Компьютерная томография сердца: радиационная безопасность и контрастные средства. Доза облучения компьютерная томография


Доза облучения при рентгене и как её уменьшить

Несмотря на появления огромного количества новых современных методов диагностики, рентгенологическое исследование до сих пор пользуется широкой популярностью. С течением времени рентген стал более совершенным, безопасным для человека и информативным для постановки диагноза. Но все эти попытки сделать исследование полностью безопасным не увенчались успехом. Дело в том, что доза облучения при рентгене любого органа человека способна суммироваться и превышать допустимые нормы.

Что собой являет рентгеновское излучение

Чтобы понять, опасно ли человеку делать рентген, нужно знать, что это такое. Рентгеновское излучение — это направленный поток электромагнитных волн с определенной длиной, который находится в промежутке между излучением ультрафиолета и гамма-частиц. Каждая волна имеет свое специфическое влияние на все органы человека.По своей природе рентгеновское излучение относится к ионизирующим лучам. Такие виды излучения способны с лёгкостью проникать в любую часть тела человека. Но это опасно для человека. В зависимости от получаемой дозы, вредность для исследуемых разная: чем выше доза, тем хуже для здоровья.

Особенности радиационного исследования в медицине

Рентгеновское излучение занимает почетное второе место среди всех способов облучения человека, после природного. Но по сравнению с последним, излучение, которое применяется в рентгенодиагностике, намного опаснее из-за таких причин:

  • Рентгеновское излучение превышает мощность натуральных источников радиации.
  • В диагностических целях облучается ослабленный заболеванием человек, что усиливает вред здоровью от рентгеновских лучей.
  • Медицинское излучение имеет неравномерное распределение по организму.
  • Органы могут подвергаться рентгеновским лучам несколько раз.

Однако, в отличие от радиации природного происхождения, которое трудно предотвратить, рентгенодиагностика уже давно включает в себя разные способы защити от вредного влияния излучения на человека. Об этом немного позже.

Чем опасен рентген

Каждый человек, который сталкивался с рентгеном, слышал о его вреде. Когда лучи проходят сквозь ткани человека, атомы и молекулы клеток ионизируются. Из-за этого их структура необратимо меняется.Каждая клетка по-своему реагирует на облучение, поэтому некоторые ткани и органы подвергаются патологии сразу же после контакта с радиацией, а для некоторых нужна доза несколько больше или более длительное воздействие. Больше всех подвержены влиянию рентгеновских лучей органы кроветворения — красный костный мозг. Для нервной системы это наименее опасно. Всё зависит от способности клеток к делению.После полученного облучения заболеть может или сам человек (лучевая болезнь, соматические нарушения, бесплодие) или его потомки (генетические мутации и патологии).Человек, который подвергся облучению, в первую очередь чувствует гриппоподобные симптомы: тошноту, слабость, ненавязчивую боль в мышцах, головокружение. Первые изменения проявляются в общем анализе крови.

Каждый орган и ткань по-разному реагируют на излучения.

Начальные симптомы у человека:

  • обратимая смена состава элементов крови после незначительного облучения;
  • лейкемия (уменьшение количества лейкоцитов) с первого дня лучевой нагрузки, вследствие чего, снижается иммунитет и человек стает уязвим к разным заболеваниям;
  • лимфоцитоз (увеличение содержания лимфоцитов) на фоне лейкемии — один с главных признаков, по которым можно заподозрить рентгеновское облучение;
  • тромбоцитопения (уменьшение тромбоцитов в объеме крови), которая может привести к синякам, кровотечениям и усугубить процесс;
  • эритроцитопения (снижение количества эритроцитов) а также их распад, что ведет к гипоксии всех тканей организма.

Отдаленные последствия:

  • развитие злокачественных процессов;
  • бесплодие;
  • преждевременное старение;
  • развитие катаракты.

Все эти симптомы и патологические состояния возникают только, если рентгеновское излучение было очень интенсивное, а контакт с человеком очень длительный. Современные медицинские рентген аппараты могут зафиксировать нужные изменения исследованного органа при минимальной дозе облучения. С этого следует, что процедура относительно безвредной, даже если исследование приходится делать много раз.

Патологии крови — самое частое осложнение, появляющееся после облучения.

Какое обследование самое опасное?

Те, кто не разбираются в рентгенах, думают, что все исследования действуют на организм одинаково. Но не все оборудования, принцип действия которых основан на радиационном излучении, влияют с одинаковой силой. Чтобы сравнить излучение различных видов рентгенодиагностики, стоить воспользоваться средними показателями эффективных доз. Здесь наведена таблица влияния флюорографии, рентгенографии, рентгеноскопии и компьютерной томографии на разные органы и части тела в дозах за одну процедуру. С ее помощью можно узнать, какое обследование является самым опасным.

Очевидно, что КТ и рентгеноскопия дают самую высокую радиационную нагрузку. Рентгеноскопия длится несколько минут в отличии, от короткой длительности остальных методов, что и объясняет высокий показатель облучения. Что касается КТ, доза облучения зависит от количества снимков. Еще большая лучевая нагрузка наблюдается при сцинтиграфии, при которой в организм вводятся радиоактивные вещества.

Допустимая доза облучения

Сколько раз за год делать рентген обследование, чтобы не нанести вред своему здоровью? С одной стороны, все эти методы вполне безвредны. Но почему-то же их запрещают проводить у беременных и детей. Попробуем разобраться.Считается, что облучение зависит от посещаемости рентген-кабинетов. Но на самом деле нужно ориентироваться на дозу излучения. Для каждого исследования существует своя допустимая доза облучения.

  • Флюорография, маммография — 0,8 мЗв
  • Дентальный (зубной) рентген — 0,15-0,35 мЗв (на цифровой аппарат даёт на порядок меньше облучения).
  • Рентгенография (РГ/РТГ) органов грудной клетки — 0,15-0,40 мЗв.

За документами Минздрава, в год человек не должен получить больше 15 мЗв. Для рентгенологов эта доза увеличивается до 20 мЗв.

Сами по себе лучи не накапливаются и не образовывают радиоактивные вещества.

Опасная доза облучения

Допустимые дозы не должны наносить вред здоровью. Дозы выше нормы могут спровоцировать соматические патологии. Нагрузка в больше чем 3 Зв вызывает лучевую болезнь.Важно знать, что человек подвергается облучению в большей степени, если делает рентген в разгар болезни.Стоить отметить, что ионизирующее излучение используется не только в диагностических целях в медицине. Оно довольно популярное в лечении, особенно при опухолевых заболеваниях крови. Лучевая терапия подвергает человеческий организм облучению с такой нагрузкой, с которой не сравнится ни один рентгенологический метод исследования.

Как вывести радиацию после рентгена

При однократном рентгеновском облучении пациент получает дозу, которая может вызвать малигнизацию в 0,001%. Врядли такая маленькая доза вызовет симптомы лучевой болезни или других патологических состояний. Кроме этого, лучи рентгеновского аппарата прекращают свое действие сразу после прекращения процедуры. Они не могут накапливаться в организме или образовывать самостоятельные источники излучения. Поэтому, профилактические мероприятия нецелесообразны и нет никакого смысла выводить радиацию после рентгена.Но, к сожалению, человек может подвергаться воздействия радиоактивных веществ с других источников. Кроме того, рентгеновские аппараты могут выходить из строя, чем вызывают опасность.

Допускается безопасная доза, полученная человеком за 70 лет жизни до 70 мЗв.

Как снизить вредное влияние рентгена

Современные рентгеновские аппараты намного безопаснее, нежели оборудование, которое использовались пару лет назад. Но защитить себя не станет лишним. Существует несколько таких рекомендаций:

  • Выбирать метода с наименьшим облучением.
  • Не проводить процедуру без обоснованных показаний.
  • По возможности, заменить рентген на исследование без лучевой нагрузки.
  • Не проводить обследование во время разгара болезни.
  • Применить индивидуальные факторы защиты (фартуки, передники и прочее).

Есть ли польза от радиации

Как известно, контактировать с радиацией опасно для здоровья. Но поскольку на людей воздействует ионизирующее излучение во внешней среде (солнце, глубь земли), а они при этом остаются относительно здоровыми, можно предположить, что и в радиации есть свои плюсы.

  • Без лучевого излучения клетки замедляют деление, а организм стареет.
  • Малые дозы могут оказывать даже лечебное действие и общеукрепляющий эффект.

Рентген для детей и беременных женщин

Всегда актуален вопрос, опасно ли детям и беременным делать рентген? Поскольку облучению подвергаются в первую очередь клетки, которые постоянно делятся, а детский организм находится в процессе активного роста, для малышей запрещено назначать данное исследование.Если речь идет о лучевой терапии или об обоснованном исследовании, можно сделать исключение. При этом выбирать метод с самой минимальной лучевой нагрузкой. Профилактические рентген методы детям до 14 лет категорически запрещены, ведь они могут нанести непоправимый вред.Что касается женщин в положении, им назначают это исследование только в крайних случаях. Ни женщин, ни детей нельзя пускать на обследование без защитной одежды. Диагностические исследования, связанные с лучевым излучением, обязательно фиксируются с учетом дозовых нагрузок.

Кормящих мамочек также интересует, можно ли делать рентген в период лактации? Не повлияет ли это на качество грудного молока? В данном случаи, беспокоится не стоит, рентгенодиагностика влияет на них точно также, как и на обычных взрослых людей.

Заключение

Устранить или ограничить влияние природных источников излучения непросто. Но в медицине это сделать гораздо проще, ведь дозы радиационного излучения в рентгенодиагностике минимальны. Но пренебрегать мерами защиты все же не следует. Ионизирующее облучение при необоснованно частом и длительном контакте могут нанести вред здоровью человека. Строгое выполнение всех рекомендаций, что относятся к рентгенодиагностике, снижает лучевую нагрузку на пациента.

tomografa.net

Доза облучения при рентгене для человека

Люди ежедневно сталкиваются с влиянием ионизирующего излучения. Источниками служат не только техногенные устройства, но и радионуклиды природного происхождения. Последние широко распространены в окружающей среде, содержатся в воде, продуктах питания, воздухе, организме человека. Не следует забывать и о космическом излучении, также вносящем свой вклад в формирование естественного радиационного фона.

Естественные источники радиации

Радиоактивное излучение в повседневной жизни

Медицинское облучение занимает второе место после природного. Но по сравнению с последним, излучение, применяемое в рентгенодиагностике, несет в себе большую опасность. Причины в следующем:

  • Мощность дозы от рентгена превышает таковую от природных источников радиации.
  • В диагностических целях облучению подвергается ослабленный болезнью организм, что усиливает вредное влияние рентгеновских лучей.
  • Медицинское излучение распределяется неравномерно.
  • Одни и те же органы могут подвергаться облучению несколько раз.

Однако, в отличие от природной радиации, воздействие которой трудно нормировать, рентгенодиагностика – область, включающая больше возможностей по снижению вредного влияния излучения на человека. Как это можно сделать, рассмотрим ниже.

Лучевые нагрузки в рентгенодиагностике

Рентген-аппарат и флюорограф

На разных видах рентген-установках лучевая нагрузка отличается

Доза облучения при рентгене неодинакова для разных видов исследований. Так, лучевая нагрузка при рентгеноскопии и КТ выше, чем при рентгенографии и флюорографии. Ниже приведена таблица, демонстрирующая средние дозы облучения в мЗв за 1 процедуру при разных видах рентгенодиагностики. Данные взяты из методических рекомендаций № 0100/1659-07-26, утвержденных Роспотребнадзором 16.02.2007.

Область исследованияРентгенография Флюорография РентгеноскопияКомпьютерная томография
ЦифроваяПленочнаяЦифроваяПленочная
Череп0.040.12
Челюстно-лицевая область, зубы0.020.040.05
Позвоночник: шейный отдел0.030.20.030.35
Позвоночник: грудной отдел0.060.50.040.45
Позвоночник: поясничный отдел 0.080.70.115.4
Органы грудной полости0.030.30.050.53.311
Грудина и ребра0.10.80.11.3
Молочные железы0.050.1
Органы ЖКТ0.21.12014
Верхний отдел ЖКТ0.10.83.5
Нижний отдел ЖКТ0.21.612
Почки0.10.6
Таз, бедро0.10.90.32.59.5
Конечности0.010.010.010.010.1

При радионуклидных исследованиях дозы облучения за одну диагностическую процедуру в среднем составляют:

Область тела Сцинтиграфия (мЗв) Функциональное исследование (мЗв)
Головной мозг 4,3 6,8
Щитовидная железа 3,8 0,2
Легкие 2,3 1,0
Сердце 5,0 5,0
ЖКТ 3,9 0,4
Печень 2,6 1,7
Почки 2,9 1,9
Скелет 2,3
Прочие 2,5 0,8

Рентгенография и флюорография сопровождаются наименьшей лучевой нагрузкой. КТ, радионуклидное исследование и особенно рентгеноскопия подвергают пациента большей опасности. Доза радиации, получаемая человеком во время выполнения этих процедур, выглядит совсем небезобидной.

Компьютерный томограф

Эффективная доза лучевой нагрузки при КТ составляет примерно от 2 до 10 мЗв

Опасности рентгенодиагностики

Ионизирующее излучение, действующее на пациента во время диагностической манипуляции, может приводить к нежелательным эффектам. Конечно, развитие лучевой болезни, стерилизации, лучевых ожогов и других последствий воздействия больших доз радиации вследствие рентгена исключено. Но нельзя забывать о стохастических эффектах. Их появление не зависит от величины полученной дозы. Однако количество мЗв влияет на вероятность возникновения последствий в отдаленном будущем: злокачественных опухолей, аномалий развития у потомства.

Конечно, не только медицинское облучение может стать причиной их появления. Не следует забывать и о других источниках радиации, в том числе о естественном радиационном фоне. К тому же действие небольших доз излучения у большинства людей не сопровождается появлением каких-либо патологий. Поэтому вероятность отдаленных последствий – не повод отказываться от использования рентгеновских лучей в диагностике.

Как снизить вредное влияние рентгена?

Допустимая доза для пациентов по НРБ –99/2009 равна 1 мЗв в год за последние 5 лет. При этом максимальная доза за 1 год не должна быть больше 5 мЗв. Согласно СанПиН 2.6.1.1192-03, профилактические обследования не должны сопровождаться облучением свыше 1 мЗв за последние 12 месяцев. Безопасная доза для диагностического рентгена, назначаемого при подозрении на заболевания и травмы, не определена. Количество снимков в данном случае диктуется необходимостью.

Средства индивидуальной рентгенозащиты

Специальная одежда используется для защиты как пациента, так и персонала

Как защитить пациента от нежелательных последствий медицинского облучения:

  • Проведение диагностических процедур только по обоснованным показаниям
  • Выбор метода с наименьшей лучевой нагрузкой
  • По возможности замена рентгена на процедуры, не сопровождающиеся облучением
  • Учет противопоказаний и возможного вреда при назначении исследования
  • Уменьшение лучевой нагрузки во время процедуры (применение индивидуальных средств защиты)

Помимо перечисленных мер, значение придается и техническим характеристикам диагностического оборудования. Современные аппараты, используемые в рентгеновских исследованиях, характеризуются низкими дозами облучениями, а потому более безопасны для пациентов и персонала.

Рентгенодиагностика не единственная область медицины, в которой используется ионизирующее излучение. Существует также лучевая терапия – способ лечения онкологических пациентов. Облучение, которому в данном случае подвергается больной, больше, чем при диагностических манипуляциях.

Ни один рентгенологический метод исследования не сопровождается таким высоким риском наступления нежелательных эффектов, как лучевая терапия.

Рентген в педиатрии

Дети более восприимчивы к ионизирующему излучению, чем взрослые. Причина в том, что детский организм находится в процессе развития, а рентгеновские лучи опасны прежде всего для активно делящихся клеток. Маленький рост становится причиной облучения большей, чем требуется, поверхности тела. По этой причине вопросы безопасности при выполнении рентгеновского снимка у ребенка значимы и актуальны.

Профилактические исследования категорически запрещены пациентам младше 14-летнего возраста. Диагностический рентген назначается только по обоснованным показаниям. При этом из всех диагностических процедур предпочтение отдается тем, которые сопровождаются наименьшей дозой облучения. Так, педиатры крайне редко назначают рентгеноскопию.

У детей до 3-х лет, особенно грудничков, следует экранировать все тело, за исключением области, подвергающейся исследованию. При выполнении рентгенографии у пациентов постарше также в обязательном порядке применяются средства защиты. Не является исключением и стоматологическое обследование. Согласно гигиеническим требованиям 2007 г. по ограничению доз облучения детей при рентгенологических исследованиях, при рентгене зуба на ребенка следует надевать защитный фартук и воротник.

Еще одним способом защиты маленького пациента является использование устройств, ограничивающих рассеивание излучения (диафрагмирование). Рентгеновские лучи должны попадать прежде всего на область исследования, а не на все прочие части тела.

Рентгенодиагностика в педиатрии

Девочка на рентгенографии легких

Заключение

Дозы облучения в рентгенодиагностике невысоки. Однако пренебрегать мерами безопасности все же не следует. Рентгеновские лучи при необоснованно частом и длительном воздействии на человеческий организм могут приводить к нежелательным для здоровья последствиям. Строгое выполнение рекомендаций, касающихся рентгенодиагностики, значительно снижает лучевую нагрузку на больного.

Устранить или ограничить влияние других источников радиации, прежде всего природных, непросто. Но медицинское облучение является сферой, на которую можно воздействовать. А значит, уменьшением лучевой нагрузки при диагностических исследованиях можно достичь снижения суммарной дозы облучения, складывающейся из влияния природных и техногенных факторов.

diagnostinfo.ru

лучевая диагностика в медицинском центре К+31

Компьютерная томография – метод лучевой диагностики, базирующийся на высокой проникающей способности рентгеновских лучей сквозь ткани организма человека. В результате томографического исследования врач получает точную и детализированную картину состояния внутренних органов человека, которую невозможно получить иными способами диагностики. Именно в связи с достоверностью и полнотой получаемой диагностической информации связано широкое распространение метода КТ при диагностике заболеваний всех отделов организма человека.

Однако очевидно, что любое применение рентгеновских лучей сопряжено с определенной долей лучевой нагрузки на организм. Любые излучения – в том числе и рентгеновское – оказывают негативное влияние на состояние здоровья человека, поэтому минимизации их воздействия на организм уделяется без преувеличения огромное значение.

Какова доза облучения при компьютерной томографии?

Доза облучения напрямую зависит от мощности излучающего источника и продолжительности нахождения участка тела человека под излучением. Очевидно, что чем мощнее источник – тем выше будет проникающая способность излучения сквозь ткани, тем четче и контрастней получаемое изображение. Однако и вред организму приносится более существенный. Поэтому современное томографическое оборудование, использующее в своей работе рентгеновские и иных «жесткие» излучения, строится по принципу максимального ослабления мощности излучающих элементов с одновременным поднятием чувствительности фиксирующих излучение устройств. Новейшие компьютерные томографы обладают весьма чувствительными приемниками излучаемых сигналов, что позволило снизить уровень получаемой при исследовании дозы радиоактивного облучения в разы.

Компьютерная томография: доза облучения и ее воздействие на организм

Компьютерный томограф за одно обследование производит целую серию снимков: до нескольких тысяч и более. Благодаря этому результат обследования получается максимально информативным, однако и лучевая нагрузка из-за более длительной процедуры повышается. В общем случае можно сказать, что за одно исследование на современном аппарате организм получает дозу радиации, сравнимую с полугодовой нормой естественного облучения. Очевидно, что особого вреда такая доза нанести человеку не в состоянии, тем не менее, процедура КТ должна строго дозироваться и назначаться только при необходимости лечащим врачом.

klinika.k31.ru

Компьютерная томография головного мозга - Woman's Day

Компьютерная томография помогает врачам выявлять практически все, начиная от опухолей и заканчивая камнями в почках.

Однако некоторые специалисты высказывают беспокойство по поводу безопасности этой процедуры, в особенно повышения риска развития рака. Дело в том, что доза облучения, получаемая пациентом при сканировании на компьютерном томографе, в 500 раз превышает дозу, получаемую при обычной рентгенографии.

Компьютерная томография головного мозга

Компьютерная томография головного мозга

В рамках работы по изучению влияния компьютерной томографии на здоровье ученые больниц Флориды и Вашингтона, работающие под руководством доктора Тимоти Балларда (Timothy Bullard), обработали данные о 1243 случайным образом выбранных пациентах и оценили дозу, полученную каждым из пациентов в течение последних пяти лет. Несмотря на то, что компьютерная томография является основным источником радиации, авторы обращали внимание также на рентгенограммы и маммограммы. Полученные результаты неутешительны: в среднем за 5 лет пациент получал дозу излучения в 45 миллизиверт. При этом 12% пациентов получили дозу в 100 и более мЗв. При обычном рентгене грудной клетки доза облучения составляет 0,02 мЗв.

Естественное фоновое ионизирующее излучение обычно составляет примерно 2,4 мЗв в год. В соответствии с федеральным законом РФ от 09.01.96 «О радиационной безопасности населения» допустимая доза облучения с целью диагностики составляет 15 мЗв/год.

В обзоре, написанном группой авторов под руководством Дэвида Бреннера (David Brenner) из Колумбийского университета (г. Нью-Йорк) и опубликованном в ноябре 2007 года, упоминается, что около трети проводимых в США компьютерных томографий не являются необходимыми. Проблема отчасти обусловлена тем, что больным назначают многократные томограммы, которых можно избежать путем улучшения диалога между врачами и пациентами. Более того, врачи часто практикуют «перестраховочную медицину», в основе которой лежит принцип: «ты виноват, если что-то пропустил». А привлекательность компьютерной томографии в том, что, при отсутствии немедленных побочных эффектов, она быстра, безболезненна и оставляет у пациента ощущение уверенности.

Привлекательность компьютерной томографии в том, что, при отсутствии немедленных побочных эффектов, она быстра, безболезненна и оставляет у пациента ощущение уверенности.

Учитывая то, что в США компьютерная томография начала приобретать популярность в 80-х годах, а для развития индуцированного радиацией рака требуется в среднем 20 лет, работы по изучению этой взаимосвязи еще не закончены. Однако на основании результатов, полученных при наблюдении 25 000 японцев, выживших после атомной бомбардировки и получивших дозу, примерно соответствующую получаемой при двух процедурах компьютерной томографии, специалисты Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США оценивают риск развития рака, индуцируемого компьютерной томографией, как 1:2000. Более того, для детей этот показатель значительно выше.

Перед проведением компьютерной томографии специалисты рекомендуют убедиться в необходимости процедуры и невозможности ее замены ультразвуковым исследованием или магнитно-резонансной томографией

По сравнению со взрослыми, у детей выше ожидаемая продолжительность жизни, кроме того, их клетки делятся гораздо быстрее, что повышает чувствительность ДНК к облучению. Для ребенка предположительный риск развития ассоциированного с компьютерной томографией рака составляет примерно 1:500. Современные аппараты позволяют на 50% снижать дозу при сканировании ребенка или взрослого небольшого роста. Однако, несмотря на то, что требуемые для этого манипуляции достаточно просты и занимают несколько секунд, по результатам исследования 2001 года, многие представители персонала игнорируют эту возможность из-за недостатка информации, спешки или лени.

На основании существующей на сегодняшний день информации, перед проведением компьютерной томографии, в особенности детям, специалисты рекомендуют убедиться в необходимости процедуры и невозможности ее замены ультразвуковым исследованием или магнитно-резонансной томографией (метод ядерного магнитного резонанса основан на измерении электромагнитного отклика атомов водорода на возбуждение их определенной комбинацией электромагнитных волн в постоянном магнитном поле высокой напряженности).

Существуют обстоятельства, когда компьютерная томография незаменима, например, выявление тяжелых травм головы или повреждений внутренних органов или диагностика существующего рака. В таких случаях необходимо требовать у врача копию результатов сканирования, что позволит избежать повторного сканирования, например, при смене места жительства или врача.

www.wday.ru

радиационная безопасность и контрастные средства

КТ - метод, основанный на технологии использования рентгеновского излучения. Его использование невозможно без воздействия на пациента потенциально вредного ионизирующего излучения. Однако из-за равномерного распределения излучения повреждения (эритема кожи) проявляются редко. При КТ сердца наиболее существенны стохастические эффекты, когда клеточные мутации могут привести к раку или генетическим изменениям. Эти эффекты дозозависимы и, вероятно, не имеют минимального порога облучения для их возникновения. 

Принципиальным параметром поглощенной дозы, то есть количества поглощенной энергии на единицу массы, служит индекс дозы КТ, который можно измерить ионизационной камерой вдоль оси Z за время одного оборота трубки. Взвешенный индекс дозы КТ может быть вычислен с учетом неоднородного распределения дозы КТ в пределах тела; объемный индекс дозы КТ рассчитывают для участков тела, которые вовлекаются при КТ-сканировании с учетом сканирования прилегающими или перекрывающимися срезами. 

Чтобы определить дозу облучения всей области сканирования, общую дозу облучения (мГр×см), необходимо умножить объемный индекс дозы КТ на длину зоны сканирования. Повреждение или риск КТ-сканирования зависит от восприимчивости органов или области тела, подвергнутой воздействию рентгеновских лучей. Эффективная доза отражает риск повреждающего воздействия полученной дозы на определенную область тела и может быть вычислена путем умножения общей дозы облучения на коэффициент конверсии (k), характеризующий определенную область тела. Для КТ груди эффективную дозу вычисляют по следующей формуле: 

E = 0,017 × ОДО, 

где E - эффективная доза (мЗв), ОДО - общая доза облучения (мГр×см). 

Спиральная КТ с синхронизацией с ЭКГ связана с относительно высокой дозой облучения, результат сканирования с частичным перекрытием срезов должен гарантировать полезность данных КТ на всем протяжении сердечного цикла. Кроме того, тонкая коллимация детектора и быстрое вращение сканера нуждаются в большом потоке лучей для того, чтобы избежать чрезмерных шумов на изображении. Дебаты о потенциальной опасности при КТ сердца вынуждают производителей и операторов снижать дозу облучения, желательно без потери диагностической ценности. 

Техническими инновациями, позволяющими снизить дозу облучения являются: ЭКГ-зависимое изменение интенсивности рентгеновского излучения при спиральном сканировании, автоматическая адаптация излучения рентгеновской трубки в зависимости от анатомии и общего ослабления излучения в зоне сканирования, смещение стола в зависимости от ЧСС, для того чтобы избежать наложения при сканировании, а также пошаговое сканирование с использованием ЭКГ-тригера (рис. 1). 

По принципу ALARA* (настолько низко, насколько возможно) оператор обязан пытаться достичь максимальной диагностической ценности (не максимального эстетического качества) при минимальной дозе облучения. Индивидуализированные дозоуменьшающие протоколы сканирования включают пониженное напряжение трубки (100 вместо 120 кВ) и силы тока (мА), когда размеры тела пациента это позволяют, и как можно узкие зоны сканирования, чтобы избежать излишнего сканирования тела выше и ниже сердца. Однако первый наиболее важный шаг - подтверждение необходимости применения этого метода исследования с точки зрения альтернативных методов диагностики. 

Рис. 1. Дозоснижающие технологии. Протоколы традиционной спиральной КТ, синхронизированной с ЭКГ, включают непрерывное сканирование через весь сердечный цикл, сопровождающееся значительной дозой облучения (A). 

Предполагаемая модуляция рентгеновской трубки при помощи синхронизации с ЭКГ может быть использована для уменьшения рентгеновского излучения вне фазы сердечного цикла, которые вносят незначительный вклад в интерпретацию ангиографических изображений (Б). Ток рентгеновской трубки, моделированный при помощи синхронизации с ЭКГ по времени, основанной на предыдущих сердечных циклах, приводится к низкому уровню (приблизительно 20%), позволяющему выполнять функциональные реконструкции полостей сердца. Период полной экспозиции достаточно широк, чтобы позволить выполнить реконструкцию изображений в различных фазах сердечного цикла. 

Дополнительного снижения дозы можно достичь за счет уменьшения периода полной экспозиции с дальнейшим сокращением излучения трубки (В). 

Системы с переменной скоростью движения стола могут ускорить движение стола, понижая дозу облучения, при повышении ЧСС у пациента (Г). 

Во время пошагового компьютерного сканирования с синхронизацией по ЭКГ рентгеновское излучение присутствует только во время получения аксиальных изображений (Д). Основанная на анатомии модуляция тока рентгеновской трубки позволяет току трубки изменяться на основании количества тканей, задействованных в общем ослаблении рентгеновских лучей. 

Этого можно достичь при угловом (в плоскости среза) направлении путем уменьшения тока трубки при сканировании в переднезаднем направлении и повышения его при сканировании в латеральном направлении (Е). Модуляции тока также можно производить в зависимости от объема ткани в продольном направлении.

ALARA (от англ. As Low As Reasonably Achievable) - один из основных критериев, рекомендуемых Между-народной комиссией по радиологической защите с целью минимизации вредного воздействия ионизирующей радиации. Предусматривает поддержание на возможно низком и достижимом уровне как индивидуальных (ниже пределов, установленных действующими нормами), так и коллективных доз облучения, с учетом социальных и экономических факторов. 

С развитием более мощных КТ-систем доза облучения при КТ сердца постепенно увеличивалась от 10 мЗв и ниже при КТ с 4 рядами детекторов до 15-20 мЗв при КТ с 64 рядами детекторов. При использовании упомянутых выше мероприятий дозу можно понизить до 5-10 мЗв в зависимости от индивидуальных особенностей пациента (размера сердца и сердечного ритма), а также доступных дозоснижающих нововведений в КТ-системе. 

Использование пошагового сканирования с ЭКГ триггером у некоторых пациентов может снизить дозу облучения даже менее 5 мЗв. Для сравнения, ежегодное радиационное облучение от естественных источников варьирует в диапазоне 2-4 мЗв, в зависимости от местоположения. Радиационное облучение при классической ангиографии составляет 4-5 мЗв. 

Использование контрастных веществ связывают с низким риском развития контрастиндуцированной нефропатии и хорошей переносимостью, однако больным с ХПН не следует проводить такие исследования.

Dudley J. Pennell, Udo P. Sechtem, Sanjay Prasad и Frank E. Rademakers 

Магнитно-резонансная томография сердца

medbe.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики