Водометный двигатель как устроен: Водометные движители – оптимальное решение для катеров и яхт

Водометные движители – оптимальное решение для катеров и яхт

Судостроители всего мира давно и с успехом используют водометные движители, однако отечественные владельцы катеров и яхт до сих пор чаще всего прибегают к использованию традиционных подвесных моторов и моторов с гребными винтами. И тем не менее российский рынок водометных движителей считается достаточно перспективным, так как движители такого типа обладают рядом неоспоримых преимуществ, привлекающих потенциальных покупателей. Небольшие катера, корабли береговой охраны, прогулочные суда и яхты, будучи оснащёнными водомётными движителями, приобретают характеристики, недостижимые для традиционных гребных винтов.

Водомет сконструирован так, чтобы не иметь выступающих вращающихся частей, поэтому для его нормальной работы достаточно толщины водяного слоя всего в несколько десятков сантиметров. Это делает водометные движители крайне удобными для использования на мелководье. Кроме того, они надёжны и неприхотливы в использовании – изготовители до сих пор поставляют запчасти к моделям, выпущенным ещё 30 лет назад. Да и с экономической точки зрения использование водометного движителя с дизельным двигателем обойдется дешевле бензинового подвесного лопастного мотора.

Принцип действия водометов

Принцип действия водомётного движителя основан на увеличении водного потока в сопле. Изменение водного потока создает реактивную тягу, обеспечивающую движение судна. Управление движением судна осуществляется путем изменения скорости и направления выбрасываемой струи воды. Для определения силы водяной струи используется термин «упор». Величина упора зависит от скорости вращения двигателя, приводящего в движение водомет. Направление потока воды может изменяться при помощи управляющей сопловой насадки, что позволяет управлять судном. Реверсивная заслонка позволяет поворачивать поток вперед или под наклоном вниз. Это позволяет судну тормозить или двигаться задним ходом.

Водомёт работает по принципу насоса: вода, попавшая внутрь на входе, с высокой скоростью выбрасывается на выходе. Разница в скоростях на входе и на выходе образует поток с определенным упором. Вода на входе проходит через водозабор, который располагается на днище судна и оснащен защитной решеткой. На малом ходу вода засасывается импеллером, а на больших скоростях вода нагнетается набегающим потоком за счет скорости судна. Давление увеличивается в водозаборе и при прохождении воды через импеллер. Перед тем как придать потоку ускорение и выбросить его из водомета, закрученный поток проходит через спрямляющую камеру.

Поскольку движущиеся части водомета находятся внутри корпуса судна, они надежно защищены от повреждений при встрече с подводными препятствиями, что и определяет основное преимущество этого вида движителей. Моторные суда с водометами могут проходить по мелководью с глубинами, почти равными осадке корпуса, преодолевать засоренные и заросшие участки водоемов и даже отдельные препятствия, выступающие из воды.

В водомете довольно велики потери на трение, поскольку вода течет внутри трубы, однако этот недостаток компенсируется повышенной эффективностью крыльчатки насоса — рабочего колеса — импеллера водомета. В итоге по своим пропульсивным характеристикам современный водомет практически не уступает гребному винту, а на самых высоких скоростях нередко и превосходит его.

История появления водометов

Идея создания водомётного движителя появилась значительно раньше, чем был изобретен гребной винт. Еще в 1784 г. Джемс Рамсей продемонстрировал на реке Потомак в США первый пароход с водомётным движителем. В 1867 г. английский военно-морской флот проводил опыты с центробежными насосами в качестве движителя для канонерской лодки «Уотервич» длиной 50 м. Паровая машина мощностью 760 л.с. при частоте вращения 40 об/мин приводила в действие центробежный насос. Ротор насоса имел диаметр около 4,25 м. Канонерская лодка с водомётным движителем развивала скорость около 9 узлов.

Последнее звено в длинной цепи исследований замкнулось в Новой Зеландии, где изобретатель Уильям Гамильтон попытался приспособить небольшой катер для плавания по каменистой мелководной горной речке. С обычным гребным винтом это было невозможно, так как части, выступающие под днищем, получали повреждения из-за ударов о камни. Вначале Гамильтон установил внутри катера обычный центробежный насос, в результате чего водяная струя выходила в корме под катером. Выходное отверстие было выполнено поворотным, т.е. управляемым, поскольку под днищем катера нельзя было установить даже маленького пера руля.

В 1953 г. Гамильтон решил подводное выпускное отверстие вывести на транец над водой, обеспечив выброс водяной струи в воздух. И это небольшое изменение оказалось весьма эффективным: если экспериментальный катер раньше развивал скорость около 10 узлов, то при выбросе струи в воздух была достигнута скорость уже 14,5 узлов. Новинка оказалось популярной, и фирма Гамильтона — HamiltonJet – начала массовый выпуск водомётных движителей.

В 1954 году первый водомет производства компании Hamilton успешно привел в движение небольшую лодку против быстрого течения реки. С этого времени производство водометных движителей HamiltonJet постоянно совершенствовалось и расширялось. За время своего существования компания получила мировой опыт, установив за 50 лет более 35. 000 водометных движителей, и уверенно заняла лидирующее место в морской пропульсивной индустрии.

ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ HAMILTON JET: конструкция и преимущества

Компания HamiltonJet предлагает две линейки водометных движителей: HJ и HM.
Водометы серии HJ предназначены для судов длиной до 20 метров, мощность движителей этой серии варьируется от 350 до 1600 л.с.
Линейка водометных движителей серии HM включает в себя водометы мощностью от 1200 до 3750 л.с. (в форсированном режиме — от 1475 до 4700 л.с. соответственно), которые устанавливаются на суда длиной от 20 до 60 метров.

Водометные движители серии HJ включают в себя последние технологические новинки, используемые в морских пропульсивных системах. С увеличением скорости свыше 25 узлов водометы Hamilton обеспечивают более высокий пропульсивный коэффициент по сравнению с обычными гребными винтами. Таким образом, водометы серии HJ являются идеальным выбором для высокоскоростных рабочих катеров, патрульных судов, быстрых паромов и прогулочных судов для отдыха.

Новаторство компании HamiltonJet заключается в постоянном исследовании и развитии технологий по производству водометов, которые подвергаются серьезным гидродинамическим и тестовым испытаниям на местах эксплуатации.

Каждый водомет Hamilton – это полностью укомплектованный пропульсивный модуль, обязательно тестируемый на заводе. Системы рулевого управления и обратного хода уже встроены в водомет для упрощения монтажа и дальнейшего технического обслуживания. Среди преимуществ водометов Hamilton — простая регулировка движителя, исполнение водомета с прямым приводом или с соединением через редуктор.

Отсутствие открытого винта обеспечивает полную безопасность для живой морской природы и для людей в воде. Максимальный уровень комфорта достигается за счет отсутствия какой-либо вибрации корпуса судна, отсутствия крутящего момента и кавитации на больших скоростях. Риск разрушения при ударе снижен за счет отсутствия открытого винта. Рабочее колесо точно соответствует мощности двигателя, что исключает его перегрузку при любых условиях. Полная защита от коррозии и быстрого износа снижает время и расходы на техническое обслуживание. Все водометы Hamilton имеют защитный фильтр на входном отверстии.

Все водометы Hamilton спроектированы и производятся согласно требованиям ведущих мировых сертифицирующих сообществ. В производстве используются только прочные материалы с коррозионной стойкостью, а также применяется встроенная система с катодной защитой. Раздвоенный дефлектор обеспечивает мощное высокоэффективное усилие заднего хода на любой скорости и глубине воды. Специальный дизайн обеспечивает поэтапное управление вперед/назад и возможность быстрого «механического торможения». Быстрореагирующее и мощное рулевое управление максимизирует маневренность на любой скорости судна.

Рулевой эффект «нулевая скорость» водомета Hamilton – это возможность образования усилия на 360º при швартовке и на удерживающей позиции. Оригинальная конструкция рабочего колеса водомета (импеллера) обеспечивает очень высокий пропульсивный коэффициент вместе с отличной устойчивостью к кавитации.

Эксклюзивным представителем Hamilton Jet на территории России является «Кронштадт» . Последняя поставка водометных движителей Hamilton была осуществлена по заказу судостроительной компании «Триумф» в конце декабря 2010 года. 
На скоростной бронированный патрульный катер нового поколения «Стриж 4-1-Д» поставлены водометы серии HJ 292 (540 л.с.)

Пресс-центр 
«Кронштадт»

Перейти в каталог: Водометный движитель HamiltonJet

Обзор водомётных движителей «Борус»


Водомётные движители Борус  jet, и AL Борус jet производства, ООО «СВК-БОРУС».  



Водомётные движители Борус jet, и AL Борус jet : —  представляют собой модельный ряд высокоэффективных осевых насосов.   Устанавливаются на маломерные суда, от 3 до 20 метров в длину,  как правило, с высоко оборотистыми бензиновыми или дизельными двигателями.



Борус Jet: изготавливаются из нержавеющей стали.



AL Борус jet: корпуса водовода, полости импеллера, спрямляющего аппарата, ковша реверса изготавливаются из алюминиевого сплава Ак7Ч. Все остальные делали из нержавеющей стали  



       Все детали Водомётных движителей Борус jet и AL Борус jet,  проектируются по 3Д технологиям   и изготавливаются с применением 3Д технологии на системах с ЧПУ.  Водомётные движители Борус  имеют высокую эффективность и высокую надёжность, а такие параметры  как сопротивление на всасывание, кавитация, срыв потока  ниже номы даже когда приходится ходить по маловодным и замусоренным водоёмам. Мы всегда мониторим новые разработки в области проектирования и постройки водомётов, внедряем более продуктивные разработки в свои модели, и сами разрабатываем и внедряем новое в водомётные движители Борус.



      Водомётные движители Борус  состоят из полностью интегрированной установки с рулевыми и реверсивными механизмами с механической или гидравлической системой управления.



       Правильные выбор водомётного движителя, главного двигателя и корпуса катера, это залог успеха, грамотно вложенные средства и не напрасно потраченное время.



ООО «СВК-БОРУС» выпускает водомётные движители для всех типов маломерных судов. В таблице с габаритными размерами водомётных движителей можно узнать основные размеры водомётных движителей для судов от 3 до 10 метров, а также габариты и вес движителей в упаковке.



По графику рабочих диапазонов водомётного движителя можно точно подобрать нужную модель.



ПРИМЕР: Нам нужно подобрать водомётный движитель к двигателю 2JZ-GE  225 л.с./6000 об/мин      300 Н*м/4400 об/мин.



Смотрим на таблицу в графу мощность ДВС и видим, что нам подходит водомёт 200 и 220 мм, смотрим на графу максимальный крутящий момент и видим, что нам подходит водомёт 200 и 220мм. 



Глядя на график мы видим, что:



 Водомёт 200 мм с 2JZ-GE работает в диапазоне 3700-5200 об/мин, это значит, что в зависимости от установленного в водомёт импеллера 1 вариант (скоростной-дающий максимальную скорость на максимальных оборотах 5200 об/мин в диапазоне 4200-5200 об/мин) и 2 вариант (экономичный-дающий максимальную экономичность на номинальных оборотах 4400 об/мин в диапазоне 3700-4700 об/мин) 



  Водомёт 220 мм с 2JZ-GE работает в диапазоне 3800-4800 об/мин, это значит, что в зависимости от установленного в водомёт импеллера 1 вариант (скоростной-дающий максимальную скорость на максимальных оборотах 4800 об/мин в диапазоне 3800-4800 об/мин) и 2 вариант (экономичный-дающий максимальную экономичность на номинальных оборотах 4200 об/мин в диапазоне 3700-4500 об/мин) 



Какой водомёт выбрать? Чем больше диаметр водомётного движителя, тем ниже эксплуатационные обороты, а значит меньше расход топлива, и больше ресурс двигателя. Поэтому если нас не беспокоит расход топлива выбираем 200 мм, если расход важен, нужно выбирать 220 мм




НУЖНО ЗНАТЬ: 



    Водомётный катер это сбалансированное, сложное техническое устройство, где корпус катера, марка ДВС и диаметр водомётного движителя должны быть оптимальными и согласованными друг с другом. 



    Нельзя ставить в катер ДВС превышающий по максимальной мощности нормы регламентированные  ГИМНС МЧС РОССИИ.



    Водомётный движитель потеряет почти половину мощности главного двигателя.



    Мощность главного двигателя, напрямую зависит от оборотов. Нужно выбирать такой ДВС, что бы максимальный крутящий момент был больше средних  оборотов рабочих диапазонов водомётного движителя. Пример  2JZ-GE  225 л.с./6000 об/мин      300 Н*м/4400 об/мин. Водомёт Борус 220 jet работает в диапазоне 3800-4800 об/мин. Максимальный крутящий момент 300 Н*м на 4400 об/мин, это как раз, то, что нужно.



  При выборе главного двигателя, главными критериями отбора, помимо мощности и крутящего момента, нужно выбирать такие ДВС где диаметр цилиндра всегда больше хода поршня.



   Спрямляющий аппарат может быть  с конусным поджатием, лопаточным поджатием, комбинированный, и щелевого типа. Классическим спрямляющим аппаратом можно назвать спрямляющий аппарат с конусным поджатием, такие спрямляющие аппараты стоят на Борус 180 jet и его модификациях, на Борус Al 180 jet, на Борус Al 200 jet и как дополнительная опция на Борус 200 jet. Самым неприхотливым, надёжным, и популярным спрямляющим аппаратом фирмы Борус можно назвать спрямляющий аппарат щелевого типа, по КПД он совсем немного уступает спрямляющему аппарату с конусным поджатием с увеличенной ступицей, не уступает спрямляющему аппарату с классическим конусным поджатием, но по надёжности и способности работать в замусоренных водоёмах, ему равных нет.



     Выбираюя корпус имейте в виду, что не на все корпуса можно ставить водомёт, а некоторые корпуса нужно дорабатывать.


 


     Выбирая двигатель посмотрите файлы внизу статьи. Обзорная статья про все двигатели TOYOTA. Вес всех известных двигателей, и много другой полезной информации помогут Вам сделать правильный выбор. Выбирать нужно поэтапно, собрать всю информацию, всё взвесить и только тогда принимать решение, можно использовать и чужой опыт, но поверьте это не всегда правильно. Сколько людей, столько и мнений.

Реактивные двигатели

Общий обзор

На изображении выше показано, как реактивный двигатель будет расположен в современном
военный самолет. В базовом реактивном двигателе воздух поступает в передний воздухозаборник и
сжимается (мы увидим, как позже). Затем воздух нагнетается
камеры сгорания, в которых впрыскивается топливо, а смесь воздуха
и топливо воспламеняется. Образующиеся газы быстро расширяются и истощаются.
через заднюю часть камеры сгорания. Эти газы действуют с одинаковой силой
во всех направлениях, обеспечивая тягу вперед, когда они уходят в тыл. В качестве
газы покидают двигатель, они проходят через веерообразный набор лопастей
(турбина), которая вращает вал, называемый валом турбины. Этот вал, в
очередь, вращает компрессор, тем самым обеспечивая подачу свежего воздуха
через впуск. Ниже представлена ​​анимация изолированного реактивного двигателя, который
иллюстрирует процесс притока воздуха, сжатия, горения, оттока воздуха
и только что описанное вращение вала.

процесс можно описать следующей схемой, взятой с сайта
Rolls Royce, известного производителя реактивных двигателей.

Этот процесс лежит в основе работы реактивных двигателей, но как именно
происходит что-то вроде сжатия (сдавливания)? Чтобы узнать больше о каждом
о четырех шагах создания тяги реактивным двигателем см. ниже.

СОСА

Двигатель всасывает большой объем воздуха через вентилятор и компрессор
этапы. Типичный коммерческий реактивный двигатель потребляет 1,2 тонны воздуха в секунду.
во время взлета — иными словами, он мог выпустить воздух на корте для сквоша в
меньше секунды. Механизм
которым реактивный двигатель всасывает воздух, в значительной степени является частью сжатия
сцена. Во многих двигателях
Компрессор отвечает как за всасывание воздуха, так и за его сжатие. Некоторые двигатели имеют дополнительный вентилятор,
не является частью компрессора для подачи дополнительного воздуха в систему. Вентилятор — крайний левый компонент
двигатель показан выше.

ВЫЖИМ

Помимо подачи воздуха в двигатель, компрессор также создает давление в
воздуха и подает его в камеру сгорания. Компрессор показан на изображении выше слева от
огонь в камере сгорания и справа от вентилятора. Компрессионные вентиляторы приводятся в действие от
турбина валом (турбина, в свою очередь, приводится в движение воздухом,
выходя из двигателя). Компрессоры могут достигать избыточной степени сжатия
40:1, что означает, что давление воздуха в конце
компрессора более чем в 40 раз больше воздуха, поступающего в компрессор. На полной мощности лопасти типичного
коммерческий реактивный компрессор вращается со скоростью 1000 миль в час (1600 км / ч) и потребляет 2600 фунтов
(1200 кг) воздуха в секунду.

Сейчас
мы обсудим, как компрессор на самом деле сжимает воздух.

Как видно на изображении выше, зеленые вентиляторы, составляющие
компрессор постепенно становится все меньше и меньше, как и полость через
которые должен пройти воздух. Воздух
должны продолжать двигаться вправо, в сторону камер сгорания
двигатель, так как вентиляторы вращаются и толкают воздух в этом направлении. Результат — заданное количество воздуха
переходя из большего пространства в меньшее и тем самым увеличивая
давление.

BANG

В камере сгорания топливо смешивается с воздухом для создания взрыва, который
отвечает за расширение, которое нагнетает воздух в турбину.
Внутри типичного коммерческого реактивного двигателя топливо сгорает при сгорании.
камере до 2000 градусов по Цельсию. Температура, при которой металлы
эта часть двигателя начинает плавиться при температуре 1300 градусов по Цельсию, поэтому продвинутая
необходимо использовать методы охлаждения.

Сгорание
камера имеет сложную задачу сжигания большого количества топлива,
подается через топливные форсунки с большими объемами воздуха,
подаваемый компрессором, и выделяя полученное тепло таким образом
что воздух расширяется и ускоряется, чтобы дать плавный поток
равномерно нагретый газ. Эта задача должна быть выполнена с минимальными потерями
под давлением и с максимальным тепловыделением в ограниченном пространстве
доступный.

Количество топлива
добавление в воздух будет зависеть от требуемого повышения температуры. Однако,
максимальная температура ограничена определенным диапазоном, определяемым
материалы, из которых изготовлены лопатки турбины и сопла. Воздух имеет
уже был нагрет до температуры от 200 до 550 C за счет работы, проделанной в
компрессор, обеспечивающий повышение температуры примерно от 650 до
1150 C от процесса горения. Так как температура газа
определяет тягу двигателя, камера сгорания должна быть способна
поддержание стабильного и эффективного сгорания в широком диапазоне двигателей
условия эксплуатации.

Воздух, занесенный
вентилятор, который не проходит через сердцевину двигателя и, следовательно, не
используется для сжигания, что составляет около 60 процентов от общего
поток воздуха постепенно вводится в жаровую трубу, чтобы снизить
температуру внутри камеры сгорания и охладить стенки жаровой трубы.

УДАР

Реакция расширенного газа – смесь топлива и воздуха – нагнетается
через турбину, приводит в действие вентилятор и компрессор и выдувает из
выхлопное сопло, обеспечивающее тягу.

Таким образом, перед турбиной стоит задача обеспечения мощности для привода
компрессор и аксессуары. Это
делает это, извлекая энергию из горячих газов, выбрасываемых из
системы сгорания и расширения их до более низкого давления и температуры. Непрерывный поток газа, к которому
подвергается воздействию турбины, может попасть в турбину при температуре от 850 до
1700 C, что снова намного выше температуры плавления тока
технологии материалов.

Для производства
вращающий момент, турбина может состоять из нескольких ступеней, каждая из которых использует
один ряд подвижных лопастей и один ряд неподвижных направляющих лопаток для направления
воздух по желанию на лопасти. Количество этапов зависит от
зависимость между мощностью, требуемой от газового потока, вращательным
скорость, с которой он должен производиться, и допустимый диаметр турбины.

Желание
для обеспечения высокой эффективности двигателя требуется высокая температура на входе в турбину,
но это вызывает проблемы, так как лопасти турбины потребуются для работы
и выдерживают длительные периоды эксплуатации при температурах выше их плавления
точка. Эти лезвия, раскаленные докрасна, должны быть достаточно прочными, чтобы нести
центробежные нагрузки из-за вращения на высокой скорости.

Для работы в этих условиях холодный воздух вытесняется из множества небольших
отверстия в лезвии. Этот воздух остается близко к лезвию, предотвращая его
плавится, но существенно не ухудшает общий вид двигателя
производительность. Никелевые сплавы используются для изготовления лопаток турбины и
направляющие лопатки сопла, поскольку эти материалы демонстрируют хорошие свойства при
высокие температуры

 

Как работают реактивные двигатели?

Мэтью Джонстон

Пилоты должны хорошо разбираться во всех аспектах управления самолетом, чтобы обеспечить безопасный и эффективный полет. В этом руководстве рассматривается вопрос: как работают реактивные двигатели?

1.
Разработка реактивного двигателя

2.
Принципы и механика реактивных двигателей

3.
Реактивное топливо

4.
В чем разница между реактивными двигателями и турбовинтовыми двигателями?

Для тех, кто родился в реактивном веке, эта технология легко воспринимается как нечто само собой разумеющееся. Даже на реактивном самолете дальние путешествия, такие как из Флориды на Гавайи, могут занять несколько часов, но представьте себе полет без мощных реактивных двигателей, которые могут обеспечить реактивные двигатели. Пилотам, которые летают на реактивных самолетах, требуется рейтинг типа и другие сертификаты, выходящие за рамки частного сертификата, а те, кто уполномочен действовать в качестве командира пилота (PIC), посвящают учебное время изучению того, как работают реактивные двигатели. Четкое понимание этого позволяет пилотам летать безопасно, более эффективно и с большим пониманием того, как двигатель работает с аэродинамическими силами, чтобы приземлиться, совершить крейсерский полет и снова взлететь.

 

Разработка реактивного двигателя

Чтобы в полной мере оценить важность реактивного двигателя и его место в авиации, лучше всего знать, как они появились и что они по большей части заменили. Первые мечтатели авиации делали наброски прототипов реактивных двигателей еще до того, как стали возможны воздушные шары и планеры. До появления реактивных самолетов самолеты приводились (и многие до сих пор) в движение с поршневыми и винтовыми двигателями. В то время как разработка турбовинтовых двигателей помогла увеличить скорость, тягу и мощность самолетов, авиационные инженеры все еще пытались использовать реактивную мощность.

Как и большинство инноваций в области авиации, разработка реактивных двигателей была вызвана войной. Горстка первых пионеров авиации, в том числе Сэмюэл Лэнгли, финансировалась военным министерством США для обеспечения полета человека с двигателем, чтобы его можно было использовать в качестве оружия. Хотя первый полет братьев Райт состоялся всего за несколько лет до начала Первой мировой войны, авиационные технологии быстро продвинулись во время войны до такой степени, что воздушные бои между самолетами происходили в самолетах с открытой кабиной.

Вторая мировая война подтолкнула ученых и инженеров к разработке не только ракет и ракетной техники, но и реактивных двигателей. Еще в 1939 году реактивные двигатели существовали, но в основном в лабораториях. Немецкий физик Ганс ван Охайн разработал работоспособный реактивный двигатель, который можно было использовать в истребителе. Сам самолет был построен компанией Messerschmitt и получил название Me 262. Как и все реактивные самолеты, самолет потреблял огромное количество топлива, и инженеры испытывали затруднения с этой ранней версией, поскольку было трудно удерживать его в воздухе, когда расходные материалы были в большом спросе. Он не летал много, но это был сильный первый шаг. В то же время британский новатор Фрэнк Уиттл разработал собственный реактивный двигатель, который использовался в Gloster Meteor. Иногда его использовали в качестве оборонительной меры, но его относительная низкая скорость делала его непрактичным для ведения боевых действий за границей.

После войны применение реактивных двигателей перешло к пассажирским авиалиниям. Как только это стало возможным, авиаперелеты стали намного дешевле и доступнее. Считается, что эпоха реактивных самолетов началась в 1958 году, когда ныне несуществующая авиакомпания Pan American Airlines начала полеты за границу на самолетах Boeing 707.

 

Принципы и механика реактивных двигателей

Огромная скорость реактивного двигателя работает в соответствии с Третьим законом физики («Каждое действие равно противодействию».) Третий закон приводится в действие тяга, создаваемая газовыми турбинами внутри. В передней части реактивного двигателя вентилятор всасывает воздух. (Если вы посмотрите на реактивный двигатель пассажирского реактивного самолета, вы увидите лопасти этого вентилятора.) Затем воздух удерживается внутри двигателя, где компрессор подает его под давлением. Компрессор содержит несколько вентиляторов, все они снабжены лопастями и закреплены на валу.

После того, как эти вентиляторы выполнили свою работу по сжатию воздуха, подается топливо. Затем зажигается искра, в результате чего смесь топлива и воздуха воспламеняется. Затем эта комбинация быстро расширяется и направляется через сопло, расположенное в задней части двигателя. Эта концентрированная энергия и есть тяга, которая приводит в движение самолет. Реакция происходит с экстремальной скоростью, и турбины большинства современных реактивных двигателей вращаются более 10 000 раз в минуту. В просторечии многие летные инструкторы описывают этот процесс своим ученикам как «сосать, сжимать, хлопать, дуть».

 

Реактивное топливо

Что в топливной смеси вызывает такую ​​мощную реакцию? Реактивное топливо технически известно как авиационное турбинное топливо или ATF. В то время как в первоначальных экспериментах с реактивным двигателем использовалась энергия пара, а ранние поршневые двигатели работали на бензине. Современные реактивные двигатели летают на топливе на основе керосина, и делают это с конца Второй мировой войны, и в мире авиации это обычно сокращается как «автур».

ATF обычно прозрачная или светло-желтая. Он состоит из смеси углеводородов и по соображениям безопасности обрабатывается в соответствии с международными спецификациями и стандартами. В коммерческой авиации большинство реактивных двигателей используют топливо, известное как Jet A и Jet A-1. Разница между Jet A и Jet A-1 в том, что Jet A замерзает при 40 градусах ниже нуля, а Jet A-1 — при -53 градусах. В большинстве самолетов авиации общего назначения с газотурбинными двигателями используется состав под названием Jet B, тип характеристик, специально разработанный для холодной погоды.

 

В чем разница между реактивными двигателями и турбовинтовыми двигателями?

Реактивные двигатели не используют пропеллеры; так сказать, «пропеллеры» находятся внутри двигателя самолета в функции вентилятора. Однако они неэффективны, а авиакеросин стоит дорого. Турбовинтовые самолеты — это сочетание современных технологий и инновационного использования легких материалов.

Если турбовинтовой самолет считается переходным летательным аппаратом между поршневыми и реактивными самолетами, то почему самолеты с ними до сих пор летают? Турбовинтовые становятся все реже, но они все еще используются на региональных авиалиниях и самолетах авиации общего назначения. Их предпочитают многие пилоты, потому что они, как правило, менее автоматизированы и гораздо более эффективны при коротких поездках. Например, имеет смысл запустить реактивный двигатель, чтобы лететь из штата Мэн в Неваду, но более короткий перелет из Колорадо в Нью-Мексико более эффективен при меньшем количестве топлива. В этих обстоятельствах чаще всего выбирают турбовинтовые самолеты.


 

Мэтью Джонстон

Г-н Мэтью А. Джонстон имеет более чем 23-летний опыт работы на различных должностях в сфере образования и в настоящее время является президентом Калифорнийского университета аэронавтики. Он поддерживает членство и является поддерживающим участником нескольких ассоциаций по продвижению и защите авиации, включая Ассоциацию университетской авиации (UAA), Региональную ассоциацию авиакомпаний (RAA), AOPA, NBAA и EAA с программой Young Eagles.