Как сделать своими руками. Биокомпьютер это


Биокомпьютеры - есть ли перспективы?

Уже давно идут разговоры о скором достижении предела полупроводниковой технологии производства вычислительных устройств. Уменьшение размера компонентов интегральной схемы до 80-120 нм приведет к появлению ряда проблем, связанных с физической природой полупроводниковых наночастиц. Во-первых, концентрацию допирующих полупроводниковый кристалл элементов уже нельзя считать одинаковой во всем объеме. Во-вторых, резко увеличится вероятность туннельной электронной утечки (проще говоря, замыкания) между компонентами интегральной схемы. Следствием этих двух причин станет возросшая доля дефектных чипов и недолговечность их эксплуатации (а, значит, и себестоимость полупроводниковой продукции).

Видя столь незавидные перспективы, многие известные научные институты и компании (а среди них такие монстры, как Массачусетский технологический институт, лаборатории Сандия, IBM, Оксфордский университет) ищут новые принципы, новые физические основы для создания более эффективных, чем полупроводниковые, "счетных машин". Причем нет гарантии, что новые устройства, пришедшие на замену компьютерам, работающим на электрической энергии, будут хотя бы отдаленно напоминать своих предшественников.

Одной из альтернатив современной полупроводниковой технике в будущем могут стать так называемые биологические компьютеры, или биокомпьютеры. Биокомпьютеры представляют собой гибрид информационных технологий и биохимии. Исследователи из различных областей науки (биологии, физики, химии, генетики, информатики) пытаются использовать реальные биологические процессы для создания искусственных вычислительных схем. Существует несколько принципиально различных типов биологических компьютеров, основанных на различных биологических процессах: искусственные нейронные цепи, эволюционное программирование, генные алгоритмы, ДНК-компьютеры и клеточные компьютеры. Первые два стали исследоваться еще в начале 40-х годов, но до сих пор эти исследования ни к чему реально работающему не привели. Последние три, основанные на методах генной инженерии, имеют гораздо большие перспективы, но работа в этих областях началась только пять лет назад (особенно продвинулись в этом вопросе Массачусетский технологический институт, лаборатории Беркли, лаборатории Рокфеллера, а также Техасский университет).

Если сравнивать потенциальные возможности биокомпьютера и обычного компьютера, то первый значительно опережает своего теперешнего собрата. Плотность хранения информации в ДНК составляет 1 бит/нм2 - в триллион раз меньше, чем у видеопленки. ДНК может параллельно выполнять до 1020 операций в секунду - сравнимо с современными терафлоповыми суперкомпьютерами. Кроме ДНК (хотя ДНК-компьютер наиболее популярен среди разработчиков), в качестве компьютерной биопамяти могут выступать другие биологически активные молекулы, например, бактериородопсин, обладающий превосходными голографическими свойствами и способный выдерживать высокие температуры. На его основе уже создан вариант трехмерного запоминающего устройства. Молекулы бактериородопсина фиксируются в гидрогелевой матрице и облучаются двумя лазерами (см. рис).

Первый лазер (направленный аксиально на гидрогелевый образец) инициирует фотохимические реакции в молекуле и записывает информацию. Второй же, направленный перпендикулярно, считывает информацию, записанную на молекулах бактероиродопсина, находящегося в объеме гидрогеля.

Принцип устройства компьютерной ДНК-памяти основан на последовательном соединении четырех нуклеотидов (основных кирпичиков ДНК-цепи). Три нуклеотида, соединяясь в любой последовательности, образуют элементарную ячейку памяти - кодон, которые затем формируют цепь ДНК. Основная трудность в разработке ДНК-компьютеров связана с проведением избирательных однокодонных реакций (взаимодействий) внутри цепи ДНК. Однако прогресс есть уже и в этом направлении. Уже есть экспериментальное оборудование, позволяющее работать с одним из 1020 кодонов или молекул ДНК. Другой проблемой является самосборка ДНК, приводящая к потере информации. Ее преодолевают введением в клетку специальных ингибиторов - веществ, предотвращающих химическую реакцию самосшивки.

Создание биологического ДНК-hardware планируется осуществлять с помощью методов генной инженерии, размерные пределы которой горадо ниже литографических. С помощью биологического "железа" в скором времени будет возможным осуществлять цифровой контроль за процессами, протекающими в человеческом организме, и проделывать простейшие математические операции. Ученым из университета г. Висконсин даже удалось провести вычислительную операцию на молекулах ДНК, химически закрепленных на инертной гладкой поверхности золота. Передача сигналов между молекулами ДНК осуществлялась с помощью тепловой энергии и химических веществ. Тим Гарднер из Бостона на примере бактерии кишечной палочки (E-coli) сконструировал цифровой преобразователь биохимическоих сигналов, длительность работы которого составляет 20 часов. Майкл Еловиц из Рокфеллеровского центра научных исследований собрал генетическую последовательность, способную в определенных условиях воспроизводить с определенной частотой одну и ту же биохимическую реакцию (вариант биологических часов). Группа ведущего специалиста в области ДНК-компьютеров Тома Кнайта из Массачусетского технологического, экспериментируя с ДНК-связанными протеинами, создала биохимический цифровой инвертор, в котором, если в биосистему ввести протеин А (+), то на выходе из системы получится протеин Б (-) и наоборот.

Другим перспективным направлением замены полупроводниковых компьютеров является создание клеточных (бактериальных) компьютеров. Они представляют собой самоорганизующиеся колонии различных "умных" микроорганизмов (очень напоминает пчел, которые организуют упорядоченную иерархическую структуру внутри гнезда). Т.е., грубо говоря, стакан с бактериями и будет компьютером. Эти компьютеры очень дешевы в производстве. Им не нужна настолько стерильная атмосфера как при производстве полупроводников. И однажды запрограммировав клетку, можно быстро вырастить миллион таких же клеток с такой же программой.

С помощью клеточных компьютеров станет возможным непосредственное объединение информационной технологии и биотехнологии. Они будут управлять химическим (биохимическим) заводом, они будут делать для вас сорт пива, запрограммированный вами, регулировать биологические процессы внутри вашего организма (например, производить инсулин). Клеточные биокомпьютеры смогут перевести вычисления на химическую основу.

Основная проблема, с которой сталкиваются создатели клеточных биокомпьютеров, - организация всех клеток в единую работающую систему. На сегодняшний день практические достижения в области клеточных компьютеров напоминают достижения 20-х годов в области ламповых и полупроводниковых компьютеров. Сейчас в Лаборатории искусственного интеллекта Массачусетского технологического университета создана клетка, способная хранить на генетическом уровне 1 бит информации. Также разрабатываются технологии, позволяющие единичной бактерии отыскивать своих соседей, образовывать с ними упорядоченную структуру и осуществлять массив параллельных операций.

Как уже стало ясно уважаемому читателю, создание биокомпьютеров очень перспективно, но и очень сложно. Пока никто не может ответить, какой конкретно физический принцип заменит полупроводниковые технологии (биокомпьютеры, квантовые компьютеры, оптические компьютеры или какие-нибудь еще). Но исследования в области биокомпьютеров все равно будут продолжаться, поскольку полученные результаты важны не только для создания биокомпьютеров, но и для всей биохимии в целом.

Дмитрий ЩУКИН

www.kv.by

Биокомпьютер — HelpSet.ru

БиокомпьютерЧеловек это Биокомпьютер? Да, по всей видимости это так. Ведь Биокомпьютер это настоящий компьютер, который функционирует как живой организм или является живым организмом и содержит биологические компоненты. Создание биокомпьютеров основывается на направлении молекулярных вычислений и взаимодействия клеток между собой по определённой программе. В качестве вычислительных элементов используются белки и нуклеиновые кислоты, реагирующие друг с другом в клетке. На сегодня такие эксперименты проводятся в большинстве развитых стран по созданию настоящего биокомпьютера. Ещё в 1994 году Леонард Эдлман на опыте показал, что молекулы ДНК могут решать вычислительные задачи, причем такие, которые представляют наибольшие трудности для традиционных компьютеров. Данную науку пока принято называть ДНК-вычисления. В чём преимущества — благодаря наборам команд в ДНК компьютер сам сопоставляет нужные логические цепочки за один раз, в то время как обычный компьютер проделывал бы эти операции последовательно, что занимает гораздо больше времени на обработку команд. В первые в истории: в 2002 году исследователи из Института Вейцмана в Реховоте, Израиль, представили программируемую молекулярную вычислительную машину состоящую из ферментов и молекул ДНК. 28 апреля 2004 года, Эхуд Шапиро, Яаков Бененсона, Биньямин Гил, Ури Бен-Дор, и Ривка Адар из Института Вейцмана сообщили в журнале «Nature», о создании ДНК-компьютера с модулем ввода-вывода данных. В январе 2013 года исследователи смогли записать в ДНК-коде несколько фотографий JPEG, набор шекспировских сонетов, и звуковой файл. В марте 2013 года исследователи создали Транскриптор (биологический транзистор). Будущее уже не за горами! Совсем близок тот день, когда на свет появиться что-то живое, думающее логически, на подобие человека. Хотя всё-же об Искусственном Интеллекте (ИИ) говорить пока преждевременно. Речь идёт о простом биокомпьютере для работы. Возможно его надо будет кормить или поливать специальным ферментным субстратом, и тем не менее он уже скоро будет изобретён для массового потребителя. Стоимость биокомпьютера изначально будет высокой и не доступна многим, но потом цена упадёт и люди смогут пользоваться новинкой. В будущем биокомпьютер можно будет интегрировать в человека, позволяя ему быть умнее или решать необходимые для него задачи. И тогда весь наш существующий хлам можно будет просто выкинуть на помойку.

www.helpset.ru

Биокомпьютер | Как сделать своими руками.

Еще одним немаловажным открытием является конструирование биокомпьютеров. На роль «электронов» биокомпьютере используются в основном различные бактерии. Однако использование бактерий единственно в своем роде: бактерия пригодна тогда, когда геном имеет хотя бы одну логическую схему, которая работает в присутствии катализатора. Производство биокомпьютеров довольна-таки рентабельное, чем производство чипов на кремниевой основе.

Когда же сделали главное открытие для создания биокомпьютеров 

В 2001 году была сделано гениальное открытие, были найдены трасгенные микроорганизмы. Суть их работы заключается в активирование самих молекул, при внедрении раздражающего фактора. Биокомпьютер имеет целый ряд преимуществ, среди которых; отказ от старой двоичной системы и использованию троичной системы, скорость обработки данных не снижается в пределах, начиная от 1000%, объем плотности информации намного больше, чем у физических носителей.

Какие же еще открытия были сделаны для биокомпьютера.

В 2003 было сделано открытие другой модели биокомпьютера. В ней биты информации, а именно двоичный код, представляют собой вихре подобные электрические токи. Всего в самом устройстве имеется только 3 клетки ( одна узкая, пара широких). В результате приложение электрического поля изменяет их битовое состояние.В 2007 было сделано открытие, которое представляло собой квадратные клетки. Благодаря своей форме они могли кодировать по 4 бита. Но кроме настройки самой формулы, программировались еще 9 правил, которые управляют взаимодействием клеток. Все правила представляют в какой-то степени те же самые логические операции, что существуют и в обыкновенном компьютере.

какие же минусы у биокомпьютера?

Но там где есть плюсы, всегда найдутся минусы. Самой большой проблемой, с которой сталкиваются ученые – это извлечение информации из биокомпьютера после всех окончательных расчетов. Еще одной проблемой сегодняшнего дня является проблематика, а точнее большие погрешности в вычислениях. Они проходят довольна-таки медленно, да и дороже чем кремниевые.

пользуется ли биокомпьютер популярностью у обычных пользователей?

Биокомпьютеры не пользуются популярностью среди простых пользователей. Однако все ученые считают, что данный вклад принесет огромное значение в медицину и фармацевтику. В скором будущем благодаря биокомпьютерам можно будет: взаимодействовать и обмениваться и информацией между клетками человека, осуществлять наблюдение за состоянием злокачественных опухолей и проводить их профилактику.

Если вас заинтересовал этот товар и вы хотите купить его то предлагаю вам проверенный сервис  ebaytoday   (при регистрации  введите Код приглашения    0fa7633bd2a09c794c7d554903238d98    и получите 5 долларов в подарок). ознакомиться с этим сервисом вы можете в этой статье

igor97.ru

«Биокомпьютеры»

Московская Государственная Академия Приборостроения и Информатики

ДИПЛОМНАЯ РАБОТА

по информационным экономическим системам

«Биокомпьютеры»

Выполнил: Пяров Тимур РЭФ2, 2 курс, 35.14

2002МоскваОглавление

Полностью био. 3

В Германии создан первый в мире нейрочип, сочетающий электронные элементы и нервные клетки 4

Биология in silico. 5

Инфузорное программирование. 8

Биоалгоритмика. 11

Биочипы как пример индустриальной биологии. 17

Первый биокомпьютер

Группе учёных из мюнхенского Института биохимии имени Макса Планка удалось создать первый в мире нейрочип. Микросхема, изготовленная Питером Фромгерцом и Гюнтером Зеком, сочетает в себе электронные элементы и нервные клетки.

Главной проблемой при создании нейрочипов всегда была сложность фиксации нервных клеток на месте. Когда клетки начинают образовывать соединения друг с другом, они неизбежно смещаются. На этот раз учёным удалось избежать этого.

Взяв нейроны улитки, они закрепили их на кремниевом чипе при помощи микроскопических пластмассовых держателей (на фото ). В итоге каждая клетка оказалась соединена как с соседними клетками, так и с чипом. Подавая через чип на определённую клетку электрические импульсы, можно управлять всей системой.

Сочетание биологических и компьютерных систем таит в себе огромный потенциал. По мнению специалистов, нейрочипы позволят создать более совершенные, способные к обучению компьютеры, а также протезы для замены повреждённых участков мозга и высокочувствительные биосенсоры.

Как заявил недавно знаменитый британский физик Стивен Хокинг, если мы хотим, чтобы биологические организмы по-прежнему превосходили электронные, нам придётся поискать способ объединить компьютеры и человеческий мозг, либо попытаться искусственным путём усовершенствовать собственные гены. (Подробнее об этом рассказывается здесь )

Впрочем, такие проекты пока остаются фантастикой. До их реализации пока ещё очень далеко, а пока главным предназначением устройств, подобных созданной в Мюнхене нейросхеме, является изучение механизмов работы нервной системы и человеческой памяти.

Группа ученых из Вейцмановского Института (Weizmann Institute), Израиль, удалось создать первый в мире компьютер, все обрабатываемые данные и компоненты которого, включая "железо", программы и систему ввода-вывода, умещаются в одной стеклянной пробирке. Фокус заключается в том, что вместо традиционных кремниевых чипов и металлических проводников новый компьютер состоит из набора биомолекул - ДНК, РНК и некоторых ферментов. При этом ферменты (или, по-другому, энзимы) выступают в роли "железа", а программы и данные зашифрованы собой парами молекул, формирующих цепочки ДНК (на иллюстрации) .

По словам руководителя проекта профессора Эхуда Шапиро (Ehud Shapiro), биокомпьютер пока может решать лишь самые простые задачи, выдавая всего два типа ответов: "истина" или "ложь". При этом в одной пробирке помещается одновременно до триллиона элементарных вычислительных модулей, которые могут выполнять до миллиарда операций в секунду. Точность вычислений при этом составит 99,8%. Для проведения вычислений необходимо предварительно смешать в пробирке вещества, соответствующие "железу", "программному обеспечению" и исходным данным, при этом ферменты, ДНК и РНК провзаимодействуют таким образом, что в результате образуется молекула, в которой зашифрован результат вычислений.

Комментируя новое достижение Шапиро сообщил, что природа предоставила человеку превосходные молекулярные машины для кодирования и обработки данных, и, хотя ученые еще не научились синтезировать такие машины самостоятельно, использование достижений природы уже в скором будущем позволит решить эту проблему. В будущем молекулярные компьютеры могут быть внедрены в живые клетки, чтобы оперативно реагировать на негативные изменения в организме и запускать процессы синтеза веществ, способных противостоять таким изменениям. Кроме этого, благодаря некоторым своим особенностям, биокомпьютеры смогут вытеснить электронные машины из некоторых областей науки.

Группе учёных из мюнхенского Института биохимии имени Макса Планка удалось создать первый в мире нейрочип. Микросхема, изготовленная Питером Фромгерцом и Гюнтером Зеком, сочетает в себе электронные элементы и нервные клетки.

Главной проблемой при создании нейрочипов всегда была сложность фиксации нервных клеток на месте. Когда клетки начинают образовывать соединения друг с другом, они неизбежно смещаются. На этот раз учёным удалось избежать этого.

Взяв нейроны улитки, они закрепили их на кремниевом чипе при помощи микроскопических пластмассовых держателей. В итоге каждая клетка оказалась соединена как с соседними клетками, так и с чипом. Подавая через чип на определённую клетку электрические импульсы, можно управлять всей системой.

Сочетание биологических и компьютерных систем таит в себе огромный потенциал. По мнению специалистов, нейрочипы позволят создать более совершенные, способные к обучению компьютеры, а также протезы для замены повреждённых участков мозга и высокочувствительные биосенсоры.

Как заявил недавно знаменитый британский физик Стивен Хокинг, если мы хотим, чтобы биологические организмы по-прежнему превосходили электронные, нам придётся поискать способ объединить компьютеры и человеческий мозг, либо попытаться искусственным путём усовершенствовать собственные гены. (Подробнее об этом рассказывается здесь )

Впрочем, такие проекты пока остаются фантастикой. До их реализации пока ещё очень далеко, а пока главным предназначением устройств, подобных созданной в Мюнхене нейросхеме, является изучение механизмов работы нервной системы и человеческой памяти.

Автор: Михаил Гельфанд, [email protected]Дата публикации: 21.09.2001

В ычислительная биология, она же биоинформатика, она же компьютерная генетика - молодая наука, возникшая в начале 80-х годов на стыке молекулярной биологии и генетики, математики (статистики и теории вероятности) и информатики, испытавшая влияние лингвистики и физики полимеров. Толчком к этому послужило появление в конце 70-х годов быстрых методов секвенирования* последовательностей ДНК*. Нарастание объема данных происходило лавинообразно (рис. 2) и довольно скоро стало ясно, что каждая полученная последовательность не только представляет интерес сама по себе (например, для целей генной инженерии и биотехнологии), но и приобретает дополнительный смысл при сравнении с другими. В 1982 году были организованы банки данных нуклеотидных последовательностей - GenBank в США и EMBL в Европе. Первоначально данные переносились в банки из статей вручную, однако, когда этот процесс начал захлебываться, все ведущие журналы стали требовать, чтобы последовательности, упоминаемые в статье, были помещены в банк самими авторами. Более того, поскольку секвенирование уже давно стало рутинным процессом, который выполняют роботы или студенты младших курсов на лабораторных работах, многие последовательности сейчас попадают в банки без публикации. Банки постоянно обмениваются данными и, в этом смысле, практически равноценны, однако средства работы с ними, разрабатываемые в Центре биотехнологической информации США и Европейском институте биоинформатики, различны. Пожалуй, первым биологически важным результатом, полученным при помощи анализа последовательностей, было обнаружение сходства вирусного онкогена v-sis и нормального гена фактора роста тромбоцитов, что привело к значительному прогрессу в понимании механизма рака. С тех пор работа с последовательностями стала необходимым элементом лабораторной практики.

В 1995 году был секвенирован первый бактериальный геном*, в 1997 - геном дрожжей. В 1998 было объявлено о завершении секвенирования генома первого многоклеточного организма - нематоды 1 . По состоянию на 1 сентября 2001 года доступны 55 геномов бактерий, геном дрожжей, практически полные геномы Arabidopsis thaliana (растения, родственного горчице), нематоды, мухи дрозофилы - все это стандартные объекты лабораторных исследований. Уже два раза (весной 2000 и зимой 2001 года) было объявлено о практическом завершении секвенирования генома человека - имеющиеся фрагменты действительно покрывают его более чем на 90%. Количество геномов, находящихся в распоряжении фармацевтических и биотехнологических компаний, оценить трудно, хотя, по-видимому, оно составляет многие десятки и даже сотни. Ясно, что подавляющее большинство генов в этих геномах никогда не будет исследовано экспериментально. Поэтому компьютерный анализ и становится основным средством изучения.

Все это привело к тому, что биоинформатика стала чрезвычайно модной областью науки, спрос на специалистов в которой очень велик. Следует отметить, что одним из неприятных последствий возникшего шума стало то, что биоинформатикой называют всё, где есть биология и компьютеры 2 . В то же время многие области уже пережили такие моменты (например, теория информации3 ), и хочется надеяться, что за пеной ажиотажа не пропадет то действительно интересное, что делается в настоящей биоинформатике.

mirznanii.com

Биокомпьютер Википедия

Биокомпьютер (также биологический компьютер, молекулярный компьютер) — компьютер, который функционирует как живой организм или содержит биологические компоненты. Создание биокомпьютеров основывается на направлении молекулярных вычислений. В качестве вычислительных элементов используются белки и нуклеиновые кислоты, реагирующие друг с другом.

Можно сказать, что молекулярные компьютеры — это молекулы, запрограммированные на нужные свойства и поведение. Молекулярные компьютеры состоят из сетевых нано-компьютеров. В работе обычной микросхемы используют отдельные молекулы в качестве элементов вычислительного тракта.

В частности, молекулярный компьютер может представлять логические электрические цепи, составленные из отдельных молекул; транзисторы, управляемые одной молекулой, и т. п. В микросхеме памяти информация записывается с помощью положения молекул и атомов в пространстве.

Одним из видов молекулярных компьютеров можно назвать ДНК-компьютер, вычисления в котором соответствуют различным реакциям между фрагментами ДНК. От классических компьютеров ДНК-компьютеры отличаются тем, что химические реакции происходят сразу между множеством молекул независимо друг от друга.

Станислав Лем в «Summa Technologiae» предсказал теоретическую возможность «выращивания информации» при помощи синтетических полимеров (в т.ч. и био-)[1].

История

Создавая технику, человек всегда сравнивал себя с ней, имел возможность посмотреть на себя как бы со стороны. При развитии кибернетики и создании ЭВМ ученые пришли к мысли о подобии человека и машины, способной выполнять информационные функции, математические выражения, логические операции, накопление числовых, текстовых, звуковых и художественно-графических данных. Искусственный компьютер становится человеку соперником и союзником по интеллекту.

В 1966 году выходит книга Дж. фон Неймана «Теория самовоспроизводящихся автоматов», в которой описывается теория клеточных автоматов, которые способны к самовоспроизведению, аналогично живой клетке.

В 1994 году Эдлман на опыте показал, что молекулы ДНК могут решать вычислительные задачи, причём такие, которые представляют наибольшие трудности для традиционных компьютеров. С этого момента развивается история ДНК-вычислений.

Биокомпьютер в искусственном интеллекте

См. также

Примечания

  1. ↑ Станислав Лем. Summa Technologiae. — 7. Сотворение миров: Выращивание информации. — 1964.

Ссылки

wikiredia.ru

Биокомпьютер — WiKi

Биокомпьютер (также биологический компьютер, молекулярный компьютер) — компьютер, который функционирует как живой организм или содержит биологические компоненты. Создание биокомпьютеров основывается на направлении молекулярных вычислений. В качестве вычислительных элементов используются белки и нуклеиновые кислоты, реагирующие друг с другом.

Можно сказать, что молекулярные компьютеры — это молекулы, запрограммированные на нужные свойства и поведение. Молекулярные компьютеры состоят из сетевых нано-компьютеров. В работе обычной микросхемы используют отдельные молекулы в качестве элементов вычислительного тракта.

В частности, молекулярный компьютер может представлять логические электрические цепи, составленные из отдельных молекул; транзисторы, управляемые одной молекулой, и т. п. В микросхеме памяти информация записывается с помощью положения молекул и атомов в пространстве.

Одним из видов молекулярных компьютеров можно назвать ДНК-компьютер, вычисления в котором соответствуют различным реакциям между фрагментами ДНК. От классических компьютеров ДНК-компьютеры отличаются тем, что химические реакции происходят сразу между множеством молекул независимо друг от друга.

Станислав Лем в «Summa Technologiae» предсказал теоретическую возможность «выращивания информации» при помощи синтетических полимеров (в т.ч. и био-)[1].

Создавая технику, человек всегда сравнивал себя с ней, имел возможность посмотреть на себя как бы со стороны. При развитии кибернетики и создании ЭВМ ученые пришли к мысли о подобии человека и машины, способной выполнять информационные функции, математические выражения, логические операции, накопление числовых, текстовых, звуковых и художественно-графических данных. Искусственный компьютер становится человеку соперником и союзником по интеллекту.

В 1966 году выходит книга Дж. фон Неймана «Теория самовоспроизводящихся автоматов», в которой описывается теория клеточных автоматов, которые способны к самовоспроизведению, аналогично живой клетке.

В 1994 году Эдлман на опыте показал, что молекулы ДНК могут решать вычислительные задачи, причём такие, которые представляют наибольшие трудности для традиционных компьютеров. С этого момента развивается история ДНК-вычислений.

ru-wiki.org

Биокомпьютер Википедия

Биокомпьютер (также биологический компьютер, молекулярный компьютер) — компьютер, который функционирует как живой организм или содержит биологические компоненты. Создание биокомпьютеров основывается на направлении молекулярных вычислений. В качестве вычислительных элементов используются белки и нуклеиновые кислоты, реагирующие друг с другом.

Можно сказать, что молекулярные компьютеры — это молекулы, запрограммированные на нужные свойства и поведение. Молекулярные компьютеры состоят из сетевых нано-компьютеров. В работе обычной микросхемы используют отдельные молекулы в качестве элементов вычислительного тракта.

В частности, молекулярный компьютер может представлять логические электрические цепи, составленные из отдельных молекул; транзисторы, управляемые одной молекулой, и т. п. В микросхеме памяти информация записывается с помощью положения молекул и атомов в пространстве.

Одним из видов молекулярных компьютеров можно назвать ДНК-компьютер, вычисления в котором соответствуют различным реакциям между фрагментами ДНК. От классических компьютеров ДНК-компьютеры отличаются тем, что химические реакции происходят сразу между множеством молекул независимо друг от друга.

Станислав Лем в «Summa Technologiae» предсказал теоретическую возможность «выращивания информации» при помощи синтетических полимеров (в т.ч. и био-)[1].

История[ | код]

Создавая технику, человек всегда сравнивал себя с ней, имел возможность посмотреть на себя как бы со стороны. При развитии кибернетики и создании ЭВМ ученые пришли к мысли о подобии человека и машины, способной выполнять информационные функции, математические выражения, логические операции, накопление числовых, текстовых, звуковых и художественно-графических данных. Искусственный компьютер становится человеку соперником и союзником по интеллекту.

В 1966 году выходит книга Дж. фон Неймана «Теория самовоспроизводящихся автоматов», в которой описывается теория клеточных автоматов, которые способны к самовоспроизведению, аналогично живой клетке.

В 1994 году Эдлман на опыте показал, что молекулы ДНК могут решать вычислительные задачи, причём такие, которые представляют наибольшие трудности для традиционных компьютеров. С этого момента развивается история ДНК-вычислений.

Биокомпьютер в искусственном интеллекте[ | код]

См. также[ | код]

Примечания[ | код]

  1. ↑ Станислав Лем. Summa Technologiae. — 7. Сотворение миров: Выращивание информации. — 1964.

Ссылки[ | код]

ru-wiki.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики