Содержание
Устройство роторного двигателя. Принцип работы роторного двигателя — видео
Автор Master OffRoad На чтение 13 мин. Просмотров 1.6k. Опубликовано
Содержание
- История создания роторного двигателя
- Строение и принцип работы роторного двигателя
- Строение роторного двигателя
- Фазы работы
- Плюсы и минусы
- КПД роторно-поршневой конструкции
- Перегревы и высокие нагрузки
- Ресурс
- Машины с роторным двигателем
- Видео: как устроен и работает роторный двигатель
- Подведем итоги
История создания роторного двигателя
Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.
На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.
После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.
Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.
Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.
Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.
Феликс Ванкель и его первый роторный двигатель
Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.
Строение и принцип работы роторного двигателя
Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.
Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.
РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.
Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:
- сжатие смеси;
- топливный впрыск;
- поступление кислорода;
- зажигание смеси;
- отдача сгоревших элементов в выпуск.
Одним словом, шесть в одном, если хотите.
Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.
Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.
Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.
Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.
Как самому полировать фары автомобиля? Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.
Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.
Строение роторного двигателя
Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.
Как самостоятельно полировать автомобиль? Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.
Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.
В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.
Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.
Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.
Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.
Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.
Фазы работы
Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:
- Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
- Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
- Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
- Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.
Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.
Плюсы и минусы
Есть ряд преимуществ:
- меньшее количество деталей, как минимум на 35% меньше относительно поршневого. Меньше деталей — меньше поломок;
- если сопоставить с конкурентом такой же мощности, то РПД будет в 2 раза меньше по размеру;
- отсутствие высокой нагрузки даже на больших оборотах и если на низких передачах разогнаться сильнее сотни километров в час;
- меньше весит, поэтому машину проще уравновесить, она становится более устойчивой;
- нет проблемы вибрации даже у самых легких авто. Поршневой вибрирует гораздо сильнее, ввиду чего роторный лучше сбалансирован.
Но есть и недостатки:
- главный минус — небольшой ресурс, это издержка простой конструкции. Рабочий угол уплотнителей постоянно меняется, из-за чего они быстро изнашиваются. Износ усиливается и от того, что через каждый такт меняется температура. Вдобавок давление, оказываемое на трущиеся поверхности, от этого есть только одно средство — впрыскивание масла в коллектор;
- при износе уплотнителей образуются утечки между камерами. Разница в давлении очень большая, от этого страдает КПД. Вред для экологии усиливается;
- из-за серповидной конфигурации камер топливо сгорает не полностью. Из-за небольшой длины рабочего хода и скорости вращения ротора выталкиваются несгоревшие газы высокой температуры. Выделяются не только продукты сгорания бензина, но и масло, ввиду чего окружающая среда подвергается крайне негативному влиянию. Поршневые двигатели не настолько вредные для экологии;
- про высокий расход топлива уже было сказано, но это касается не только бензина, но и масла. Такой двигатель съедает до литра на тысячу километров. Если забыть про масло, то можно столкнуться с необходимостью дорогого ремонта или вовсе замены мотора;
- высокая себестоимость. Требуются качественные дорогие материалы и высокотехнологичное оборудование.
У роторного двигателя достаточно недостатков, но и его конкурент не совершенный. Поэтому соревнование между ними длилось достаточно долго. Сейчас гонка окончена, но никто не может сказать, навсегда или нет.
КПД роторно-поршневой конструкции
Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.
Итоговый КПД работы мотора состоит из трех основных частей:
- Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).
Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.
- КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).
Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.
- Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).
На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.
Перегревы и высокие нагрузки
Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.
В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.
Ресурс
Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.
После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.
Машины с роторным двигателем
В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.
Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.
В число моделей с РПД входят:
- Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
- ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
- Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
- ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.
Видео: как устроен и работает роторный двигатель
Подведем итоги
Моторы роторно-поршневого типа превосходно показывают себя в гонках. У них есть для этого высокая мощность, большое количество оборотов. Немаловажно, что машины на нем очень легкие относительно других, так как двигатель меньше и легче. Ресурс двигателя для гонок — не самый важный показатель, как и прожорливость. Но в обычной жизни нельзя этого не учитывать.
Вне недостатки обусловлены строением и принципом работы роторно-поршневого двигателя. Их нельзя отнести к недоработкам, скорее, это особенности. Но в теории есть способ вновь начать пользоваться РПД. Для этого нужно сделать его более экологичным, повысить ресурс и сделать его более экономичным.
Источники
- https://dolauto.ru/informations/articles/chto-takoe-rotornyy-dvigatel/
- https://krossovery.info/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy-sistemy/
- https://www.syl.ru/article/158520/new_rotornyiy-dvigatel-printsip-rabotyi-plyusyi-i-minusyi-rotornogo-dvigatelya
- https://geekometr.ru/statji/kak-rabotaet-rotorno-porshnevoy-dvigatel-v-mashine.html
- https://zewerok. ru/dvigatel-vankelya/
- https://remontautomobilya.ru/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy.html
Все о роторных двигателях — виды и принцип работы
Главная страница » Все о роторных двигателях — виды и принцип работы
Главное отличие внутреннего устройства и принципа работы роторного двигателя от ДВС заключается в полном отсутствии двигательной активности, при этом удается добиться высоких оборотов работы мотора. У роторного двигателя или иначе двигателя Ванкеля, есть и ряд других преимуществ, их мы и рассмотрим подробнее.
Общий принцип устройства роторного двигателя
РПД облачен в овальный корпус для оптимального размещения ротора, имеющего треугольную форму. Отличительная особенность ротора в отсутствии шатунов и валов, что значительно упрощает конструкцию. По сути, ключевыми деталями РД являются ротор и статор. Основная двигательная функция в таком типе мотора осуществляется за счет движения ротора, расположенного внутри корпуса, имеющего схожесть с овалом.
Подпишитесь на наш Telegram-канал
Принцип действия основан на высокоскоростном движении ротора по окружности, в результате создаются полости для запуска устройства.
Почему роторные двигатели не пользуются спросом?
Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.
Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.
Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.
Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.
Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.
Роторный двигатель Желтышева — принцип работы:
Преимущества роторного двигателя
При малых габаритах он способен развивать высокую скорость, однако есть в этом нюансе и большой минус. Несмотря на малые габариты, именно роторный двигатель потребляет огромное количество горючего, а вот ресурс работы мотора составляет всего 65 000 км. Так, двигатель всего в 1,3 л потребляет до 20 л. топлива на 100 км. Возможно, это и стало основной причиной отсутствия популярности данного вида моторов для массового потребления.
Цена на бензин во все времена считается актуальной проблемой человечества, учитывая, что мировые запасы нефти расположены на Ближнем востоке, в зоне постоянных боевых конфликтов, цены на бензин остаются достаточно высокими, и в ближайшей перспективе нет тенденций для их снижения. Это приводит к поиску решений по минимальному потреблению ресурсов не в ущерб мощности, в чем и заключается главный довод в пользу ДВС.
Все это в совокупности определило положение роторных двигателей, как подходящий вариант для спорткаров. Однако известный по всему миру производитель авто «Мазда», продолжил дело изобретателя Ванкеля. Японские инженеры всегда стараются извлекать из невостребованных моделей максимум пользы путем модернизации и применения инновационных технологий, что позволяет сохранять лидирующие позиции на мировом автомобильном рынке.
Принцип работы роторного двигателя Ахриевых на видео:
Новая модель «Мазда», оснащенная роторным двигателем, по мощности не уступает передовым немецким моделям, выдавая до 350 лошадиных сил. При этом расход топлива был несравнимо высоким. Инженерам-конструкторам «Мазда» пришлось уменьшить мощность до 200 лошадиных сил, что позволило нормализовать потребление топлива, однако компактные размеры двигателя позволили наделить авто дополнительными преимуществами и составить достойную конкуренцию европейским моделям авто.
В нашей стране роторные двигатели не прижились. Были попытки установить их на транспорт специализированных служб, но этот проект не был профинансирован в должном объеме. Поэтому все успешные разработки в данном направлении принадлежат японским инженерам из компании «Мазда», намеренной в ближайшее время показать новую модель авто с модернизированным двигателем.
Как работает роторный мотор Ванкеля на видео
Принцип работы роторного двигателя
РПД работает за счет вращения ротора, так идет передача мощности на коробку передач через сцепление. Преобразующий момент заключается в передаче энергии топлива колесам за счет вращения ротора, изготовленного из легированной стали.
Механизм работы роторного-поршневого двигателя:
- сжатие горючего;
- впрыск топлива;
- обогащение кислородом;
- горение смеси;
- выпуск продуктов сгорания топлива.
Как работает роторный двигатель показано на видео:
Ротор закреплен на специальном устройстве, при вращении он образует независимые друг от друга полости. В первой камере происходит наполнение воздушно-топливной смесью. В дальнейшем она тщательно перемешивается.
Затем смесь переходит в другую камеру, где происходит сжатие и воспламенение, благодаря наличию двух свечей. В дальнейшем смесь перемещается в следующую камеру, из нее вытесняются части переработанного топлива, которые выходят из системы.
Так происходит полный цикл работы роторного-поршневого двигателя, основанного на трех тактах работы за всего лишь один оборот ротора. Именно японским разработчикам удалось существенно модернизировать роторный двигатель и установить в нем сразу три ротора, что позволяет значительно увеличить мощность.
Принцип работы роторного двигателя Зуева:
На сегодня, усовершенствованный двухроторный двигатель сравним с двигателем внутреннего сгорания с шестью цилиндрами, а трехроторный по мощности не уступает 12-ти цилиндровому двигателю внутреннего сгорания.
Не стоит забывать и про компактный размер двигателя и простоту устройства, позволяющую при необходимости осуществлять ремонт или полную замену основных агрегатов мотора. Таким образом, инженерам компании «Мазда» удалось подарить вторую жизнь этого простого и производительного устройства.
Поделиться в vk
VK
Поделиться в facebook
Поделиться в odnoklassniki
OK
Поделиться в twitter
Поделиться в telegram
Telegram
Поделиться в whatsapp
Как сэкономить топливо в жару? Советы опытных водителей
Ежегодно в отпуск отправляются миллионы россиян, предпочитая ехать на собственном автомобиле, чем часами томиться в плацкартных вагонах или рейсовых автобусах. Но стоимость бензина в нашей стране не добавляет радостных эмоций.
Читать полностью »
Безвоздушные шины от Hankook, Bridgestone и Michelin
Компания Hankook испытала инновационные безвоздушные покрышки iFlex в деле и опубликовала результаты тестов.
Читать полностью »
Гибридные автомобили — устройство и лучшие модели
Отношение россиян к автомобилям с гибридной силовой установкой неоднозначное. Есть те, кто всячески поддерживает идею создания машин с минимальными вредными выбросами в атмосферу и небольшим расходом топлива. Другая группа всячески
Читать полностью »
Какие бывают типы кузовов автомобилей?
Развитие мирового автопрома не стоит на месте, постоянно совершенствуясь. Касается это и количества существующих типов кузова автомобилей. Достаточно сказать, что всего 20 лет назад их было вдвое меньше, чем в
Читать полностью »
Правильная обкатка нового автомобиля
Мечта стала реальностью – новый, ослепляющий красотой автомобиль красуется в вашем гараже. Вы уже прокручиваете в уме, как окунетесь с головой в езду по ночному городу, или отправитесь в гости
Читать полностью »
Какие свечи зажигания лучше использовать в автомобиле
Еще совсем недавно, каждый второй автовладелец задавался вопросом какие свечи зажигания лучше выбрать. Ответом на него был исключительно практический опыт. Сегодня, экспериментировать на собственном автомобиле нет необходимости, так как современные технологии позволяют проводить
Читать полностью »
Принцип работы роторного двигателя
Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.
Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.
Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.
Содержание
- Почему этот вариант не прижился
- Преимущества ротора, или Как японцы взялись за дело
- Заглянем внутрь РПД
Почему этот вариант не прижился
Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.
На видео показано строение и принцип работы роторного двигателя:
Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.
Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.
Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.
Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.
Преимущества ротора, или Как японцы взялись за дело
На видео показан принцип работы роторного двигателя Ахриевых:
Но имеются у РПД и преимущества. В частности, к ним можно отнести особую динамику агрегата. Расход у роторного двигателя очень большой, а кроме этого, у такого агрегата очень маленький ресурс — всего шестьдесят тысяч километров — что делает его непригодным для езды в условиях города. Если объём роторного двигателя будет равен 1,3 л, то он способен будет потреблять до двадцати литров топлива.
Кстати, большой расход бензина также является причиной того, что роторный двигатель не обрёл популярности. Дело в том, что в 1973 году, когда роторные двигатели только вышли, на Аравийском полуострове накалилась обстановка. Там проходили настоящие военные действия, а как известно, арабские страны до сих пор остаются основными поставщиками топлива. В связи с этим делом, цена на бензин резко поднимается. А роторный двигатель пожирал его просто как вечно голодный чревоугодник. Вот и получилось, что он стал лишним.
Зато такой агрегат при этом будет выдавать целых 250 л. с, оставаясь малогабаритным.
На видео показано строение и принцип работы роторного двигателя Ванкеля:
youtube.com/embed/ZFqG1wm5EDo?feature=oembed» frameborder=»0″ allowfullscreen=»»>
Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.
Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.
Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л. с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.
На видео рассмотрено устройство и принцип работы роторного двигателя Желтышева:
Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб. Но проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.
Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.
Заглянем внутрь РПД
Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.
РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.
На видео показан принцип работы роторно-поршневого двигателя Зуева:
Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:
- сжатие смеси;
- топливный впрыск;
- поступление кислорода;
- зажигание смеси;
- отдача сгоревших элементов в выпуск.
Одним словом, шесть в одном, если хотите.
Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.
Всё начинается следующим образом. В первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается.
После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.
Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.
Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.
Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.
Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.
Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!
Что такое двигатель и как он работает
Nevada 1976Что такое двигатель и как он работает — фото видео. 0 Comment
Содержание статьи
СЕГОДНЯ МОЖНО ВСТРЕТИТЬ СЛЕДУЮЩИЕ ВИДЫ ДВИГАТЕЛЕЙ:
- двигатель внутреннего сгорания – самый распространенный вид на сегодняшний день,
- электродвигатель – относительно молодая модель,
- гибридная силовая установка, или комбинированный двигатель – так же относительно новая модель.
Двигатель внутреннего сгорания в свою очередь подразделяется на поршневую, роторно-поршневую и газотурбинную модель. Сегодня инженеры при разработке автомобилей используют поршневые установки. Все остальные виды двигателей можно встретить крайне редко, в основном машины с такими двигателями можно встретить только в музеях. Поршневые двигатели работают на основе жидкого топлива, в качестве которого используется бензин или же дизельное топливо или на основе природного газа. Самым распространенным видом является поршневой двигатель, работающий на основе бензина.
Относительно недавно появились электромобили, которые оснащены электродвигателями. Этот вид двигателя работает на основе электрической энергии, в качестве источника которой берутся топливные элементы или аккумуляторные батарейки. Сегодня такие автомобили, пока, не пользуются большим спросом, так как они нуждаются в частой подзарядке. Зато такой вид транспорта не выбрасывает в атмосферу вредных смесей.
Современные производители активно выпускают автомобили, оснащенные гибридной или комбинированной силовой установкой. В этом случае двигательная система имеет ДВС и электромотор.
На сегодняшний день распространены бензиновые и дизельные двигатели внутреннего сгорания. Они имеют следующие рабочие циклы:
Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:
в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.
Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — «тяговиты на низах»).
Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:
большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.
Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.
Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:
•впуск воздуха или его смеси с топливом;
•сжатие рабочей смеси,
•рабочий ход при сгорании рабочей смеси;
•выпуск отработавших газов.
Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.
Турбированные двигатели и «атмосферники»: главные отличия
Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе. Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания.
Получается, чем больше рабочий объем двигателя, тем больше воздуха он может уместить в цилиндрах и тем большее количество топлива получится сжечь. В результате мощность атмосферного ДВС и крутящий момент сильно зависят от объема мотора. Рекомендуем также прочитать отдельную статью о том, что такое рабочий объем двигателя. Из этой статьи вы узнаете, какие параметры определяют данную характеристику, чем измеряется объем мотора и на что влияет данный показатель. Принципиальной особенностью двигателей с нагнетателем является принудительная подача воздуха в цилиндры под определенным давлением.
Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор. На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:
увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров; подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;
С учетом того, что на каждый литр топлива требуется около 1м3 воздуха для эффективного сжигания смеси в ДВС, автопроизводители по всему миру долгое время шли по пути совершенствования атмосферных двигателей. Атмомоторы представляли собой максимально надежный вид силовых агрегатов. Поэтапно происходило увеличение степени сжатия, при этом двигатели стали более стойкими к детонации. Благодаря появлению синтетических моторных масел минимизировались потери на трение, инженеры научились изменять фазы газораспределения, внедрение электронных систем управления двигателем позволило добиться высокоточного впрыска горючего и т.д. В результате моторы от V6 до V12 с большим рабочим объемом долгое время являлись эталоном производительности. Также не стоит забывать и о надежности, так как конструкция атмосферных двигателей всегда оставалась проверенным временем решением.
Параллельно с этим главными минусами мощных атмосферных агрегатов справедливо считается большой вес и повышенный расход топлива, а также токсичность. Получается, на определенном этапе развития двигателестроения увеличение рабочего объема оказалось попросту нецелесообразным. Теперь о турбомоторах. Еще одним типом агрегатов на фоне популярных «атмосферников» всегда оставались менее распространенные агрегаты с приставкой «турбо», а также компрессорные двигатели. Такие ДВС появились достаточно давно и изначально шли по другому пути развития, получив системы для принудительного нагнетания воздуха в цилиндры двигателя. Рекомендуем также прочитать статью о том, что лучше, механический компрессор или турбина. Из этой статьи вы узнаете о преимуществах и недостатках указанных систем нагнетания воздуха, а также о том, какой мотор выбрать, с компрессором или турбированный.
Стоит отметить, что значительной популяризации моторов с наддувом и быстрому внедрению подобных агрегатов в широкие массы долгое время препятствовала высокая стоимость автомобилей с нагнетателем. Другими словами, двигатели с наддувом были редким явлением. Объясняется это просто, так как на раннем этапе машины с турбодвигателем, механическим компрессором или одновременной комбинацией сразу двух решений зачастую ставились на дорогостоящие спортивные модели авто. Немаловажным фактором оказалась и надежность агрегатов данного типа, которые требовали повышенного внимания в процессе обслуживания и уступали по показателям моторесурса атмосферным ДВС. Кстати, сегодня это утверждение также справедливо для двигателей с турбиной, которые конструктивно сложнее компрессорных аналогов и еще дальше ушли от атмосферных версий.
Как работает двигатель и из чего он состоит?
Принцип работы двигателя автомобиля – это вопрос, интересующий практически каждого автовладельца. В ходе первого ознакомления со строением двигателя все выглядит очень сложным. Однако в реальности, с помощью тщательного изучения, устройство двигателя становится вполне понятным. В случае необходимости знания о принципе работы двигателя можно использовать в жизни. 1. Блок цилиндров представляет собой своеобразный корпус мотора. Внутри него расположена система каналов, которая используется для охлаждения и смазки силового агрегата. Он используется в качестве основы для дополнительного оборудования, к примеру, картера и головки блока цилиндров.
2. Поршень, являющийся пустотелым стаканом из металла. На его верхней части расположены «канавки» для поршневых колец. 3. Поршневые кольца. Кольца, расположенные внизу, называются маслосъемными, а верхние – компрессионные. Верхние кольца обеспечивают высокий уровень сжатия или компрессию смеси топлива и воздуха. Кольца используются для обеспечения герметичности камеры сгорания, а также в качестве уплотнителей, предотвращающих попадание масла в камеру сгорания.
4. Кривошипно-шатунный механизм. Отвечает за передачу возвратно-поступательной энергии поршневого движения на коленчатый вал двигателя. Многие автолюбители не знают, что на самом деле принцип работы ДВС является достаточно несложным. Сначала топливо попадает из форсунок в камеру сгорания, где оно смешивается с воздухом. Затем свеча зажигания выдает искру, которая вызывает воспламенение топливно-воздушной смеси, из-за чего она взрывается. Газы, которые формируются в результате этого, двигают поршень вниз, в процессе чего он передает соответствующее движение коленчатому валу. Коленвал начинает вращать трансмиссию. После этого набор специальных шестерён осуществляет передачу движения на колеса передней или задней оси (в зависимости от привода, может и на все четыре).
Устройство автомобиля. Двигатель внутреннего сгорания
Что такое КОНТРАКТНЫЙ ДВИГАТЕЛЬ. Как осматривать Б/У двигатель при покупке. Секреты перекупа.
Что такое роторный двигатель? История создания и особенности конструкции.
принцип работы с видео, устройство
Роторный двигатель является одной из разновидностей тепловых ДВС. Первый роторный двигатель, принцип работы которого кардинально отличается от традиционного двигателя внутреннего сгорания, появился в 19 веке.
Его особенностью было использование не возвратно поступательных движений, как в классическом ДВС, а вращение в специальном овальном корпусе трехгранного ротора. Такая схема применялась в первых поршневых паровых машинах и дала толчок к активному проектированию и созданию роторных паровых двигателей. С роторного парового двигателя и начиналась история двигателя внутреннего сгорания роторного типа. Впервые схему классического роторно-поршневого (двигателя Ванкеля) разработали в конце 1950-х годов в немецкой фирме NSU, авторами стали Феликс Ванкель и Вальтер Фройде.
Конструкция
Давайте рассмотрим основные части РПД:
- корпус двигателя;
- ротор;
- выходной вал.
Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.
Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:
- впуск;
- сжатие;
- воспламенение;
- выпуск.
Такая компоновка позволяет обойтись без впускных и выпускных клапанов. Впускные и выпускные отверстия находятся по бокам камеры сгорания, а соединены напрямую к системе питания и системе выпуска отработанных газов.
Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.
Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.
Рабочие такты РПД
Давайте теперь более подробно рассмотрим принцип работы роторного двигателя и рабочие процессы, происходящие внутри него. Как и классический мотор, двигатель Ванкеля имеет те же такты впуска, сжатия, рабочего хода и выпуска.
Две свечи может иметь и обычный поршневой мотор, например некоторые спортивные двигатели, но в РПД использование двух свечей зажигания просто необходимо.
Образовавшееся давление газов поворачивает ротор на эксцентрике вала, что в свою очередь приводит к возникновению крутящего момента на выходном валу. При приближении к выпускному каналу вершины ротора давление в камере сгорания плавно снижается. Вращаясь по инерции, вершина ротора достигает выпускного канала, начинается такт выпуска. Выхлопные газы устремляются в выпускной канал, и как только вершина ротора достигает впускного канала, снова начинается такт впуска.
Система питания и смазка
Достоинствами роторно-поршневого двигателя
- Обладая малым весом и габаритами, роторный мотор имеет больше возможностей для достижения правильной развески и улучшения управляемости, а так же делает автомобиль более просторным в салоне;
- более высокая удельная мощность по сравнению с классическими моторами;
- более ровная и широкая полка крутящего момента;
- отсутствие кривошипно-шатунного механизма, клапанов, пружин, газораспределительного механизма, а вместе с ним и распредвалов, ремня грм или цепи;
- хорошая сбалансированность и плавность работы РПД, которую можно сравнить с работой рядной «шестерки»;
- меньшая склонность к детонации;
- отсутствие кривошипно-шатунного механизма, а вследствие этого отсутствие необходимости преобразования возвратно-поступательного движения поршней во вращение коленчатого вала, делает РПД более оборотистым нежели обычный мотор;
Недостатки
- Необходимость применения эксцентрикового механизма для соединения ротора и вала увеличивает давление между трущимися деталями, что вместе с высокой температурой повышает износ двигателя. Именно поэтому выдвигаются повышенные требованию к качеству масла и периодичности его смены;
- быстрый износ уплотнителей ротора вследствие малой площади пятна контакта и высокому перепаду давлений. Таким образом, роторный мотор быстро теряет свой КПД, экологические показатели ухудшаются;
- линзовидная форма камеры сгорания гораздо хуже отдает тепло, нежели сферическая камера сгорания, что обуславливает склонность к перегреву;
- низкие показатели экономичности на малых и средних оборотах, по сравнению с обычным двигателем внутреннего сгорания;
- роторный мотор имеет очень высокие требования к обработке деталей и квалификации персонала при производстве данного типа двигателя;
- необходимость добавления масла во время рабочих тактов РПД обуславливает плохие экологические характеристики;
Современные реалии
В настоящее время наибольших успехов в производстве роторных двигателей добились инженеры корпорации Mazda. Последняя генерация их двигателя Ванкеля, под названием «Renesis», совершила настоящий прорыв. Им удалось не только решить главные проблемы данного типа ДВС, такие как повышенный расход топлива и токсичность, но и снизить потребление масла на 50%, тем самым доведя экологические показатели до норм Euro 4. Новое поколение РПД Mazda могут использовать в качестве топлива как бензин, так и водород, что делает этот мотор интересными и перспективными для использования в будущем.
Mazda RX-8, роторный двигатель Mazda RX-8, Тюнинг Mazda RX-8, Mazda Motor Corp., фото, видео Mazda RX-8
Что такое роторный двигатель?
В традиционном четырехтактном поршневом двигателе один и тот же цилиндр используется для разных процессов — впуска, сжатия, сгорания и выпуска.
Роторный двигатель позволяет осуществлять каждый из этих процессов в разных частях корпуса. Каждый процесс как бы происходит в отдельном цилиндре.
В поршневом двигателе давление расширения, возникающее при сгорании топливовоздушной смеси, заставляет поршни двигаться вверх-вниз внутри цилиндров. Шатуны и коленвал преобразуют это возвратно-поступательное движение во вращательное движение, необходимое для перемещения автомобиля.
В роторном двигателе отсутствует преобразуемое возвратно-поступательное движение. Давление образуется в камерах, создаваемых различными частями корпуса и выпуклыми поверхностями треугольного ротора. Сгорание приводит непосредственно к вращению ротора, что снижает вибрации и увеличивает возможную скорость вращения. Обеспечиваемое таким образом повышение эффективности также позволяет роторному двигателю иметь гораздо меньшие размеры по сравнению с традиционным поршневым двигателем эквивалентной мощности.
Как он работает?
Цикл двигателя Ванкеля (рисунок выше и анимация ниже): впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый). На рисунке-анимации видны все стадии работы роторного двигателя. Intake — впуск; compression — сжатие; ignition — рабочий ход; exhaust — выпуск.
Преимущества роторного двигателя
Меньшая масса
Из-за отсутствия необходимости в поршнях, шатунах и коленвале основной блок роторного двигателя имеет меньшие размеры и массу при лучших динамических характеристиках и управляемости.
Меньшие размеры
Роторный двигатель существенно меньше традиционного двигателя такой же мощности. Новый двигатель RENESIS примерно равен по размерам небольшому обычному четырехцилиндровому рядному двигателю. Небольшие размеры роторного двигателя выгодны не только тем, что уменьшают массу — они также улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.
Меньший уровень вибрации
Все части роторного двигателя непрерывно вращаются в одном направлении, а не изменяют направление своего движения так, как поршни обычного двигателя. Роторные двигатели внутренне сбалансированы, что снижает уровень вибрации.
Более высокая мощность
Роторный двигатель выдает мощность более равномерно и плавно. С каждым полным оборотом ротора выходной вал оборачивается трижды. Каждое отдельное сгорание происходит в течение 90-градусной фазы вращения ротора, т. е. в течение 270-градусной фазы вращения выходного вала. Это значит, что однороторный двигатель выдает мощность в течение трех четвертей каждого оборота выходного вала. Учтите, что одноцилиндровый поршневой двигатель выдает мощность только в течение одной четверти каждого оборота выходного вала.
Более высокая надежность
Роторный двигатель имеет меньшее количество движущихся частей по сравнению с аналогичным четырехтактным поршневым двигателем. Двухроторный двигатель имеет три основные движущиеся части: два ротора и выходной вал. Даже самый простой четырехцилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, распредвал, клапаны, пружины клапанов, качалки, ремень ГРМ, распределительные шестерни и коленвал.
НО есть и отрицательные моменты в работе роторного двигателя
Особенностью роторного двигателяявляется требование по периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям и двигатель выходит из строя.
Другой особенностью ротрных двигателей является его склонность к перегреву.
Двигатель RENESIS
Роторный двигатель RENESIS компании Mazda — это итог почти 80 лет технических исследований и разработок, начавшихся с мечты семнадцатилетнего юноши, дальновидного изобретателя роторного двигателя Феликса Ванкеля.
«RENESIS» в вольном переводе с английского означает «новая жизнь роторного двигателя». Новый технологический и конструктивный подход революционизировал роторный двигатель и обеспечил выигрышное сочетание низкого расхода топлива и низкого уровня токсичных выбросов с высокими динамическими характеристиками.
В основу разработки был положен роторный двигатель с несколькими боковыми окнами (MSP-E). Этот двигатель впервые использовали в концептуальном спорткаре Mazda RX-01, продемонстрированном на Токийском автосалоне 1995 года, а затем его улучшенная версия была представлена на Токийском автосалоне 1999 года в четырехдверном концептуальном спорткаре RX-EVOLV. RENESIS — окончательная серийная версия этого двигателя, итог многолетних целенаправленных разработок. Он устанавливается в модель Mazda RX-8.
Силовая трансмиссия RENESIS предлагается в двух вариантах: повышенной мощности (170 кВт (231 л.с.) при 8200 об/мин, макс. 9000 об/мин) и базовый силовой агрегат (141 кВт (192 л.с.) при 7000 об/мин, макс. 7500 об/мин) для обычного вождения с превосходной управляемостью.
Двигатель RENESIS существенно отличается по своей конструкции от обычных современных роторных двигателей. Технология выпуска через боковые окна значительно повышает экономичность двигателя. RENESIS также имеет новые топливные форсунки, обеспечивающие сверхтонкое распыление, и высокоэффективные свечи зажигания для улучшенного сгорания топливовоздушной смеси. Выпускной коллектор имеет двойную стенку и поддерживает высокую температуру выхлопных газов, уменьшая время прогрева каталитического нейтрализатора. Новая система смазки уменьшенной высоты с «мокрым картером» содержит маслосборник глубиной 40 мм — вдвое меньшей, чем у обычных современных роторных двигателей.
RENESIS также обладает превосходными акустическими свойствами — он порадует ценителя спортивного звука звонкими и прозрачными нотами на верхах и сочными на низах. Он не только работает невероятно плавно, но и звучит именно так, как должна звучать силовая трансмиссия спорткара.
вверх
источник: http://www.theallnewrx-8.com/
Как работает роторный двигатель (за 60 секунд) с помощью технических объяснений
по инженерному объяснению
Не клади руку на рычаг переключения передач!
Toyota GR Corolla — лучший хот-хэтч в Америке?
Блестящая система полного привода Toyota GR Corolla — как она распределяет крутящий момент!
Koenigsegg заново изобретает руководство! Как работает коробка передач CC850
Как работает роторный двигатель (за 60 секунд)
Повреждение батареи Теслы? Я наехал на металлическое ведро
Я проехал 200 миль в час по дороге общего пользования – страшно!
Новый двигатель V8 Ford Raptor R — мясо снова в меню
Перевод денег на Nissan Z 2023 года – что происходит?!
Американцы стали тупее из-за этилированного бензина
Святой Грааль систем полного привода | Ривиан Р1Т
Обзор Nissan Z 2023 года — замена двигателя 370Z?
Идеальный турбокомпрессор? Porsche сделал это первым
Не все моторные масла одинаковы
Я ненавижу то, что люблю Hummer EV
Усовершенствованный двигатель внутреннего сгорания – Porsche GT4 RS
Будут ли поддельные механические коробки передач? Audi сохраняет реальность
Америка ошибалась насчет этанола – исследование показывает
3 большие проблемы с двигателями с непосредственным впрыском (бензин)
Современные автомобили слишком сложны? Какое будущее влечет за собой
Не покупайте Tesla Powerwall, покупайте грузовик!
Умный дифференциал Volkswagen позволяет совершать полноприводные дрифты — VW Golf R 2022 года
Является ли Subaru WRX 2022 года достойным преемником?
Как тормоза могут стоить 10 000 долларов? Блеск углеродной керамики
Механик против инженера – Гонка по замене масла – Кто быстрее?!
У Теслы хреновые тормоза? Модель S Плед
Уместны ли массивные экраны в новых автомобилях?
Самый мощный двигатель V8 (без наддува) — Corvette Z06 2023 года
Ford Bronco уничтожает конкурентов — 10 ключевых характеристик (внедорожник)
Никогда не используйте этот бензин в своей машине!
Лучше ли хранить свой старый автомобиль для окружающей среды?
Ваш двигатель имеет скрытые повреждения? Как знать!
Обзор Toyota GR 86 2022 года — идеальный доступный спортивный автомобиль!
Руководство еще не умерло — 10 современных особенностей последнего руководства Cadillac
Как правильно переключать передачи под нагрузкой — двигаться быстрее, не разрушая коробки передач
Какой лучший электромобиль? Tesla доминирует в окончательном сравнении
Ford Bronco 2021 Обзор | Почему они выбрали независимую подвеску?
После 10 лет на YouTube пришло время для некоторых изменений!
MotorTrend доказывает, что Tesla не может разогнаться до сотни менее чем за 2 секунды
Toyota разрабатывает двигатель на водородном топливе!
Почему не существует автомобилей на солнечных батареях?
Нет, синтетическое топливо не заменит электромобили
Может ли электромобиль проехать 1000 миль за день?
4 технологии, которые могут предотвратить вашу следующую автомобильную аварию
У Porsche Cayman GT4 ямочки, как у мячика для гольфа!
Проблема с электроусилителем руля – гидравлика против электро!
Нет, Tesla не может разогнаться до 60 миль в час менее чем за 2 секунды (модель S в клетку)
Умная разработка McLaren’s Roof Scoop
Новый Porsche GT3 — последний суперкар с механической коробкой передач?
Почему часто не стоит модифицировать подвеску (дорожные автомобили)
Почему американский MPG — глупая единица для экономии топлива
Действительно ли Subaru WRX STI — раллийный автомобиль?
Следует ли использовать гоночное масло в своем дорожном автомобиле?
Я ошибался насчет Lexus LC500 — цифры не имеют значения
Внедорожник Toyota «зеленее», чем Tesla?
Volkswagen ID.
4 — разочаровывающий электромобиль (на данный момент)
Двигатель нового Porsche 911 GT3 — шедевр
Лучший способ сравнить эффективность двигателей — BSFC
Если бензиновые автомобили запрещены, сможет ли сеть выдержать электромобили?
Самый мощный двигатель Cadillac — CT5-V Blackwing V8
Насколько неприятна зимняя поездка на Tesla? -18°C и сломанные нагнетатели
Если у двигателей внутреннего сгорания есть будущее, то какое оно?
Subaru BRZ 2022 года не нуждается в турбодвигателе — объяснение оппозитного двигателя объемом 2,4 л
Ford Mustang Mach-E против Tesla Model 3, Model Y — Tesla’s Still King
Обзор Ford Mustang Mach-E
2021 года — 10 лучших особенностей Ford EV
4 Умные функции нового DCT от Hyundai – Veloster N стал еще лучше!
Синтетическое масло против обычного – есть веская причина для перехода на
Хороши ли переднеприводные спортивные автомобили?
Создал ли Michelin лучшую всесезонную шину? Дождь, солнце или снег!
МКПП против двойного сцепления — какая коробка передач лучше?
Моя самая большая проблема с Tesla – обслуживание и запчасти
Почему большие колеса — плохая идея для электромобилей — Range Impact!
Действительно ли был установлен мировой рекорд SSC Tuatara на скорости 331 миль в час?
Что такое лошадиная сила и почему это глупая единица – Америка против метрики
Hummer EV Первый взгляд! Все детали полностью электрического супергрузовика GMC
Почему моя машина не нагревается?
5 причин, по которым вы должны (не) покупать электромобиль
Как работает электронный тормоз? Плюс: Обзор Audi e-Tron Sportback!
Опасно ли синтетическое моторное масло для старых автомобилей?
Как работает блестящий двигатель Maserati MC20 — технология F1 в дорожном автомобиле!
Посмотреть случайное видео:
Как работает двигатель Ванкеля? – MechStuff
Больше никаких скучных представлений, давайте начнем и поймем, как работает двигатель Ванкеля и что это такое!
История :-
Первый двигатель Ванкеля был разработан немецким инженером – Феликсом Ванкелем . Ванкель получил свой первый патент на двигатель в 1929 году.
Однако конструкция двигателя Ванкеля, используемая сегодня, разработана Ханнсом Дитером Пашке , который он принял для создания современного двигателя!
Двигатель Ванкеля представляет собой двигатель внутреннего сгорания, в отличие от поршневого цилиндра. В этом двигателе используется конструкция ротора с эксцентриком, которая напрямую преобразует энергию давления газов во вращательное движение. В то время как в схеме поршень-цилиндр прямолинейное движение поршня используется для преобразования во вращательное движение коленчатого вала.
По сути, ротор вращается в корпусе в форме жирной восьмерки .
Части двигателя Ванкеля:-
Для этого слайд-шоу требуется JavaScript.
Ротор:- Ротор имеет три выпуклые стороны, которые действуют как поршень. 3 угла ротора образуют уплотнение снаружи камеры сгорания. Он также имеет внутренние зубья шестерни в центре с одной стороны. Это позволяет ротору вращаться вокруг неподвижного вала.
Корпус:- Корпус имеет эпитрохоидальную форму (примерно овальную). Корпус спроектирован так, чтобы 3 кончика или угла ротора всегда оставались в контакте с корпусом. Впускной и выпускной патрубки расположены в корпусе.
Впускное и выпускное отверстия: — Впускное отверстие позволяет свежей смеси поступать в камеру сгорания, а выхлопные газы выходят через выпускное/выпускное отверстие.
Свеча зажигания:- Свеча зажигания подает электрический ток в камеру сгорания, который воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.
Вторичный вал:- На вторичном валу установлено эксцентриковых выступов , что означает, что они смещены от
осевой линии вала . Ротор не находится в чистом вращении, но нам нужны эти эксцентриковые кулачки для чистого вращения вала.
Примечание :- Выходной вал невозможно полностью описать словами. Трудно представить его вклад в работу. эта ссылка на видео может помочь вам понять это.
Рабочий :-
Анимация двигателя Ванкеля.
Впуск:-
Когда конец ротора проходит через впускное отверстие, свежая смесь начинает поступать в первую камеру. Камера всасывает свежий воздух до тех пор, пока вторая вершина не достигнет впускного отверстия и не закроет его. В данный момент свежая топливовоздушная смесь запаяна в первую камеру и вывозится на сжигание.
Сжатие :-
Первая камера (между углом 1 и углом 2), содержащая свежий заряд, сжимается из-за формы двигателя к тому времени, когда он достигает свечи зажигания.
Пока это происходит, новая смесь начинает поступать во вторую камеру (между углом 2 и углом 3).
Четырехтактный двигатель с пронумерованными углами.
Воспламенение:-
При воспламенении свечи зажигания сильно сжатая смесь взрывоопасно расширяется. Давление расширения толкает ротор вперед. Это происходит до тех пор, пока первый угол не пройдет через выпускное отверстие.
Выхлоп :-
Когда пик ИЛИ угол 1 проходит через выпускное отверстие, горячие газы сгорания под высоким давлением могут свободно вытекать из отверстия.
По мере того, как ротор продолжает двигаться, объем камеры продолжает уменьшаться, вытесняя оставшиеся газы из порта. К тому времени, когда угол 2 закрывает выпускное отверстие, угол 1 проходит мимо впускного отверстия, повторяя цикл.
В то время как первая камера выпускает газы, вторая камера (между углом 2 и углом 3) находится под сжатием . Одновременно в камеру 3 (между углом 3 и углом 1) поступает свежая смесь .
В этом прелесть двигателя: четыре последовательности четырехтактного цикла, которые происходят последовательно в поршневом двигателе, происходят одновременно в двигателе Ванкеля, производя мощность непрерывным потоком.
Преимущества:-
- В двигателе Ванкеля очень мало движущихся частей; намного меньше, чем у четырехтактного поршневого двигателя. Это делает конструкцию двигателя проще, а двигатель надежнее.
- Это примерно 1/3 размера поршневых двигателей , обеспечивающих такую же выходную мощность.
- Способен достигать более высоких оборотов в минуту, чем поршневой двигатель.
- Двигатель Ванкеля весит почти 1/3 веса поршневых двигателей , обеспечивая такую же выходную мощность. Это приводит к более высокому соотношению мощности к весу.
Недостатки :-
- Поскольку каждая секция имеет разную температуру, расширение материала корпуса различно в разных регионах. Поэтому ротор иногда не может полностью герметизировать камеру в области высоких температур.
- Сгорание медленное, так как камера сгорания длинная, тонкая и подвижная. Следовательно, может быть вероятность того, что новый заряд разрядится, даже не сгорая.
- Поскольку несгоревшее топливо находится в потоке выхлопных газов, 9Требования по выбросам 0336 трудно выполнить.
Роторный двигатель Mazda Wankel | Как работает роторный двигатель
Мы еще не видели последний из вращающихся треугольников.
Еще в марте Мартин тен Бринк, вице-президент Mazda Motor Europe по продажам и обслуживанию клиентов, зажег редукторы повсюду, когда сообщил голландскому автоизданию ZERauto, что роторный двигатель Ванкеля вернется в производство.
В частности, тен Бринк сказал, что роторный двигатель может увеличить запас хода электромобиля в 2019 году., и пока это только слухи. Mazda Motor of America не будет обсуждать или подтверждать комментарии Тена Бринка, сообщив нам только, что «Mazda пока не анонсировала никаких конкретных продуктов с роторным двигателем. Однако Mazda по-прежнему привержена работе над технологиями роторных двигателей».
Так что же такого особенного в этом легендарном паровозе, возвращение которого всех так взволновало? И почему на этот раз все может быть иначе?
Как это работает
Getty Images
Роторный двигатель — это бочкообразный двигатель внутреннего сгорания, в котором отсутствуют многие основные детали, которые можно найти в обычном поршневом двигателе. Во-первых, нет никаких поршней, пыхтящих вверх и вниз. Скорее, закругленные треугольные роторы — чаще всего два, но иногда один или три — вращаются вокруг вала через полый ствол.
Топливо и воздух нагнетаются в пространство между боковинами роторов и внутренними стенками ствола, где они воспламеняются. Быстрое расширение взрывающихся газов вращает роторы, вырабатывая энергию. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель легче и меньше, чем поршневой двигатель эквивалентного рабочего объема.
Базовый дизайн столетней давности. Сам Феликс Ванкель был немецким инженером, который придумал свою версию роторного двигателя в 1920-х годах. Однако, будучи занятым разжиганием войны от имени нацистской партии, он не имел возможности развить свое видение слишком далеко до 1951 года, когда немецкий автопроизводитель NSU пригласил его для разработки прототипа.
Сложная конструкция Ванкеля фактически уступила место более простому прототипу, разработанному инженером Ханнсом Дитером Пашке, которого NSU также пригласил попробовать первоначальную концепцию Ванкеля. Двигатель Пашке — это двигатель, которым Mazda будет владеть и побеждать в 21 веке. Таким образом, современный Ванкель не совсем Ванкель.
Getty Images
Не говоря уже об именах, Ванкеля является наиболее распространенной и успешной конструкцией роторного двигателя, и единственной, которая была запущена в массовое производство. Еще в начале 60-х NSU и Mazda устроили дружеское совместное соревнование по продаже первого автомобиля с двигателем Ванкеля, поскольку они устраняли недостатки незрелой конструкции. NSU был первым на рынке в 1964 году, но он разрушил свою репутацию в течение следующего десятилетия, поскольку частые отказы двигателя снова и снова заставляли владельцев обращаться в мастерскую. Вскоре уже можно было найти NSU Spider или Ro 80 с тремя и более двигателями.
Проблема заключалась в апексных уплотнениях — тонких металлических полосках между кончиками вращающихся роторов и корпусами роторов. НСУ сделал их трехслойными, что вызвало неравномерный износ, сделавший их гранатометными. Mazda разработала верхние уплотнения, сделав их однослойными, и представила Wankel в роскошном спортивном автомобиле Cosmo 1967 года.
В начале 70-х Mazda представила целую линейку автомобилей с двигателями Ванкеля, мечта, которая была разрушена нефтяным кризисом 1973 года. Но роторная стала единственной силовой установкой для трех поколений спортивных Mazda RX-7 от 1978 по 2002 год, период, когда двигатель Ванкеля и почитался, и ругался.
Любимый и ненавистный
Популярная механика
Редукторам нравится ротор отчасти потому, что он другой. Автолюбители всегда питали слабость к двигателю, который, если не считать сжигания бензина внутри, мало чем напоминает обычный поршневой двигатель. Роторный двигатель выдает мощность линейно вплоть до 7000 или 8000 об/мин, в зависимости от специфики двигателя, и этот плоский диапазон мощности отличает его от поршневых двигателей, которые слишком часто набирают мощность на высоких оборотах, чувствуя себя бессильным на низких оборотах.
Автопроизводителям также понравился ротор за его плавность хода. Роторы, вращающиеся вокруг центральной оси, обеспечивают приятное отсутствие вибрации по сравнению с поршневым двигателем, чье движение поршня вверх-вниз более резкое. Но необычный двигатель — это незнакомое животное, поэтому поляризационный Ванкель также внушает свою долю отвращения автолюбителям и механикам. Это простая конструкция — без ремня ГРМ, без распределительного вала, без коромысла — но незнакомость вызывает недоверие, а у Ванкеля есть причуды, которые требуют внимания.
Ротор по своей конструкции сжигает масло, закачивая небольшое количество моторного масла в камеры сгорания для смазки роторов, создавая обычную струю голубого дыма из выхлопной трубы, когда вы заводите машину. Откровенно говоря, людей это пугает: синий дым из выхлопных газов — это сигнал бедствия, если он исходит от поршневого двигателя.
Ротари также предпочитают минеральное масло синтетическому, а их конструкция означает, что вы должны периодически доливать масло, потому что двигатель постоянно его пьет. Эти верхние уплотнения также не служат долго, прежде чем их нужно будет заменить. Восстановление Ванкеля на 80 000-100 000 миль является типичным, и раньше, чем большинство поршневых двигателей нуждаются в такой исчерпывающей работе.
Современные водители также наиболее чувствительны к другим недостаткам роторных двигателей, меньшим выбросам и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь, прежде чем выпустить ее в выхлоп. Для RX-8 Mazda устранила эти проблемы, разместив выпускные отверстия по бокам камер сгорания. Выбросы топлива также стали жестче с годами. Это одна из причин, по которой RX-8, последний автомобиль с двигателем Ванкеля, поступил в продажу в 2002 году и был снят с производства в 2012 году. 0006
Время для второго вращения
Вернемся к вице-президенту Mazda Мартину тен Бринку. Слухи о том, что Mazda может использовать какой-то роторный двигатель для увеличения запаса хода электромобиля. Это имело бы смысл. Еще в 2012 году Mazda взяла в лизинг 100 электромобилей Demio EV в Японии, но короткий пробег автомобиля в 124 мили был больным местом. Поэтому в 2013 году Mazda создала прототип, который включал в себя вращающийся расширитель диапазона, почти удвоивший этот диапазон, и назвал его Mazda2 RE Range Extender (Mazda2 — это то, как Demio называют за пределами Японии). Колеса прототипа приводились в движение с помощью электродвигателя, а 0,33-литровый роторный двигатель мощностью 38 лошадиных сил включался для подзарядки аккумуляторов электродвигателя, если они разряжались, а подзарядки поблизости не было.
Поскольку роторный двигатель не мог приводить в движение колеса, Mazda2 RE не была гибридом, как Volt или Prius. Ванкель был скорее бортовым генератором, который увеличивал запас хода автомобиля. Та же компактность и легкий вес, которые сделали двигатель Ванкеля отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным генератором для увеличения запаса хода в автомобиле, особенно в том, в котором уже есть электродвигатели и аккумуляторы, конкурирующие за пространство, и которые могут не позволять себе брать слишком большой вес. Но концепция увеличения запаса хода не была запущена в производство, и Mazda не продала ни одного электромобиля с тех пор, как были выпущены 100 электромобилей Demio.
Тем не менее, роторный двигатель заработал свою репутацию в основном как двигатель спортивного автомобиля, а не как генератор, который таскают за собой электродвигатели. Пока ходят слухи о возрождении роторного двигателя, любители автомобилей будут мечтать об этом суетливом, причудливом двигателе, который снова будет вращать колеса для динамичной и динамичной езды.
Мэтью Джансер
Мэтт Дженсер (Matt Jancer) — писатель из Юга, посвященный автомобилям и природе. Если он не находится снаружи, окруженный вещами или не просит животных оставаться неподвижными для фотографий, вы найдете его на обочине дороги под капотом старой машины, раздирающим оборудование для выбросов и ругающимся.
Как все устроено: роторные двигатели [ВИДЕО]
Питер рассказывает нам об одном из своих любимых элементов автомобильной техники — роторном двигателе. Мы рассмотрим, как работает роторный двигатель, чем он отличается от традиционного поршневого двигателя и почему сегодня роторные двигатели не получили широкого распространения. Посмотрите видео прямо сейчас.
Расчетное время чтения: 5 минут 28 секунд.
Расчетное время чтения: 5 минут 28 секунд.
Если вы не можете посмотреть видео, вы можете прочитать расшифровку видео ниже: Отредактировано для ясности и удобочитаемости
Добро пожаловать в Let’s Talk Automotive. В этом выпуске «Как все работает» мы поговорим о роторном двигателе.
Большинство из вас знакомы с традиционными поршневыми двигателями внутреннего сгорания, конструкция которых, по сути, является архаичной. Когда мы рассматриваем силы, используемые для изменения направления поршня, мы видим, что мы теряем очень много механического КПД. На самом деле, поршень высокопроизводительного автомобиля улетел бы в космос, если бы мы могли отпустить его в верхней мертвой точке. Немецкий инженер Феликс Ванкель разделил мои мысли и сконструировал роторный двигатель, названный в его честь. Он усовершенствовал свой дизайн в 1950-х, а к началу 1960-х мы увидели первые попытки использования двигателя в серийных автомобилях.
Что делает роторный двигатель особенным, так это то, что нам не нужно столько движущихся механических частей, как клапаны, распределительные валы и зубчатые ремни. Нам не нужна целая головка блока цилиндров, поэтому роторный двигатель примерно вдвое меньше поршневого. Кроме того, двигателю не нужно менять направление, он просто продолжает вращаться, развивая все большую и большую мощность.
Какова основная схема двигателя Ванкеля? Во-первых, у нас есть ротор треугольной формы. Ротор находится внутри корпуса и вращается вокруг шестерни или шестерни, прикрепленной к корпусу. Эта шестерня регулирует движение ротора в правильном направлении. Ротор, в свою очередь, вращается внутри эксцентрикового выходного вала, так крутящий момент передается от двигателя. Это похоже на то, как работает коленчатый вал, но уникальным образом.
Давайте посмотрим, как все эти части объединяются, чтобы создать волшебство. Как и поршневой двигатель, роторный двигатель основан на цикле Отто. Цикл Отто показывает, как двигатель имеет циклы впуска, сжатия, сгорания и выпуска.
Цикл начинается с впуска. Когда край треугольной формы проходит через впускное отверстие, он начинает создавать вакуум, который втягивает воздушно-топливную смесь в создаваемую камеру. Когда пик треугольника проходит через впускное отверстие, он запечатывает камеру, позволяя создавать сжатие по мере того, как ротор продолжает вращаться. Когда компрессия достигает своего пика, две свечи зажигания вызывают воспламенение воздушно-топливной смеси. Камера сгорания — это то, что мы называем длинной, поэтому нам нужны две свечи зажигания, чтобы воспламенить топливо как можно быстрее. Использование одной свечи зажигания сделало бы процесс сгорания слишком медленным для производства какой-либо мощности. Расширение горючей воздушно-топливной смеси приводит в движение ротор вокруг корпуса. Мощность вырабатывается до тех пор, пока вершина ротора не пройдет через выпускное отверстие, откуда теперь выбрасываются выхлопные газы. По мере вытеснения выхлопных газов другая часть ротора треугольной формы начинает всасывать свежую топливно-воздушную смесь, завершая цикл. Поскольку первая сторона треугольника всасывает топливно-воздушную смесь, вторая сторона создает сгорание, а третья сторона выпускает выхлопные газы. Цикл будет продолжаться до тех пор, пока двигатель не будет выключен. Мы завершаем все четыре цикла за один оборот ротора, в то время как наши поршневые двигатели достигают такого же сигнального оборота за четыре хода поршня с минимум тремя цилиндрами.
В некоторых конструкциях роторных двигателей используются два ротора в одном корпусе, которые дополняют друг друга. Когда первый ротор входит в цикл сгорания, вскоре после этого должен войти второй. Это создает равномерный, постоянный поток мощности, который приводит в движение выходной вал. Выходной вал известен как эксцентриковый вал, потому что его выступы установлены не по центру вала. Каждый ротор установлен на одном из этих кулачков, а это означает, что каждое вращение кулачка заставляет вал вращаться три раза за каждый отдельный оборот ротора. Вот как работают такие высокооборотные роторные двигатели.
Как обсуждалось в предыдущих разделах, мощность описывает скорость, с которой мы создаем крутящий момент. В высокооборотном двигателе, таком как роторный, нам не нужно создавать большой крутящий момент для достижения огромной мощности. Мы можем даже увеличить мощность роторного двигателя, добавив турбонаддув, а высокая частота вращения двигателя устраняет большую часть турбо-запаздывания.
В роторном двигателе меньше движущихся частей. Вместо нескольких цилиндров у нас есть один корпус, занимающий вдвое меньше места. Однако есть некоторые недостатки.
Во-первых, длина камеры сгорания означает, что мы не всегда можем сжечь все топливо, поэтому часть этого топлива выбрасывается через выхлоп. Некоторые могут рассматривать это как преимущество, поскольку он создает прохладное пламя через выхлоп, но увеличивает расход топлива и выбросы роторного двигателя. Во-вторых, масло, которое используется для смазки корпуса, также сгорает при нагревании двигателя, что еще больше увеличивает количество выбросов углерода. Кроме того, есть верхушечные уплотнения, которые всегда были проблемой с точки зрения отказа. Уплотнения выходят из строя из-за разницы температур внутри корпуса. Есть холодная часть корпуса на впуске, горячая часть, где происходит сгорание, и теплая часть на выпуске, и все они сосуществуют одновременно. Это создает различные температурные коэффициенты расширения материалов. В процессе сгорания также происходит накопление углерода, который повреждает уплотнения.
Благодаря использованию экзотических материалов, теплозащите от резких перепадов температур и конструкции керамических уплотнений роторный двигатель стал чрезвычайно надежным. К сожалению, высокие выбросы остаются проблемой и в конечном итоге привели к упадку роторного двигателя. Однако, если бы мы использовали водород в качестве источника топлива, роторный двигатель, по сути, стал бы двигателем с нулевым уровнем выбросов. Насколько это радикально?! Так что давайте возьмем большие пальцы за то, что, возможно, есть движение к использованию водорода в качестве источника топлива.
На этом мы завершаем наш рассказ о том, как работают роторные двигатели.
Мы с нетерпением ждем встречи с вами в нашем следующем выпуске Let’s Talk Automotive.
Чтобы посмотреть полный эпизод, посетите: https://www.facebook. com/LetsTalkAutomotive/videos/?ref=page_internal
Хотите знать, когда будет доступен следующий эпизод? Зарегистрируйтесь, чтобы получать уведомления прямо на свой почтовый ящик.
Проблема с роторными двигателями: инженерное объяснение
Масса мощности в крошечном, простом и легком корпусе. В роторном двигателе Ванкеля есть за что любить, но недостаточно, чтобы поддерживать его жизнь. Давайте посмотрим, что пошло не так
Напомнить позже
Они компактны, мощны и издают потрясающий шум. Так почему же роторные двигатели так и не стали популярными, и почему единственный производитель, который ее отстаивал, почти отказался от этой концепции? Давайте проведем вас через это.
NSU Spider 1964 года был первым серийным автомобилем в мире, у которого плавились задние шины под действием роторного двигателя Ванкеля. Автомобильный дебют Ванкеля готовился десятилетиями, хотя продолжительность его жизни была относительно короткой и закончилась Mazda RX-8 2011 года. Это приводит нас к нескольким вопросам:
- Как работает роторный двигатель?
- Какие преимущества у этого двигателя? (Зачем это было сделано?)
- Какие недостатки имеет двигатель? (Почему он умер?)
Процесс работы роторного двигателя очень похож на то, что происходит в традиционном двигателе с поршневым цилиндром. Отличие в том, что вместо поршней ротор треугольной формы, а вместо цилиндров корпус, напоминающий овал.
Всасывание
По мере движения ротора внутри корпуса маленький воздушный карман расширяется в больший карман, создавая вакуум. Этот вакуум воздействует на впускные отверстия, из которых воздух и топливо затем всасываются в камеру сгорания.
Сжатие
Ротор продолжает вращаться, прижимая топливовоздушную смесь к плоской стороне корпуса ротора.
1 МБ
Привет Итану Смейлу за эпический GIF!
Мощность
Две свечи зажигания используются для воспламенения воздушно-топливной смеси, помогая ускорить процесс сгорания и обеспечить сгорание большей части топлива, что заставляет ротор продолжать вращаться.
Выпуск
Подобно такту впуска, ротор перемещается до тех пор, пока не станут доступными выпускные отверстия, а затем выхлопные газы под высоким давлением вытесняются наружу, когда ротор закрывается от корпуса.
Важно понимать, что, в отличие от двигателя с поршневым цилиндром, в одном корпусе ротора все эти процессы происходят практически одновременно. Это означает, что в то время как всасывание происходит на одной части ротора, также происходит рабочий ход, что приводит к очень плавной подаче мощности и большому количеству мощности в небольшом пакете.
2. Какие преимущества имеет двигатель Ванкеля?
Соотношение веса и мощности
Одним из самых больших преимуществ роторного двигателя был его размер. Двигатель 13B Mazda RX-7 занимал около одного кубического фута объема, но производил значительную мощность для своих небольших размеров.
Меньше движущихся частей
Часто в инженерии самое простое решение оказывается одним из лучших. Роторный двигатель резко сокращает количество деталей, необходимых для сгорания, поскольку в двухроторном двигателе вращаются всего три основных компонента.
Плавный и высокооборотный
Роторный двигатель не имеет возвратно-поступательного движения массы, как клапаны или поршни в традиционном двигателе. Это приводит к невероятно сбалансированному двигателю с плавной подачей мощности и способностью развивать высокие обороты, не заботясь о таких вещах, как поплавок клапана.
Mazda RX-8 2011 года была последним серийным автомобилем с роторным двигателем Ванкеля, 1,3-литровым Renesis. Независимо от того, соответствовал ли RX-8 названию роторного двигателя, мы все прослезились из-за потери этого новаторского и уникального подхода к внутреннему сгоранию. Что нанесло последний удар? RX-8 не соответствовал нормам выбросов Euro 5, и, таким образом, он больше не мог продаваться в Европе после 2010 года. Несмотря на то, что в штатах он оставался законным, продажи значительно упали, поскольку модель существовала с 2004 года.0006
Какие недостатки есть у поворотной конструкции?
Всего три основных движущихся части в двухроторном двигателе Ванкеля
Низкий тепловой КПД
Из-за длинной камеры сгорания уникальной формы тепловой КПД двигателя был относительно ниже по сравнению с поршневыми аналогами. Это также часто приводило к выходу несгоревшего топлива из выхлопной трубы (отсюда тенденция роторных двигателей к обратному срабатыванию, что, очевидно, столь же прекрасно, сколь и неэффективно).
Burn Baby Burn
По своей конструкции роторный двигатель работает на жидком топливе. Во впускном коллекторе имеются маслораспылители, а также форсунки для распыления масла непосредственно в камеру сгорания. Это не только означает, что водитель должен регулярно проверять уровень масла, чтобы поддерживать правильную смазку ротора, но это также означает, что из выхлопной трубы выходит больше вредных веществ. И окружающая среда ненавидит плохие вещи.
В это отверстие в корпусе непосредственно впрыскивается масло во время такта впуска двигателя.
Уплотнение ротора
Еще одна проблема, которая также может повлиять на выбросы: трудно герметизировать ротор, когда он окружен совершенно разными температурами. Помните, что впуск и сгорание происходят одновременно, но в совершенно разных местах корпуса. Это означает, что верхняя часть корпуса относительно холодная, а нижняя часть намного горячее. С точки зрения герметизации это проблематично, так как вы пытаетесь создать уплотнение металл-металл с металлами, которые работают при значительно разных температурах. Использование охлаждающих рубашек для выравнивания тепловой нагрузки позволяет уменьшить эту проблему, но никогда полностью.
Выбросы
Если сложить все вместе, выбросы убили ротор. Сочетание неэффективного сгорания, естественного сжигания масла и проблемы с уплотнением приводит к тому, что двигатель не может конкурировать по сегодняшним стандартам по выбросам или экономии топлива.
Чем RX-8 отличается от конкурентов?
Печально известный сальник от ротора RX-7 13B
В моем видео с описанием недостатков RX-8 зрители справедливо отметили, что я сравнивал автомобили 2015 модельного года с моделью 2011 года с точки зрения экономии топлива, что было несправедливо по отношению к Mazda. конец. Давайте исправим эту ошибку, используя первый модельный год RX-8.
Автомобиль | Объем двигателя | Масса | Мощность | Суммарный расход на галлон |
2004 Мазда RX-8 | 1,3 л Ванкель | 3053 фунта (1385 кг) | 197-238 л.с. (Авто/Ручной) | 18 миль на галлон (13 л/100 км) |
2004 Фольксваген ГТИ | 1,8 л I4 | 2934 (1330 кг) | 180 л.с. | 24 мили на галлон (9,8 л/100 км) |
2004 Корвет | 5,7 л V8 | 3214 фунтов (1458 кг) | 350 л. с. | 20 миль на галлон (11,8 л/100 км) |
Как вы можете видеть выше, RX-8 не имеет преимуществ с точки зрения экономии топлива. Corvette со значительно более мощным двигателем, на 47% большей мощностью и на 5% большим весом по-прежнему обеспечивает на 11% лучшую экономию топлива. Также стоит упомянуть, что это был первый модельный год для RX-8, в то время как двигатели Corvette и GTI использовались с предыдущих лет. Проще говоря, о RX-8 нельзя сказать ничего хорошего с точки зрения экономии топлива. Хотя покупатель не обязательно может рассматривать это как отрицательный момент, без выбросов вредных веществ нельзя купить автомобиль.
Стоит отметить, что с момента первоначальной публикации этой статьи Mazda объявила, что вернет роторные двигатели, хотя и только в качестве небольшого увеличения запаса хода в электромобилях. Другими словами, ничего такого, что могло бы «взлететь».
Что такое роторные двигатели и в каких автомобилях они есть?
Роторные двигатели могут звучать как что-то из ушедшей эпохи, потому что обычно так оно и есть. Когда-то считавшиеся самыми эффективными и элегантными двигателями, десятилетия назад они были заменены поршневыми двигателями, главным образом из соображений экономии и защиты окружающей среды. Но с новостями о том, что Mazda разрабатывает новый роторный двигатель для своих гибридных моделей, может ли этот тип двигателя вернуться?
Чтобы выяснить это, мы подробно рассмотрим роторные двигатели, в том числе принцип их работы, их преимущества и какие автомобили работают на двигателях этого типа. Воспользуйтесь приведенными ниже ссылками, чтобы упростить навигацию по руководству.
Быстрые ссылки
- Что такое роторный двигатель?
- Компоненты роторного двигателя
- Есть ли преимущества у роторных двигателей в автомобилях?
- Какие автомобили имеют роторный двигатель?
Что такое роторный двигатель?
Роторный двигатель — это тип двигателя внутреннего сгорания, который используется для питания всех видов транспортных средств, от легковых и грузовых автомобилей до лодок и самолетов. Роторные двигатели существуют уже несколько десятилетий и были одним из наиболее широко используемых типов двигателей примерно до 1920-х годов.
Как и в обычном поршневом двигателе, роторные двигатели обеспечивают движение автомобиля по четырем направлениям: впуск, сжатие, сгорание и выхлоп. Однако они работают совершенно иначе, чем стандартные двигатели, к которым мы привыкли.
Итак, как же работают роторные двигатели? Вот пошаговый взгляд на то, как выглядит цикл сгорания в роторном двигателе:
- Впуск — как и в стандартном поршневом двигателе, воздух всасывается в двигатель через впускной клапан, прежде чем попасть внутрь. камеру через впускное отверстие.
- Компрессионный – ротор треугольной формы внутри камеры создает три газонепроницаемых уплотнения; они эффективно выполняют ту же работу, что и поршни в обычном двигателе. Когда ротор вращается, его уникальная форма означает, что эти три объема газа расширяются и сжимаются, втягивая в систему больше воздуха и топлива.
- Сгорание — на пике давления внутри каждой из трех газовых камер воспламеняется топливно-воздушная смесь, производя мощность, которая передается на трансмиссию через выходной вал.
- Выхлоп – выхлопное отверстие в корпусе двигателя отводит газы, откуда они выбрасываются через стандартную выхлопную трубу.
Как и в стандартном поршневом двигателе, температура роторных двигателей поддерживается системой охлаждения, каналы для охлаждающей жидкости выстилают внешнюю оболочку камеры сгорания. Масло также циркулирует по аналогичным каналам, смазывая движущиеся части ротора, выходного вала и клапанов.
Компоненты роторного двигателя
Роторные двигатели могут показаться сложными, но на самом деле в них не так много движущихся частей и компонентов, как в поршневых двигателях. Ниже мы рассмотрим основные компоненты роторного двигателя, чтобы дать вам лучшее представление о том, как все работает.
Ротор
Ротор представляет собой трехсторонний компонент с вогнутыми сторонами, которые предназначены для газонепроницаемого уплотнения при прижатии к боковой стороне корпуса. На каждой стороне ротора есть впускное отверстие или карман, что позволяет увеличить объем газа внутри корпуса, эффективно увеличивая рабочий объем двигателя.
Ротор вращается на паре шестерен, прикрепленных к валу в центре корпуса. Эти шестерни позволяют ему вращаться таким образом, что край каждой стороны ротора всегда соприкасается с корпусом, поддерживая три отдельных кармана сгорания. Думайте об этом немного как о спирографе с ротором, вращающимся немного смещенным образом.
Корпус
Корпус представляет собой основной корпус роторного двигателя. Его овальная форма предназначена для максимального увеличения рабочего объема двигателя, позволяя ротору вращаться, а его края находятся в постоянном контакте с внутренней стенкой корпуса.
По мере того как ротор вращается внутри корпуса, каждый из газовых карманов проходит четыре этапа цикла сгорания: от впуска до сжатия, от сгорания до выпуска. Свечи зажигания и топливные форсунки вставлены непосредственно через стенку корпуса, а каналы снаружи пропускают масло и охлаждающую жидкость по системе, сохраняя ее целостность и температуру.
Выходной вал
Выходной вал передает энергию, вырабатываемую при сжатии и сгорании, на трансмиссию, передавая мощность на колеса. Сам вал имеет круглые выступы, которые соприкасаются с ротором, заставляя вал вращаться.
Есть ли преимущества у роторных двигателей в автомобилях?
Роторные двигатели встречаются редко, поскольку большинство производителей автомобилей используют обычные поршневые двигатели с 1920-х годов. Это связано с тем, что они считаются менее экономичными, чем их поршневые аналоги, в основном потому, что они обеспечивают более низкую термодинамическую эффективность из-за размера камеры сгорания и низкой степени сжатия.
Однако роторный двигатель имеет некоторые преимущества по сравнению с поршневым двигателем, в том числе:
- Плавный и тихий – работа роторного двигателя более плавная, чем движение поршней, что обеспечивает более тихое и утонченное ощущение на дороге. Противовесы на внешней стороне поворотного корпуса предназначены для гашения вибрации и обеспечения плавной работы.
- Меньше движущихся частей – роторные двигатели имеют меньше движущихся частей, чем обычные двигатели. Это не только повышает надежность, но и делает обслуживание более доступным в долгосрочной перспективе.
- Медленное внутреннее движение — поршневые двигатели требуют быстрых и интенсивных движений вверх и вниз, чтобы создать необходимую степень сжатия для движения автомобиля. Это означает, что их внутренние части подвергаются экстремальным нагрузкам, что может привести к преждевременной деградации без регулярного обслуживания. Роторные двигатели медленнее, с одним движением в одном направлении, а это означает, что их детали испытывают меньшую нагрузку, что повышает надежность в долгосрочной перспективе.
Какие автомобили имеют роторный двигатель?
Очень немногие современные автомобили имеют роторный двигатель. Из-за недостатков, связанных с их экономичностью, а также относительной стоимости их производства, большинство автопроизводителей придерживаются поршневых двигателей. Но не каждый из них.
Японский автомобильный бренд Mazda экспериментирует с автомобилями с роторными двигателями с 1960-х годов. Его первым успехом стало Cosmo Coupé 1967 года, известное своим эффективным и сверхмягким роторным двигателем. С тех пор компания разработала несколько других моделей с роторным двигателем, в том числе RX-7, RX-8 и роторную версию Mazda 2, выпущенную еще в 2013 году.0006
А теперь Mazda объявила о планах по созданию совершенно нового роторного двигателя, который будет использоваться вместе с электродвигателем для увеличения запаса хода гибридно-электрических автомобилей. Бренд считает, что роторный двигатель идеально подходит для гибридного автомобиля, обеспечивая звук и надежную работу с гораздо большей утонченностью, чем стандартный поршневой двигатель.