Контрольный тест по теме: "Память компьютера". 3 какой из видов памяти компьютера является энергозависимым
Виды памяти ПК: энергозависимая и энергонезависимая память.
Оперативная память (энергозависимая)
ОЗУ= оперативное запоминающее устройство
≡RAM= random access memory(с произвольным доступом)Постоянная память (энергоНЕзависимая)
ПЗУ= постоянное запоминающее устройство
≡ROM= read only memory(только для чтения)
64Кб–микросхема BIOS(настройки данного компьютера)17. Оперативная память: объем, статическая и динамическая памяти
Оперативная память (ОЗУ-Random Access Memory) –это совокупность специальных электронных (кристаллических) ячеек, каждая из которых может хранить конкретную комбинацию из нулей и единиц –один байт.
•Эти ячейки нумеруются порядковыми номерами, начиная с нуля: 0,1, …, 3201,… и т.д.
•Номер ячейки называют адресомтого байта, который записан в данный момент. В настоящее время в процессорах Intel Pentiumпринята 32-разрядная адресация, т.е. всего может быть 232адресов, что соответствует объему ОП=4,3Гбт.
•Если вводится 64-разрядная адресация, то максимальный размер ОП = 264. Это Огромная величина. В данный момент существуют ОП от 8 Гбтдо 128 Гбт. Работать с такими объемами может только 64-разрядный Windows 7
Физически оперативная память изготавливается в виде БИС различных типов(SRAM–статистическая память, DRAM–динамическая память).
•Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках.
•Ячейки статистической памяти можно представить как электронные микроэлементы–триггеры, состоящие из нескольких транзисторов. В триггере хранится незаряд, а состояние (включен/выключен), поэтому этот вид памяти обеспечивает более высокое быстродействие, хотя и технологически он сложнее и, соответственно, дороже.
•Микросхемы DRAM используют в качестве основной ОП, т.к. они дешевле, а SRAM–в качестве вспомогательной(кэш-памяти).
Назначение ПЗУ
В момент включения компьютера в его оперативной памяти нет ничего–ниданных, нипрограмм, поскольку оперативная память неможет ничегохранить безподзарядки ячеек болеесотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.
•Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегдаодинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по этим программам.
•Этот исходный указывает на постоянное запоминающее устройство (ПЗУ), которое размещается на материнской плате ПК. Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют“зашитыми”–их записывают туда на этапе изготовления микросхемы
Полупостоянная память CMOS
ВBIOS не закладывается информация о так называемых нестандартных устройствах (параметры жестких и гибких дисков, состав и свойства операционной системы). Для того чтобы начать сними работу, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры.
•Специально для этого на материнской плате есть микросхема “энерго независимой памяти”, по технологии изготовления называемая CMOS.–полупроводниковая память.
•От оперативной памяти она отличается тем, что ее содержимое нестирается вовремя выключения компьютера, а от ПЗУ она отличается тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.
•Эта микро схема постоянно подпитывается от не большой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.
Шинный интерфейс материнской платы
Предмет информатики составляют следующие понятия:
аппаратное обеспечение средств вычислительной техники;
программное обеспечение средств вычислительной техники;
Средства взаимодействия аппаратного и программного обеспечения;
средства взаимодействия человека с аппаратными и программными средствами.
В информатике особое внимание уделяется вопросам взаимодействия. Для этого в информатике есть специальное понятие–интерфейс.
Методы и средства взаимодействия человека с аппаратными и программными средствами называют пользовательским интерфейсом.
Соответственно, существуют аппаратные интерфейсы, программные интерфейсы и аппаратно - программные интерфейсы.
Основные устройства ПК процессор и ОП связаны между собой и остальными устройствами компьютера несколькими группами проводников, называемых шинами. Шина, связывающая процессор и ОП, состоит из трёх основных групп, имеющих разное функциональное назначение:
шина адресов,шина данных,шина команд.
Контроллеры и порты ввода-вывода
Контроллер –плата, управляющая работой периферийного устройства (дисководом, винчестером, монитором и т.д.) и обеспечивающая их связь с основной платой –материнской платой.
Платы контроллеров имеют специальные разъемы –порты для подключения устройств,
порт –это микросхема, логическое устройство, выполняющее функции связи с устройством и обработку прерываний:
Последовательный порт (COM1, COM2, …) до 115 Кбит/с.
низкоскоростные устройства: модем, мышь
Параллельный порт (LPT1, Centronics) до 2Мб/с
Принтер.22.Видеокарта и Звуковая карта
Видеокарта не всегда была компонентом ПК. На заре развития персональной техники в общей области ОП существовала небольшая выделенная экранная область памяти, в которую процессорзаносил данные об изображении.
Специальный контроллер экранасчитывал данные о координатах и яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки
С увеличением разрешения экрана, появлением цветных мониторов области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения.
Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блоке, получивший название видеоадаптер.
Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора, видеопамяти.Звук.
Выполняют вычислительные операции, связанные с обработкой звука, речи, музыки.
ЗК имеет дело с двумя основными форматами ПК-звука: цифровой (Wav–формат) и синтезированный (MIDI). Следовательно, в ее конструкции есть элементы, отвечающие за работу с этими видами: ЦАП/АЦП и синтезатор.
Есть и другие элементы: микросхемы, ответственные за компрессию и декомпрессию звука, за объемное 3D-звучание, модуль спецэффектов (на дорогих картах).
Модемы. ЧТО означает асимметричность ADSL-модемов?
Модем–устройство для связи двух компьютеров с помощью телефонной линии.
Модем(модулятор/демодулятор) –устройство для преобразования аналогового сигнала в цифровой код и наоборот.
ADSL= Asymmetric Digital SubscriberLine, асимметричная цифровая абонентская линия
Голоснизкочастотныйсигнал.
Асимметричность ADSL подразумевает большой объем данных, передаваемых к абоненту (например, видео-, аудио- и графические файлы, программы и т.д.)–так называемый нисходящий (или входящий, downstream) трафик, и малый объем данных, исходящих от абонента (например, электронные письма, команды, запросы и т.д.)–так называемый исходящий (или восходящий, upstream) трафик.
Асимметричность схемы ADSL выражается в том, что скорость передачи данных в направлении от сети к пользователю значительно выше, чем скорость передачи данных от пользователя в сеть (полоса часто тдо4кГц предназначен а для обычной телефонной связи–для передачи голоса, полоса от 4 до 140кГц–для передачи данных от абонента). Скорость восходящего (upstream) потока при этом доходит до 768кбит/с.
Частоты до 1,1;2,2 и 4,4МГц используются для нисходящего потока (downstream)–к абоненту–и обеспечивают скорости передачи 8Мбит/с(ADSL), 12Мбит/с(ADSL2), 24Мбит/с(ADSL2+) и 48Мбит/с(ADSL2++).
lektsia.com
Классификация типов памяти (Реферат)
Классификация типов памяти
Следует различать классификацию памятииклассификацию запоминающих устройств(ЗУ). Первая классифицирует память по функциональности, вторая же — по технической реализации. Здесь рассматривается первая — таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.
Доступные операции с данными
* Память только для чтения (read-only memory, ROM)
* Память для чтения/записи
Память на программируемых и перепрограммируемых ПЗУ (ППЗУ и ПППЗУ) не имеет общепринятого места в этой классификации. Её относят либо к подвиду памяти «только для чтения», либо выделяют в отдельный вид.
Также предлагается относить память к тому или иному виду по характерной частоте её перезаписи на практике: к RAM относить виды, в которых информация часто меняется в процессе работы, а к ROM — предназначенные для хранения относительно неизменных данных.
Энергозависимость
Энергонезависимая память(англ. nonvolatile storage) — память, реализованная ЗУ, записи в которых не стираются при снятии электропитания. К этому типу памяти относятся все виды памяти на ПЗУ и ППЗУ;
Энергозависимая память(англ. volatile storage) — память, реализованная ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относятся память, реализованная на ОЗУ, кэш-память.
Статическая память(англ. static storage) — энергозависимая память, которой для хранения информации достаточно сохранения питающего напряжения;
Динамическая память(англ. dynamic storage) — энергозависимая память, в которой информация со временем разрушается (деградирует), и, кроме подачи электропитания, необходимо производить её периодическое восстановление (регенерацию).
1)Энергонезависимая память(англ.NonVolatileRandomAccessMemory,NVRAM) — подгруппа более общего класса энергонезависимых запоминающих устройств; разница заключается в том, что в отличие от жестких дисков, устройстваNVRAMпредлагают прямой доступ.
В более общем смысле, энергонезависимая память — любое устройство компьютерной памяти, или его часть, сохраняющее данные вне зависимости от подачи питающего напряжения. Однако подпадающие под это определение носители информации, ПЗУ, ППЗУ, устройства с подвижным носителем информации (диски, ленты) и другие носят свои, более точные названия.
Поэтому термин «энергонезависимая память» чаще всего употребляется более узко, по отношению к полупроводниковым БИС запоминающих устройств, которая обычно выполняется энергозависимой, и содержимое которой при выключении обычно пропадает. Под понятие энергонезависимой памяти подпадают по сути энергозависимая память, „энергонезависимость“ которой обеспечивается применением технологией с «ускользающе малым потреблением» (например) вкупе с подпиткой от миниатюрной батарейки или SSD.
Например, часы на системной плате персонального компьютера или ОЗУ современного RAID-контроллера.
2)Эне́ргозави́симая па́мять(англ. Volatile memory) — компьютерная память, которая требует постоянного использования электропитания для возможности удерживать записанную на неё информацию. Эта особенность является ключевым отличием энергозависимой памяти от энергонезависимой — последняя сохраняет записанную на неё информацию даже после прекращения подачи электропитания на неё. Энергозависимая память также изредка называется вре́менной памятью (англ. temporary memory).
Подавляющее большинство современных видов оперативной памяти с произвольным доступом являются энергозависимыми. Сюда относятся динамическая (DRAM) и статическая (SRAM) память с произвольным доступом. Ассоциативная память и DPRAM как правило реализуются через энергозависимую память. К ранним технологиям энергозависимой памяти относятся память на линиях задержки и запоминающая электронно-лучевая трубка.
2.1)Статическая оперативная памятьс произвольным доступом (SRAM, static random access memory) — полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние без регенерации, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM — random access memory) — возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM — sequential access memory).
Преимущества
Быстрый доступ. SRAM — это действительно память произвольного доступа, доступ к любой ячейке памяти в любой момент занимает одно и то же время.
Простая схемотехника — SRAM не требуются сложные контроллеры.
Возможны очень низкие частоты синхронизации, вплоть до полной остановки синхроимпульсов.
Низкое энергопотребление.
Недостатки
Невысокая плотность записи (шесть-восемь элементов на бит[4], вместо двух у DRAM).
Вследствие чего — дороговизна килобайта памяти.
Тем не менее, высокое энергопотребление не является принципиальной особенностью SRAM, оно обусловлено высокими скоростями обмена с данным видом внутренней памяти процессора. Энергия потребляется только в момент изменения информации в ячейке SRAM.
Применение
SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление (за счёт отсутствия сложного контроллера динамической памяти), предсказываемое с точностью до такта время работы подпрограмм и отладка прямо на устройстве.
В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. SRAM’ом же делают регистры и кеш-память.
2.2)Динамическая памятьс произвольным доступом) — тип энергозависимой полупроводниковой памяти с произвольным доступом; DRAM широко используемая в качестве оперативной памяти современных компьютеров, а также в качестве постоянного хранилища информации в системах, требовательных к задержкам.
Физически DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, строку от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.
Как запоминающее устройство, DRAM представляет собой модуль памяти различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъёма, необходимого для подключения модуля к материнской плате.
Принцип действия
Физически DRAM-память представляет собой набор запоминающих ячеек, которые состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти.
При отсутствии подачи электроэнергии к памяти этого типа происходит разряд конденсаторов, и память опустошается (обнуляется). Для поддержания необходимого напряжения на обкладках конденсаторов ячеек и сохранения их содержимого, их необходимо периодически подзаряжать, прилагая к ним напряжения через коммутирующие транзисторные ключи. Такое динамическое поддержание заряда конденсатора является основополагающим принципом работы памяти типа DRAM. Конденсаторы заряжают в случае, когда в «ячейку» записывается единичный бит, и разряжают в случае, когда в «ячейку» необходимо записать нулевой бит.
Важным элементом памяти этого типа является чувствительный усилитель-компаратор (англ. sense amp), подключенный к каждому из столбцов «прямоугольника». Он, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю строку целиком. Именно строка является минимальной порцией обмена с динамической памятью, поэтому обмен данными с отдельно взятой ячейкой невозможен.
Регенерация
В отличие от быстрой, но дорогой статической памяти типа SRAM (англ. static random access memory), которая является конструктивно более сложным и более дорогим типом памяти и используется в основном в кэш-памяти, медленная, но дешёвая память DRAM изготавливается на основе конденсаторов небольшой ёмкости, которые быстро теряют заряд, поэтому информацию приходится обновлять через определённые промежутки времени во избежание потерь данных. Этот процесс называется регенерацией памяти. Он реализуется специальным контроллером, установленным на материнской плате или же на кристалле центрального процессора. На протяжении времени, называемого шагом регенерации, в DRAM перезаписывается целая строка ячеек, и через 8-64 мс обновляются все строки памяти.
Процесс регенерации памяти в классическом варианте существенно тормозит работу системы, поскольку в это время обмен данными с памятью невозможен. Регенерация, основанная на обычном переборе строк, в современных типах DRAM не применяется. Существует несколько более экономичных вариантов этого процесса — расширенный, пакетный, распределённый; наиболее экономичной является скрытая (теневая) регенерация.
Среди новых технологий регенерации — PASR (англ. Partial Array Self Refresh), применяемый компанией Samsung в чипах памяти SDRAM с низким уровнем энергопотребления. Регенерация ячеек выполняется только в период ожидания в тех банках памяти, в которых имеются данные.
Параллельно с этой технологией реализуется метод TCSR (англ. Temperature Compensated Self Refresh), который предназначен для регулировки скорости процесса регенерации в зависимости от рабочей температуры.
Характеристики памяти DRAM
Основными характеристиками DRAM являются рабочая частота и тайминги.
При обращении к ячейке памяти контроллер памяти задаёт номер банка, номер страницы в нём, номер строки и номер столбца и на все эти запросы тратится время, помимо этого довольно большой период уходит на открытие и закрытие банка после самой операции. На каждое действие требуется время, называемое таймингом.
Основными таймингами DRAM являются: задержка между подачей номера строки и номера столбца, называемая временем полного доступа (англ. RAS to CAS delay), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (англ. CAS delay), задержка между чтением последней ячейки и подачей номера новой строки (англ. RAS precharge). Тайминги измеряются в наносекундах или тактах, и чем меньше величина этих таймингов, тем быстрее работает оперативная память.
Типы DRAM
На протяжении долгого времени разработчиками создавались различные типы памяти. Они обладали разными характеристиками, в них были использованы разные технические решения. Основной движущей силой развития памяти было развитие компьютеров и центральных процессоров. Постоянно требовалось увеличение быстродействия и объёма оперативной памяти.
Страничная память
Страничная память (англ. page mode DRAM, PM DRAM) являлась одним из первых типов выпускаемой компьютерной оперативной памяти. Память такого типа выпускалась в начале 1990-х годов, но с ростом производительности процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.
Быстрая страничная память
Быстрая страничная память (англ. fast page mode DRAM, FPM DRAM) появилась в 1995 году. Принципиально новых изменений память не претерпела, а увеличение скорости работы достигалось путём повышенной нагрузки на аппаратную часть памяти. Данный тип памяти в основном применялся для компьютеров с процессорами Intel 80486 или аналогичных процессоров других фирм. Память могла работать на частотах 25 и 33 МГц с временем полного доступа 70 и 60 нс и с временем рабочего цикла 40 и 35 нс соответственно.
EDO DRAM — память с усовершенствованным выходом
C появлением процессоров Intel Pentium память FPM DRAM оказалась совершенно неэффективной. Поэтому следующим шагом стала память с усовершенствованным выходом (англ. extended data out DRAM, EDO DRAM). Эта память появилась на рынке в 1996 году и стала активно использоваться на компьютерах с процессорами Intel Pentium и выше. Её производительность оказалась на 10-15 % выше по сравнению с памятью типа FPM DRAM. Её рабочая частота была 40 и 50 МГц, соответственно, время полного доступа — 60 и 50 нс, а время рабочего цикла — 25 и 20 нс. Эта память содержит регистр-защелку (англ. data latch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении.
SDR SDRAM — синхронная DRAM
В связи с выпуском новых процессоров и постепенным увеличением частоты системной шины, стабильность работы памяти типа EDO DRAM стала заметно падать. Ей на смену пришла синхронная память — Single Data Rate Synchronous Dynamic Random Access Memory (SDR SDRAM). Новыми особенностями этого типа памяти являлись использование тактового генератора для синхронизации всех сигналов и использование конвейерной обработки информации. Также память надёжно работала на более высоких частотах системной шины (100 МГц и выше).
Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка — несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа. Рабочие частоты этого типа памяти могли равняться 66, 100 или 133 МГц, время полного доступа — 40 и 30 нс, а время рабочего цикла — 10 и 7,5 нс.
С этим типом памяти применялась технология Virtual Channel Memory (VCM). VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, была совместима с существующими SDRAM, что позволяло делать апгрейд системы без значительных затрат и модификаций. Это решение нашло поддержку у некоторых производителей чипсетов.
Enhanced SDRAM (ESDRAM)
Для преодоления некоторых проблем с задержкой сигнала, присущих стандартной DRAM-памяти, было решено встроить небольшое количество SRAM в чип, то есть создать на чипе кеш.
ESDRAM — это, по существу, SDRAM с небольшим количеством SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кеш-памяти, SRAM-кеш предназначен для хранения и выборки наиболее часто используемых данных. Отсюда и уменьшение времени доступа к данным медленной DRAM.
Одним из таких решений являлась ESDRAM от Ramtron International Corporation.
Пакетная EDO RAM
Пакетная память EDO RAM (англ. burst extended data output DRAM, BEDO DRAM) стала дешёвой альтернативой памяти типа SDRAM. Основанная на памяти EDO DRAM, её ключевой особенностью являлась технология поблочного чтения данных (блок данных читался за один такт), что сделало её работу быстрее, чем у памяти типа SDRAM. Однако невозможность работать на частоте системной шины более 66 МГц не позволила данному типу памяти стать популярным.
Video RAM
Специальный тип оперативной памяти — Video RAM (VRAM) — был разработан на основе памяти типа SDRAM для использования в видеоплатах. Он позволял обеспечить непрерывный поток данных в процессе обновления изображения, что было необходимо для реализации изображений высокого качества. На основе памяти типа VRAM, появилась спецификация памяти типа Windows RAM (WRAM), иногда её ошибочно связывают с операционными системами семейства Windows. Её производительность стала на 25 % выше, чем у оригинальной памяти типа SDRAM, благодаря некоторым техническим изменениям.
DDR SDRAM
По сравнению с обычной памятью типа SDR SDRAM, в памяти SDRAM с удвоенной скоростью передачи данных (англ. double data rate SDRAM, DDR SDRAM или SDRAM II) была вдвое увеличена пропускная способность. Первоначально память такого типа применялась в видеоплатах, но позднее появилась поддержка DDR SDRAM со стороны чипсетов.
У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии DRDRAM и SLDRAM. Они получили наибольшую популярность и заслуживают внимания. Стандарт SLDRAM является открытым и, подобно предыдущей технологии, SLDRAM использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface и стремится работать на частоте 400 МГц.
Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по срезу тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Такие модули памяти.
Direct RDRAM или Direct Rambus DRAM
Тип памяти RDRAM является разработкой компании Rambus. Высокое быстродействие этой памяти достигается рядом особенностей, не встречающихся в других типах памяти. Первоначальная очень высокая стоимость памяти RDRAM привела к тому, что производители мощных компьютеров предпочли менее производительную, зато более дешёвую память DDR SDRAM. Рабочие частоты памяти — 400, 600 и 800 МГц, время полного доступа — до 30 нс, время рабочего цикла — до 2,5 нс.
DDR2 SDRAM
Конструктивно новый тип оперативной памяти DDR2 SDRAM был выпущен в 2004 году. Основываясь на технологии DDR SDRAM, этот тип памяти за счёт технических изменений показывает более высокое быстродействие и предназначен для использования на современных компьютерах. Память может работать с тактовой частотой шины 200, 266, 333, 337, 400, 533, 575 и 600 МГц. При этом эффективная частота передачи данных соответственно будет 400, 533, 667, 675, 800, 1066, 1150 и 1200 МГц. Некоторые производители модулей памяти помимо стандартных частот выпускают и образцы, работающие на нестандартных (промежуточных) частотах. Они предназначены для использования в разогнанных системах, где требуется запас по частоте. Время полного доступа — 25, 11,25, 9, 7,5 нс и менее. Время рабочего цикла — от 5 до 1,67 нс.
DDR3 SDRAM
Этот тип памяти основан на технологиях DDR2 SDRAM со вдвое увеличенной частотой передачи данных по шине памяти. Отличается пониженным энергопотреблением по сравнению с предшественниками. Частота полосы пропускания лежит в пределах от 800 до 2400 МГц (рекорд частоты — более 3000 МГц), что обеспечивает большую пропускную способность по сравнению со всеми предшественниками.
Конструктивные исполнения памяти DRAM
Различные корпуса DRAM. Сверху вниз: DIP, SIPP, SIMM (30-контактный), SIMM (72-контактный), DIMM (168-контактный), DIMM (184-контактный, DDR)
Память типа DRAM конструктивно выполняют и в виде отдельных микросхем в корпусах типа DIP, SOIC, BGA и в виде модулей памяти типа SIPP, SIMM, DIMM, RIMM.
Первоначально микросхемы памяти выпускались в корпусах типа DIP (к примеру, серия К565РУхх), далее они стали производиться в более технологичных для применения в модулях корпусах.
На многих модулях SIMM и подавляющем числе DIMM устанавливалась SPD (Serial Presence Detect) — небольшая микросхема памяти EEPROM, хранящяя параметры модуля (ёмкость, тип, рабочее напряжение, число банков, время доступа и т. п.), которые программно были доступны как оборудованию, в котором модуль был установлен (применялось для автонастройки параметров), так и пользователям и производителям.
Модули SIPP
Модули типа SIPP (Single In-line Pin Package) представляют собой прямоугольные платы с контактами в виде ряда маленьких штырьков. Этот тип конструктивного исполнения уже практически не используется, так как он далее был вытеснен модулями типа SIMM.
Модули SIMM
Модули типа SIMM (Single In-line Memory Module) представляют собой длинные прямоугольные платы с рядом контактных площадок вдоль одной из её сторон. Модули фиксируются в разъёме (сокете) подключения с помощью защёлок, путём установки платы под некоторым углом и нажатия на неё до приведения в вертикальное положение. Выпускались модули на 4, 8, 16, 32, 64, 128 Мбайт.
Модули DIMM
Модули типа DIMM (Dual In-line Memory Module) представляют собой длинные прямоугольные платы с рядами контактных площадок вдоль обеих её сторон, устанавливаемые в разъём подключения вертикально и фиксируемые по обоим торцам защёлками. Микросхемы памяти на них могут быть размещены как с одной, так и с обеих сторон платы.
Модули памяти типа SDRAM наиболее распространены в виде 168-контактных DIMM-модулей, памяти типа DDR SDRAM — в виде 184-контактных, а модули типа DDR2, DDR3 и FB-DIMM SDRAM — 240-контактных модулей.
Модули SO-DIMM
Для портативных и компактных устройств (материнских плат форм-фактора Mini-ITX, лэптопов, ноутбуков, таблетов и т. п.), а также принтеров, сетевой и телекоммуникационной техники и пр. широко применяются конструктивно уменьшенные модули DRAM (как SDRAM, так и DDR SDRAM) — SO-DIMM (Small outline DIMM) — аналоги модулей DIMM в компактном исполнении для экономии места.
Модули RIMM
Модули типа RIMM (Rambus In-line Memory Module) менее распространены, в них выпускается память типа RDRAM. Они представлены 168- и 184-контактными разновидностями, причём на материнской плате такие модули обязательно должны устанавливаться только в парах, в противном случае в пустые разъёмы устанавливаются специальные модули-заглушки (это связано с особенностями конструкции таких модулей). Также существуют 242-контактные PC1066 RDRAM модули RIMM 4200, не совместимые[2] с 184-контактными разъёмами, и уменьшенная версия RIMM — SO-RIMM, которые применяются в портативных устройствах.
Метод доступа
Последовательный доступ (англ. sequential access memory, SAM) — ячейки памяти выбираются (считываются) последовательно, одна за другой, в очерёдности их расположения. Вариант такой памяти — стековая память.
Произвольный доступ (англ. random access memory, RAM) — вычислительное устройство может обратиться к произвольной ячейке памяти по любому адресу.
Назначение
Буферная память (англ. buffer storage) — память, предназначенная для временного хранения данных при обмене ими между различными устройствами или программами.
Временная (промежуточная) память (англ. temporary (intermediate) storage) — память для хранения промежуточных результатов обработки.
Кеш-память (англ. cache memory) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кешируемая память.
Корректирующая память (англ. patch memory) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины relocation table и remap table.
Управляющая память (англ. control storage) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.
Разделяемая память или память коллективного доступа (англ. shared memory, shared access memory) — память, доступная одновременно нескольким пользователям, процессам или процессорам.
Организация адресного пространства
Реальная или физическая память (англ. real (physical) memory) — память, способ адресации которой соответствует физическому расположению её данных;
Виртуальная память (англ. virtual memory) — память, способ адресации которой не отражает физического расположения её данных;
Оверлейная память (англ. overlayable storage) — память, в которой присутствует несколько областей с одинаковыми адресами, из которых в каждый момент доступна только одна.
Удалённость и доступность для процессора
Первичная память (сверхоперативная, СОЗУ) — доступна процессору без какого-либо обращения к внешним устройствам. Данная память отличается крайне малым временем доступа и тем, что неадресуема для программиста.
регистры процессора (процессорная или регистровая память) — регистры, расположенные непосредственно в АЛУ;
кэш процессора — кэш, используемый процессором для уменьшения среднего времени доступа к компьютерной памяти. Разделяется на несколько уровней, различающихся скоростью и объёмом (например, L1, L2, L3).
Вторичная память — доступна процессору путём прямой адресацией через шину адреса (адресуемая память). Таким образом доступна основная память (память, предназначенная для хранения текущих данных и выполняемых программ) и порты ввода-вывода (специальные адреса, через обращение к которым реализовано взаимодействие с прочей аппаратурой).
Третичная память — доступна только путём нетривиальной последовательности действий. Сюда входят все виды внешней памяти — доступной через устройства ввода-вывода. Взаимодействие с третичной памятью ведётся по определённым правилам (протоколам) и требует присутствия в памяти соответствующих программ. Программы, обеспечивающие минимально необходимое взаимодействие, помещаются в ПЗУ, входящее во вторичную память (у PC-совместимых ПК — это ПЗУ BIOS).
Положение структур данных, расположенных в основной памяти, в этой классификации неоднозначно. Как правило, их вообще в неё не включают, выполняя классификацию с привязкой к традиционно используемым видам ЗУ.
Управление процессором
Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) — память, непосредственно доступная в данный момент времени центральному процессору.[источник не указан 1031 день]
Автономная память — память, реализованная, например при помощи службы внешних носителей в Windows 2000, предусматривающей оперативное управление библиотеками носителей и устройствами с автоматической подачей дисков, облегчающей использование съёмных носителей типа магнитных лент и съёмных дисков, магнитных или оптических.
Организация хранения данных и алгоритмы доступа к ним
Повторяет классификацию структур данных:
Адресуемая память — адресация осуществляется по местоположению данных.
Ассоциативная память (англ. associative memory, content-addressable memory, CAM) — адресация осуществляется по содержанию данных, а не по их местоположению.
Магазинная (стековая) память (англ. pushdown storage) — реализация стека.
Матричная память (англ. matrix storage) — ячейки памяти расположены так, что доступ к ним осуществляется по двум или более координатам.
Объектная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
Семантическая память (англ. semantic storage) — данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.
Физические принципы
Эта классификация поторяет соответствующую классификацию ЗУ.
Вид | Среда, хранящая информацию | Принцип чтения/записи | Примеры |
Полупроводниковая память (англ. semiconductor storage) | сформированные в полупроводнике элементы, имеющие 2 устойчивых состояния с различными электрическими параметрами | включение в электрическую цепь | SRAM, DRAM, EEPROM, Flash-память |
Магнитная память (англ. magnetic storage) | Намагниченность участков ферромагнитного материала (доменов) | Магнитная запись | Магнитная лента, магнитный диск, магнитная карта |
Оптическая память (англ. optical storage, laser storage) | последовательность участков (питов), отражающих или рассеивающих свет | чтение: отражение либо рассеяние лазерного луча от питов; запись: точечный нагрев, изменяющий свойства отражающего слоя | CD, DVD, Blu-ray, HD DVD |
Магнитооптическая память (англ. magnetooptics storage) | последовательность участков (питов), отражающих или рассеивающих свет | чтение: преломление и отражение луча лазера запись: точечный нагрев и электромагнитный импульс | CD-MO, Fujitsu DynaMO |
Магниторезистивная память с произвольным доступом (англ. Spin Torque Transfer Random Access Memory, STT-RAM) | магнитные домены | В STT-RAMэлектрическое поле воздействует на микромагниты, заставляя их менять направление магнитного поля (спин). В свою очередь направление магнитного поля (справа — налево или сверху — вниз) вызывает изменение в сопротивлении (логические 0 и 1). | MRAM |
Память с изменением фазового состояния (англ. phasechangememory,PCM) | молекулы халькогенида (chalcogenide) | использует изменение фазового состояния халькогенида — вещества, способного под воздействием нагрева и электрических полей переходить из непроводящего аморфного состояния (1) в проводящее кристаллическое (0). В ней применены диоды вертикального типа и трехмерная кристаллическая структура. Не требует предварительного удаления старых данных перед записью новых, не требует электропитания для сохранения своего состояния. | PRAM |
Ёмкостная память (англ. capacitor storage) | конденсаторы | подача электрического напряжения на обкладки | DRAM |
studfiles.net
Энергозависимая память - это... Что такое Энергозависимая память?
- Энергобезопасность и энергосбережение
- Энергомаш (значения)
Смотреть что такое "Энергозависимая память" в других словарях:
энергозависимая память — энергозависимое ЗУ Память, содержимое которой разрушается при отключении питания. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь,… … Справочник технического переводчика
энергозависимая память — neliekamoji atmintis statusas T sritis automatika atitikmenys: angl. volatile memory vok. flüchtiger Speicher, m rus. энергозависимая память, f pranc. mémoire volatile, f … Automatikos terminų žodynas
Память (компьютер) — НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия
Память (компьютерная) — НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия
Память на линиях задержки — Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Энергонезависимая … Википедия
Память на магнитных сердечниках — Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Энергонезависимая ПЗУ … Википедия
Память с изменением фазового состояния — Для термина «PCM» см. другие значения. Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Эн … Википедия
Компьютерная память — НЖМД объёмом 44 Мб 1980 х годов выпуска и CompactFlash на 2 Гб 2000 х годов выпуска … Википедия
Энергонезависимая память — Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Энергонезависимая ПЗУ … Википедия
Оперативная память — Запрос «ОЗУ» перенаправляется сюда; см. также другие значения. Модули ОЗУ для ПК … Википедия
dal.academic.ru
Контрольный тест по теме: "Память компьютера"
Память компьютера делится на:
1)Оперативную и внутреннюю;
2)Внешнюю и долговременную;
3)Внешнюю и внутреннюю.
Для долговременного хранения информации служит:
1)оперативная память
2)процессор
3)внешний носитель
При выключении компьютера информация стирается
1)На магнитном диске;
2)Из оперативной памяти;
3)Из долговременной памяти.
Жёсткий диск является…
1)внешней памятью компьютера
2)внутренней памятью компьютера
3)оперативным запоминающим устройством
Энергозависимым устройством является:
1)Оперативная память
2)Внешняя память
3)ПЗУ
К внутренней памяти компьютера относится:
1)флэш-память
2)лазерный диск
3)оперативная память
Установите соответствие
1)Внутренняя память | а)Лазерный диск |
2)Внешняя память | б)Флэш-память |
в)ПЗУ | |
г)ОП | |
д)Жесткий диск | |
е)Кэш-память |
Из представленных изображений выбери модуль оперативной памяти:
а. б. в.
Какое устройство изображено на картинке?
а. процессор б. оперативная память в. флэш-память
Внутренняя память делится на
1)ОЗУ, ПЗУ и флэш-память
2)ОЗУ, Кэш-память и лазерные диски
3)ОЗУ, ПЗУ и Кэш-память
Память предназначена для:
1)Хранения и обработки программ и данных
2)Хранения программ и данных
3)Обработки программ и данных
Укажите устройства ввода информации
а)Монитор e) Мышь
b)Микрофон f) Тач-пад
c)Колонки g) Сканер
d)Клавиатура h) Принтер
Укажите устройства вывода информации
a)Монитор e) Мышь
b)Микрофон f) Тач-пад
c)Колонки g) Сканер
d)Клавиатура h) Принтер
Укажите устройства хранения информации
a)Дискета d) системная плата
b)Процессор e) куллер
c)Винчестер f) флэш-карта
Из представленных ниже изображений укажите жесткий диск
а. б. в.
Из представленных ниже изображений укажите процессор
а. б. в. г.
xn--j1ahfl.xn--p1ai
Виды и характеристика внутренней памяти ПК
Программы и данные во время непосредственного сеанса работы хранятся в основной (оперативной) памяти компьютера.
Еще эту память называют оперативным запоминающим устройством (ОЗУ).
Оперативная память состоит из ячеек памяти одинаковой длины. Каждая ячейка памяти включает в себя элементы памяти, состояние каждого из которых соответствует одной двоичной цифре (0 или 1), т.е. одному биту (Bit – Binary Digit).
Совокупность нолей и единиц, хранящихся в элементах одной ячейки, представляет собой содержимое этой ячейки. При этом стандартный размер ячейки равен восьми битам и образует один байт (Byte) информации.
Байт является наименьшей адресуемой единицей оперативной памяти. Для идентификации ячеек в оперативной памяти каждой из них присваивается адрес, представляющий собой номер ячейки. Ячейки нумеруются числами из последовательного натурального ряда чисел. Организация оперативной памяти ЭВМ представлена на рис.3.2.
Рис. 3.2 Организация оперативной памяти ЭВМ.
Запись в память данных осуществляется подачей на шину адреса сигналов, соответствующих адресам ячеек, в которые помещаются данные из шины записи. При чтении данных из памяти по шине адреса передаются адреса читаемых ячеек, а сами данные из ячеек передаются по шине чтения. Возможность произвольного доступа к любой из ячеек памяти позволяет называть оперативную память, как память с произвольным доступом (RAM – память Random Access Memory).
Современные персональные компьютеры оснащаются оперативной памятью типов DDR2 SDRAM и DDR3 SDRAM объемом до 4 Гб. Абревиатура DDR2 SDRAM расшифровывается как Double Data RateSynchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и с удвоенной скоростью передачи данных.
Передача данных осуществляется по 64-разрядной шине по обеим частям синхросигнала (восходящему — «фронту», и нисходящему — «срезу»), что обеспечивает удвоенную эффективную скорость передачи данных по отношению к ее частоте. Память DDR2 работает на эффективной частоте до 800 МГц, обеспечивая пропускную способность 6400 Мбайт/с. Эффективная частота работы памяти DDR3 (третье поколение) достигает 1333 МГц.
Под синхронной памятью обычно понимается строгая привязка управляющих сигналов и временных диаграмм функционирования памяти к частоте системной шины.
Понятие «динамической» памяти относится ко всем типам оперативной памяти, начиная с самой древней и заканчивая современной DDR3. Помимо динамической памяти существует еще и статическая память. Различие между этими двумя видами памяти заключается в конструктивных особенностях ячеек для хранения отдельных битов.
В статическойпамяти ячейки построены по принципу триггеров с двумя устойчивыми состояниями «0» или «1». После записи бита в такую ячейку она может прибывать в одном из этих состояний и сохранять записанный бит при наличии электропитания сколь угодно долго. Отсюда и название памяти – статическая. Достоинством статической памяти является ее быстродействие, а недостатками – высокое энергопотребление, высокая стоимость памяти, низкая удельная плотность данных, поскольку одна триггерная ячейка состоит из нескольких транзисторов и, следовательно, занимает много места на кристале.
В динамической памяти ячейка памяти представляет собой миниатюрный конденсатор, способный поддерживать заряд очень малый промежуток времени, после чего конденсатор разряжается. Вследствие этого память на основе массива конденсаторов требует отдельного цикла регенерации (подзарядки) состояния конденсаторов, что требует дополнительного времени. К достоинствам динамической памяти относят низкую стоимость, высокую удельную плотность элементов памяти, низкое энергопотребление, а к недостаткам – относительно низкое быстродействие по сравнению со статической памятью.
Динамическая память используется в качестве оперативной памяти ЭВМ, а статическая память – для создания высокоскоростной кэш-памяти процессора.
Оперативная память и кэш – память являются энергозависимыми, поэтому при отключении питания их содержание теряется.
Набор логических схем ЭВМ, называемый чипсетом, примерно на 90% определяет особенности основной системной (материнской) платы ЭВМ. Название материнская плата произошло от двух английских слов Mother Board.
Чипсет определяет типы процессоров, системной шины, оперативной памяти, контроллеров, портов ввода-вывода, внешних устройств.
Функциональные возможности компьютера и типы установленных на нем устройств определяются установленным чипсетом.
Чипсет состоит из двух микросхем, называемых северным и южным мостами.
Северный мост отвечает за взаимодействие с «быстрыми» устройствами: процессором, оперативной памятью, графической подсистемой, южным мостом.
Южный мост организует работу с более медленными устройствами: жестким диском, портами ввода-вывода и другими.
Постоянное запоминающее устройство (ПЗУ) располагается на материнской плате и содержит BIOS (Basic Input/Output System – базовая система ввода – вывода), а также сведения, позволяющие осуществить первоначальную загрузку операционной системы.
BIOS содержит инструкции по настройке даты, времени, паролей ЭВМ, выбору устройства для первоначальной загрузки операционной системы, настройке клавиатуры, монитора, дисковых накопителей, портов ввода – вывода и другие устройства. ПЗУ предназначена только для чтения данных.
Изменить содержание BIOS можно только в устройствах Flash BIOS используя специальную программу. Такая технология позволяет BIOS всегда быть доступным, даже в случае повреждений, например, дисковой системы. Поэтому ПЗУ, в отличие от оперативной и кэш - памяти, является энергонезависимой
Похожие статьи:
poznayka.org
ПАМЯТЬ ЭВМ
Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:
Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором. Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер. Энергозависимой называется память, которая стирается при выключении компьютера. Энергонезависимой называется память, которая не стирается при выключении компьютера. К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы. К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате. Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа. Выделяют следующие основные типы устройств памяти с произвольным доступом:
Накопители на жёстких магнитных дисках (винчестеры, НЖМД) - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Первые жесткие диски состояли из 2 дисков по 30 Мбайт и обозначались 30/30, что совпадало с маркировкой модели охотничьего ружья “Винчестер” - отсюда пошло такое название этих накопителей.
Накопители на гибких магнитных дисках (флоппи-дисководы, НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются.
Оптические диски (СD-ROM - Compact Disk Read Only Memory) - компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Данная технология получила название CD-RW и DVD-RW соответственно.
Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют: Накопители на магнитных лентах (НМЛ) – устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами – стримеры – имеют увеличенную скорость записи 4 - 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации.
Перфокарты – карточки из плотной бумаги и перфоленты – катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются.
Различные виды памяти имеют свои достоинства и недостатки. Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера.
Кратко рассмотрим принцип работы оперативной памяти. Минимальный элемент памяти - бит или разряд способен хранить минимально возможный объем информации - одну двоичную цифру. Бит очень маленькая информационная единица, поэтому биты в памяти объединяются в байты - восьмерки битов, являющиеся ячейками памяти. Все ячейки памяти пронумерованы. Номер ячейки называют ее адресом. Зная адрес ячейки можно совершать две основные операции:
прочитать информацию из ячейки с определенным адресом;
записать информацию в байт с определенным адресом.
Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины.
По шине адреса передается адрес ячейки памяти, по шине данных – передаваемая информация. Как правило, эти процессы проходят одновременно.
Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт. Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал – сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса.
wiki.vspu.ru
Виды памяти 3
Введение
У человека всегда была потребность сохранить результаты его трудов, будь они материальными или умственными. Для этой цели издавна использовались различные способы: древний человек вёл записи с помощью рисунков, т. к. он не владел письменностью, с появлением письменности появилась и возможность более информативно излагать свои мысли, для чего стали использоваться глиняные таблички, папирусы, бумага, береста и даже каменные стены. Но с развитием человеческой цивилизации, с развитием различных наук количество информации, подлежащей сохранению, постепенно увеличивалось и приходилось придумывать новые методы или улучшать старые. Так ещё в 1041-1048 г.г. в древнем Китае были предприняты первые опыты книгопечатания (Би Шэн), которое в 15-16 в.в. получило распространение в Европе, а создание в 1814 печатной машины положило начало современной полиграфии. Тогда же, в 16 в., итальянец Романецатто изобрёл «пишущее пианино», правда, не получившее распространения, а вообще с тех пор было запатентовано и создано около 300 различных конструкций пишущих машинок, хотя практическое применение нашли лишь 25-30 из них. Хотя это были и весьма несовершенные конструкции, они существенно подняли индивидуальную производительность. В 1857 г. англичанин Леон Скотт создал первое устройство, регистрирующее акустические колебания, а в 1878 г. американцем Томасом Эдисоном по такому же принципу был создан фонограф, позволявший записывать и воспроизводить различные звуки и человеческую речь. Так появились первые устройства механической записи информации, а 40-50-х г.г. нашего столетия появилась первая технология записи информации на магнитные носители, что вывело этот процесс на принципиально новый уровень.
В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.
Несмотря на стремительные темпы развития вычислительной техники, фундаментальные принципы построения ЭВМ практически не изменились. Базовые идеи построения вычислительных устройств сформулированные известным математиком Джоном фон Нейманом с группой соавторов в 1946г. и получили название «принципов фон Неймана»[1] . Сущность этих принципов:
использование двоичной системы для представления чисел. В работе фон Неймана были убедительно продемонстрированы преимущества двоичной системы для технической реализации, удобство и простота выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации: текстовую, графическую, звуковую и др. Но по-прежнему двоичное кодирование данных составляет информационную основу любого современного компьютера;
принцип «хранимой программы». Согласно этому принципу программа, записанная с помощью двоичных кодов, должна храниться в той же самой памяти, что и обрабатываемые ею данные;
принцип адресности. Команды и данные помещаются в ячейки памяти, доступ к которым осуществляется по адресу. Адресом ячейки фактически является её номер; таким образом, местонахождение информации в ОЗУ также кодируется в виде двоичных чисел.
С развитием компьютерной техники объёмы информации в электронной форме начали стремительно возрастать. Программы для ПК и объём обрабатываемой и сохраняемой ими информации исчисляется не десятками или сотнями килобайт, как на заре компьютерной эры, а десятками и сотнями мегабайт, к тому же возросла и ценность самой информации. Всё это обусловило потребность в ёмких, быстрых и надёжных устройствах записи информации.
Работая с информацией, человек пользуется не только своими знаниями, но и книгами, справочниками и другими внешними источниками. информация хранится в памяти человека и на внешних носителях. Заученную информацию человек может забыть, а записи сохраняются надежнее.
В процессе работы компьютера программы, исходные данные, а также промежуточные и окончательные результаты необходимо где-то хранить и иметь возможность обращаться к ним. Для этого в составе компьютера имеются различные запоминающие устройства, которые называются памятью.
1. Компьютерная память.
Память компьютера - совокупность устройств для записи, хранения и выдачи информации, представленной в закодированной форме, а так же для переноса информации с одного компьютера на другой.[2]
Запоминающие устройства имеют свою градацию. В основном их можно разделить на две группы: внутреннюю и внешнюю память (или же как это встречается более часто - на внутренние и внешние запоминающие устройства или накопители на гибких и жёстких дисках).
Основные операции с памятью
Существует две распространенные операции с памятью - чтение информации из памяти и запись ее в память для хранения.
- При чтении порции информации из памяти осуществляется передача ее копии в другое устройство, где с ней производятся определенные действия. После считывания информация не исчезает и хранится в той же области памяти до тех пор, пока на ее место не будет записана другая информация.
- При записи (сохранении) информации предыдущие данные, хранящиеся на этом месте, стираются. Вновь записанная информация хранится до тех пор, пока на ее место не будет записана другая. Внимание! Из энергозависимой памяти информация пропадает при выключении компьютера.
Основные характеристики памяти
Способ обращения к устройству памяти для чтения или записи информации получил название доступа . С этим понятием связан такой важный параметр памяти, как время доступа , или быстродействие - это время, необходимое для чтения из памяти или записи в нее минимальной порции информации. Измеряется в милли-, микро- наносекундах.
Быстродействие памяти определяется временем выполнения операций записи и считывания данных. Основными параметрами любых элементов памяти является минимальное время доступа и длительность цикла обращения. Время доступа (accesstime) определяется как задержка появления действительных данных на выходе памяти относительно начала цикла чтения. Длительность цикла определяется как минимальный период следующих друг за другом обращений к памяти, причем циклы чтения и записи могут требовать различных затрат времени. В цикл обращения кроме активной фазы самого доступа входит и фаза восстановления (возврата памяти к исходному состоянию), которая соизмерима по времени с активной фазой. Временные характеристики самих запоминающих элементов определяются их принципом действия и используемой технологией изготовления.[3]
Другой важной характеристикой памяти является ее объем , или емкость . Эта величина показывает, какой максимальный объем информации можно хранить в данной памяти. Измеряется в кило-, мега-, гигабайтах.
Производительность машины очень сильно зависит от объема внутренней памяти. Если для работы каких-то программ не хватает внутренней памяти, то компьютер начинает переносить часть данных во внешнюю память, что резко снижает его производительность. Скорость чтения/записи данных в оперативную память на несколько порядков выше, чем во внешнюю.
Объем оперативной памяти влияет на производительность компьютера. Для эффективной работы современных программ требуется оперативная память объемом в сотни и тысячи мегабайтов (гигабайты).
1.1. Структура памяти компьютера
Хранение и обработка информации реализованы в двоичных кодах с применением двоичной системы счисления. Это связано с использованием в ЭВМ многоразрядных электронных систем памяти, каждый разряд которых – бит, может принимать одно из двух различных состояний – 0 или 1. следовательно, минимальная единица измерения информации – это бит – одна двоичная цифра. Последовательность восьми двоичных разрядов образует байт, т.е. 8 бит.
Второе значение понятия «байт» - минимальная адресуемая ячейка памяти. В этом смысле величина байта необязательно составляет 8 двоичных разрядов.
Единица измерения информации «слово» составляет два байта, или 16 бит; двойное слово – четыре байта, 32 бита.
Байты памяти условно пронумерованы. Начальным номером является нулевой. Конечный номер определяется техническими характеристиками устройства. Порядковый номер байта памяти задает его адрес. Указанный размер слова и двойного слова в некоторых типах ЭВМ может составлять другую величину битов.
Для облегчения работы с большими объемами памяти на практике применяют более крупные единицы, такие как:
1 Килобайт (Кбайт)=1024 байта
1 Мегабайт (Мбайт)=1024 Кб
1 Гигабайт (Гбайт)=1024 Мб
1 Терабайт (Тбайт)=1024 Гб
1 Петабайт (Пбайт)=1024 Тб
1 Эксабайт (Эбайт)=1024 Пб
1 Зетабайт (Збайт)=1024 Эб
1 Йоттабайт (Йбайт)=1021 Зб
2. Внутренняя память
Внутренняя память - это электронное устройство, которое хранит информацию, пока питается электроэнергией. При отключении компьютера от сети информация из оперативной памяти исчезает. Программа во время ее выполнения хранится во внутренней памяти компьютера. Сформулированное правило относится к принципам Неймана. Его называют принципом хранимой программы.[4]
Информационная структура внутренней памяти – битово-байтовая.
Битовая структура определяет первое свойство внутренней памяти компьютера — дискретность. Дискретные объекты составлены из частиц. Например, песок дискретен, так как состоит из песчинок. “Песчинками” компьютерной памяти являются биты.
Второе свойство внутренней памяти компьютера — адресуемость . Восемь расположенных подряд битов памяти образуют байт- это слово также обозначает единицу количества информации , равную восьми битам. Следовательно, в одном байте памяти хранится один байт информации.
mirznanii.com