструкция может развить невиданную для тех времен скорость до 900 км/ч. Несмотря на фантастичность предложения и неопытность молодого конструктора, инженеры СССР взялись за проект. Первый аэроплан был уже практически готов, но в 1941 году начались военные действия, вся команда конструкторов, в том числе и Архип Михайлович, были вынуждены начать работу над танковыми двигателями. Само же бюро со всеми авиационными наработками было вывезено вглубь СССР.

К счастью, А.М.Люлька был не единственным инженером, мечтавшим создать самолет с реактивным авиационным двигателем. Новые идеи о создании истребителя-перехватчика, полет которого обеспечивался бы жидкостным типом движка, предложили конструкторы А.Я.Березняк и А.М.Исаев, работающие в инженерском бюро имени Болховитинова. Проект был одобрен, поэтому разработчики вскоре стали работать над созданием истребителя «БИ-1», который, несмотря на войну, был построен. Первые испытания над ракетным истребителем начались 15 мая 1942 года, за его штурвалом был смелый и отважный летчик-испытатель Е.Я.Бахчиванджи. Тесты удались, но продолжались еще на протяжении последующего года. Продемонстрировав максимальную скорость в 800 км/ч, летательный аппарат стал неуправляемым и потерпел крушение. Произошло это в конце 1943 года. Пилоту выжить не удалось, а испытания были остановлены. В это время страны третьего рейха активно занимались наработками и подняли в воздух не одно воздушно-реактивное судно, поэтому СССР на воздушном фронте сильно проигрывал и оказался совсем неподготовленным.

Германия – страна первых реактивных аппаратов

Авиакомпания Оренбуржье: официальный сайт

Первые реактивные самолеты были разработаны немецкими инженерами. Создание проектов и производство проводились тайно на замаскированных заводах, расположенных в глубоких лесных чащах, поэтому такое открытие стало для мира, в некотором роде, неожиданностью. Гитлер мечтал стать мировым правителем, поэтому подключал лучших конструкторов Германии для создания мощнейшего оружия, в том числе и скоростных реактивных самолетов. Были, конечно, как провалы, так и удачные проекты.

Самым успешным из них стал первый немецкий реактивный самолет «Messer-schmitt Ме-262» (Мессершмит-262), который называли также «Штурмфогель».

Первый немецкий реактивный самолет «Messer-schmitt Ме-262»

Этот летательный аппарат стал первым в мире, который удачно прошел все испытания, свободно поднялся в воздух и начал после этого выпускаться серийно. Великий «сокрушитель врагов третьего рейха» имел следующие особенности:

  • Аппарат имел два турбореактивных двигателя;
  • В носовой части авиалайнера располагался радиолокатор;
  • Максимальная скорость самолета достигала 900 км/час, при этом в инструкции указывалось, что доводить суда до таких скоростей крайне нежелательно, так как терялся контроль над управлением, и машина начинала совершать крутые пике в воздухе.

Благодаря всем этим показателям и конструктивным особенностям первый реактивный летательный аппарат «Мессершмит-262» выступал эффективным средством борьбы против самолетов союзников, высотными «Б-17», получившими прозвище «летающие крепости». Штурмофогели были более скоростными, поэтому вели «свободную охоту» на самолеты СССР, которые оснащались поршневыми движками.

Интересный факт. Адольф Гитлер был настолько фанатичен в своем желании всемирного господства, что собственными руками снизил эффективность самолета «Messer-schmitt Ме-262». Дело в том, что конструкция изначально проектировалась как истребитель, но по указанию правителя Германии, он был переоборудован в бомбардировщик, из-за этого мощность двигателя не была раскрыта в полной мере.

Дальнейшее развитие советской авиации

Аэропорт острова Родос

Такой ход действий совершенно не устраивал советские власти, поэтому они начали работать над созданием новых моделей самолетов, которые могли бы конкурировать с немецкими аппаратами. За работу принялись самые талантливые инженеры А.И.Микоян и П.О.Сухой. Основная задумка заключалась в добавлении дополнительного поршневого мотора К.В.Холщевникова, который придавал бы в нужный момент истребителю ускорение. Движок не был слишком мощным, поэтому работал не более 5 минут, из-за этого его функцией было – ускорение, а не постоянная работа на протяжении всего полета.

Новые творения российского самолетостроения не смогли помочь разрешению войны. Несмотря на это сверхмощные немецкие самолеты «Ме-262» не помогли Гитлеру обернуть ход военных событий в свою пользу. Советские летчики продемонстрировали свое мастерство и победу над врагом даже с обычными поршневыми судами. В послевоенное время российскими конструкторами были созданы следующие реактивные самолеты СССР, ставшие в дальнейшем прототипами современных авиалайнеров:

  • «И-250», более известный как легендарный «МиГ-13», – истребитель, над которым работал А.И.Микоян. Первый полет был совершен в марте 1945 года, на тот момент машина показала рекордный скоростной показатель, достигший 820 км/час;

Первое фото истребителя «И-250»

  • Немного позднее, а именно в апреле 1945 года, впервые в небо поднялся реактивный самолет, поднимающийся и поддерживающий полет за счет воздушно-реактивного мотокомпрессорного и поршневого двигателя, который располагался в хвостовой части конструкции, П. О.Сухого «Су-5». Показатели скорости были не ниже, чем у его предшественника и превышали 800 км/час;
  • Новаторством инженерии и самолетостроения 1945 года стал жидко-реактивный мотор «РД-1». Впервые он был применен в модели самолета конструктора П.О.Сухого – «Су-7», который был оснащен также и поршневым двигателем, выполняющим основную толкательную, движущую функцию. Испытателем нового летательного аппарата стал Г.Комаров. При первом испытании удалось отметить, что дополнительный мотор увеличивал средний скоростной показатель на 115 км/час – это было большим достижением. Несмотря на хороший результат, двигатель «РД-1» стал настоящей проблемой для советских авиастроителей. Аналогичные самолеты, оснащенные данной моделью жидко-реактивного движка, – «ЯК-3» и «Ла-7Р», над которыми работали инженеры С.А.Лавочкин и А.С.Яковлев, потерпели крушения во время испытания из-за постоянно выходящего из строя мотора;
  • После окончания войны и поражения фашистской Германии Советскому Союзу в качестве трофеев достались немецкие самолеты с реактивными двигателями «JUMO-004» и «BMW-003». Тогда конструкторы поняли, что действительно находились на несколько шагов позади. Среди инженеров моторы получили название «РД-10» и «РД-20», на их основе создавались первые авиационные реактивные двигатели, над которыми работали А.М.Люлька, А.А.Микулин, В.Я.Климов. В это же время П.О.Сухой занимался разработкой мощного двухмоторного самолета, укомплектованного двумя моторами типа «РД-10», располагающимися прямо под крыльями летательного аппарата. Реактивный истребитель-перехватчик получил название «СУ-9». Недостатком такого расположения моторов можно считать сильное лобовое сопротивление при полете. К преимуществам – отличный доступ к движкам, благодаря чему можно было запросто подобраться к механизму и починить поломку. Конструктивной особенностью данной модели самолета являлось наличие стартовых пороховых ускорителей для взлета, тормозных парашютов для посадки, управляемых ракет типа «водзух-воздух» и бустера-усилителя, облегчающего процесс управления и увеличивающего маневренность аппарата. Первый полет «Су-9» был осуществлен в ноябре 1946 года, но к серийному производству дело так и не подошло;

Как выглядел легендарный двухмоторный самолет «Су-9»

  • В апреле 1946 года проходил воздушный парад в городе Тушино. На нем были представлены новые летательные аппараты от авиационных конструкторских бюро Микояна и Яковлева. Реактивные самолеты «МиГ-9» и «Як-15» сразу же были запущены в серию.

Фактически, Сухой «проиграл» конкурентам. Хотя, проигрышем это назвать тяжело, ведь его модель истребителя была признана, а за это время он смог практически закончить работу над новым, более современным проектом – «СУ-11», который стал настоящей легендой истории самолетостроения и прототипом мощных авиалайнеров современности.

Интересный факт. На самом деле, реактивный самолет «СУ-9» тяжело было назвать простым истребителем. Конструкторы между собой прозвали его «тяжелым», потому что пушечное и бомбовое вооружение летательного аппарата было на довольно высоком уровне. Принято считать, что именно «СУ-9» был прототипом современных истребителей-бомбардировщиков. За все время было изготовлено приблизительно 1100 единиц техники, при этом она не экспортировалась. Не раз легендарный «Сухой Девятый» использовался для перехвата в воздухе разведывательных самолетов. Впервые это произошло в 1960 году, когда в воздушное пространство СССР ворвались аэропланы «LockheedU-2».

Первые мировые прототипы

Разработкой, тестированием новых авиалайнеров и их производством занимались не только немцы и советские конструкторы. Инженерами США, Италии, Японии, Великобритании также было создано немало успешных проектов, о которых нельзя не упомянуть. К числу первых наработок с различными типами двигателей можно отнести:

  • «Не-178» – немецкий самолет с турбореактивной силовой установкой, поднявшийся в воздух в августе 1939 года;
  • «GlosterE. 28/39» – летательный аппарат родом из Великобритании с мотором турбореактивного типа, впервые поднялся в небо в 1941 году;
  • «Не-176» – истребитель, созданный в Германии с применением ракетного двигателя, осуществил свой первый полет в июле 1939 года;
  • «БИ-2» – первый советский летательный аппарат, который приводился в движение посредством ракетной силовой установки;
  • «CampiniN. 1» – реактивный самолет, созданный в Италии, ставший первой попыткой итальянских конструкторов отойти от поршневого аналога. Но в механизме что-то пошло не так, поэтому лайнер не мог похвастаться большой скоростью (всего лишь 375 км/час). Запуск был произведен в августе 1940 года;
  • «Ока» с мотором Tsu-11 – японский истребитель-бомба, так называемый одноразовый летательный аппарат с пилотом-камикадзе на борту;
  • «BellP-59» – американский авиалайнер с двумя реактивными двигателями ракетного типа. Производство стало серийным после первого полета в воздухе 1942 года и долгих испытаний;

Внешний вид первых американских двухмоторных истребителей

  • «GlosterMeteor» – воздушно-реактивный истребитель, изготовленный в Великобритании в 1943 году; сыграл значительную роль во время Второй Мировой Войны, а после ее окончания выполнял задачу перехватчика немецких крылатых ракет Фау-1;
  • «LockheedF-80» – реактивный летательный аппарат, произведенный в США с использованием мотора типа AllisonJ Эти самолеты не раз участвовали в Японско-Корейской войне;
  • «B-45 Tornado» – прототип современных американских бомбардировщиков «B-52», созданный в 1947 году;
  • «МиГ-15» – последователь признанного реактивного истребителя «МиГ-9», который активно участвовал в военном конфликте Кореи, был произведен в декабре 1947 г. ;
  • «Ту-144» – первый советский сверхзвуковой воздушно-реактивный пассажирский самолет, который прославился серией катастроф и был снят с производства. Всего было выпущено 16 экземпляров.

Этот список можно продолжать бесконечно, с каждым годом авиалайнеры совершенствуются, ведь конструкторы со всего мира работают над тем, чтобы создавать летательные аппараты нового поколения, способные летать со скоростью звука.

Несколько интересных фактов

Сейчас существуют лайнеры, способные вмещать в себе большое количество пассажиров и грузов, обладающие огромными размерами и невообразимой скоростью свыше 3000 км/час, оборудованные современной боевой экипировкой. Но есть несколько поистине удивительных конструкций; в число реактивных самолетов-рекордсменов входят:

  1. «AirbusA380» – самый вместительный аппарат, способный принять на своем борту 853 пассажира, что обеспечено двухпалубной конструкцией. Он же по совместительству один из роскошнейших и дорогостоящих авиалайнеров современности. Авиакомпания «Emirates Airline» предлагает клиентам многочисленные удобства, здесь есть турецкая баня, VIP-апартаменты и каюты, спальные комнаты, бары и лифт. Но такие опции есть не во всех аппаратах, все зависит от авиакомпании.

Самый крупный пассажирский лайнер в воздухе

  1. «Boeing 747» – более 35 лет считался наиболее пассажировместительным двухэтажным лайнером и мог расположить 524 пассажира;
  2. «АН-225 Мрия» – грузовой летательный аппарат, который может похвастаться грузоподъемностью в 250 тонн;
  3. «LockheedSR-71» – реактивный самолет, достигающий во время полета скорости 3529 км/час.

Видео

Благодаря современным инновационным разработкам пассажиры могут добраться из одной точки света в другую всего за несколько часов, быстро доставляются хрупкие грузы, требующие оперативной транспортировки, обеспечивается надежная военная база. Авиационные исследования не стоят на месте, потому как реактивные самолеты – это основа стремительно развивающейся современной авиации. Сейчас проектируется несколько западных и российских пилотируемых, пассажирских, беспилотных авиалайнеров с реактивными двигателями, выпуск которых запланирован на ближайшие несколько лет. К российским инновационным разработкам будущего можно отнести истребитель 5-го поколения ПАК ФА «Т-50», первые экземпляры которого поступят в войска предположительно в конце 2017 или начале 2018 года после испытания нового реактивного двигателя.

Краткая история реактивной гражданской авиации. Реактивный самолет – самый мощный летательный аппарат современной авиации Реактивные самолеты в ссср

Современной молодежи, и даже гражданам зрелым, трудно понять, какой восторг вызывали эти, казавшиеся тогда фантастическими, летающие машины. Серебристые капельки, стремительно рассекающие за собой голубое небо, будоражили воображение молодых людей начала пятидесятых. Широкий не оставлял сомнений в типе двигателя. Сегодня только компьютерные игры наподобие War Thunder, с их предложением приобрести реактивный акционный самолет СССР, дают какое-то представление об этом этапе развития отечественной авиации. Но начиналось все еще раньше.

Что означает «реактивный»

Возникает резонный вопрос о названии типа летательных аппаратов. По-английски оно звучит кратко: Jet. Русское определение намекает на наличие какой-то реакции. Ясно, что речь идет не об окислении топлива — оно присутствует и в обычных карбюраторных самолета такой же, как у ракеты. Реакция физического тела на силу выбрасываемой газовой струи выражается в придании ему противоположно направленного ускорения. Все остальное — уже тонкости, к которым относятся разные технические параметры системы, такие как аэродинамические свойства, схема, профиль крыла, тип двигателя. Здесь возможны варианты, к которым инженерные бюро пришли в процессе работы, часто находя сходные технические решения, независимо друг от друга.

Отделить ракетные исследования от авиационных в данном аспекте тяжело. В области пороховых ускорителей, устанавливаемых для сокращения длины разбега и форсажа, работы велись еще до войны. Более того, попытка установки компрессорного двигателя (неудачная) на аэроплан Coanda в 1910 году позволила изобретателю Анри Коанде утверждать о румынском приоритете. Правда, конструкция эта была изначально неработоспособной, что и подтвердилось первым же испытанием, в ходе которого летательный аппарат сгорел.

Первые шаги

Первый реактивный самолет, способный проводить в воздухе длительное время, появился позже. Пионерами стали немцы, хотя определенных успехов добились ученые других стран — США, Италии, Британии и отсталой тогда в техническом отношении Японии. Эти образцы представляли собой, по сути, планеры обычных истребителей и бомбардировщиков, на которые устанавливались двигатели нового типа, лишенные пропеллеров, что вызывало удивление и недоверие. В СССР этой проблемой инженеры также занимались, но не так активно, делая упор на проверенную и надежную винтовую технику. Тем не менее реактивная модель самолета Би-1, оснащенная ТРД конструкции А. М. Люльки, была испытана непосредственно перед войной. Аппарат был очень ненадежен, азотная кислота, используемая в качестве окислителя, проедала топливные баки, были и другие проблемы, но первые шаги всегда трудны.

«Штурмфогель» Гитлера

В силу особенностей психики фюрера, надеявшегося сокрушить «врагов рейха» (к которым он причислял страны практически всего остального мира), в Германии после начала II мировой войны развернулись работы по созданию разных видов «чудо-оружия», в том числе и реактивных самолетов. Не все направления этой деятельности оказались безуспешными. К удачным проектам можно отнести «Мессершмит-262» (он же «Штурмфогель») — первый реактивный самолет в мире, выпускаемый серийно. Аппарат был оснащен двумя ТРД, имел радиолокатор в носовой части, развивал скорость, близкую к звуковой (более 900 км/ч), и оказался достаточно эффективным средством борьбы с высотными Б-17 («Летающими крепостями») союзников. Фанатичная вера Адольфа Гитлера в чрезвычайные возможности новой техники, однако, парадоксально сыграла скверную роль в боевой биографии Ме-262. Проектировавшийся как истребитель, он, по указанию «свыше», переоборудовался в бомбардировщик, и в этой модификации не проявил себя в полной мере.

«Арадо»

Принцип реактивного самолета был применен в середине 1944 года для конструкции бомбардировщика «Арадо-234» (опять же немцами). Он успел продемонстрировать свои необычайные боевые возможности, атаковав позиции союзников, высадившихся в районе порта Шербур. Скорость в 740 км/ч и десятикилометровый потолок не давали шансов зенитной артиллерии поразить эту цель, а американские и английские истребители просто не смогли его догнать. Помимо бомбометания (весьма неточного по понятным причинам), «Арадо» производил аэрофотосъемку. Второй опыт применения его в качестве ударного средства состоялся над Льежем. Потерь немцы не понесли, и если бы ресурсов у фашистской Германии было больше, и промышленность смогла бы выпустить «Ар-234» в количестве более 36 экземпляров, то странам антигитлеровской коалиции пришлось бы туго.

«Ю-287»

Немецкие наработки попали в руки дружественных в период Второй мировой воны государств после разгрома нацизма. Западные страны уже в ходе завершающего этапа боевых действий начали готовиться к грядущему противостоянию с СССР. Сталинское руководство принимало встречные меры. Обеим сторонам было ясно, что в следующей войне, если она состоится, сражаться будут реактивные самолеты. СССР на тот момент еще не обладал ударным ядерным потенциалом, шла лишь работа над созданием технологии производства атомной бомбы. А вот американцам был очень интересен захваченный «Юнкерс-287», имевший уникальные летные данные (боевая нагрузка 4000 кг, дальность 1500 км, потолок 5000 м, скорость 860 км/ч). Четыре двигателя, отрицательная стреловидность (прообраз будущих «невидимок) позволяли использовать самолет в качестве атомного носителя.

Первые послевоенные

Реактивные самолеты не сыграли решающей роли во время Второй мировой, поэтому основная часть советских производственных мощностей сосредоточила усилия на совершенствовании конструкций и увеличении выпуска обычный винтовых истребителей, штурмовиков и бомбардировщиков. Вопрос о перспективном носителе атомных зарядов был трудным, и его решили оперативно, скопировав американский Боинг Б-29 (Ту-4), но главной целью оставалось противодействие возможной агрессии. Для этого в первую очередь требовались истребители — высотные, маневренные и, конечно же, скоростные. О том, как развивалось новое направление можно судить по письму конструктора А. С. Яковлева в ЦК (осень 1945 года), нашедшего определенное понимание. Простое изучение трофейной немецкой техники партийное руководство сочло недостаточной мерой. Стране были необходимы современные советские реактивные самолеты, не уступающие, а превосходящие мировой уровень. На параде 1946 года в честь годовщины Октября (Тушино) их нужно было показать народу и зарубежным гостям.

Временные Яки и МиГи

Показать было что, но не сложилось: подвела погода, стоял туман. Демонстрацию новой авиатехники перенесли на Первомай. Первые советские реактивные самолеты, произведенные серией в 15 экземпляров, были разработаны КБ Микояна и Гуревича (МиГ-9) и Яковлева (Як-15). Оба образца отличались реданной схемой, при которой хвостовая часть снизу омывается реактивными струями, выпускаемыми соплами. Естественно, для защиты от перегрева эти участки обшивки покрыли специальным слоем, выполненным из тугоплавкого металла. Оба самолета отличались массой, числом двигателей и назначением, но в целом отвечали состоянию советской авиастроительной школы конца сороковых годов. Главным их назначением был переход на новый тип энергоустановки, но помимо этого выполнялись и другие важные задачи: обучение летного состава и отработка технологических вопросов. Эти реактивные самолеты, несмотря на большие объемы их выпуска (сотни штук), рассматривались как временные и подлежащие замене в самое ближайшее время, сразу же после появления более совершенных конструкций. И вскоре этот момент настал.

Пятнадцатый

Этот самолет стал легендой. Он строился невиданными для мирного времени сериями, как в боевом, так и в спаренном учебном варианте. В конструкции МиГ-15 применены многие революционные технические решения, впервые сделана попытка создания надежной системы спасения пилота (катапульты), его оснастили мощным пушечным вооружением. Скорость реактивного самолета, небольшого, но очень эффективного, позволяла ему одерживать победы над армадами тяжелых стратегических бомбардировщиков в небе Кореи, где заполыхала война вскоре после появления нового перехватчика. Неким аналогом МиГа стал американский «Сейбр», построенный по сходной схеме. В ходе боевых действий техника попадала в руки противника. Советский самолет угнал северокорейский летчик, соблазненный огромным денежным вознаграждением. Подбитого «американца» удалось вытащить из воды и доставить в СССР. Происходил взаимный «обмен опытом» с перениманием наиболее удачных конструкторских решений.

Пассажирские реактивные

Скорость реактивного самолета — главное его достоинство, и применимо оно не только к бомбардировщикам и истребителям. Уже в конце сороковых на международные авиалинии вышел лайнер «Комета», построенный в Британии. Он создавался специально для перевозки людей, был комфортабельным и быстрым, но, к сожалению, не отличался надежностью: в течение двух лет случилось семь катастроф. Но прогресс в области скоростных пассажироперевозок уже остановить было нельзя. В середине пятидесятых в СССР появился легендарный Ту-104, конверсионная версия бомбардировщика Ту-16. Несмотря на многочисленные летные происшествия, происходившие с новой авиатехникой, реактивные самолеты все в большей степени овладевали авиалиниями. Постепенно формировался облик перспективного лайнера и представления о том, каким он должен быть. движители) применялись конструкторами все реже.

Поколения истребителей: первое, второе…

Как практически любая техника, реактивные перехватчики классифицируются по поколениям. Всего их в настоящее время пять, и они отличаются не только годами выпуска моделей, но и конструктивными особенностями. Если концепция первых образцов в своей основе имела наработанную базу достижений в области классической аэродинамики (иными словами, лишь тип двигателя был главным их отличием), то второе поколение имело более существенные признаки (стреловидное крыло, совершенно иная форма фюзеляжа и пр.) В пятидесятые годы существовало мнение о том, что воздушный бой уже никогда не будет носить маневренного характера, но время показало ошибочность такого мнения.

… и с третьего по пятое

«Собачьи свалки» шестидесятых между «Скайхоками», «Фантомами» и МиГами в небе над Вьетнамом и Ближним Востоком указали ход дальнейшего развития, ознаменовав приход второго поколения реактивных перехватчиков. Изменяемая геометрия крыла, способность многократного звука и ракетное вооружение в сочетании с мощной авионикой стали признаками третьей генерации. В настоящее время основу парка ВВС наиболее развитых в техническом отношении стран составляют машины четвертого поколения, ставшие продуктом дальнейшего развития. На вооружение уже поступают еще более совершенные образцы, сочетающие высокую скорость, сверхманевренность, малую заметность и средства РЭБ. Это поколение пятое.

Двухконтурные двигатели

Внешне и сегодня реактивные самолеты первых образцов не выглядят в своем большинстве анахронизмами. Вид многих из них вполне современен, а технические характеристики (такие как потолок и скорость) не слишком отличаются от современных, по крайней мере, на первый взгляд. Однако при более тщательном ознакомлении с ТТХ этих машин становится ясно, что в последние десятилетия совершен качественный прорыв в двух главных направлениях. Во-первых, появилось понятие переменного вектора тяги, создающего возможность резкого и неожиданного маневра. Во-вторых, сегодня способны намного дольше находиться в воздухе и преодолевать большие расстояния. Этот фактор обусловлен малым расходом топлива, то есть экономичностью. Достигается он применением, выражаясь техническим языком, двухконтурной схемы (низкая степень двухконтурности). Специалистам известно, что указанная технология сжигания топлива обеспечивает более полное его сгорание.

Другие признаки современного реактивного самолета

Их несколько. Современные гражданские реактивные самолеты отличаются низким шумом двигателей, повышенным комфортом и высокой стабильностью в полете. Обычно они широкофюзеляжные (в том числе и многопалубные). Образцы военной авиатехники оснащены средствами (активными и пассивными) достижения малой радиолокационной заметности и В каком-то смысле требования к оборонным и коммерческим образцам сегодня пересекаются. Экономичность нужна самолетам всех типов, правда, по разным причинам: в одном случае для повышения рентабельности, в другом — для расширения боевого радиуса. И шуметь сегодня нужно как можно меньше как гражданским, так и военным.

Утром 27 марта 1943 года первый советский реактивный истребитель «БИ-1» взлетел с аэродрома НИИ ВВС Кольцово в Свердловской области. Проходил седьмой по счету испытательный полет на достижение максимальной скорости. Достигнув двухкилометровой высоты и набрав скорость около 800 км/ч, самолет на 78-й секунде после выработки топлива неожиданно перешел в пике и столкнулся с землей. Сидевший за штурвалом опытный летчик-испытатель Г. Я. Бахчиванджи погиб. Эта катастрофа стала важным этапом в развитии самолетов с жидкостными ракетными двигателями в СССР, но хотя работы по ним и продолжались до конца 1940-х годов, данное направление развития авиации оказалось тупиковым. Тем не менее эти первые, хотя и не слишком удачные шаги оказали серьезное влияние на всю дальнейшую историю послевоенного развития советского авиа- и ракетостроения…

Вступление в «реактивный» клуб

«За эрой аэропланов винтовых должна следовать эра аэропланов реактивных…» — эти слова основоположника реактивной техники К. Э. Циолковского стали получать реальное воплощение уже в середине 1930-х годов ХХ века.

К этому моменту стало ясно, что дальнейшее значительное увеличение скорости полета самолетов за счет возрастания мощности поршневых моторов и более совершенной аэродинамической формы практически невозможно. На самолетах должны были устанавливаться моторы, мощность которых не могла быть уже увеличена без чрезмерного возрастания массы двигателя. Так, для увеличения скорости полета истребителя с 650 до 1000 км/ч необходимо было мощность поршневого мотора увеличить в 6 (!) раз.

Было очевидно, что на смену поршневому двигателю должен был прийти реактивный, который, имея меньшие поперечные размеры, позволял бы достигать больших скоростей, давая большую тягу на единицу веса.

Реактивные двигатели разделяются на два основных класса: воздушно-реактивные, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы, и ракетные двигатели, содержащие все компоненты рабочего тела на борту и способные работать в любой среде, в том числе и в безвоздушной. К первому типу относятся турбореактивные (ТРД), пульсирующие воздушно-реактивные (ПуВРД) и прямоточные воздушно-реактивные (ПВРД), а ко второму — жидкостные ракетные (ЖРД) и твердотопливные ракетные (ТТРД) двигатели.

Первые образцы реактивной техники появились в странах, где традиции в области развития науки и техники и уровень авиационной промышленности были чрезвычайно высоки. Это, в первую очередь, Германия, США, а также Англия, Италия. В 1930 г. проект первого ТРД запатентовал англичанин Фрэнк Уиттл, затем первую рабочую модель двигателя собрал в 1935 г. в Германии Ганс фон Охайн, а в 1937-м француз Рене Ледюк получил правительственный заказ на создание ПВРД…

В СССР же практическая работа над «реактивной» тематикой велась главным образом в направлении жидкостных ракетных двигателей. Основоположником ракетного двигателестроения в СССР был В. П. Глушко. Он в 1930 г., тогда сотрудник Газодинамической лаборатории (ГДЛ) в Ленинграде, являвшейся в то время единственным КБ в мире по разработке твердотопливных ракет, создал первый отечественный ЖРД ОРМ-1. А в Москве в 1931-1933 гг. ученый и конструктор Группы изучения реактивного движения (ГИРД) Ф. Л. Цандер разработал ЖРД ОР-1 и ОР- 2.

Новый мощный импульс развитию реактивной техники в СССР придало назначение М. Н. Тухачевского в 1931 г. на пост заместителя наркома обороны и начальника вооружения РККА. Именно он настоял на принятии в 1932 г. постановления Совнаркома «О разработке паротурбинных и реактивных двигателей, а также самолетов на реактивной тяге…». Начатые после этого работы в Харьковском авиационном институте позволили только к 1941 г. создать рабочую модель первого советского ТРД конструкции А. М. Люльки и способствовали старту 17 августа 1933 г. первой в СССР жидкостной ракеты ГИРД-09, которая достигла высоты 400 м.

Но отсутствие более ощутимых результатов подтолкнуло Тухачевского в сентябре 1933 г. к объединению ГДЛ и ГИРД в единый Реактивный научно-исследовательский институт (РНИИ) во главе с ленинградцем, военным инженером 1 ранга И. Т. Клейменовым. Его заместителем был назначен будущий Главный конструктор космической программы, москвич С. П. Королев, который через два года в 1935 г. был назначен начальником отдела ракетных летательных аппаратов. И хотя РНИИ подчинялся управлению боеприпасов Наркомата тяжелой промышленности и основной его темой была разработка ракетных снарядов (будущей «Катюши»), Королеву удалось вместе с Глушко рассчитать самые выгодные конструктивные схемы аппаратов, типы двигателей и систем управления, виды топлива и материалов. В результате в его отделе к 1938 г. была разработана экспериментальная система управляемого ракетного оружия, включающая проекты жидкостных крылатой «212» и баллистической «204» ракет дальнего действия с гироскопическим управлением, авиационных ракет для стрельбы по воздушным и наземным целям, зенитных твердотопливных ракет с наведением по световому и радиолучу.

Стремясь получить поддержку военного руководства и в разработке высотного ракетоплана «218», Королев обосновал концепцию ракетного истребителя-перехватчика, способного за несколько минут достигать большой высоты и атаковать самолеты, прорвавшиеся к защищаемому объекту.

Но развернувшаяся в армии после ареста Тухачевского волна массовых репрессий докатилась и до РНИИ. Там была «раскрыта» контрреволюционная троцкистская организация, а ее «участники» И. Т. Клейменов, Г. Э. Лангемак расстреляны, а Глушко и Королев осуждены на 8 лет лагерей.

Эти события затормозили развитие реактивной техники в СССР и позволили вырваться вперед европейским конструкторам. 30 июня 1939 г. немецкий пилот Эрих Варзиц поднял в воздух первый в мире реактивный самолет с ЖРД конструктора Гельмута Вальтера «Хейнкель» He-176, достигнув скорости в 700 км/ч, а через два месяца и первый в мире реактивный самолет с ТРД «Хейнкель» He-178, оснащенный двигателем Ганса фон Охайна, «HeS-3 B» с тягой 510 кг и скоростью 750 км/ч. Через год в августе 1940 г. взлетел итальянский «Капрони-Кампини N1», а в мае 1941 г. совершил свой первый полет британский «Глостер Пионер» Е.28/29 с ТРД «Уиттл» W-1 конструктора Фрэнка Уиттла.

Таким образом, лидером в реактивной гонке становилась нацистская Германия, которая кроме авиационных программ начала осуществлять и ракетную программу под руководством Вернера фон Брауна на секретном полигоне в Пенемюнде…

Но все-таки, хотя массовые репрессии в СССР и нанесли существенный ущерб, но не смогли остановить все работы по столь очевидной реактивной тематике, которые начал еще Королев. В 1938 г. РНИИ был переименован в НИИ-3, теперь «королевский» ракетоплан «218-1» стал обозначаться «РП- 318-1». Новые ведущие конструкторы инженеры А. Щербаков, А. Палло заменили ЖРД ОРМ-65 «врага народа» В. П. Глушко на азотно-кислотно-керосиновый двигатель «РДА-1-150» конструкции Л. С. Душкина.

И вот почти после года испытаний в феврале 1940 г. состоялся первый полет «РП-318-1» на буксире за самолетом «Р 5». Летчик-испытатель?В. П. Федоров на высоте 2800 м отцепил буксировочный трос и запустил ракетный двигатель. За ракетопланом появилось небольшое облачко от зажигательного пиропатрона, потом бурый дым, затем огненная струя длиной около метра. «РП-318-1», развив максимальную скорость — всего лишь в 165 км/ч, перешел в полет с набором высоты.

Это скромное достижение все же позволило СССР вступить в члены довоенного «реактивного клуба» ведущих авиационных держав…

«Ближний истребитель»

Успехи немецких конструкторов не прошли незамеченными для советского руководства. В июле 1940 г. Комитет обороны при Совнаркоме принял постановление, определившее создание первых отечественных самолетов с реактивными двигателями. В постановлении, в частности, предусматривалось решение вопросов «о применении реактивных двигателей большой мощности для сверхскоростных стратосферных полетов»…

Массированные налеты люфтваффе на британские города и отсутствие в Советском Союзе достаточного количества радиолокационных станций выявили необходимость создания истребителя-перехватчика для прикрытия особо важных объектов, над проектом которого с весны 1941 г. начали работать молодые инженеры А. Я. Березняк и А. М. Исаев из ОКБ конструктора В. Ф. Болховитинова. Концепция их ракетного перехватчика с двигателем Душкина или «ближнего истребителя» опиралась на предложение Королева, выдвинутое еще в 1938 г.

«Ближний истребитель» при появлении самолета противника должен был быстро взлететь и, обладая высокой скороподъемностью и скоростью, догнать и уничтожить врага в первой атаке, затем после выработки топлива, используя запас высоты и скорости, спланировать на посадку.

Проект отличался необычайной простотой и дешевизной — вся конструкция должна была быть цельнодеревянной из клееной фанеры. Из металла изготовлялись рама двигателя, защита пилота и шасси, которые убирались под воздействием сжатого воздуха.

С началом войны Болховитинов привлек к работе над самолетом все ОКБ. В июле 1941 г. эскизный проект с пояснительной запиской был отправлен Сталину, и в августе Государственный комитет обороны принял решение о срочной постройке перехватчика, который был необходим частям ПВО Москвы. Согласно приказу по Наркомату авиапромышленности на изготовление машины отводилось 35 дней.

Самолет, получивший название «БИ» (ближний истребитель или, как в дальнейшем интерпретировали журналисты, «Березняк — Исаев») строили почти без детальных рабочих чертежей, вычерчивая на фанере его части в натуральную величину. Обшивка фюзеляжа выклеивалась на болванке из шпона, затем крепилась к каркасу. Киль выполнялся заодно с фюзеляжем, как и тонкое деревянное крыло кессонной конструкции, и обтягивался полотном. Деревянным был даже лафет для двух 20-мм пушек ШВАК с боезапасом из 90 снарядов. ЖРД Д-1 А-1100 устанавливался в хвостовой части фюзеляжа. Двигатель расходовал 6 кг керосина и кислоты в секунду. Общий запас топлива на борту самолета, равный 705 кг, обеспечивал работу двигателя в течение почти 2 мин. Расчетная взлетная масса самолета «БИ» составляла 1650 кг при массе пустого 805 кг.

В целях сокращения времени создания перехватчика по требованию заместителя наркома авиационной промышленности по опытному самолетостроению А. С. Яковлева планер самолета «БИ» был исследован в натурной аэродинамической трубе ЦАГИ, a на аэродроме летчик-испытатель Б. Н. Кудрин начал пробежки и подлеты на буксире. С разработкой силовой установки пришлось изрядно повозиться, поскольку азотная кислота разъедала баки и проводку и оказывала вредное воздействие на человека.

Однако все работы были прерваны в связи с эвакуацией ОКБ на Урал в поселок Белимбай в октябре 1941 г. Там с целью отладки работы систем ЖРД смонтировали наземный стенд — фюзеляж «БИ» с камерой сгорания, баками и трубопроводами. К весне 1942 г. программа наземных испытаний была завершена. Вскоре с конструкцией самолета и стендовой испытательной установкой ознакомился выпущенный из тюрьмы Глушко.

Летные испытания уникального истребителя поручили капитану Бахчиванджи, который совершил 65 боевых вылетов на фронте и сбил 5 немецких самолетов. Он предварительно освоил управление системами на стенде.

Утро 15 мая 1942 г. навсегда вошло в историю отечественной космонавтики и авиации, взлетом с грунта первого советского самолета с жидкостным реактивным двигателем. Полет, который продолжался 3 мин 9 сек на скорости 400 км/ч и при скороподъемности — 23 м/с, произвел сильное впечатление на всех присутствующих. Вот как об этом вспоминал Болховитинов в 1962 г.: «Для нас, стоявших на земле, этот взлет был необычным. Непривычно быстро набирая скорость, самолет через 10 секунд оторвался от земли и через 30 секунд скрылся из глаз. Только пламя двигателя говорило о том, где он находится. Так прошло несколько минут. Не скрою, у меня затряслись поджилки».

Члены государственной комиссии отметили в официальном акте, что «взлет и полет самолета «БИ-1» с ракетным двигателем, впервые примененным в качестве основного двигателя самолета, доказал возможность практического осуществления полета на новом принципе, что открывает новое направление развития авиации». Летчик-испытатель отмечал, что полет на самолете «БИ» в сравнении с обычными типами самолетов исключительно приятен, а по легкости управления самолет превосходит другие истребители.

Через день после испытаний в Билимбае была устроена торжественная встреча и митинг. Над столом президиума висел плакат: «Привет капитану Бахчиванджи, летчику, совершившему полет в новое!».

Вскоре последовало решение ГКО о постройке серии из 20 самолетов «БИ- ВС», где в дополнение к двум пушкам перед кабиной летчика устанавливалась бомбовая кассета, в которой размещалось десять мелких противосамолетных бомб массой по 2,5 кг.

Всего на истребителе «БИ» было совершено 7 испытательных полетов, каждый из которых фиксировал лучшие летные показатели самолета. Полеты проходили без летных происшествий, лишь при посадках случались незначительные повреждения шасси.

Но 27 марта 1943 г. при разгоне до скорости 800 км/ч на высоте 2000 м третий опытный экземпляр самопроизвольно перешел в пикирование и врезался в землю неподалеку от аэродрома. Комиссия, расследовавшая обстоятельства катастрофы и гибели летчика-испытателя Бахчиванджи, не смогла установить причины затягивания самолета в пике, отмечая, что еще не изучены явления, происходящие при скоростях полета порядка 800 -1000 км/ч.

Катастрофа больно ударилa по репутации ОКБ Болховитинова — все недостроенные перехватчики «БИ-ВС» были уничтожены. И хотя позднее в 1943-1944 гг. проектировалась модификация «БИ-7» с прямоточными воздушно-реактивными двигателями на концах крыла, а в январе 1945 г. летчик Б. Н. Кудрин выполнил последние два полета на «БИ-1», все работы по самолету были прекращены.

И все-таки ЖРД

Наиболее успешно была реализована концепция ракетного истребителя в Германии, где с января 1939 г. в специальном «Отделе L» фирмы «Мессершмитт», куда из немецкого планерного института перешел профессор А. Липпиш со своими сотрудниками, шла работа над «проектом Х» — «объектовым» перехватчиком «Me-163» «Комет» с ЖРД, работающим на смеси гидразина, метанола и воды. Это был самолет нетрадиционной «безхвостой» схемы, который ради максимального снижения веса взлетал со специальной тележки, а садился на выдвигаемую из фюзеляжа лыжу. Первый полет на максимальной тяге летчик-испытатель Дитмар выполнил в августе 1941 г., а уже в октябре на нем впервые в истории была преодолена отметка в 1000 км/ч. Потребовалось более двух лет испытаний и доводки, прежде чем «Ме-163» был запущен в серию. Он стал первым самолетом с ЖРД, участвовавшим в боях с мая 1944 г. И хотя до февраля 1945 г. было выпущено более 300 перехватчиков, в строю находилось не более 80 боеготовых самолетов.

Боевое применение истребителей «Ме-163» показало несостоятельность концепции ракетного перехватчика. Из-за большой скорости сближения немецкие пилоты не успевали точно прицелиться, а ограниченный запас топлива (только на 8 минут полета) не давал возможности для второй атаки. После выработки топлива на планировании перехватчики становились легкой добычей американских истребителей — «Мустангов» и «Тандерболтов». До окончания боевых действий в Европе «Ме-163» сбили 9 самолетов противника, потеряв при этом 14 машин. Однако потери от аварий и катастроф в три раза превышали боевые. Ненадежность и малый радиус действия «Ме-163» способствовали тому, что руководством люфтваффе были запущены в серийное производство другие реактивные истребители «Ме- 262» и «Не-162».

Руководство советской же авиапромышленности в 1941-1943 гг. было сосредоточено на валовом выпуске максимального количества боевых самолетов и улучшении серийных образцов и не было заинтересовано в развитии перспективных работ по реактивной технике. Таким образом, катастрофа «БИ-1» поставила крест и на других проектах советских ракетных перехватчиков: «302» Андрея Костикова, «Р-114» Роберто Бартини и «РП» Королева. Здесь сыграло свою роль то недоверие, которое заместитель Сталина по опытному самолетостроению Яковлев испытывал к реактивной технике, считая ее делом еще очень далекого будущего.

Но сведения из Германии и стран союзников стали причиной того, что в феврале 1944 г. Государственный комитет обороны в своем постановлении указал на нетерпимое положение с развитием реактивной техники в стране. При этом все разработки в этом отношении сосредоточивались теперь во вновь организованном НИИ реактивной авиации, заместителем начальника которого был назначен Болховитинов. В этом институте были собраны ранее работавшие на различных предприятиях группы конструкторов реактивных двигателей во главе с М М. Бондарюком, В. П. Глушко, Л. С. Душкиным, А. М. Исаевым, A. M. Люлькой.

В мае 1944 г. ГКО принял еще одно постановление, наметившее широкую программу строительства реактивной авиационной техники. Этим документом предусматривалось создание модификаций Як-3, Ла-7 и Су-6 с ускорительным ЖРД, постройка «чисто ракетных» самолетов в ОКБ Яковлева и Поликарпова, экспериментального самолета Лавочкина с ТРД, а также истребителей с воздушно-реактивными моторокомпрессорными двигателями в ОКБ Микояна и Сухого. Для этого в конструкторском бюро Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный Глушко.

Полеты на «Су-7» начались в 1945 г. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч, но испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя. Похожая ситуация сложилась в конструкторских бюро Лавочкина и Яковлева. На одном из опытных самолетов «Ла-7 Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. При испытании же «Як-3 РД» летчик-испытатель Виктор Расторгуев сумел достичь скорости в 782 км/ч, но при выполнении полета самолет взорвался, пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были остановлены.

Свой вклад внес в эту работу и освобожденный из заключения Королев. В 1945 г. за участие в разработке и испытании ракетных установок для боевых самолетов «Пе-2» и «Ла-5 ВИ» он был награжден орденом «Знак Почета».

Одним из самых интересных проектов перехватчиков с ракетным двигателем стал проект сверхзвукового (!!!) истребителя «РМ-1» или «САМ-29», разработанного в конце 1944 г. незаслуженно забытым авиаконструктором А. С. Москалевым. Самолет выполнялся по схеме «летающее крыло» треугольной формы с овальными передними кромками, и при его разработке использовался предвоенный опыт создания самолетов «Сигма» и «Стрела». Проект «РМ-1» должен был иметь следующие характеристики: экипаж — 1 человек, силовая установка — «РД2 МЗВ» с тягой 1590 кгс, размах крыла — 8,1 м и его площадь — 28,0 м2, взлетный вес — 1600 кг, максимальная скорость — 2200 км/ч (и это в 1945 г.!). В ЦАГИ считали, что строительство и летные испытания «РМ- 1» — одно из наиболее перспективных направлений в будущем развитии советской авиации.

В ноябре 1945 г. приказ о постройке «РМ-1» был подписан министром А. И. Шахуриным, но… в январе 1946 г. было запущено печально знаменитое «авиационное дело», и Шахурин был осужден, а приказ о строительстве «РМ-1» отменен Яковлевым…

Послевоенное знакомство с немецкими трофеями вскрыло значительное отставание в развитии отечественного реактивного самолетостроения. Чтобы сократить разрыв, было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20».

В 1945 г. одновременно с заданием построить истребитель «МиГ-9» с двумя « РД-20» перед ОКБ Микояна была поставлена задача разработать экспериментальный истребитель-перехватчик с ЖРД «РД-2 М-3 В» и скоростью 1000 км/ч. Самолет, получивший обозначение И-270 («Ж»), вскоре был построен, но его дальнейшие испытания не показали преимущества ракетного истребителя перед самолетом с ТРД, и работы по этой теме закрыли. В дальнейшем жидкостные реактивные двигатели в авиации стали применятся только лишь на опытных и экспериментальных самолетах или в качестве авиационных ускорителей.

Они были первыми

«…Страшно вспомнить, как мало я тогда знал и понимал. Сегодня говорят: «открыватели», «первопроходцы». А мы в потемках шли и набивали здоровенные шишки. Ни специальной литературы, ни методики, ни налаженного эксперимента. Каменный век реактивной авиации. Были мы оба законченные лопухи!..» — так вспоминал о создании «БИ-1» Алексей Исаев. Да, действительно, из-за своего колоссального расхода топлива самолеты с жидкостно-ракетными двигателями не прижились в авиации, навсегда уступив место турбореактивным. Но сделав свои первые шаги в авиации, ЖРД прочно заняли свое место в ракетостроении.

В СССР в годы войны в этом отношении прорывом стало создание истребителя «БИ-1», и здесь особая заслуга Болховитинова, который взял под свое крыло и сумел привлечь к работе таких будущих светил советского ракетостроения и космонавтики, как: Василий Мишин, первый заместитель главного конструктора Королева, Николай Пилюгин, Борис Черток — главные конструкторы систем управления многих боевых ракет и носителей, Константин Бушуев — руководитель проекта «Союз» — «Аполлон», Александр Березняк — конструктор крылатых ракет, Алексей Исаев — разработчик ЖРД для ракет подводных лодок и космических аппаратов, Архип Люлька — автор и первый разработчик отечественных турбореактивных двигателей…

Получила разгадку и тайна гибели Бахчиванджи. В 1943 г. в ЦАГИ в эксплуатацию была пущена аэродинамическая труба больших скоростей Т-106. В ней сразу же начали проводить широкие исследования моделей самолетов и их элементов при больших дозвуковых скоростях. Была испытана и модель самолета «БИ» для выявления причин катастрофы. По результатам испытаний стало ясно, что «БИ» разбился из-за особенностей обтекания прямого крыла и оперения на околозвуковых скоростях и возникающего при этом явления затягивания самолета в пикирование, преодолеть которое летчик не мог. Катастрофа 27 марта 1943 г. «БИ-1» стала первой, которая позволила советским авиаконструкторам решить проблему «волнового кризиса» путем установки стреловидного крыла на истребителе «МиГ-15». Спустя 30 лет в 1973 г. Бахчиванджи был посмертно удостоен звания Героя Советского Союза. Юрий Гагарин так отозвался о нем:

«…Без полетов Григория Бахчиванджи возможно бы не было и 12 апреля 1961 г. ». Кто мог знать, что ровно через 25 лет, 27 марта 1968 года, как и Бахчиванджи в возрасте 34 лет, Гагарин тоже погибнет в авиакатастрофе. Их действительно объединило главное — они были первыми.

Евгений Музруков

Сверхзвуковые

Военные

A-5 «Виджилент» (North American A-5 Vigilante) — единственный в истории авиации сверхзвуковой палубный бомбардировщик.

Як-141 (прототип) и F-35 Lightning II — сверхзвуковые палубные истребители.

Гражданские

Ту-144ЛЛ в полёте

За всю историю авиации было создано только два сверхзвуковых пассажирских авиалайнера.

  • СССР — Ту-144, первый полёт 31 декабря 1968, начало перевозок пассажиров 1 ноября 1977, 1 июня 1978 снят с эксплуатации после очередной катастрофы. Построено 16 шт., в перевозках пассажиров участвовали 2, совершено 55 рейсов, перевезено 3194 пассажира. Во всех рейсах командирами экипажа были лётчики-испытатели ОКБ Туполева.
  • Великобритания, Франция — Aérospatiale-BAC Concorde, первый полёт 2 марта 1969, начало эксплуатации 21 января 1976, выведен из эксплуатации 26 ноября 2003. Построено 20 машин, активно эксплуатировалось 14, перевезено более 3 млн пассажиров, средний налёт — 17 417 часов. Один потерян в катастрофе 25 июля 2000 года, имел налёт 11 989 часов при наибольшем из всех самолётов — 23 397 (заводской № 210, регистрация G-BOAD, находится в Intrepid Sea-Air-Space Museum (англ.)).

Описание конструкции истребителя МиГ-9

МиГ-9 — это цельнометаллический одноместный истребитель, оснащенный двумя турбореактивными двигателями. Он выполнен по классической схеме со среднерасположенным крылом и трехопорным убирающимся шасси.

Самолет имеет фюзеляж типа полумонокок с гладкой работающей обшивкой. В его носовой части находится воздухозаборник, который разделяется на два туннеля, каждый из которых подает воздух к одному из двигателей. Каналы имеют эллиптическое сечение, они проходят по боковым частям фюзеляжа, обходя кабину пилота с двух сторон.

Крыло самолета трапециевидной формы с закрылками и элеронами.

Хвостовое оперение МиГ-9 цельнометаллическое с высокорасположенным стабилизатором.

Кабина пилота находится в передней части фюзеляжа, она закрыта фонарем обтекаемой формы, состоящим из двух частей. Передняя часть, козырек, закреплена неподвижно, а задняя часть сдвигается назад по трем направляющим. На поздних модификациях машины козырек выполнен из броневого стекла. Кроме того, для защиты пилота на машине установлена передняя и задняя броневые плиты, их толщина составляет 12 мм.

МиГ-9 имеет трехстоечное убирающееся шасси с передним колесом. Система выпуска шасси — пневматическая.

Истребитель оснащался силовой установкой, состоящей из двух ТРД РД-20, которые являлись ничем иным, как копией немецких трофейных двигателей БМВ-003. Каждый из них мог развивать тягу в 800 кгс. Двигатели первой серии (А-1) имели ресурс всего лишь 10 часов, ресурс серии А-2 был увеличен до 50 часов, а моторы РД-20Б могли работать по 75 часов. Силовая установка МиГ-9 запускалась с помощью пусковых моторов «Ридель».

Двигатели устанавливались в реданной части фюзеляжа, сопла имели регулировку, их можно было ставить в четыре положения: «старт», «взлет», «полет» или «скоростной полет». Управление конусом сопловых аппаратов было электродистанционным.

Чтобы уберечь корпус от раскаленных газов, на нижней стороне хвостовой части был установлен специальный термоэкран, который представлял собой гофрированный лист жароупорной стали.

Топливо размещалось в десяти баках, расположенных в крыльях и фюзеляже. Их общий объем составлял 1595 литров. Топливные баки соединялись между собой, чтобы обеспечивать равномерное использование топлива, это позволяло сохранять центровку самолета во время полета.

На МиГ-9 был установлена радиостанция РСИ-6, радиополукомпас РПКО-10М, а также кислородный аппарат КП-14. Электропитание самолет получал от трофейного генератора LR-2000, который позже был заменен отечественным ГСК-1300.

Вооружение истребителя состояло из одной 37-мм пушки Н-37 с боекомплектом в сорок снарядов и двумя 23-мм пушками НС-23 с боекомплектом в 40 снарядов. Первоначально самолет планировали оснастить более мощной, 57-мм, пушкой Н-57, но впоследствии от этой идеи отказались.

Одной из основных проблем истребителя было попадание пороховых газов в двигатели, так как пушка Н-37 была установлена на перегородке между двумя воздухозаборники. На поздних модификациях самолета на Н-37 стали устанавливать газоотводные трубки. Машины, выпущенные ранее, оборудовались ими уже в строевых частях.

На первых МиГ-9 стоял коллиматорный прицел, позже он был заменен автоматическим стрелковым прицелом.

Основные типы в настоящее время

СССР/Россия

  • Ту-154. Пассажирский, 1968/1972, построено 935 (потеряно 69), завершение производства планируется в 2010, находится в стадии вывода из эксплуатации по причине низкой топливной эффективности и высокого шума, по ресурсу возможна эксплуатация до 2015-16 гг, в Аэрофлоте выведен 21 декабря 2009, после 38 лет службы.
  • Ил-76. Грузовой, военно-транспортный, 1971/1974, построено 960 (потерян 61, из них 13 уничтожены в боевых действиях), производится в настоящее время, проектируются обновлённые варианты. До 60 тонн груза, до 245 солдат (разные модификации).
  • Су-25. Штурмовик, 1975/1981, 1320 шт., планируется эксплуатация до 2020 года и дальнейшее производство.
  • Су-27. Истребитель многоцелевой, 4-го поколения. 1977/1984, построено около 600 базового типа, модификация Су-30 270 шт.[ 2956 дней
    ]
  • Aero L-39 Albatros. Основной учебный самолёт стран Варшавского договора, Чехословакия, 1968/1972, производился до 1999, построено 2868 шт.

Страны Запада

  • Boeing 737. Среднемагистральный пассажирский самолёт. Принят в эксплуатацию в 1968 году, построено 6285 шт., производится в настоящее время.

Принцип работы реактивного двигателя

Рис. 1. Схема турбореактивного (реактивного) двигателя. 1 — вход воздуха; 2 — компрессор; 3 — камера сгорания; 4 — сопло; 5 — турбина.

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи — первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700°С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы — продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя — через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса — воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД — , рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Как работает реактивный двигатель

Рисунок 3 — Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый — конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

В сознании большого количества людей, так или иначе связанных с авиацией общего назначения, такое понятие как «личный самолет» некоторое время было неразрывно связано с легкими одно- или двухмоторными винтовыми самолетами, которые оснащались турбовинтовыми или поршневыми двигателями. До самого последнего времени реактивные самолеты представлялись слишком дорогими и неэкономичными для клиентов, которые могли позволить себе такой вид транспорта. В этом нет ничего странного, так как даже дешевые самолеты с реактивными двигателями стоили по несколько миллионов долларов, а их мощные двигатели потребляли большое количество топлива, в сравнении с поршневыми аналогами. Поэтому попытки создания маленького реактивного самолета для частного использования долгие годы заканчивались ничем.

Однако сегодня есть все основания полагать, что в бизнес-авиации в ближайшее время произойдут существенные изменения: грядет эра одномоторных и двухмоторных реактивных самолетов. При этом речь идет не только о реактивных самолетах бизнес-класса, которые рассчитаны на перевозку 4-8 пассжирова, но о машинах, которые подобны спорткарам. То есть обычным 2-4 местным реактивным самолетам, которые уже ни в чем не уступают своим собратьям с поршневыми двигателями.

При этом естественно гражданские реактивные самолеты бизнес-класса, такие как ECLIPSE 500, CITATION MUSTANG, ADAM 700 и Embraer PHENOM 100 имеют больше перспектив на рынке, так как позволяют с комфортом переместить небольшую компанию куда угодно. По мнению экспертов в ближайшие 10 лет в мире будет реализовано порядка 4300-5400 «карманных» реактивных самолетов, а это уже вполне внушительная цифра. При этом появляется спрос не только на стандартные бизнес-джеты, но и на совершенно новые машины супер-легкие бизнес-джеты или даже своеобразные воздушные такси.

У таких самолетов даже появилось специально обозначение VLG – Very Light Jet. Реактивные самолеты начального уровня или личные реактивные самолеты, ранее такие самолеты часто называли микроджетами. Максимальная пассажировместимость таких машин не превышает 4-8 человек, а максимальная масса не превышает 4 540 кг. Такие самолеты легче, чем те модели, которые обычно называются бизнес-джетами и предназначены для управления 1 пилотом. Примерами таких машин являются уже упомянутые выше модели.

Ультралегкий реактивный самолет представляет собой совершенно новую концепцию, и все большее количество экспертов по всему миру приходят к выводу, что появление таких самолетов может произвести в сегменте бизнес-авиации настоящую революцию. Компании Honeywell и Rolls-Royce вовремя учли данный фактор при составлении своих достаточно серьезных годовых прогнозов по оценке рыночной ситуации. Ситуация на рынке меняется уже в настоящее время. Широкое использование при создании самолетов композитных материалов, миниатюризация реактивных двигателей, появление новых авиационных электронных систем все это, начиная с конца 1990-х годов двигает рынок подобных самолетов вперед.

В настоящее время владельцы самолетов, оснащенных поршневыми двигателями, часть из которых была спроектирована и построена еще в послевоенный период, начинает задумываться о покупке современных реактивных самолетов. Огромный интерес аудитории привел к появлению большого количества самых разнообразных проектов и разработок. К сожалению, большая их часть так навсегда и останется концептами и проектами, которые даже не дошли до стадии прототипа.

Embraer PHENOM 100

Первой компанией, которой удалось преодолеть весь процесс разработки и представить на свет готовый самолет, стала бразильская компания Eclipse Aviation. Именно эта авиастроительная компания вошла в гражданской авиации, первой получив сертификат на «карманный» реактивный самолет. Бразильское авиастроительное объединение вышло на рынок со своей моделью Embraer PHENOM 100, спрос на который превзошел все ожидания, что стало одним из предвестников грядущей коммерческой революции.

В настоящее время перспектива приобрести на рынке собственный реактивный самолет за условные 500 000 долларов оставляет равнодушными большое количество профессионалов от авиации, но те люди, которые любят и всю жизнь мечтали летать – а именно они и являются основными покупателями таких необычных средств передвижения – просто не могли поверить своему счастью. И хотя реальная стоимость бразильского первенца преодолела 1 миллион долларов (продажи стартовали с цен в 1,3 млн. долларов), он остается не просто конкурентоспособным, а просто уникальным предложением, обладающим невероятно низкой ценой. Приобрести такой самолет, с такими летными характеристиками в недавнем прошлом было просто нереально. При этом все авиапредприятия, которые трудятся в этом сегменте, стараются сделать все возможное, чтобы цены на их продукцию не превышали психологически важной отметки в 1 млн. долларов.

Увлечение Very Light Jet привело даже к довольно смелым проектам, таким как трансформация учебно-боевого самолета в гражданский ультралегкий реактивный самолет. Нетрудно представить, если бы самый современный российский учебно-тренировочный самолет Як-130 неожиданно стал доступен и для гражданских заказчиков. На него обязательно образовался бы спрос. Нашлись бы свои доморощенные «Абрамовичи» (да и не свои), которые захотели бы приобрести нечто отдаленно, но напоминающее боевую машину. Такая возможность чуть было не была реализована компанией Aviation Technology Group (ATG).

Учебно-тренировочный самолет, который разрабатывала компания ATG, получил название ATG Javelin и достаточно серьезно отличался от своих традиционных представителей. От перспективных моделей УТС он, прежде всего, отличался своей очень малой массой – не более 2 900 кг, что, к примеру, в 2,3 раза меньше, чем у российского учебно-тренировочного самолета Як-130 в аналогичном варианте комплектации. При этом американский ATG Javelin представлял собой двухдвигательным самолётом, обладающий полной электронной начинкой, которая позволяла ему (как утверждалось) достаточно эффективно готовить пилотов как гражданских авиалайнеров, так и новейших истребителей 5-го поколения.

В его бортовую электронику было «зашито» огромное количество различных сценариев возможных воздушных боев, а также имитация работы систем самообороны и бортового вооружения, возможности анализа действий летчика и планирования боевых вылетов. По словам представителей компании ATG реализация всего этого на практике позволяла с успехом использовать ATG Javelin не только для основной и первоначальной подготовки летчиков, но и повышения квалификации военных пилотов, которые после этого могли бы перейти на управление такими машинами, как Eurofighter, Су-30 или Rafale.

По своей конструкции УТС ATG Javelin был похож на истребитель с легким и прочным планером, который производился с широким использованием композиционных материалов. Члены экипажа находились в кабине тандемно под специальным двухсекционным фонарем кабины. Машина отличалась низким расположением свободнонесущего крыла со стреловидной передней кромкой. Стреловидное горизонтальное оперение, 2 киля, 2 подфюзеляжных гребня были наклонены наружу на 20°. Шасси самолета было трехстоечным, носовая опора оснащалась гидравлическим приводом. Двигатели были смонтированы за кабиной пилотов, воздух к ним подходил через боковые воздухозаборники. Плоские выхлопные сопла были расположены между килями.

Первоначально данный самолет разрабатывался и проектировался именно как учебно-тренировочный, но впоследствии он все чаще начинал позиционироваться как воздушное такси или даже легкое бизнес-джет решение. Для того чтобы без ограничений совершать полеты по гражданским воздушным трассам, ATG Javelin предполагалось оборудовать комплектом аппаратуры, подобной той, что используется на пассажирских самолетах, включая аппаратуру предупреждения столкновений в воздухе и с землей, системы для полетов с сокращенными интервалами вертикального эшелонирования, вычислительную систему самолетовождения. Читая подобные заявления со стороны разработчиков, оставалось только думать о том, как они собираются уместить все это оборудование в заявленную массу самолета, которая не превышала 3 тонн.

Также создатели машины надеялись пройти сертификацию по нормам FAR-23. Первый полет, единственный построенный экземпляр ATG Javelin выполнил 30 сентября 2005 года. Несмотря на тот факт, что компания получила 150 твердых заказов на свое детище, компания ATG так и не смогла найти того стратегического партнера, который бы позволил запустить новинку в серийное производство. В 2008 году фирма объявила себя банкротам, а разработка и испытания ATG Javelin были остановлены. Так любители легкой авиации лишились возможность получить в свои руки практически учебно-боевой самолет, обладающей завидной, практически сверхзвуковой скоростью. Максимальная скорость ATG Javelin составляла 975 км/ч.

Источники информации:
-http://luxury-info.ru/avia/airplanes/articles/karmannie-samoleti.html
-http://pkk-avia.livejournal.com/41955.html
-http://www.dogswar.ru/oryjeinaia-ekzotika/aviaciia/6194-ychebno-boevoi-samol.html

МиГ-9 – это советский реактивный истребитель, разработанный сразу после окончания войны. Он стал первым реактивным истребителем, сделанным в СССР. Истребитель МиГ-9 серийно выпускался с 1946 по 1948 год, за это время было произведено более шестисот боевых машин.

Исследователи истории авиации часто называют МиГ-9 и другие советские боевые машины (Як-15 и Як-17), созданные в этот период, «переходным типом истребителя». Эти самолеты были оснащены реактивной силовой установкой, но в то же время они имели планер, сходный с поршневыми машинами.

Истребители МиГ-9 стояли на вооружении отечественных ВВС недолго: в начале 50-х годов они были сняты с эксплуатации. В 1950-1951 годах почти четыреста истребителей были переданы военно-воздушным силам Китая. Китайцы использовали их в основном в качестве учебных самолетов: пилоты учились на них эксплуатировать реактивные самолеты.

МиГ-9 нельзя назвать слишком удачной машиной: с момента начала испытаний его преследовали катастрофы, конструкторам то и дело приходилось исправлять дефекты, появляющиеся во время эксплуатации. Однако не следует забывать, что МиГ-9 был первым реактивным истребителем, он создавался и передавался в войска в крайне сжатые сроки. На момент начала работ по созданию этой машины в СССР даже не существовало двигателя, который мог развивать необходимую для реактивного полета тягу.

На смену «проблемному» МиГ-9 вскоре пришел МиГ-15 , который и наши, и зарубежные эксперты называют одним из лучших истребителей этого периода. Добиться такого успеха конструкторы смогли только благодаря опыту, полученному во время создания МиГ-9.

Появление у Советского Союза большого количества реактивных истребителей вызвало удивление на Западе. Там многие не верили, что страна, разоренная войной, в кратчайшие сроки сможет наладить серийное производство новейшей по тем временам авиационной техники. Появление МиГ-9 и других советских реактивных самолетов имело серьезное политическое значение. Хотя, конечно, на Западе не имели представления о сложностях и проблемах, с которыми пришлось столкнуться советским авиационным конструкторам и пилотам, а также о том, чего стоило разрушенной стране создавать новые виды вооружения .

История создания первого реактивного самолета СССР

Уже в конце Второй мировой войны стало понятно, что будущее авиации за реактивными самолетами. В Советском Союзе начались работы в этом направлении, они пошли гораздо быстрее после ознакомления с трофейными немецкими разработками. В конце войны СССР смог заполучить не только неповрежденные немецкие самолеты и реактивные двигатели, но и захватить немецкие предприятия, где они выпускались.

Задание на создание реактивного истребителя одновременно получили четыре ведущих авиационных конструкторских бюро страны: Микояна, Лавочкина, Яковлева и Сухого. Основной проблемой являлось то, что на тот момент в СССР не было собственного реактивного авиационного двигателя, его еще предстояло создать.

А между тем время поджимало: вероятные противники — США, Англия и Германия — уже имели налаженное серийное производство реактивных самолетов и активно эксплуатировали эту технику.

На первых советских реактивных истребителях использовались трофейные немецкие двигатели BMW-003A и ЮМО-004.

В ОКБ Микояна работали над созданием двух истребителей, которые на стадии проекта имели обозначения И-260 и И-300. На обеих машинах планировали использовать двигатель BMW-003A. Работы над созданием самолета начались в феврале 1945 года.

И-260 копировал немецкий истребитель Me.262, два реактивных двигателя располагались под крыльями самолета. И-300 имел компоновку с силовой установкой внутри фюзеляжа.

Продувки в аэродинамической трубе показали, что компоновка с двигателями внутри фюзеляжа более выигрышная. Поэтому от дальнейших работ по прототипу И-260 решено было отказаться и доделывать И-300, который позже стал первым серийным советским реактивным истребителем под обозначением МиГ-9.

В постройку были заложены три опытные машины для проведения испытания: Ф-1, Ф-2 и Ф-3. Самолет Ф-1 был готов уже к декабрю 1945 года, однако доводка машины затянулась до марта следующего года, и только тогда начались испытания. 24 апреля 1946 года истребитель впервые поднялся в воздух, первый полет прошел нормально.

Уже начальный этап испытаний четко показал огромное превосходство реактивных самолетов над поршневыми: МиГ-9 смог разогнаться до скорости 920 км/ч, достичь потолка 13 км и набрать высоту 5 тыс. метров за 4,5 минуты. Следует сказать, что первоначально самолет планировали вооружить 57-мм автоматической пушкой Н-57, установив ее в перегородке между воздухозаборниками и двумя 37-мм пушками НС-23, расположенными в нижней части фюзеляжа. Однако позже от 57-мм пушки решили отказаться, сочтя ее мощь чрезмерной.

11 июля 1946 года произошла трагедия: во время полета фрагмент, оторвавшийся от крыла, повредил стабилизатор, в результате чего машина потеряла управление и врезалась в землю. Пилот погиб.

Второй опытный самолет Ф-2 был продемонстрирован публике во время авиапарада в Тушино. В августе на Куйбышевском заводе приступили к производству малой серийной партии, состоящей из десяти самолетов. Планировалось, что они примут участие в параде на Красной площади в октябре 1946 года.

В марте 1947 года началось серийное производство истребителя. Однако после выпуска 49 самолетов оно было приостановлено. Машину пришлось срочно переделывать. В течение двух месяцев на МиГ-9 была серьезно модернизирована топливная система, изменена конструкция хвостового обтекателя, увеличена площадь киля, также был выполнен ряд других доработок. После этого серийное производство было возобновлено.

В июне 1947 года были завершены государственные испытания четырех истребителей, двух опытных (Ф-2 и Ф-3) и двух серийных машин. В целом МиГ-9 получил положительные отзывы: по скоростным характеристикам, скороподъемности и высоте полета он существенно превосходил все поршневые самолеты, находящиеся на вооружении советской армии. Невиданной была и огневая мощь машины.

Были и проблемы: при стрельбе из пушек на высоте более 7 тыс. метров глох двигатель. С этим недостатком пытались бороться, но полностью устранить его так и не смогли.

Если сравнивать характеристики МиГ-9 с реактивным истребителем Як-15, который был разработан в это самое время, то микояновская машина проигрывала самолету ОКБ Яковлева в маневренности, но была быстрее в горизонтальном полете и при пикировании.

Новую машину в войсках встретили без особого энтузиазма. Летчики зачастую просто боялись летать на самолете, у которого нет винта. Кроме пилотов, нужно было переучить и технический персонал, причем сделать это нужно было в кратчайшие сроки. Спешка часто приводила к авариям, никак не связанным с техническими особенностями самолета.

Описание конструкции истребителя МиГ-9

МиГ-9 – это цельнометаллический одноместный истребитель, оснащенный двумя турбореактивными двигателями. Он выполнен по классической схеме со среднерасположенным крылом и трехопорным убирающимся шасси.

Самолет имеет фюзеляж типа полумонокок с гладкой работающей обшивкой. В его носовой части находится воздухозаборник, который разделяется на два туннеля, каждый из которых подает воздух к одному из двигателей. Каналы имеют эллиптическое сечение, они проходят по боковым частям фюзеляжа, обходя кабину пилота с двух сторон.

Крыло самолета трапециевидной формы с закрылками и элеронами.

Хвостовое оперение МиГ-9 цельнометаллическое с высокорасположенным стабилизатором.

Кабина пилота находится в передней части фюзеляжа, она закрыта фонарем обтекаемой формы, состоящим из двух частей. Передняя часть, козырек, закреплена неподвижно, а задняя часть сдвигается назад по трем направляющим. На поздних модификациях машины козырек выполнен из броневого стекла. Кроме того, для защиты пилота на машине установлена передняя и задняя броневые плиты, их толщина составляет 12 мм.

МиГ-9 имеет трехстоечное убирающееся шасси с передним колесом. Система выпуска шасси – пневматическая.

Истребитель оснащался силовой установкой, состоящей из двух ТРД РД-20, которые являлись ничем иным, как копией немецких трофейных двигателей БМВ-003. Каждый из них мог развивать тягу в 800 кгс. Двигатели первой серии (А-1) имели ресурс всего лишь 10 часов, ресурс серии А-2 был увеличен до 50 часов, а моторы РД-20Б могли работать по 75 часов. Силовая установка МиГ-9 запускалась с помощью пусковых моторов «Ридель».

Двигатели устанавливались в реданной части фюзеляжа, сопла имели регулировку, их можно было ставить в четыре положения: «старт», «взлет», «полет» или «скоростной полет». Управление конусом сопловых аппаратов было электродистанционным.

Чтобы уберечь корпус от раскаленных газов, на нижней стороне хвостовой части был установлен специальный термоэкран, который представлял собой гофрированный лист жароупорной стали.

Топливо размещалось в десяти баках, расположенных в крыльях и фюзеляже. Их общий объем составлял 1595 литров. Топливные баки соединялись между собой, чтобы обеспечивать равномерное использование топлива, это позволяло сохранять центровку самолета во время полета.

На МиГ-9 был установлена радиостанция РСИ-6, радиополукомпас РПКО-10М, а также кислородный аппарат КП-14. Электропитание самолет получал от трофейного генератора LR-2000, который позже был заменен отечественным ГСК-1300.

Вооружение истребителя состояло из одной 37-мм пушки Н-37 с боекомплектом в сорок снарядов и двумя 23-мм пушками НС-23 с боекомплектом в 40 снарядов. Первоначально самолет планировали оснастить более мощной, 57-мм, пушкой Н-57, но впоследствии от этой идеи отказались.

Одной из основных проблем истребителя было попадание пороховых газов в двигатели, так как пушка Н-37 была установлена на перегородке между двумя воздухозаборники. На поздних модификациях самолета на Н-37 стали устанавливать газоотводные трубки. Машины, выпущенные ранее, оборудовались ими уже в строевых частях.

На первых МиГ-9 стоял коллиматорный прицел, позже он был заменен автоматическим стрелковым прицелом.

Характеристики МиГ-9

Ниже представлены характеристики МиГ-9.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Размах крыла, м 10
Длина, м 9.75
Высота, м 3.225
Площадь крыла, кв. м 18.20
Макс. взлетная масса, кг 4998
Двигатель 2 РД РД-20
Тяга, кгс 2 х 800
Макс. скорость, км,/ч 910

ESA испытало прямоточный ионный двигатель.

Реактивная тяга или как устроен ионный реактивный двигатель Самый мощный ионный двигатель

Ионный двигатель

Ионные двигатели
могут использоваться для широкого спектра задач — от коррекции положения спутников на орбите Земли, до разгона гигантских космических кораблей, направляющихся за пределы нашей Солнечной системы в глубины Млечного Пути. Но что же такое ионный двигатель, и как именно он используется в космосе? Обычные ракетные двигатели сжигают газ, который выпускается из сопла под высоким давлением, что вызывает мощную реактивную тягу, толкающую корабль вперед. У ионного двигателя инертный газ (ксенон, аргон) не сжигают, а ионизируют, а испускаемые им ионы разгоняют до высоких скоростей в сильном электрическом поле. Таким образом, ионы выстреливают из двигателя со скоростью до 150000 км в час.

Применение ионных двигателей

Но, к сожалению, тяга ионных двигателей чрезвычайно мала и сопоставима с давлением, которое оказывает один лист бумаги формата А4 на ладонь человека. Но в невесомой космической среде, где нет никакого трения, ионные двигатели могут быть чрезвычайно эффективными, поскольку эффект от их тяги накапливается со временем. Первый в мире ионный двигатель успешно используется на автоматической межпланетной станции DAWN
, которую НАСА запустило в космос 27 сентября 2007 года для исследования астероида Веста и карликовой планеты Церера. В данный момент космический аппарат DAWN находится в поясе астероидов между и Юпитером.

У него ушло четыре дня на то, чтобы с помощью ионного двигателя разогнаться с нуля до 100 километров в час. Да, это не особо впечатляет, но зато ионные двигатели очень экономные и могут работать десятилетиями. При этом скорость космического корабля, разгоняемого ионным двигателем, постоянно увеличивается и может составлять тысячи километров в секунду через определенное время.

Зачем использовать ионные двигатели?

Этот тип движения дают космическим аппаратам маневренность на орбите Земли. С их помощью можно легко менять расположение спутников, например, для коррекции высоты их орбиты или уклонения от крупного . Кроме этого ионные двигатели значительно дешевле и экономнее ракетных двигателей. Они значительно продлевают срок эксплуатации спутников и сокращают пусковые и эксплуатационных затраты. В данный момент времени, НАСА работает над разработкой сразу двух ионных двигателей нового поколения: Эволюционный ксеноновый Двигатель Next
и кольцевой ионный двигатель
. Эти новые двигатели снизят стоимость космических миссий и продлят время их работы, а также будут обладать более высокой мощностью.

НАСА завершило начатые в июне 2005 году испытания двигательной установки, которая работает на ионизированном газе. Теперь ею можно оснащать космические аппараты, разгоняя их до невиданных ранее скоростей.

Идут испытания ксенонового двигателя нового поколения. (Фото NASA.)

Часто фигурирующие в научной фантастике ионные двигатели применялись на практике ещё в 70-е годы. Тяга в них создаётся за счёт разгона ионизированного газа в электростатическом поле.

Преимуществом подобных ДУ по сравнению с традиционными химическими решениями является высокая эффективность, а именно возможность разогнать аппарат до десятков километров в секунду при малом расходе топлива. Правда, это происходит уже в космическом пространстве при долгой работе ионного двигателя: его стартовая тяга невелика. Поэтому в качестве основной системы, приводящей в движение космический корабль, эту схему начали использовать совсем недавно.

Пионером ионного движения стал американский аппарат Deep Space 1, запущенный в 1998 году. За ним последовали европейский и японский зонды, а последним крупным проектом на сегодня стала автоматическая межпланетная станция Dawn, отправленная НАСА изучать астероид Весту и карликовую планету Цереру.

Ионный двигатель Dawn и стал образцом для создания ксеноновой системы NASA»s Evolutionary Xenon Thruster (NEXT). Разработчики из Исследовательского центра имени Гленна и компании Aerojet смоделировали самые разнообразные миссии, в которых может быть задействована такая ДУ.

С 2005 года NEXT проработал 35,5 тыс. часов, что на 5 тыс. больше предыдущего рекорда. На эксперименты ушло 600 кг ксенона. На основе тестовых моделей инженеры сконструировали двигательную установку из нескольких ионных двигателей, срок службы которых превысит 6 лет, и теперь НАСА остаётся лишь выбрать, в каких миссиях будет удобнее эксплуатировать разработку. Быть может, тут и пригодится космическая программа, предложенная Национальной академией наук США на ближайшую декаду?

Источник: Компьютерра–Онлайн

Ионный двигатель

Ионный двигатель — разновидность электрического ракетного двигателя. Его рабочим телом является ионизированный газ (аргон, ксенон, цезий…).

Принцип действия

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3-4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии. Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка десятых долей ньютона). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в открытом космосе, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Принцип ионного двигателя довольно давно известен и широко представлен в фантастической литературе, компьютерных играх и кинематографе, но для космонавтики стал доступен только в последнее время.
В 1960 году был построен первый функционирующий широко-лучевой (broad-beam) ионный электростатический двигатель (создан в США в NASA Lewis Research Center). В 1964 году — первая успешная суборбитальная демонстрация ионного двигателя (SERT I) тест на выполнимость нейтрализации ионного луча в космосе.

В 1970 году — испытание на длительную работу ртутных ионных электростатических двигателей в космосе (SERT II). С 1970-х годов ионные двигатели на эффекте Холла использовались в СССР в качестве навигационных двигателей (двигатели SPT-60 использовались в 1970-х годах на «Метеорах», SPT-70 на спутниках «Космос» и «Луч» в 1980-х, SPT-100 в ряде спутников в 1990-х).

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя 10 ноября 1998). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003, и японский аппарат Хаябуса, запущенный к астероиду в мае 2003.

Следующим аппаратом NASA, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначается для изучения Весты и Цереры, и несет три двигателя NSTAR, успешно испытанных на Deep Space 1.
Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверх-низкую околоземную орбиту высотой всего около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Перспективы

ЕКА планирует использовать ионный двигатель в меркурианской миссии BepiColombo. Он будет базироваться на двигателе, основанном на Смарт-1, но станет более мощным (запуск намечен на 2011-2012).
NASA ведёт проект «Прометей», для которого разрабатывается мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагается, что такие двигатели в количестве восьми штук смогут разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Статья в Компьютерре
Об использовании ядерных реакторов для ионных двигателей (Мембрана.ру)
BepiColombo на сайте ЕКА
Проект «Прометей» на сайте НАСА
АМС Dawn с ионным двигателем стартовала 25 сентября 2007 г.

Фотонный и ионный двигатели

От фантастики к реальности

ФОТОННЫЙ ДВИГАТЕЛЬ — реактивный двигатель, тяга которого создается за счет истечения квантов электромагнитного излучения или фотонов. Главным преимуществом такого двигателя является максимально-возможная в рамках релятивистской механики скорость истечения, равная скорости света в вакууме. Для ракетного аппарата это единственный широко известный способ достичь сколь-нибудь значительной доли световой скорости при разумных значениях числа Циолковского, характеризующего соотношение масс заправленной и пустой ракеты. Необходимо отметить, однако, что и в этом случае речь идет о числе Z порядка нескольких десятков — сотен, при технически реализованных значениях порядка 10 для многоступенчатых ракет. Главным недостатком фотонного двигателя является низкий КПД цепочки преобразования энергии от первичного источника до струи фотонов. Применение реакции аннигиляции для прямого получения оптических и гамма-квантов не намного снижает остроту проблемы, так как необходимо учитывать потери на хранение антивещества (не говоря о его производстве) и трудности фокусировки получаемого излучения. Кроме того, как более реальные, рассматривались использование в качестве источника фотонов термоядерной плазмы (в том числе и для генерации лазерного излучения) и использование электромагнитных квантов более длинноволнового диапазона («радиодвигатель»). В первом случае остаются пока нерешенными проблемы генерации и подержания в устойчивом состоянии плазмы с необходимыми параметрами. «Радиодвигатель» значительно упрощает задачу фокусировки «реактивной струи», но резко снижает КПД движительного комплекса.

Фотонный двигатель: космический прорыв

Эффект эмиссии пыли под воздействием светового излучения позволит создать интересный и перспективный вид космических движителей для полетов к другим планетам Солнечной системы. Под воздействием света и тепла частицы пыли бросают вызов гравитации и устремляются вверх. Данный эффект, сыгравший не последнюю роль в формировании планет и астероидов, может найти также практическое применение в устройствах для удаления пыли, а также в двигателях марсианских зондов и в создании космического паруса нового типа.
При воздействии на слой пыли красным лазерным излучением наблюдается фонтанирующий выброс частиц, напоминающий извержение крошечного вулкана. Всесторонне изучив это явление, ученые Герхард Вурм (Gerhard Wurm) и Оливер Краус (Oliver Krauss) из университета Мюнстера пришли к выводу, что его возникновение связано с фотофорезом и «парниковым эффектом» в твердом теле, сообщает PhysOrg.
Фотофорез — или движение частиц под воздействием света — базируется на давно известном эффекте, называемом термофорезом, то есть движении частиц под воздействием тепла. В средах с температурными градиентами частицы будут перемещаться из более горячей области в менее горячую. Когда источником тепла служит энергия поглощенного света, такой процесс называется фотофорезом.

Фотонный двигатель — двигатель, тяга которого созда-ется за счет истечения квантов э/магнитного излу-чения или фотонов. Выброс частиц порошка графита (на вставке — «извержение» частиц стеклоуглерода).
Фотонный двигатель — это реальность?

В дополнение к поверхностному температурному градиенту «парниковый эффект» твердого тела также играет роль в извержениях пыли. Парниковый эффект возникает вследствие того, что лазерный луч сильнее всего нагревает частицы пыли, находящиеся немного глубже, чем поверхностные слои (по крайней мере на глубине 100 мкм, что составляет несколько десятков слоев частиц).
Ученые вычислили, что для освобождения одной сферической частицы размером в 1 мкм требуется сила приблизительно равная 10-7 Н. «Мы заметили, что частицы поднимаются в среднем на высоту 5 см, — сообщает д-р Вурм. — Высоту можно увеличить до 10 см, но и это еще не предел. Предел, вероятно, зависит от распределения и размеров частиц, силы их взаимного сцепления и мощности лазерного луча».
При мощности 50 мВт излучение проникает в слой пыли на глубину до нескольких миллиметров. Температура имеет тенденцию уменьшаться с увеличением глубины, но фактически она достигает максимума не у поверхности, а на глубине 100 мкм. Таким образом, создается обратный температурный градиент около поверхности, который и вызывает извержение частиц пыли. В ходе экспериментов было также обнаружено, что в течение нескольких десятков секунд после выключения лазера точка максимального градиента температур смешается глубже за счет быстрого остывания поверхности, что еще больше увеличивает силу фотофореза.
Фотофорез лучше всего наблюдать при низком давлении. Эксперименты проводились при давлении 10 миллибар, что составляет примерно 0,01 нормального атмосферного давления Земли, поэтому действие фотофореза на земную пыль незначительно. Однако на ранних стадиях образования планет и звезд фотофорез при малых давлениях, вероятно, играл значительную роль в возникновении газопылевых дисков, которые в свою очередь привели к формированию астероидов и прочих космических объектов пояса Койпера.
Ученые считают, что в будущем фотофорез может найти практическое применение в условиях разреженной атмосферы Марса. Например, можно использовать данную технологию на автоматических исследовательских станциях для удаления пыли с блоков солнечных элементов и линз оптических приборов. Кроме того, ученые планируют создать солнечный парус, который использовал бы силу фотофореза вместо лучевого давления. Такой парус, напоминающий рыболовную сеть и работающий на основе отрицательного фотофореза, по оценкам физиков, может приводить в движение небольшие зонды. Парус размером 10×10 м способен нести полезный груз массой в несколько десятков килограммов только за счет «пассивного» излучения Солнца.

Ионный двигатель: космический прорыв

ИОННЫЙ ДВИГАТЕЛЬ — в субботу 30.09.2003 с космодрома Куру ракетой-носителем «Ариан 5» была успешно выведена в космическое пространство исследовательская станция европейского космического агентства SMART 1. Спутник создан по заказу ESA (European Space Agency, Европейское космическое агентство) Шведской космической корпорацией при участии почти 30 субподрядчиков из 11 европейских стран и США. Общая стоимость проекта составила 110 млн. евро.
SMART 1 — первая автоматическая станция ESA для исследования Луны. В то же время, это уникальная исследовательская станция нового типа, первая в новой программе ESA под названием Small Missions for Advanced Research in Technology. В ходе выполнения программы запланирована апробация целого ряда новых технологий, например, связь в Ка-диапазоне и лазерная связь, автономная навигация и многое другое.
При достаточно большом количестве аппаратуры, SMART 1 отличается малым весом (370 кг, в том числе научная аппаратура — 19 кг) и компактностью. Со сложенными солнечными батареями он представляет собой прямоугольник размером в метр. Стоимость SMART 1 примерно раз в пять меньше, чем типичной межпланетной станции ESA. Но самая главная особенность нового космического аппарата в том, что впервые в истории космонавтики ионный двигатель будет использован в качестве основного. В планах ESA — еще два аппарата, оснащенных ионной двигательной установкой. Это BepiColombo для исследования Меркурия и Solar Orbiter — для изучения Солнца.
Установленный на SMART 1 ионный двигатель потребляет 1350 Ватт электроэнергии, вырабатываемой солнечными батареями, и развивает тягу в 0,07 Ньютон, что примерно соответствует весу почтовой открытки. Рабочим веществом служит ксенон (запас топлива 82 кг). При этом для выхода на эллиптическую полярную орбиту вокруг Луны станции потребовалось 16 месяцев. Выведение SMART 1 на расчетную орбиту представло собой сложный многоступенчатый процесс, состоящий из этапов.

Строго говоря, ионные двигатели уже устанавливались на космических аппаратах — в последние годы, в частности, на исследовательской станции НАСА Deep Space 1 (DS 1) и на экспериментальном геостационарном спутнике связи ESA Artemis. В последнем случае, благодаря наличию на борту ионных двигателей, удалось спасти казавшийся окончательно утраченным спутник ценой в миллионы долларов.
Нештатная работа верхней ступени ракеты-носителя Ariane 5, выводившей на орбиту спутник Artemis, привела к тому, что орбита Artemis оказалась значительно ниже расчетной. Обычно это приводит к потере спутника. Если он несет в себе угрозу другим космическим аппаратам, его топят (тяжелые аппараты) или «сжигают» в атмосфере. Но Artemis избежал этой печальной участи.
Благодаря экстренно принятым мерам и ценой расходования практически всего запаса химического топлива, имевшегося на борту, спутник удалось перевести на круговую орбиту высотой 31 тыс. км. Но после этого надо было перевести Artemis на расчетную геостационарную (высотой около 36 тыс. км). Тогда и было принято решение воспользоваться четырьмя ионными двигателями, установленными на борту попарно. Они изначально предназначались для управления ориентацией (наклоном) спутника. Что бы осуществить переход вектор тяги двигателей был направлен перпендикулярно плоскости орбиты. Но для спасения аппарата ему необходимо было придать импульс в плоскости орбиты, и таким образом перевести на более высокую геостационарную орбиту. Artemis требовалось повернуть на 90 градусов по отношению к его нормальной ориентации.
Сложнейшая спасательная операция, потребовала выработки «на ходу» новой стратегии действий, новых режимов управления спутником и функционирования бортовой аппаратуры. Потребовалось модифицировать 20% всего бортового программного обеспечения. И все же операция прошла весьма успешно. О ее сложности свидетельствует тот факт, что только для перепрограммирования бортовой системы управления потребовалось подгрузить с Земли модифицированные блоки программного обеспечения общим объемом в 15 тыс. слов. Это была самая масштабная операция по перепрограммированию с Земли телекоммуникационного спутника.
Несмотря на скромную тягу (всего 15 миллиньютон) Artemis стал «карабкаться» на расчетную орбиту, поднимаясь на 15 км в день. Вся спасательная операция заняла 18 месяцев. 31 января 2003 года Artemis оказался именно там, где ему следовало бы оказаться еще полтора года назад. Первая в мире спасательная операция, исход которой целиком зависел от надежности ионных двигателей и слаженных действий людей на Земле, прошла успешно. Спутник, считавшийся безнадежно потерянным, приступил к нормальной работе.

По своей конструкции основной двигатель SMART 1 существенно отличается от двигателей, установленных на DS 1 и на Artemis. В случае с последними двумя аппаратами, для ускорения ионов использовалась решетка с поданным на нее потенциалом (так называемый gridded ion engine). В отличие от них SMART 1 оснащен ионным двигателем Холла, который существенно отличается по своей конструкции. Важным преимуществом двигателей на эффекте Холла является отсутствие решетки, подвергающейся постоянной бомбардировке высокоэнергетичными ионами, вследствие чего происходит ее быстрая деградация. Что касается других характеристик ионных двигателей различной конструкции, то ситуация выглядит не столь очевидной. В общем, двигатели с решеткой позволяют получать больший удельный импульс и расходуют примерно в два раза меньше топлива (рабочего тела), чем двигатели Холла. Однако при этом двигатели Холла позволяют развить большую удельную тягу при одинаковом потреблении электроэнергии. Обе конструкции имеют свои достоинства и недостатки, и выбор предпочтительного варианта зависит в каждом случае от характера задач, стоящих перед аппаратом, и от его энергетических возможностей.

March 9th, 2013

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя
состоит в том, что рабочим телом выступает не сгорающее топливо, как в реактивных двигателях, а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели
и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

В ионизатор подается ксенон
, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50–100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Еще в 2006 году Европейское космическое агентство (European Space Agency) и Австралийский национальный университет (Australian National University) успешно провели испытания нового поколения космических ионных двигателей, достигнув рекордных показателей.

Двигатели, в которых заряженные частицы ускоряются в электрическом поле — давно известны. Они применяются для ориентации, коррекции орбиты на некоторых спутниках и межпланетных аппаратах, а в ряде космических проектов (как уже осуществившихся, так и только задуманных — читайте , и ) — даже в качестве маршевых.

С ними специалисты связывают дальнейшее освоение Солнечной системы. И хотя все разновидности так называемых электроракетных двигателей сильно уступают химическим в максимальной тяге (граммы против килограммов и тонн), зато кардинально превосходят их в экономичности (расходе топлива на каждый грамм тяги за секунду). А эта экономичность (удельный импульс) прямо пропорционально зависит от скорости выбрасываемой реактивной струи.

Так вот, в опытном двигателе, названном «Двухступенчатый с четырьмя решётками» (Dual-Stage 4-Grid — DS4G), построенном по контракту ESA в Австралии, скорость эта достигла рекордных 210 километров в секунду.

Это, к примеру, раз в 60 выше, чем скорость выхлопа у хороших химических двигателей, и в 4-10 раз больше, чем у прежних «ионников».

Как ясно из названия разработки, такая скорость достигнута двухступенчатым процессом разгона ионов при помощи четырёх последовательных решёток (вместо традиционных одной стадии и трёх решёток), а также высоким напряжением — 30 киловольт. Кроме того, расхождение выходного реактивного пучка составило всего 3 градуса, против примерно 15 градусов — у прежних систем.

А вот информация последних дней.

Ионный двигатель (ИД) работает просто: газ из бака (ксенон, аргон и пр.) ионизируется и разгоняется электростатическим полем. Поскольку масса иона мала, а заряд он может получить значительный, ионы вылетают из двигателя со скоростями до 210 км/с. Химические двигатели могут достичь… нет, ни чего-то подобного, а всего лишь в двадцать раз меньшей скорости истечения продуктов сгорания лишь в исключительных случаях. Соответственно, расход газа в сравнении с расходом химического топлива крайне мал.

Именно поэтому на ИД полностью или частично работали и работают такие «дальнобойные» зонды, как Hayabusa , Deep Space One и Dawn . И если вы собираетесь не просто по инерции лететь до далёких небесных тел, но и активно маневрировать близ них, то без таких двигателей не обойтись.

В 2014 году ионные двигатели справляют полувековой юбилей в космосе. Всё это время проблему эрозии не удавалось решить даже в первом приближении. (Здесь и ниже илл. NASA, Wikimedia Commons.)

Как и всё хорошее, ИД любит, чтобы его питали: на один ньютон тяги нужно до 25 кВт энергии. Представим, что нам поручили запустить 100-тонный космический корабль к Плутону (вы уж простите нас за мечтательность!). В идеале даже для Юпитера нам потребуется 1 000 ньютонов тяги и 10 месяцев, а до Нептуна на той же тяге — полтора года. В общем, давайте про Плутоны всё-таки не будем, а то грустно как-то…

Ну а чтобы получить эти пока умозрительные 1 000 ньютонов, нам потребуется 25 мегаватт. В принципе, ничего технически невозможного — 100-тонный корабль мог бы принять атомный реактор. Кстати, в настоящее время НАСА и Министерство энергетики США работают над проектом Fission Surface Power . Правда, речь идёт о базах на Луне и Марсе, а не о кораблях. Но масса реактора не так уж высока — всего пять тонн, при размерах в 3×3×7 м…

Ну ладно, помечтали и хватит, скажете вы, и тут же вспомните частушку, якобы придуманную Львом Толстым во время Крымской войны. В конце концов, такой большой поток ионов, проходящий через двигатель (а это ключевое препятствие), вызовет его эрозию, и значительно быстрее, чем за десять месяцев или полтора года. Причём это не проблема выбора конструкционного материала — благо разрушаться в таких условиях будут и титан, и алмаз, — а неотъемлемая часть конструкции ионного двигателя per se.

Подготовлено по материалам Gizmag . и http://lab-37.com

А вы в курсе что в России активноили например о том, что скоро может появится
Оригинал статьи находится на сайте ИнфоГлаз.рф
Ссылка на статью, с которой сделана эта копия —

Цель работы: изучение истории ионного двигателя, рассмотрение перспектив его использования в ближайшем будущем и проведение расчётов связанных с его применением.

При выполнении работы ставились следующие задачи:
найти, изучить и проанализировать литературу о ионном виде двигателей
составить краткий вводный курс об истории создания, применения, а также принципе работы ионных двигателей
проанализировав результаты осуществлённых космических полётов, провести свои расчёты с целью получения необходимой информации о моделируемом мной полёте
сделать выводы

Была выдвинута гипотеза: ионный двигатель имеет некоторые заметные преимущества перед обычными ракетными двигателями, делающие его использование перспективным.

В работе были использованы следующие методы исследования:
анализ
синтез
моделирование
измерение

Объект исследования: Ионный двигатель

Актуальность темы:

Человек пытается разглядеть и попасть во всё более отдалённые от него
места космоса. И для успешного развития человечества в этой отрасли,
необходимо постоянно улучшать космические аппараты, используя в них
новые технологии, позволяющие оптимизировать расход топлива, увеличить
вместимость и тд. Ионный двигатель является довольно выгодным ввиду
малого расхода топлива, а значит, именно он может в дальнейшем заменить
обычные двигатели и помочь человеку в дальнейшем освоении космоса.

Гипотеза: ионный двигатель имеет некоторые заметные преимущества перед
обычными ракетными двигателями, делающие его использование
перспективным.

Определение

Ионный двигатель — тип электрического ракетного двигателя, принцип
работы, которого основан на создании реактивной тяги на базе
ионизированного газа, разогнанного до высоких скоростей в электрическом
поле.

Принцип работы

Принцип работы двигателя заключается в ионизации газа и его разгоне
электростатическим полем. При этом благодаря высокому отношению заряда
к массе, становится возможным разогнать ионы до очень высоких скоростей. Таким образом, в ионном двигателе можно достичь очень большого удельного импульса, что позволяет значительно уменьшить расход реактивной массы ионизированного газа, но требует больших затрат энергии.
В ионизатор подается ксенон, который сам по себе нейтрален, но при
бомбардировании высокоэнергетическими электронами ионизируется. Таким
образом в камере образуется смесь из положительных ионов и отрицательных
электронов. Для «отфильтровывания» электронов в камеру выводится трубка
с катодными сетками, которая притягивает к себе электроны.
Положительные же ионы притягиваются к системе извлечения, состоящей из
2 или 3 сеток. Между сетками поддерживается большая разница
электростатических потенциалов (+1090 вольт на внутренней против – 225 на
внешней). В результате попадания ионов между сетками, они разгоняются и
выбрасываются в пространство, ускоряя корабль, согласно третьему закону
Ньютона.
Электроны, пойманные в катодную трубку выбрасываются из двигателя под
небольшим углом к соплу и потоку ионов. Это делается для того, чтобы ионы
«нейтрализованные» таким образом не притягивались обратно к кораблю.

История

Принцип ионного двигателя довольно давно известен и широко представлен в фантастической литературе, компьютерных играх и кинематографе, но для космонавтики стал доступен только в последнее время. В 1960 году был построен первый, функционирующий широко-лучевой ионный электростатический двигатель (создан в США в NASA Lewis Research Center). В 1964 году — первая успешная суборбитальная демонстрация ионного двигателя (SERT I), тест на выполнимость нейтрализации ионного луча в космосе. В 1970 году — испытание на длительную работу ртутных ионных электростатических двигателей в космосе (SERT II). С 1970-х годов ионные двигатели на эффекте Холла использовались в СССР в качестве навигационных двигателей (двигатели SPT-60 использовались в 1970-х годах на «Метеорах», SPT-70 на спутниках «Космос» и «Луч» в 1980-х, SPT-100 в ряде спутников в 1990-х). В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя 10 ноября 1998). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003, и японский аппарат Хаябуса, запущенный к астероиду в мае 2003. Следующим аппаратом NASA, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначается для изучения Весты и Цереры, и несет три двигателя NSTAR, успешно испытанных на Deep Space 1. Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверх-низкую околоземную орбиту высотой всего около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Ближайшие космические программы

В ближайшем будущем, ЕКА (Европейское космическое агенство) совместно с JAXA(Японское космическое агенство) и Роскосмосом планирует использовать ионный двигатель в меркурианской миссии BepiColombo(апрель 2018). К планете отправятся две орбитальных станции на одном транспортном модуле Mercury Transfer Module (MTM). BepiColombo будет использовать ионные двигатели, опробованные на модуле Смарт-1.

NASA ведёт проект «Прометей», для которого разрабатывается мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагается, что такие двигатели в количестве восьми штук смогут разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Возможность доставки грузов

Из-за небольшого ускорения, аппараты с ионным двигателем более разумно использовать для межпланетных (или других, на длинные дистанции) перелётов (для чего он уже и не раз использовался).
А если сравнить характеристики обычных и ионного двигателей, на данном помежутке, то выгодность использования второго будет хорошо заметна. Засчёт меньшего количества топлива увеличится полезная масса, уменьшатся денежные расходы на топливо, а сам аппарат доберётся до цели быстрее, развив скорость значительно больше, чем аппараты с другими видами двигателей.

Я провёл свои расчёты, чтобы узнать за какое время аппарат с заданными мной массой и другими техническими характеристиками сможет попасть на Марс, используя ионный двигатель в качестве основного. За основу я взял данные уже называемого мной аппарата Dawn и некоторые данные его полёта.

В качестве двигателя в расчётах я использовал ксеноновый ионный двигатель аппарата Dawn, разработанный на основе образца, испытанного на зонде Deep Space 1 с тягой 30 мН и удельным импульсом 3100 с.

Используя примерную схему полёта и проведения манёвров, я рассчитал, что общая длина траектории равна ~1 млрд км.

Используя данные полёта я узнал, что на перелёт от Земли до Весты одним двигателем было израсходовано ~275 кг ксенона, далее соотнеся длины траекторий полёта на Марс и Весту, я вычислил, что для одного двигателя будет необходимо лишь 100 кг ксенона.

Я решил установить на предполагаемый аппарат 3 двигателя с данными характеристиками, в результате чего масса топлива с небольшим запасом должна будет составлять ~325 кг
Назначемнием данного аппарата я выбрал перевоз грузов с Земли на Марс в один конец. При таких условиях масса грузовика будет состоять из: 325 кг топлива, 250 кг программной аппаратуры, и некоторой массы перевозимого груза. Для примера я взял 600 кг, 1 т и 5т.
По формулам равноускоренного движения я нашёл, что аппарат достигнет цели лишь спустя 3,5 года, 4,5 года и около 10 лет при конечной скорости 17, 13 и 6 км/с, которую необходимо будет уменьшать при приближении к Марсу. В итоге я получил довольно слабый невыгодный результат, однако для 3 двигателей с такой маленькой тягой — этот результат является неплохим. В будущем, я возьму за основу данные более мощных, современных и совершенных ионных двигателей или создам и вычислю характеристики своей модели.

— Работа линейных ускорителей элементарных частиц требует много энергии. Единственная существующая на сегодняшний день технология, позволяющая получить необходимое количество энергии за требуемое время, — это ядерный реактор на борту корабля. Однако в таком случае аппарат перестаёт быть полностью безопасным.

Ионный двигатель ускоряется медленно, поэтому его нельзя использовать для вывода космического корабля на орбиту Земли. Он функционален только для корабля, уже находящегося в космосе.

Подведение итогов

Я считаю, что в настоящее время, ионный двигатель — одно из действительно самых перспективных приспособлений для передвижения в космосе, имеющее целый ряд преимуществ перед прочими видами двигателей.

Учёные уже сейчас снабжают спутники и небольшие космические станции, исследующие другие планеты ионными двигателями как для стабилизации аппаратов в пространстве, так и в роли основного двигателя.

Ввиду своих специфических преимуществ, возможно, в будущем, именно ионный двигатель будет передвигать огромные межпланетные и межгалактические звездолёты со множеством людей на борту.

Заключение

Цели и задачи, поставленные в проекте, выполнены. Я изучил принцип работы ионного двигателя, рассмотрел плюсы и минусы его использования и узнал об основных космических программах с участием данного вида двигателя. В перспективе работу можно усовершенствовать, проведя более точные расчёты и в других возможных сферах использования ионного двигателя, опираясь на другие официальные данные, а также собрать действующую модель ионного двигателя.

Не секрет, что все реактивные двигатели работают за счёт закона сохранения импульса. Именно из него вытекает, что реактивная тяга — это произведение массового расхода на скорость выхода рабочего тела из сопла
.

Эту скорость принято называть удельным импульсом реактивного двигателя. Давайте для примера найдём реактивную тягу при стрельбе из автомата Калашникова, которая является основной составляющей отдачи. Пусть масса пули будет 0,016 кг
, начальная скорость пули 700 м/с
, а скорострельность 10 выстр.
. Тогда отдача F=700∙0,016∙10=112 Н (или 11 кгс)
. Большая отдача, но тут приведена техническая скорострельность 600 выстр./мин. В реальности стрельба ведётся очередями или одиночными и составляет ≈50 выстр./мин.

Выстрел из АК

Вернёмся к реальным реактивным двигателям, в которых вместо пуль обычно используются потоки выходящего с гиперзвуковой скоростью газа. Химические реактивные двигатели являются самыми распространёнными, но не единственными.

В этой статье, с большим предисловием, я хочу рассказать об ионных реактивных двигателях (далее ИРД). ИРД используют в качестве рабочего тела заряженные частицы — ионы. Ионы имеют массу, и если их разогнать электрическим полем, то можно создать реактивную тягу. Это всё в теории, а теперь подробнее. ИРД имеет некоторый запас газа, который ионизируют (т.е. нейтрально-заряженные атомы газа разбивают на отрицательные электроны и положительные ионы) с помощью газового разряда. Далее ионы разгоняются электрическим полем с помощью специальной системы сеток, и эта же система сеток блокирует движение электронов. После того, как положительные ионы вылетели из сопла, их нейтрализуют отрицательными электронами (в результате этого происходит рекомбинация и газ начинает светиться), чтобы ионы не притягивались обратно к двигателю, и тем самым не снижали его тяги.

Почему ксенон?

Обычно в ИРД в качестве рабочего тела используется газ ксенон, так как он имеет наименьшую энергию ионизации среди инертных газов.

Удельный импульс ионных реактивных двигателей достигает 50 км/с, что в 150 раз превышает скорость звука! Увы, но тяга таких двигателей составляет около 0,2 Н. Почему же так? Ведь удельный импульс очень большой. Дело в том, что масса ионов очень маленькая и массовый расход получается небольшим. Для чего тогда такие двигатели нужны, если они ничего не смогут сдвинуть с места? На Земле может быть не смогут, а вот в космосе, где нет сил сопротивления, они достаточно эффективные. Существует такое понятие как полный импульс — произведение тяги на время или произведение удельного импульса на массу топлива
, который у ИРД является достаточно большим.

Решим следующую задачу. Пусть жидкостный ракетный двигатель имеет удельный импульс 5 км/с, а у нашего ИРД он будет 50 км/с. И давайте масса рабочего тела (в ЖРД она равна массе топлива) у обоих двигателей будет 50 кг. Примем массу космического аппарата равной 100 кг.
Найдём по формуле Циолковского конечную скорость аппарата (т.е. когда в нём закончится рабочая масса).

И что получается, если ионный и химический реактивные двигатели будут иметь одинаковую массу топлива, то ИРД сможет разогнать космический аппарат до больших скоростей, нежели химический РД. Правда на ИРД космический аппарат будет разгонятся дольше до конечной скорости, чем на ЖРД. Но в путешествиях к далёким планетам, высокая конечная (разгонная) скорость будет компенсировать этот недостаток.

Схема полёта к Марсу на ИРД

ИРД используются и в наше время. -16 Кл
.

Напряжение — это работа по переносу заряда, т.е. на выходе из сопла ион будет иметь кинетическую энергию равную произведению напряжения на заряд иона. Из кинетической энергии выражаем скорость (удельный импульс). Найдём массовый расход из определения тока, электрический ток — это проходящий заряд во времени. Получается, что массовый расход — это произведение массы иона и тока, делённое на заряд иона. Перемножая удельный импульс и массовый расход, получаем тягу равную 0,1 Н.

Подводя итог, хочу сказать, что существуют плазменные реактивные двигатели, у которых схожее устройство, но которые имеют намного больший массовый расход рабочего тела. Кто знает, может быть уже завтра на таких двигателях человечество будет летать на Марс и Луну.

Самые мощные авиационные двигатели в мире

Когда дело доходит до создания нового самолета, дизайн двигателя стоит на первом месте для любого производителя. Мощные и эффективные двигатели позволяют самолетам преодолевать большие расстояния с меньшим расходом топлива, что является ключевым фактором для авиакомпаний. Итак, какие сегодня самые мощные авиадвигатели и на каких самолетах они стоят?

Как и ожидалось, самые мощные двигатели коммерческих самолетов установлены на широкофюзеляжных самолетах. Самые мощные двигатели также установлены на двухмоторных реактивных самолетах, а не на четырехмоторных, из-за необходимости большей тяги на двухмоторных самолетах. С этим, давайте прыгнем в список!

Будьте в курсе: Подпишитесь на наш ежедневный дайджест авиационных новостей.

Дженерал Электрик GE9X

Текущий лидер на рынке двигателей GE9X. Хотя двигатель еще не находится в коммерческой эксплуатации, он будет установлен на грядущем 777X и уже совершил ряд испытательных полетов. Двигатель основан на конструкции GE90, которая используется на более старых 777.

GE9X может обеспечить максимальную тягу в 134 300 фунтов силы (фунт-сила), что на впечатляющие 5% больше, чем у более старого GE9.0-115В. Использование композитных материалов из углеродного волокна позволило двигателю стать на 10% более экономичным, чем его предшественник, без резкого увеличения размеров.

Двигатели 777X GE9X являются самыми большими из когда-либо устанавливавшихся на самолеты, но при этом обладают высокой эффективностью. Фото: Дэн Невилл через Wikimedia Commons

Хотя на данный момент двигатель сертифицирован только для максимальной тяги в 105 000 фунтов силы, что оставляет возможность для более мощных вариантов 777X в будущем.

Первый GE9X, скорее всего, поступит в эксплуатацию в 2022 году, с годовой задержкой, вызванной текущим спадом, с поставкой первого 777X для Lufthansa. Хотя двигатель действительно столкнулся с некоторыми проблемами во время его разработки, теперь он готов к работе, когда Boeing выкатывает самолеты.

Дженерал Электрик серии GE90

На втором месте находится еще один двигатель GE, GE90, который можно найти в популярной линейке самолетов 777. Двигатель поступил на вооружение в 1995 году на самолете British Airways 777-200. Несколько вариантов GE90 находятся на вооружении. Самыми мощными являются GE90-115B и -110B, которые устанавливаются на 777-300ER и 777-200LR и 777F соответственно.

GE90-115B может предложить впечатляющую максимальную тягу в 127 900 фунтов силы, хотя он сертифицирован на 115 000 фунтов силы (отсюда и название). Повышенная эффективность этих вариантов (по сравнению с GE90-94B) позволил авиакомпаниям запустить новые дальнемагистральные маршруты, такие как Доха — Окленд, и расширить спектр услуг.

Мощность и эффективность GE90 открыли новые маршруты для авиакомпаний и конкурировали с четырехмоторными реактивными самолетами. Фото: Delta Air Lines

На сегодняшний день GE90 остается одним из самых коммерчески успешных широкофюзеляжных двигателей: на этот тип было получено более 2500 заказов. Становясь основой для нового 9X, очевидно, что GE90 стал важным событием в истории двигателей.

Pratt & Whitney PW4000-112

Pratt & Whitney входит в список самых мощных двигателей в мире благодаря своей популярной серии PW4000, которая также используется на A330, 767 и 747, а также была переработана для 777.

PW400-112 предлагал максимальную тягу до 99 000 фунтов силы, однако он остается сертифицированным для 90 000 фунтов силы. Однако распространенность и надежность PW4000 сделали двигатель привлекательным для тех, кто уже использует его на других самолетах.

Доступность и надежность PW4000 сделали его двигатель 777 привлекательным для многих авиакомпаний. Фото: RAF-YYC через Wikimedia Commons

PW4000-112 был модернизирован, чтобы соответствовать Airbus A380, как часть двигателя Engine Alliance GP7000 с GE. Несмотря на то, что сегодня этот двигатель широко распространен, он продолжает использоваться в сотнях различных самолетов по всему миру.

Роллс-Ройс Трент XWB

Следующим в списке идет Rolls-Royce Trent XWB, предназначенный исключительно для популярной модели Airbus A350. На вооружении находятся два варианта этого двигателя, XWB-84 и XWB-97, которые устанавливаются на A350-900 и A350-1000 соответственно. Двигатель поступил на вооружение Qatar Airways в 2015 году на первом A350.

XWB-97 является более мощным из двух вариантов и предлагает максимальную тягу 97 000 фунтов силы, как следует из названия. Trent XWB также считается одним из самых эффективных двигателей, когда-либо созданных, что позволяет A350 запускать новое поколение сверхдальнемагистральных рейсов, таких как Project Sunrise и рейсы Singapore Airlines из Нью-Йорка в Сингапур.

В чем разница между этими двумя типами двигателей? Фото: Том Бун — Simple Flying

XWB-84 с тягой 84 000 фунтов силы, установленный на A350-9.00 используется на сверхдальних маршрутах благодаря своей беспрецедентной топливной экономичности. Ясно, что этот двигатель изменил рынок дальнемагистральных перевозок и будет продолжать совершенствоваться по мере того, как прямые перевозки станут более распространенными.

Роллс-Ройс Трент 800

Trent 800 — это двигатель, предлагаемый компанией Rolls-Royce для Boeing 777. Этот двигатель впервые поступил на вооружение авиакомпании Thai Airways в 1996 году, последней из трех поставщиков двигателей.

Trent 800 отличался впечатляющими 9Максимальная тяга 5000 фунтов силы, что делало его одним из самых мощных двигателей того времени. Rolls-Royce также хвастался, что Trent 800 был самым легким из всех трех вариантов двигателей 777, что повышало эффективность самолета.

Trent 800 занимал внушительную долю рынка 777 с первыми моделями самолетов. Фото: Боинг

Хотя этот тип действительно занимал впечатляющие 40% рынка, RR не предлагал варианты для 777-300ER и -200LR, которые предназначались исключительно для GE. Это означало, что авиакомпания не получила слишком много заказов после того, как новые варианты Боинга 777 поступили в эксплуатацию.

Почетные упоминания

Как вы могли заметить, ряд популярных двигателей, таких как GEnx и Trent 1000, не входят в список самых мощных двигателей. Это связано с тем, что, хотя эти двигатели действительно обеспечивают очень эффективную мощность для 787, они не обладают такой тягой, которую видели другие двигатели. Тем не менее, эти двигатели обеспечивают беспрецедентную эффективность для 787, что является целью самолета.

Точно так же четырехмоторные самолеты также имеют несколько высокоэффективных двигателей, а не двигателей с большей тягой. Самый последний квадроцикл, 747-8, оснащен четырьмя двигателями GEnx, а более старый A380 оснащен четырьмя двигателями GP7000 (с максимальной тягой 74 700 фунтов силы).

Боинг 787-9 — самая популярная из трех моделей, на сегодняшний день было заказано 877 самолетов. Фото: Боинг

Что вы думаете о списке? Какой двигатель вы предпочитаете во время полета? Дайте нам знать об этом в комментариях!

Самые мощные в мире реактивные двигатели и самолеты, которые они приводят • 100 УЗЛОВ

Когда дело доходит до производства новых самолетов, среди прочего, конструкция и технические характеристики двигателей занимают первое место в списке приоритетов. Поскольку мир склоняется к более экологичному и углеродно-нейтральному сценарию, целью большинства производителей двигателей являются энергоэффективные двигатели с более высокой надежностью. Давайте посмотрим на мощные двигатели сегодня и на какие самолеты они устанавливаются:

GE9X

General Electric

GE9X является вариантом своего предшественника GE90 и в настоящее время является самым мощным двигателем для коммерческого авиалайнера. Специально разработанный для B777X, он имеет максимальную тягу 134 500 фунтов, хотя в настоящее время он сертифицирован только для 105 500 фунтов. GE9X имеет диаметр, сравнимый с диаметром фюзеляжа B737. Ожидается, что он будет разработан из углеродно-композитных волокон и будет иметь КПД на 10% больше, чем его предшественник, в основном благодаря высокому коэффициенту двухконтурности 10:1. Ожидается, что после получения сертификата типа FAA 25 сентября 2020 г. двигатель будет введен в эксплуатацию к 2022 г.

-Stage

70074. stage LP

Тип Двойной ротор, осевой поток, высокий обход турбофан
Компрессор 1 Fan, 3-этажный LP, 11-ступенчатая HP
Turbine
BYPASS RATIO 10:1
WEIGHT 21,230 lb (9,630 kg)
THRUST 134,500 lbf
FAN DIAMETER 134 in (340 cm)
RPM LP 2355, HP 9561

VARIANT- 105B1A

GE90

General Electric

Двигатель GE90 был самым большим в мире преемником, пока его не забрал двигатель GE9X. Это было разработано для более старых вариантов семейства B777 — B777-200/300, B777-200LR/300ER. Несмотря на то, что он сертифицирован для 115 000 фунтов силы, он может генерировать тягу до 127 900 фунтов силы. Самыми мощными являются GE90-115B/110B, установленные на B777-300ER и B777-200LR/B777F соответственно.

TYPE Dual rotor, axial flow, high bypass turbofan
COMPRESSOR 1 fan, 4-stage LP, 9-stage HP
TURBINE 2-stage HP, 6-stage LP
КОЭФФИЦИЕНТ БАЙПАСА 9
УСИЛИЕ 127 900 фунтов силы
ДИАМЕТР ВЕНТИЛЯТОРА 128 дюймов (330 см)
Вес 19 316 фунтов (8 762 кг)

VARIANT- -110B1/-113B/-115B

PRATT и Whitne Серия 4000 предлагает тягу от 50 000 до 99 094 фунтов силы.

Эти двухконтурные двухконтурные ТРДД с осевым потоком используются для двигателей Airbus A300-600, A310-300, Boeing B747-400, B767-200/300, а также Macdonell Douglas MD11. PW4000-112 был переработан, чтобы соответствовать Airbus A380, как часть двигателя Engine Alliance GP7000 с GE.

TYPE Two spool high bypass ratio turbofan
COMPRESSOR 1 fan, 7 LP, 11 HP
TURBINE 2 HP, 7 LP
FAN 112 in (284 cm)
THRUST 91,790–99,094  lbf
BYPASS RATIO 5.8-6.4:1
WEIGHT 16,260 lb , 7,375 kg

VARIANT- PW4000-112

ROLLS ROYCE TRENT XWB

rolls royce

Еще один осевой турбовентиляторный двигатель с большой степенью двухконтурности, специально разработанный для двигателей семейства A350. Два варианта XWB-84 и XWB-97 в настоящее время находятся на вооружении и используются для самолетов A350-900 и A350-1000 соответственно. XWB-97, будучи более мощным из двух двигателей, производит огромную тягу в 97 000 фунтов. A350-900, оснащенный двигателем XWB-87, может выполнять рейсы на сверхдальние расстояния благодаря своей беспрецедентной топливной экономичности и безупречной диспетчерской надежности 99,6%.

КОЭФФИЦИЕНТ БАЙПАСА
ТИП Трехвальный, с высокой степенью двухконтурности, осевой поток, турбовентиляторный Трехвальный, с высокой степенью двухконтурности, осевой поток, турбовентиляторный 8-ступенчатый ВД, 6-ступенчатый ВД
ТУРБИНА 1-ступенчатый ВД, 2-ступенчатый ПД, 6-ступенчатый НД 1-ступенчатый ВД, 2-ступенчатый ПД, 6-ступенчатый НД
9,6:1 9.6: 1
Вентилятор 1-й стадию, 3,00 м / 118 ″ диаметр, 22 лезвия, 1-ступенчатая диаметр 3,00 м / 118 ″, 22 лезвия
Trust 844,20077

TRUS кН) 97 000 lbf (431 кН)

ВАРИАНТЫ: -84 / -97

ROLLS ROYCE TRENT 800

Фото предоставлено: curimedia photography

Семейство TRENT7 B77 было предложено Rolls Roy. Со степенью двухконтурности 6,4:1,
является одним из более легких вариантов, представленных на B777 по сравнению с GE9.0 и PW4000 — по версии Rolls Royce. Способен производить 95 000 фунтов стерлингов на максимум, Trent 800 весит (13 400 фунтов), в то время как GE90 составляет 17 400 фунтов, а PW4000-16 260 фунтов

Тип высокий высокий бассейн. КОМПРЕССОР Восьмиступенчатый осевой компрессор ВД, шестиступенчатый осевой компрессор высокого давления
ТУРБИНА Одноступенчатая турбина высокого давления, одноступенчатая турбина среднего давления, пятиступенчатая турбина низкого давления
Тропить 76 580-92,940 фунтов
ОБЪЕДИНЕНИЕ 6,4: 1

ROLLS OLDS ALTRAF

11120120112011201120110112011201110 гг. самые большие лопасти ротора вентилятора, изготовленные из композитов. ULTRAFAN станет крупнейшим в мире авиационным двигателем, топливная эффективность которого составит впечатляющие 25% по сравнению с его предшественниками Trent. Работа уже началась на заводе в Дерби, Великобритания, который также является крупнейшим в мире центром для испытаний двигателей. Эффективность ULTRAFAN поможет улучшить экономику перехода отрасли на более экологичные виды топлива. Фактически, первый испытательный пуск двигателя будет проведен полностью на SAF. (устойчивое авиационное топливо)

Основные технические характеристики включают:

  • Лопасти вентилятора из углеродного титана и композитный корпус, которые снижают вес до 1500 фунтов на самолет.
  • Усовершенствованные компоненты из композита с керамической матрицей (CMC), которые более эффективно работают при высоких температурах турбины давления.
  • Редукторная конструкция, обеспечивающая эффективную мощность для двигателей с большой тягой и большой степенью двухконтурности будущего

Категории: Самолеты, Производители, Последние

Метки: A330, A350 XWB, A380, B777, GE, PRATT AND WHITNEY, ROLLS ROYCE

Прашант Прабхакар

Прашант Прабхакар — заядлый профессионал в области авиации, имеющий степень в области аэрокосмической техники и лицензию диспетчера полетов от DGCA. Ранее Прашант работал техническим директором в ведущих авиакомпаниях. Его интересы связаны с новыми технологиями в авиации, в частности с электронным взлетом и посадкой и устойчивым топливом.

Самый большой в мире реактивный двигатель, объяснение

В конце прошлого месяца Федеральное авиационное управление одобрило самый большой коммерческий реактивный двигатель в мире. Огромные подруливающие устройства, сертифицированные компанией, — это двигатели GE9X, по одному из которых висит под каждым крылом нового широкофюзеляжного самолета Boeing 777x. Этот самолет впервые поднялся в воздух еще в январе и может похвастаться складывающимися законцовками крыльев — когда они складываются для полета, они делают крылья длиннее и, следовательно, более экономичными, а когда они складываются, самолет занимает меньше места. у ворот аэропорта.

Прожорливые четырехмоторные реактивные самолеты, такие как Boeing 747 и Airbus A380, в наши дни явно устарели, а самолеты всего с двумя двигателями представляют собой как настоящее, так и будущее авиаперевозок. Чтобы подтолкнуть большой 777x с места в воздух, Boeing нужны два больших двигателя, которые могут создавать буквально тонны тяги. Вот как они разбиваются, по номерам.

105 000 фунтов

Каждый двигатель может развивать тягу в 105 000 фунтов, что в сумме составляет 210 000 фунтов. (Двигатель даже достиг рекордной тяги в 134 300 фунтов.) Но Пэт Доннеллан, инженер GE9,В программе двигателей X говорится, что пилотам, вероятно, не нужно будет выкручивать двигатели на полную мощность, чтобы оторваться от земли. На самом деле, максимальная мощность двигателей для взлета известна как «полный взлет», объясняет он, но нет причин делать это, если вам это не нужно. «Вы хотите сохранить как можно больше жизни, а не разорвать двигатель», — говорит он. Он сравнивает это с вождением: в идеале вы не нажимаете на газ, если вам это действительно не нужно. Более типичные взлеты называются «урезанными взлетами», говорит Доннеллан, в которых «они используют правильное количество груза, которое они несут, — количество пассажиров и груза».

Для сравнения: одномоторный F-16 развивает тягу менее 30 000 фунтов, чего вполне достаточно для маленького маневренного самолета.

134 дюйма

Это диаметр вентилятора в передней части двигателя, измеренный от кончика лопасти до кончика лопасти. Этот 11-футовый размах означает, что если бы вы стояли перед двигателем в его переднем кожухе (действие, которое лучше всего делать, когда самолет стоит на земле с выключенным двигателем), у вас было бы достаточно места над головой. Этот вентилятор — звезда шоу, когда дело доходит до создания тяги. «Поскольку 777x был больше, нам нужен был двигатель, который обеспечивал бы уровень тяги, которого хотел разработчик самолета, — говорит Доннеллан, имея в виду Boeing, — но с гораздо более эффективными возможностями».

«Чтобы достичь этого с турбовентиляторным двигателем, — добавляет он, — вам нужно сделать вентилятор больше».

GE испытал двигатель на кастомном 747-400; Это справа. GE Aviation

16 лопастей

Изогнутых лопастей из углеродного волокна, из которых состоит вращающийся вентилятор, стало меньше, чем раньше. Предки двигателя, GE90 и GENX, использовали 22 или 18 лопастей. Эти новые могут производить большую подъемную силу, и это из-за конструктивных изменений. «У него более широкая хорда — от передней кромки до задней кромки», — говорит он. («Хорда» — это общепринятый термин измерения крыла.) «У него немного больше поворота в нужных местах, чтобы создать дополнительную подъемную силу, когда она нам нужна», — добавляет он. Лопасти вентилятора, как крылья, вращаются в двигателях, отмечает он.

2400 градусов

Внутри двигателя становится очень жарко. Внутренности турбовентиляторного двигателя сложны, но основные компоненты включают турбину низкого давления, турбину высокого давления, активную зону и компрессор. Воздух в компрессоре, как вы понимаете, сжимается. «То, что вы пытаетесь сделать, — это сбить воздух до наименьшего количества, наименьшей упаковки, которую вы можете», — говорит Доннеллан. «Теперь у вас есть много энергии в этой маленькой упаковке, а затем вы вкладываете ее в камеру сгорания». Топливо входит в уравнение. «Вы воспламеняете топливо, в результате чего этот небольшой пакет воздуха становится очень большим, очень быстрым, и он проходит через турбину высокого давления». Эта турбина собирает эту энергию, и часть этой энергии затем питает турбину низкого давления, которая приводит в действие вентилятор в передней части.

Самая теплая часть двигателя — турбина высокого давления. «Это прямо за камерой сгорания», — говорит он. Чтобы справиться с этой температурой, которая примерно такая же горячая, как лава, если не горячее, в двигателе используются композитные материалы с керамической матрицей. «Они могут выдерживать гораздо более высокие температуры, чем доступные сегодня металлические сплавы», — добавляет Доннеллан.

16 лопастей вентилятора из углеродного волокна создают тягу. GE Aviation

Более 15 футов

Вентилятор не вращается на открытом воздухе, как пропеллер. Он заключен в рамку. Круглый материал, который вы видите в передней части реактивного двигателя, известен как корпус переднего вентилятора. Одной из целей этого корпуса является то, что он «закрывает» кончики лопастей вентилятора, чтобы обеспечить максимальную эффективность. Кроме того, в случае повреждения двигателя производитель двигателей хочет, чтобы мусор оставался внутри него, а не выбрасывался наружу. По оценкам Доннеллана, размер корпуса вентилятора добавляет около 6 или 8 дюймов к размеру двигателя, а если учесть дополнительную часть Boeing, называемую гондолой, весь двигатель, как сообщается, имеет в поперечнике более 15 футов, статистика, которую подтверждает GE. . Это примерно длина Toyota Corolla.

Может ли что-нибудь превзойти самый большой из когда-либо созданных реактивных двигателей?

Все коммерческие самолеты, разработанные за последние 40 лет, оснащены газотурбинными двигателями. Это либо турбовентиляторные, либо турбовинтовые. В настоящее время, судя по количеству поставок по всему миру, самым продаваемым реактивным двигателем является турбовентиляторный. А среди турбовентиляторных есть модель двигателя, которая в настоящее время носит звание самого большого двигателя в мире. Однако конкурент вполне может узурпировать эту позицию. Здесь AeroTime исследует самый большой из когда-либо созданных коммерческих самолетов.

GE9X

На сегодняшний день самым большим двигателем для коммерческих самолетов, представленным на рынке, является GE9X, который производится американским производителем General Electric.

Двигатель GE9X, который в настоящее время является рекордсменом Гиннеса по самой высокой зарегистрированной тяге, был впервые представлен в апреле 2016 года и получил одобрение Федерального управления гражданской авиации в сентябре 2020 года. Двигатель был разработан для установки в широкофюзеляжный самолет Boeing 777X. Один вариант, Боинг 777-9, совершил свой первый полет в начале 2020 года. 

GE9X был разработан на основе своего предшественника GE90, который используется для двигателей самолетов Boeing 777 и его модификаций, включая 777-200, 777-200ER, 777-300, 777-200LR и 777-300ER. Двигатель славится своими размерами, так как диаметр переднего вентилятора GE9X достигает 340 сантиметров, а его общий диаметр приближается к четырем метрам. По сравнению с GE90, GE9X имеет более крупный вентилятор и более легкую конструкцию. Самая большая модель GE90-115 включает в себя вентилятор диаметром до 330 сантиметров. Измерения GE9X означает, что гигантский двигатель даже шире, чем даже фюзеляж самолета Boeing 737 Classic.

GE9X известен своей тягой. По словам производителя, двигатель способен развивать тягу в 105 000 фунтов, что в сумме составляет 210 000 фунтов. Двигатель Boeing 777X даже достиг тяги в 134 300 фунтов, что является мировым рекордом. Однако некоторые авиаинженеры отвергли вероятность того, что летному экипажу потребуется такая тяга, чтобы оторвать самолет от земли. Между тем, предок GE90-115 способен обеспечить тягу до 115 540 фунтов.

Модель GE9X также известна своими изогнутыми лопастями из углеродного волокна, образующими вращающийся вентилятор. У GE9X 16 лопастей, тогда как у двигателя GE90 их 22. Новая технология позволяет лопастям немного больше закручиваться в нужных местах и ​​обеспечивает таким образом дополнительную подъемную силу GEX9, когда это необходимо.

Двигатель включает в себя турбины низкого и высокого давления, активную зону и компрессор. Но внутренности турбовентиляторных двигателей более сложны. Внутри самой теплой части двигателя (турбины высокого давления) температура может достигать 2400 градусов по Цельсию, что примерно горячо, как лава. Чтобы выдерживать такие высокие температуры, компоненты двигателя изготовлены из керамических материалов. General Electric подсчитала, что GE9X также на 10% экономичнее двигателя, который вдохновил его на разработку.

Но кто победит великана?

Британская инжиниринговая компания Rolls-Royce уже приступила к созданию своего UltraFan, который претендует на звание самого большого двигателя в мире и вполне может победить всех конкурентов на рынке.

В марте 2021 года компания Rolls-Royce объявила о начале производства первого демонстратора UltraFan UF001 на своем предприятии DemoWorks в Дерби, Великобритания. Производитель ожидает, что первый модуль с диаметром вентилятора 355,6 см (140 дюймов) будет готов к концу 2021 года. Rolls-Royce указывает, что ключевые технические особенности UltraFan включают новое ядро ​​Advance 3. архитектура в сочетании с системой сжигания обедненной смеси ALECsys, которая позволяет UltraFan одновременно обеспечивать максимальную эффективность сжигания топлива и низкий уровень выбросов.

Компания Rolls-Royce сосредоточилась на конструкции редуктора, которая должна обеспечить эффективную мощность для двигателей с большой тягой и высокой степенью двухконтурности будущего. При разработке UltraFan производитель также обратил внимание на лопасти вентилятора из углеродно-титанового сплава и композитный корпус. Лопасти вентилятора уменьшают вес двигателя на 1500 фунтов.

Однако, как и в технологии, используемой в GE9X, Rolls-Royce будет использовать компоненты из композита с керамической матрицей (CMC), которые, как ожидается, будут более эффективно работать при температурах турбины высокого давления.

Ожидается, что эти потенциальные двигатели UltraFan будут использоваться как в узкофюзеляжных, так и в широкофюзеляжных самолетах и ​​обеспечат повышение эффективности использования топлива на 25% по сравнению с первым поколением семейства двигателей Trent. Новый двигатель будет работать на 100% экологичном авиационном топливе.

В целях тестирования компания Rolls-Royce построила новый испытательный стенд 80, где инженеры планируют проверить каждую лопасть с помощью технологии реальных тестовых данных, которая собирает данные по более чем 10 000 параметрам и может обнаруживать малейшие вибрации со скоростью до 200 000 выборок в секунду.

Компания Rolls-Royce очень хотела ввести UltraFan в эксплуатацию в 2025 году, но из-за глобальной пандемии компания изменила свои планы, теперь намекая на 2030 год. со временем «Двигатели» стали неотъемлемой частью нашей повседневной жизни. Теперь, будь то автомобиль, мотоцикл, грузовик или даже самолет, без двигателей они просто большая бесполезная металлическая хрень. В отличие от наших автомобилей, двигатели, устанавливаемые на самолеты, специально разработаны и очень сложны.

Знаете ли вы, что первый работающий двигатель внутреннего сгорания, использовавшийся в самолете, был построен во время Первой мировой войны и назывался Гном Омега. В отличие от первых дней, сегодня существует много типов авиационных двигателей, таких как поршневые, двигатели Ванкеля, турбины и паровые двигатели, и это лишь некоторые из них.

Несколько ведущих многонациональных компаний, производящих эти гигантские машины, – General Electric, Rolls Royce Holdings, Pratt & Whitney и некоторые другие. Здесь мы составляем список из 12 самые мощные авиадвигатели  в мире, основанные на нескольких параметрах, таких как тяга, мощность и общая мощность.

12. Серия CFM56-7

Источник изображения: Wikimedia Commons

Тяговооружённость : 3,7:1

дебютировал в 1995 году. С максимальной взлетной тягой (более новая модель) 27 300 фунтов силы, это идеальный двигатель для нового поколения Boeing 737 с лучшей топливной экономичностью и меньшими затратами на техническое обслуживание. Другие основные применения этого двигателя находятся в семействе Boeing KC-135 Stratotanker и Airbus A320.

11. GE TF39

Экипаж осматривает TF-39 на самолете C-5A Galaxy военного авиакрыла

Тяговооружённость : 5,4:1

Американская многонациональная компания General Electric TF39 специально для удовлетворения потребностей Lockheed произвел C-5 Galaxy, один из самых больших и тяжелых военно-транспортных самолетов в мире. Хотя двигатель в настоящее время расформирован, это был первый в истории произведенный турбовентиляторный реактивный двигатель с большой степенью двухконтурности. Это был также первый турбовентиляторный двигатель 19-го века.60-х годов, когда были представлены революционные полутораступенчатые лопасти вентилятора с коэффициентом двухконтурности 8:1.

10. Прогресс Д-18Т

Wikimedia Commons

Тяговооружённость : 5,7:1

Прогресс Д-18Т — турбовентиляторный авиационный двигатель с большой двухконтурностью, специально разработанный для тяжёлых транспортных самолётов . Он был изготовлен Ивченко-Прогресс с учетом потребностей тяжелого самолета. В настоящее время «Прогресс Д-18Т» используется только для стратегических самолетов Ан-124 и Ан-225. Двигатель имеет сухую массу 4100 кг и максимальную тягу 230 кН. Из-за ограниченного использования с 19 года было изготовлено всего 188 единиц этого двигателя.82.

9. General Electric CF-6

Тяговооружённость : 5,08

General Electric CF-6 — одна из самых мощных серий турбовентиляторных двигателей большой двухконтурности, выпускаемых авиацией General Electric. . В настоящее время он используется во многих коммерческих авиалайнерах, включая Airbus (A300, A310, A330), Boeing (747, 767) и McDonnell Douglas. Двигатель оснащен двумя турбинами высокого давления и четырьмя турбинами низкого давления с максимальным значением тяги 274 кН. При этом его длина составляет 4,65 метра, а вес — более 4100 кг.

8. Rolls Royce Trent 700

Wikimedia Commons

Тяговооружённость : 51,35 Н/кг

Rolls Royce Trent 700 — это надежный турбовентиляторный двигатель, который в основном используется в современных самолетах Airbus A330. В конце 1980-х годов, когда были выпущены новые А330 с увеличенным весом, Rolls Royce планировал разработать новый, более мощный и тяжелый двигатель, чтобы соответствовать ему, который они позже назвали Trent 700.

Впервые он поступил на вооружение 19 марта.95 с Cathay Pacific с максимальной тягой до 316 кН. Еще в 2009 году компания выпустила обновленную версию Trent 700, Trent 700EP (улучшенная производительность) с некоторыми необходимыми улучшениями.

7. General Electric GEnx

Wikimedia Commons

Тяговооружённость : 5,15/ 5,56

General Electric GE90 двигатель. Он использует многие функции GE90, включая технологию радикального композитного вентилятора.

Двигатель впервые был использован в коммерческих целях в 2008 году, и в настоящее время он используется в качестве переднего двигателя в самолетах Boeing 747-8 и 787 Dreamliner. Он имеет максимальную тягу до 330 кН и сухую массу 5800 кг. Он также оснащен технологией снижения расхода топлива, которая также помогает снизить шум двигателя.

6. Rolls Royce Trent 1000

Тяговооружённость : 6,1

Созданный на основе предыдущих поколений двигателей Trent, Rolls Royce Trent 1000 был задуман для удовлетворения потребностей Boeing 787 Dreamliner. Еще в 2004 году компания Boeing решила предоставить своим клиентам возможность выбора между двумя двигателями в своей новой серии Dreamliner. В итоге General Electric GEnx и Trent 1000 были доработаны.

Trent 1000 приводил в движение первый Боинг 787 во время его первого испытательного полета, а также во время его первого коммерческого полета. Двигатель имеет сухую массу более 6000 кг при максимальной тяге 265,3–360,4 кН.

Рекомендуется: Лучший истребитель в мире

5. Двигатель Alliance GP7000

Двигатель Alliance GP7000 ТРДД ожидает установки

Тяговооружённость : 5,197

турбовентиляторный двигатель Alliance GP7

Двигатель крупнейший в мире пассажирский авиалайнер Airbus A380. Впервые он был запущен в апреле 2004 года в результате сотрудничества между General Electric и Pratt & Whitney, двумя из трех крупнейших производителей авиационных двигателей в мире. Он должен был называться Super Engine Alliance, имхо.

4. Rolls Royce Trent 900

Тяговооружённость : 5,46/6,11

Trent 900 — серия турбовентиляторных двигателей, один из членов семейства двигателей Trent. Впервые он был использован в 2004 году и имеет четыре варианта, которые используются в разных авиалайнерах. Он оснащен компрессорным вентилятором низкого давления шириной 116 дюймов, а его общий вес составляет более 6200 кг. Имеет один из самых мощных двигателей с максимальным значением тяги 374 кН. Это первый двигатель в его семействе, оснащенный передовой системой контроля состояния двигателя.

3. Rolls Royce Trent XWB

Тяговооружённость : 5,25

Rolls Royce Trent XWB — это семейство турбовентиляторных реактивных двигателей, которые используются в Airbus A350 XWB. Впервые он был успешно испытан в 2010 году и разработан как конкурент Boeing 787 Dreamliner. Он имеет пять вариантов, а самый большой диаметр вентилятора составляет 118 дюймов. Усовершенствованная версия имеет максимальную тягу 430 кН. Rolls Royce использует эти двигатели в Qatar Airways и Airbus A350-1000. 9

Тяговооружённость : 6-7 чем любой из предыдущих вариантов. Pratt & Whitney впервые начала производство PW4000 в 1984 году. Он используется многими авиалайнерами, включая Airbus (A300, A310, A330), Boeing (747-400, 767, 777, KC-46) и McDonnell Douglas MD-11. . PW4000-112 появился в коммерческой авиации в 1995 как один из трех вариантов вариантов Boeing 777.

1. General Electric GE90

Тяговооружённость : 5,59

Уникальная конструкция лопастей GE90 создана на основе высокоэнергоэффективного экспериментального винтовентилятора GE36 (UDF) НАСА. После того, как от идеи GE36 отказались из-за некоторых технических и финансовых проблем, General Electric вместо этого приняла ту же конструкцию вентилятора в своем недавно разработанном GE90 и сделала его коммерчески доступным.

Двигатель успешно дебютировал в 1995 с British Airways, снабжая весь ее новый парк Boeing 777. Более высокая тяга и повышенные эксплуатационные расходы, обеспечиваемые GE90, являются одной из основных причин, по которой крупнейшие авиалайнеры мира рассматривают 777-300ER в качестве будущей замены очень популярного 747-400.

Читайте: 15 самых быстрых самолетов в мире | всех времен

Лопасти двигателя изготовлены из композитных материалов, что позволяет ему работать при гораздо более высоких температурах. Он используется в одном из самых больших самолетов, Boeing 777, и имеет мировой рекорд тяги от 330 до 513 кН (варианты с большой тягой). Он был оснащен тремя вариантами 777-200LR, -300ER и -200F.

GE Aircraft Engines выбирает средства разработки MULTI® для создания самого мощного в мире реактивного авиационного двигателя

Программное обеспечение Green Hills помогает GE создать самый мощный в мире реактивный двигатель


Двигатель развивает беспрецедентную тягу в 115 000 фунтов


Санта-Барбара, Калифорния. 8 апреля 2002 г. — Компания Green Hills Software, Inc. объявила сегодня о том, что GE Aircraft Engines (GEAE), подразделение General Electric Company (NYSE: GE), использует инструменты разработки MULTI® от Green Hills Software для создания самого мощного в мире реактивный авиадвигатель. MULTI и его оптимизирующий компилятор C помогут разработать программное обеспечение для управления двигателем для GE9.0-115B, который рассчитан на беспрецедентную тягу в 115 000 фунтов. GE90-115B будет использоваться исключительно для двухмоторных самолетов Boeing 777-200LR и 777-300ER.

Двигатели, производимые GE Aircraft Engines, лидируют в отрасли коммерческой авиации в соответствующих классах тяги по надежности, ремонтопригодности и доступности. В GE90-115B, входящем в семейство двигателей GE90, используются лопасти вентилятора со стреловидным профилем для увеличения тяги и снижения расхода топлива. В нем также используется высокоэффективный компрессор высокого давления для достижения большего крутящего момента в средней части вала вентилятора, чем в любом другом реактивном двигателе. GE90-115Б впервые прошел наземные испытания в ноябре 2001 года, установив новый рекорд мощности реактивного двигателя с тягой более 120 000 фунтов. Japan Airlines стала первой авиакомпанией, выбравшей для своего флота самолеты 777-300ER с двигателями GE90-115B, поставка которых запланирована на 2004 год.

MULTI и оптимизирующий компилятор C для PowerPC использовались для разработки программного обеспечения управления двигателем, которое работает на процессоре PowerPC в полнофункциональном цифровом управлении двигателем (FADEC). FADEC, среди прочего, контролирует температуру, скорость, поток воздуха и расход топлива двигателя.

«Green Hills имеет долгую и успешную историю поставок средств разработки для GE Aircraft Engines, — сказал Джон Карбон, вице-президент по маркетингу Green Hills Software, Inc. — Наши простые в использовании MULTI IDE и высокопроизводительные оптимизирующие компиляторы PowerPC уже зарекомендовали себя в ряде двигателей GE, что делает нас естественными для этого проекта. Мы рады работать с GEAE над созданием самого мощного в мире двигателя для реактивных самолетов».

MULTI вместе с семейством оптимизирующих C, C++, EC++ и Ada9 от Green Hills.5, автоматизирует все аспекты разработки встраиваемого программного обеспечения. MULTI включает в себя оконный редактор, отладчик на уровне исходного кода, графический конструктор программ и средство проверки ошибок во время выполнения, а также систему контроля версий, симулятор набора инструкций, профилировщик производительности и EventAnalyzer в реальном времени.

MULTI доступен для основных 32-битных и 64-битных процессоров RISC и CISC, а также для ряда популярных DSP. MULTI поддерживает различные варианты подключения хоста/цели, включая решения BDM и JTAG OCD (отладка на кристалле), VisionICE от EST, Probe Processor Probe от Agilent, EmbeddedICE от ARM и различные мониторы ПЗУ. MULTI также поддерживает Green Hills Probe, самый быстрый и интеллектуальный в отрасли аппаратный отладчик для 32-разрядных, 64-разрядных и многопроцессорных встроенных систем SoC.


Подробнее о двигателях GE Aircraft

GE Aircraft Engines (GEAE), подразделение General Electric Company (NYSE: GE), является ведущим мировым производителем реактивных двигателей для гражданских и военных самолетов, в том числе двигателей, производимых CFM International, совместным предприятием Snecma из Франции. и ГЭ. GEAE также производит газовые турбины, созданные на базе ее очень успешных программ реактивных двигателей, для морского и промышленного применения. Кроме того, GEAE предоставляет всестороннюю поддержку по техническому обслуживанию реактивных двигателей GE и других производителей, находящихся в эксплуатации по всему миру, в рамках службы GE Engine Services.

Подробнее о программном обеспечении Green Hills

Компания Green Hills Software Inc., основанная в 1982 году, является технологическим лидером в области операционных систем реального времени и средств разработки программного обеспечения для встраиваемых систем. Бесплатная операционная система реального времени INTEGRITY® от Green Hills Software и операционная система реального времени ThreadX, полностью интегрированные с ведущими на рынке компиляторами и MULTI® Integrated Development Environment, представляют собой комплексное решение для разработки и выполнения, которое охватывает как глубоко встроенные и приложений с максимальной надежностью.

Штаб-квартира Green Hills Software находится в Санта-Барбаре, Калифорния, а европейская штаб-квартира находится в Соединенном Королевстве. Для получения дополнительной информации о продуктах Green Hills Software позвоните по телефону 805-965-6044, отправьте электронное письмо по адресу [email protected] или посетите наш веб-сайт по адресу www.ghs.com.


Green Hills Software, логотип Green Hills и MULTI являются зарегистрированными товарными знаками, а INTEGRITY и Green Hills Probe являются товарными знаками Green Hills Software Inc.
 
Все остальные товарные знаки (зарегистрированные или иные) являются собственностью соответствующих компаний.

© 2021 Scientific World — научно-информационный журнал