Квантовый компьютер, новая Земля и вода из воздуха: наука в 2017 году. Квантовый компьютер новости


В Москве представили мощнейшие в мире квантовые компьютеры

Открытие, способное изменить жизнь человечества. Причем никто не знает, насколько. В Москве в научном сообществе заявлено о самом мощном в мире квантовом компьютере. Он в миллионы раз быстрее классических операционных систем. Наше первенство в этой области уже признано зарубежными конкурентами.

Это казалось фантастикой еще вчера — квантовые компьютеры, способные обогнать все существующие устройства. Они настолько мощные, что могут или открыть человечеству новые горизонты, или обрушить все системы безопасности, потому что смогут взломать их.

«Квантовый компьютер функционирующий, он гораздо страшнее атомный бомбы», — считает генеральный директор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

В разработку вкладываются крупнейшие корпорации: Google, IBM, Microsoft, Alibaba. Но сегодня в центре внимания — Михаил Лукин, физик из Гарварда и один из основателей Российского квантового центра. Его команде удалось создать самый мощный на данный момент квантовый компьютер.

«Это одна из самых больших квантовых систем, которые были созданы. Мы входим в тот режим, где уже классические компьютеры не могут справится с вычислениями. Делаем маленькие открытия уже, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, мы даже до конца их не понимаем», — рассказывает профессор Гарвардского университета, сооснователь Российского квантового центра Михаил Лукин.

Все — из-за мощности таких устройств. Расчеты, которые на сегодняшнем суперкомпьютере займут тысячи лет, квантовый может сделать в один миг.

Как это работает? В обычных компьютерах информация и вычисления — это биты. Каждый бит — либо ноль, либо единица. Но квантовые компьютеры основаны на кубитах, а они могут находиться в состоянии суперпозиции, когда каждый кубит - одновременно и ноль, и единица. И если для какого-нибудь расчета обычным компьютерам нужно, грубо говоря, выстроить последовательности, то квантовые вычисления происходят параллельно, в одно мгновение. В компьютере Михаила Лукина таких кубитов — 51.

«Во-первых, он сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это больше чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что Google все время говорил, что сделает 49», — объясняет гендиректор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

Создание самого мощного квантового компьютера пророчили ему. Джон Мартинес — руководитель крупнейшей в мире квантовой лаборатории корпорации Google. И свой 49-кубитный компьютер он планировал закончить только через несколько месяцев.

«22 кубита — это максимум, что мы смогли сделать, мы использовали все свое волшебство и профессионализм», — рассказывает он.

Мартинес и Лукин выступили на одной сцене — в Москве, на Четвертой международной квантовой конференции. Впрочем, соперниками ученые себя не считают.

«Неправильно думать об этом, как о гонке. Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов», — говорит глава лаборатории «Квантовый искусственный интеллект» компании Google Джон Мартинес.

Но для чего нам понадобятся квантовые компьютеры? Даже сами их создатели не знают наверняка. С их помощью могут быть разработаны совершенно новые материалы, сотни открытий в физике и химии. Квантовые компьютеры — пожалуй, единственное, что может приоткрыть тайну человеческого мозга и искусственного интеллекта.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры», — говорит директор Российского квантового центра Руслан Юнусов.

Один из первых компьютеров был создан в 40-х годах ХХ века и весил 27 тонн. Если сравнить с современными устройствами, то обычный смартфон по мощности — это как 20 000 таких машин. И это за 70 лет прогресса. Но если наступит эра квантовых компьютеров, уже наши потомки будут удивляться, как вообще пользоваться этим антиквариатом.

www.1tv.ru

Век квантовых компьютеров уже настал, но перспективы туманны | Наука | ИноСМИ

После десятилетий изнурительного труда без особых надежд на успех, вокруг квантовых вычислений внезапно развилась прямо-таки лихорадочная деятельность. Почти два года назад компания IBM показала миру квантовый компьютер с пятью квантовыми битами (кубитами), который они теперь (что звучит немного странно) называют IBM Q Experience. Тогда устройство скорее напоминало игрушку для исследователей, чем средство для серьезной обработки данных. Однако в проекте зарегистрировалось 70 тысяч пользователей по всему миру, и к настоящему времени число кубитов увеличилось в четыре раза. Несколько месяцев назад IBM и Intel объявили о создании квантовых компьютеров на 50 и 49 кубитов. Также известно, что еще один компьютер ждет своего часа в стенах компании Google. «Сообщество полно энергии, а недавние прорывы поражают», — заявляет физик Йенс Айзерт из Свободного университета Берлина.

В настоящее время ведутся разговоры о надвигающемся «квантовом превосходстве»: времени, когда квантовый компьютер сможет выполнить задачу, непосильную даже самым мощным классическим суперкомпьютерам. Если сравнивать одни лишь числа, то такое заявление может показаться нелепым: 50 кубитов против миллиардов классических битов в любом ноутбуке. Но вся суть квантовых вычислений заключается в том, что квантовый бит способен на гораздо большее, чем классический. Долгое время считалось, что 50 кубитов будет достаточно для проведения вычислений, которые обычный компьютер выполнял бы бесконечно долго. В середине 2017 года исследователи из Google объявили, что собираются продемонстрировать квантовое превосходство к декабрю. (На недавнюю просьбу поделиться новыми данными представитель компании ответил так: «Мы объявим результаты, как только они будут достаточно обоснованными, а пока проводится тщательный анализ уже имеющихся наработок».)

Очень хочется сделать вывод, что все основные проблемы решаемы и будущее, в котором квантовые компьютеры — явление повсеместное, это лишь вопрос технического оснащения. Но он будет ошибочным. Физические вопросы в основе квантового вычисления пока еще далеки от решения.

Даже если мы вскоре и шагнем в эпоху квантового превосходства, следующие год-два могут оказаться решающими — действительно ли квантовые компьютеры полностью изменят подход к вычислениям? Ставки все еще высоки, и нет никаких гарантий, что цель будет достигнута.

Заткнись и вычисляй

И преимущества, и проблемы квантовых вычислений являются неотъемлемой частью физики, которая делает их возможными. Об основах уже было сказано не раз, хотя не всегда уточнялось, чего же требует квантовая механика. Классические компьютеры хранят информацию и обрабатывают ее в двоичном коде (0 либо 1). В квантовых компьютерах ситуация почти та же самая, только каждый бит находится в так называемой суперпозиции, то есть он может быть и 0, и 1 одновременно. Это значит, что определить состояние кубита можно лишь с некоторой долей вероятности.

Чтобы выполнить вычисление с большим количеством кубитов, все они должны находиться во взаимозависимых суперпозициях — в состоянии «квантовой когерентности», при котором все кубиты считаются сцепленными. В таком случае малейшее изменение в одном кубите может повлиять на все остальные. То есть вычислительные операции с использованием кубитов имеют большую производительность, чем с использованием классических битов. В классическом устройстве вычислительные возможности находятся в простой зависимости от количества битов, а вот добавление каждого нового кубита увеличивает возможности квантового компьютера в 2 раза. Именно поэтому разница между 5-кубитным и 50-кубитным устройством так значительна.

Робот-гуманоид в университете Васэда готовит салатЁмиури симбун30.12.2017Nautilus16.09.2016Wired Magazine03.05.2016Futura-Sciences29.01.2014Заметьте, я не сказал, как это часто делают, о том, что преимущество квантового компьютера перед классическим заключается в существовании суперпозиций, которые намного увеличивают количество возможных состояний закодированной информации. Как и не сказал, что сцепленность позволяет проводить много вычислений одновременно. (На самом деле, высокая степень сцепленности кубитов не является обязательным условием.) Доля правды в этом есть, но сути квантового вычисления ни одно из утверждений не описывает.

Из-за сложности понимания квантовой механики объяснить, почему квантовое вычисление обладает такой мощью — серьезная задача. Уравнения квантовой теории определенно показывают, что работать она будет — по крайней мере, с некоторыми видами вычислений: при факторизации или поиске по базе данных процесс ускоряется колоссально. Но насколько именно?

Пожалуй, самый безопасный способ описать квантовые вычисления — это сказать, что квантовая механика определенным образом создает «возможности» для вычислений, которые недоступны классическим устройствам. Как заметил физик Дэниел Готтесман из Института теоретической физики Периметр (Институт Периметра) в Ватерлоо: «Если доступно достаточное количество квантовой механики, то в некотором смысле процесс ускоряется, а если нет, то не ускоряется».

Хотя некоторые моменты все же ясны. Для проведения квантовых вычислений необходимо, чтобы все кубиты были когерентны, а это крайне трудно реализовать. Взаимодействие системы когерентных кубитов с окружающей средой создает каналы, через которые когеренция быстро «утекает». Этот процесс называется декогеренцией. Ученые, планирующие создать квантовый компьютер, должны предотвращать декогеренцию. Сейчас им удается остановить ее лишь на долю секунды. Ситуация становится сложнее, когда количество кубитов, а, соответственно, и возможность взаимодействия с окружающей средой возрастает. Именно поэтому, хоть идея квантовых компьютеров и была впервые предложена Ричардом Фейнманом еще в 1982 году, а теорию разработали в начале 1990-х, устройства, способные выполнять настоящие вычисления, удалось создать только сейчас.

Квантовые ошибки

Существует и вторая серьезная причина, по которой создать квантовый компьютер так тяжело. Как и любые другие процессы в мире, он издает шум. Случайные флуктуации, возникающие, скажем, из-за температуры кубитов или из-за особенностей фундаментальных квантомеханических процессов, могут менять направление или состояние кубита, что приводит к неточности расчетов. Такая угроза существует и в работе с классическими компьютерами, но она довольно просто решается. Необходимо просто создать две или более резервных копий каждого бита, чтобы случайно перевернутый бит не учитывался.

Ученые, работающие над созданием квантового компьютера, разработали несколько путей решения проблемы, но все стратегии приводят к появлению слишком большого числа дополнительных вычислительных расходов, так как вся вычислительная мощность расходуется на исправление ошибок, а не на выполнение заданных алгоритмов. «Текущая частота ошибок значительно ограничивает продолжительность возможных вычислений, — поясняет Эндрю Чайлдс, соруководитель Объединенного центра квантовой информации и вычислительных наук в Мэрилендском университете. — Нам нужно значительно улучшить результаты, если мы хотим создать что-то интересное».

Многие исследования в области фундаментальных квантовых вычислений посвящены методам исправления ошибок. Отчасти сложность проблемы определяется еще одним из ключевых свойств квантовых систем: суперпозиции можно поддерживать только до тех пор, пока вы не измеряете значение кубита. Измерение разрушит суперпозицию и приведет к определенной величине: 1 или 0. Как можно определить, произошла ли ошибка в работе кубита, если вы не знаете, в каком состоянии он находился?

В одной хитроумной схеме предлагается использовать косвенное вычисление путем объединения кубита со вторым вспомогательным кубитом. Последний не участвует в вычислении, поэтому его измерение не влияет на состояние основного кубита. Вот только реализовать это довольно сложно. Подобное решение означает, что для того, чтобы создать настоящий «логический кубит», защищенный от ошибок, необходимо много физических кубитов.

Сколько? Квантовый теоретик Алан Аспуру-Гузик из Гарвардского университета считает, что для создания одного логического кубита потребуется около десяти тысяч физических, что не представляется возможным в настоящее время. По его словам, если все пойдет хорошо, то это число уменьшится до нескольких тысяч или даже сотен. Айзерт настроен не так пессимистично и полагает, что порядка восьмисот физических кубитов будет достаточно, но признает, что даже при таком раскладе «дополнительные расходы вычислительной мощности все равно будут велики». Необходимо найти возможность справляться с ошибками.

Существует альтернатива исправлению ошибок. Их можно избегать или предотвращать влияние, что называют смягчением последствий ошибки. Исследователи из IBM разрабатывают схемы для математического вычисления вероятности появления ошибки, а затем принимают полученный результат за уровень нулевого шума.

Некоторые исследователи считают, что проблема исправления ошибок так и останется неразрешенной и не позволит квантовым компьютерам достичь предсказанных им высот. «Создание квантовых кодов, исправляющих ошибки, гораздо сложнее демонстрации квантового превосходства», — объясняет математик Еврейского университета в Израиле Гил Калай. Он также добавляет, что «приборы без исправления ошибок очень примитивны в своих вычислениях, а превосходство не может основываться на примитивности». Другими словами, квантовые компьютеры не превзойдут классические, если не избавиться от ошибок.

Другие ученые считают, что в конечном итоге проблема будет решена. Один из них — Джей Гамбетта, специалист в области квантовой информатики из Центра квантовых вычислений IBM им. Томаса Дж. Уотсона. «Наши недавние эксперименты продемонстрировали основные элементы исправления ошибок в маленьких устройствах, что, в свою очередь, прокладывает дорогу к устройствам большего размера, способным надежно хранить квантовую информацию в течение длительного периода времени при наличии шума», — сообщает он. Однако Гамбетта также признает, что даже при текущем положении дел «до создания универсального, устойчивого к ошибкам квантового компьютера, использующего логические кубиты, все еще далеко». Благодаря подобным исследованиям Чайлдс настроен оптимистично. «Я уверен, что мы увидим демонстрацию еще более успешных экспериментов [по исправлению ошибок], но, скорее всего, потребуется еще много времени, прежде чем мы начнем использовать квантовые компьютеры для реальных вычислений».

Жизнь с ошибками

В ближайшее время квантовые компьютеры будут работать с ошибками. Возникает вопрос: как с этим жить? Ученые IBM говорят, что в обозримом будущем область исследования «приблизительных квантовых вычислений» будет сосредоточена на поиске путей приспособления к шуму.

Это требует создания таких алгоритмов, которые будут выдавать правильный результат, игнорируя ошибки. Процесс можно сравнить с подсчетом результатов выборов, в котором не учитываются испорченные избирательные бюллетени. «Даже если оно и допускает некоторые ошибки, достаточно большое и высококачественное квантовое вычисление должно быть эффективнее [классического]», — говорит Гамбетта.

Одно из недавних устойчивых к ошибкам приложений технологии, судя по всему, имеет большую ценность для ученых, нежели чем для мира в целом: моделирование материалов на атомарном уровне. (Фактически, это было мотивацией, заставившей Фейнмана предложить идею квантовых компьютеров.) Уравнения квантовой механики описывают способы вычисления стабильности или химической реакционной способности (например, у молекул лекарств). Но эти уравнения не могут быть решены без использования большого количества упрощений.

Однако по словам Чайлдса, квантовое поведение электронов и атомов «относительно близко к естественному поведению квантового компьютера». Это значит, что можно было бы построить точную компьютерную модель молекулы. «Многие члены научного сообщества, в том числе и я, считают, что первое успешное применение квантового компьютера будет связано с квантовой химией и материаловедением», — делится Аспуру-Гузик: он был одним из первых, кто начал продвигать квантовые вычисления в этом направлении.

Квантовое моделирование доказывает свою полезность даже на тех маленьких квантовых компьютерах, которые доступны нам сегодня. Команда исследователей, в которую входит и Аспуру-Гузик, разработала алгоритм, названный ими «Вариационным методом решения задач в квантовой механике» (далее — ВМР). Этот алгоритм позволяет найти наименее энергозатратное состояние молекулы даже в шумных кубитах. На данный момент он может обрабатывать только очень маленькие молекулы с небольшим количеством электронов. С этой задачей хорошо справляются и классические компьютеры. Но возможности квантовых постоянно растут, как показали Гамбетта и его коллеги в сентябре прошлого года, когда использовали шестикубитное устройство, чтобы рассчитать электронную структуру молекул, таких как гидрид лития и гидрид бериллия. Работа стала «значительным прорывом для квантовых наук», как выразился специалист в области химической физики Маркус Райхер из Швейцарской высшей технической школы Цюриха. «Использование ВМР для моделирования маленьких молекул — отличный пример того, как можно применять краткосрочные эвристические алгоритмы», — считает Гамбетта.

Но, по словам Аспуру-Гузика, логические кубиты, способные исправлять ошибки, потребуются еще до того времени, когда квантовые компьютеры обгонят классические. «Не могу дождаться момента, когда способные на исправление ошибок квантовые вычисления станут реальностью», — прокомментировал он.

«Если бы у нас было больше двух сотен кубитов, мы могли бы делать по-настоящему новаторские вещи, — добавил Райхер. — А с пятью тысячами кубитов квантовый компьютер мог бы серьезно повлиять на науку».

А какой у вас объем?

Достичь таких целей невероятно сложно. Несмотря на все трудности, квантовые компьютеры из пятикубитных стали пятидесятикубитными всего за год — этот факт вселяет надежду. Тем не менее не нужно слишком зацикливаться на этих цифрах, потому что они рассказывают лишь малую часть истории. Сейчас важнее не сколько у вас кубитов, а как хорошо они работают и насколько эффективны разработанные вами алгоритмы.

Любое квантовое вычисление завершается тем, что начинается декогеренция, которая перемешивает кубиты. Как правило, время декогеренции группы кубитов составляет несколько микросекунд. Количество логических операций, которые можно выполнить за такое короткое время, зависит от скорости переключения квантовых ворот. При слишком низкой скорости становится неважно, сколько кубитов у вас в распоряжении. Количество операций, необходимых для того или иного вычисления, называется глубиной вычисления: алгоритмы с низкой глубиной эффективнее, чем глубокие алгоритмы. Однако доподлинно неизвестно, приносят ли они пользу при вычислениях.

Более того, не все кубиты одинаково шумны. Теоретически возможно создать кубиты с низким уровнем шума из материалов, которые находятся в так называемом «топологическом электронном состоянии»: если использовать частицы в таком состоянии для кодирования двоичной информации, она будет защищена от случайного шума. В попытке найти частицы в топологическом состоянии, исследователи из Microsoft в первую очередь изучают экзотические квантовые материалы. Тем не менее нет никакой гарантии, что их исследования увенчаются успехом.

Чтобы обозначить мощность квантового вычисления на конкретном устройстве, исследователи из IBM предложили термин «квантовый объем». Это число, которое объединяет все важные факторы: глубину алгоритма, число и связность кубитов, а также прочие показатели качества квантовых ворот (например, шумность). В целом этот «квантовый объем» характеризует мощность квантового вычисления. По словам Гамбетты, сейчас необходимо разработать квантово-вычислительное оборудование, которое позволит увеличить доступный квантовый объем.

Это одна из причин, почему хваленое квантовое превосходство — довольно смутная идея. Сама мысль о том, что 50-кубитный квантовый компьютер превзойдет современные суперкомпьютеры, звучит привлекательно, однако остается множество нерешенных вопросов. При решении каких именно задач квантовый компьютер превосходит суперкомпьютеры? Как определить, правильный ли ответ получил квантовый компьютер, если его нельзя проверить с помощью классического устройства? А что если классический компьютер будет эффективнее квантового, если найти более совершенный алгоритм?

Таким образом, квантовое превосходство — это концепция, которая требует осторожности. Некоторые исследователи предпочитают рассуждать о «квантовом преимуществе», о скачке в развитии квантовых технологий, а не об окончательной победе квантовых компьютеров над обычными. Более того, большинство старается не использовать слово «превосходство», поскольку оно содержит негативный политический и расистский смысл.

Вне зависимости от названия, если ученые продемонстрируют, что квантовые компьютеры могут выполнять задачи, с которыми не справляются классические устройства, то это станет чрезвычайно важным психологическим моментом для данной области. «Демонстрация неоспоримого квантового преимущества войдет в историю. Это докажет, что квантовые компьютеры действительно могут расширить наши технологические возможности», — уверен Айзерт.

Возможно, это станет символическим событием, а не кардинальным изменением в области вычислительной техники. Тем не менее на это стоит обратить внимание. Если квантовые компьютеры превзойдут обычные, это случится не потому, что IBM и Google внезапно запустят их в продажу. Чтобы достичь квантового превосходства, нужно наладить запутанную систему взаимодействия между разработчиками и пользователями. И последние должны быть твердо уверены, что новинку стоит попробовать. В стремлении к этому сотрудничеству, IBM и Google стараются как можно быстрее предоставить пользователям свои разработки. Ранее IBM предлагала всем зарегистрировавшимся на сайте доступ к своему 16-кубитному компьютеру IBM Q. Теперь компания разработала 20-кубитную версию для корпоративных клиентов, среди которых JP Morgan Chase, Daimler, Honda, Samsung и Оксфордский университет. Подобная коллаборация не только помогает клиентам найти что-то полезное и интересное, но и создает квантово-грамотное сообщество программистов, которые будут разрабатывать новые функции и решать проблемы, нерешаемые в рамках одной компании.

«Чтобы область квантовых вычислений активно развивалась, нужно дать людям возможность использовать и изучать квантовые компьютеры, — утверждает Гамбетта. — Сейчас всему научному и промышленному миру следует сосредоточиться на одной задаче — подготовке к эпохе квантовых компьютеров».

 

Перевод проекта Newочём

 

inosmi.ru

Ученые хотят выяснить, являемся ли мы квантовыми компьютерами

Есть гипотеза, точнее множество гипотез, согласно которым наш мозг представляет собой не что иное, как биохимический квантовый компьютер. В основе этих идей лежит предположение о том, что сознание необъяснимо на уровне классической механики и может быть объяснено только с привлечением постулатов квантовой механики, явлений суперпозиции, квантовой запутанности и других. Ученые из Калифорнийского университета в Санта-Барбаре через серию экспериментов решили выяснить — действительно ли наш мозг является квантовым компьютером.

На первый взгляд может показаться, что компьютер и мозг работают одинаково – оба обрабатывают информацию, могут ее сохранять, принимают решения, а также имеют дело с интерфейсами ввода и вывода. В случае мозга этими интерфейсами выступают наши органы чувств, а также способность управлять различными объектами, не являющимися частью нашего тела, например, искусственными протезами.

Мы многого не знаем о том, как работает наш мозг. Но есть люди, которые считают, что многообразие процессов работы нашего мозга, которое невозможно объяснить с точки зрения классической механики, можно объяснить с позиции квантовой механики. Другими словами, они уверены, что такие аспекты квантовой механики, как квантовая запутанность, явление суперпозиции и все остальные вещи, на основе которых работает квантовая физика, на самом деле могут управлять процессами работы нашего мозга. Разумеется, не все согласны с такой формулировкой, но так или иначе ученые решили это проверить.

«Если вопрос о квантовых процессах, происходящих в мозге, найдет положительный отклик, то это приведет к настоящей революции в нашем понимании и лечении мозговых функций и когнитивных способностей человека», — говорит Мэт Хелгесон из Калифорнийского университета Санта-Барбары и один из участников команды, занимающейся данным исследованием.

Немного базовой теории. В мире квантовых вычислений все подчиняется квантовой механике, позволяющей объяснить поведение и взаимодействие самых крошечных объектов во Вселенной — на квантовом уровне, где не действуют правила классической физики. Одной из ключевых особенностей квантовых вычислений является использование так называемых кубитов (квантовых битов) в качестве носителя информации. В отличие от обычных битов, которые используются в обычных компьютерах и представляют собой двоичный код в виде «нулей» и «единиц», кубиты могут одновременно приобретать значения и нуля, и единицы, то есть находиться в так называемой суперпозиции, которая упоминалась выше.

Если исходить из вышеописанного, то квантовые компьютеры обещают просто невероятный потенциал в компьютерных вычислениях, который позволит справляться с задачами (в том числе и в науке), на которые не способны даже самые мощные, но при этом обычные компьютеры.

Что же касается нового исследования ученых из Калифорнийского университета, которое вот-вот начнется, то оно будет направлено на поиск «мозговых кубитов».

Одной из основных особенностей «обычных» кубитов является то, что для их работы требуется среда с очень низкой температурой, приближающейся к абсолютному нулю, однако исследователи предполагают, что это правило может не распространяться на кубиты, которые могут находиться в человеческом организме.

В рамках одного из грядущих экспериментов ученые постараются выяснить, можно ли хранить кубиты внутри спина атомного ядра, а не среди электронов, которые его окружают. В частности, объектом исследования должны будут стать атомы фосфора — вещества, содержащегося в наших организмах, — по мнению ученых, способных играть роль биохимических кубитов.

«Тщательно изолированные спины ядер могут хранить и, возможно, обрабатывать квантовую информацию в течение часов или даже большего времени», — говорит один из участников исследования, Мэтью Фишер.

В рамках других экспериментов ученые хотят взглянуть на потенциал декогеренции, которая происходит в результате нарушения связей между кубитами. Во время протекания этого процесса у самой квантовой системы начинают появляться классические черты, которые соответствуют информации, имеющейся в окружающей среде. Другими словами, квантовая система начинает смешиваться или запутываться с окружающей средой. Для того чтобы наш мозг можно было рассматривать в качестве квантового компьютера, в нем должна иметься система, которая позволяла бы защищать наши биологические кубиты от этой декогеренции.

Задачей еще одного эксперимента станет исследование митохондрий – клеточных субъединиц, отвечающих за наш метаболизм и передачу энергии внутри нашего организма. Ученые предполагают, что эти органеллы могут играть существенную роль в квантовой запутанности и обладать квантовой связью с нейронами.

В общем и целом нейромедиаторы (активные химические вещества, с помощью которых происходит перенос электрохимических импульсов) между нейронами и синаптические связи, возможно, создают в нашем мозге объединенные квантовые сети. Фишер и его команда хотят это проверить, попытавшись воспроизвести такую систему в лабораторных условиях.

Процессы квантовых вычислений, если они действительно присутствуют в нашем мозге, помогут нам объяснить и понять самые загадочные его функции, например, его способность переводить память из кратковременной в долговременную, или же приблизиться к понимаю вопросов о том, откуда же на самом деле берутся наши сознание, осознание и эмоции.

Все это – очень высокий уровень, очень сложная физика, наряду с биохимией, поэтому здесь никто не будет гарантировать, что мы сможем получить все ответы на поставленные выше вопросы. Даже если окажется, что мы пока еще не достигли нужного уровня, который позволил бы нам ответь на вопрос о том, является ли наш мозг квантовым компьютером, запланированные исследования могут привнести большой вклад в понимание того, как работает самый сложный орган человека.

hi-news.ru

Квантовый компьютер, новая Земля и вода из воздуха: наука в 2017 году

Мужчина рассматривает экран с пузырьками, которые помогают найти баланс при повреждении внутреннего уха. Университет Гренобля, Франция, ноябрь 2017 года.Правообладатель иллюстрации JEAN-PIERRE CLATOT/AFP/Getty Images

За прошедший год ученые далеко продвинулись в борьбе с глобальной засухой, нехваткой органов для трансплантации и тяжелыми генетическими заболеваниями. Мир впервые увидел 50-кубитовый квантовый компьютер, а также новые гаджеты, отслеживающие состояние здоровья человека.

Русская служба Би-би-си подводит научные и технологические итоги года.

Заплатки для человеческого тела

Год начался с впечатляющей новости: в январе международная команда ученых во главе с Хуаном Карлосом Исписуа Бельмонте, профессором Института биологических исследований Солка (США), опубликовала в научном журнале Cell статью, объявив, что ими создан некий гибрид человека и свиньи.

Организм, имеющий два набора генетических клеток, называется химерой. В данном случае в эмбрион свиньи были подсажены человеческие стволовые клетки. В результате человеческая часть в химере составила одну на десять тысяч клеток.

Правообладатель иллюстрации UAN CARLOS IZPISUA BELMONTE Image caption За развитием эмбрионов ученые наблюдали в течение 28 дней

Подобный эксперимент, по мнению ученых, - это первый шаг на пути к выращиванию человеческих органов в организмах животных, а значит возможному решению проблемы нехватки органов для трансплантации.

Поиск новых материалов для ремонта человеческого тела - один из главных трендов в современной медицине. Очевидно, в будущем будут появляться все более инновационные, эргономичные и экономичные способы создания недостающих или больных органов.

3D-печать этому только способствует: медикам уже удавалось напечатать с помощью особых биочернил некоторые органы, в том числе даже пульсирующую сердечную ткань. Помимо этого, появляются более сложные модели бионических протезов, некоторые из которых также печатаются на 3D-принтере.

Внеутробное вынашивание

Неонатальные инкубаторы для недоношенных или родившихся с серьезными заболеваниями младенцев - уже давно не новость. Но до успешного применения устройств, которые способны помочь развиться плоду так, как если бы он все еще находился внутри утробы, дело пока не доходило.

В апреле 2017 года ученые детской больницы при Научно-исследовательском институте Филадельфии (США) опубликовали результаты своего эксперимента в журнале Nature Communications. В своей статье они рассказали о том, что впервые смогли создать аппарат BioBag, имитирующий работу матки, и вырастили в нем недоношенного ягненка.

  • Недоношенных ягнят научились выхаживать в искусственной матке
  • Генетически модифицированные свиньи - доноры органов для человека?

BioBag представляет свобой пластиковую сумку со смесью теплой воды и солей, нечто схожее с амниотической жидкостью, окружающей эмбрион в утробе в естественных условиях. При этом пуповину плода подключают к специальному аппарату, вырабатывающему питательные вещества и кислород, которые обычно он получает от плаценты матери.

Правообладатель иллюстрации Partridge, E. A. et al. / Nature Communications Image caption Ягненок окреп и отрастил шерстку внутри BioBag - устройства, выполняющего роль матки

Впрочем, исследователи пока не уверены, что прибор получится применить в случае с человеком. Испытания на людях планируют начать через несколько лет.

Если же они пройдут успешно, человеческое дитя будут выхаживать в BioBag уже с 22-й недели перед помещением в привычный нам инкубатор. В нынешнем своем виде BioBag не может полностью заменить внутриутробное развитие, но кто знает, что медикам удастся создать в будущем?

Редактирование гена внутри тела человека

В ноябре в больнице Окленда 44-летний Брайан Мадо прошел первую в мире процедуру по редактированию ДНК в теле живого человека. Мадо страдает от генетического заболевания - синдрома Хантера, которое на данный момент является неизлечимым.

Надежда на то, что редактирование генома позволит Мадо не подвергать свой организм регулярной заместительной терапии, подтолкнула его к тому, чтобы поучаствовать в клинических испытаниях нового метода.

Для проведения процедуры врачи использовали так называемые "цинковые пальцы", особые белки с ионами цинка, которые "разрезают" ДНК пациента в нужном месте и вставляют туда недостающий ген. Для этого потребовалась обычная капельница.

Правообладатель иллюстрации Children's Hospital Oakland Image caption Брайан Мадо со своей невестой Марси Хамфри во время процедуры генного редактирования.

Ранее ученые уже занимались редактированием генома, однако они использовали только изъятые у пациентов клетки, которые в подправленном виде впоследствии вживлялись обратно в их организм.

Другой метод редактирования генома - CRISPR/Cas9 - пока не одобрен к использованию в теле живого человека. Однако врачи уже успешно применяли его к клеткам, изъятым у раковых больных, пациентов с ВИЧ и с боковым амиотрофическим склерозом.

Искусственный интеллект учится жить самостоятельно

В уходящем году искусственный интеллект с успехом осваивал различные сферы применения. Так, например, "Яндекс" стал использовать нейросети в своем онлайн-переводчике и усовершенствовал эту модель в своем поиске, а также выпустил первый российский голосовой помощник "Алиса".

В мае 2017 года программа AlphaGo от DeepMind (принадлежит Google) во второй раз победила самого сильного в мире игрока в го. На этом разработчики не остановились. После этого DeepMind выпустила новую версию программы AlphaGo - Alpha Zero, которая, обучившись играть в го самостоятельно (то есть не используя человеческий опыт), обошла в игре свою предшественницу.

Другое подразделение Google, Google AutoML, разработало программу, которая создала свой "дочерний" искусственный интеллект. В распознавании изображений он оказался эффективнее софта, созданного людьми. То есть фактически компьютер научили создавать программы, более эффективные, чем те, что пишет человек.

Но даже если эти новости не показались вам впечатляющими, к следующей сложно будет остаться равнодушными.

Летом этого года вышеупомянутая DeepMind опубликовала статью о том, как её разработчики научили искусственный интеллект гибкому поведению в моделируемых средах, в том числе - двигаться в сложной среде.

Возможно, это звучит слишком заумно, но если посмотреть видео, все становится на свои места. Упрощенно говоря, искусственный интеллект сам научился передвигаться в пространстве.

Свой среди чужих: когда язык один на всех

В сентябре уходящего года Дэвид Талбот, глава "Яндекс.Переводчика", в интервью Русской службе Би-би-си описал будущее перевода следующим образом.

"Хочется, чтобы перевод стал супербыстрым. Люди не переводят для того, чтобы перевести слова. Они переводят потому, что хотят с кем-то общаться, стремятся что-то понять. И мы должны сделать так, чтобы у них была эта возможность. Перевод должен происходить по дефолту. Тогда коммуникация станет абсолютно безграничной, а нам не нужно будет думать об использовании какого-то приложения".

В 2017-м сервисы перевода сделали многое для того, чтобы приблизить описанное Талботом светлое будущее.

Media playback is unsupported on your device

Кто переводит лучше - "Яндекс" или Google?

"Яндекс" вслед за Google начал использовать нейросети в своем онлайн-переводчике. А компания Google выпустила беспроводные наушники Pixel Buds, позволяющие переводить речь в режиме реального времени. Устройство сейчас поддерживает 40 языков, но русского среди них пока нет.

В июле этого года команда инженеров из Калифорнийского университета в Сан-Диего представила в научном журнале PloS One свою новую разработку: перчатку, которая распознает язык жестов и переводит его в текст, который передается на экран смартфона или компьютера. Это не первый подобный девайс, но особенность именно этого в том, что его стоимость не превышает ста долларов.

Дивный новый мир устройств, которые всегда с тобой

Только ленивый сейчас не носит на запястье браслет фитнес-трекер или умные часы. Ажиотаж вокруг шлемов дополненной и виртуальной реальности продолжает расти.

В этом году производители так называемых носимых устройств (wearable devices), ощущая на себе пристальное внимание публики, расширяли свой ассортимент.

Стартап Magic Leap, который давно интриговал инвесторов и общественность своими секретными разработками, анонсировал VR-очки.

А компания из Кремниевой долины Willow презентовала "умный бюстгальтер" Smart Breast Pump для кормящих грудью матерей. Он позволяет сцеживать грудное молоко в любое время и в любом месте.

Правообладатель иллюстрации FREDERIC J. BROWN/AFP/Getty Images Image caption Новинка 2017 года: "умный бюсгальтер" Smart Breast Pump позволяет собирать грудное молоко когда и где угодно незаметно для других - даже на рабочем совещании

На конференции Slush27 в Хельсинки компания Oura показала новую модель своего умного кольца - трекера сна: теперь оно позволяет не только следить за качеством сна, но и отслеживать циркадные ритмы, сердечный пульс, а также - благодаря встроенному гироскопу - физическую активность.

Производители подобных устройств не забывают о том, что такие гаджеты должны выглядеть стильно. Не менее важным становится то, согласится ли потребитель постоянно иметь при себе подобное устройство и как оно будет дополнять его образ.

Некоторые разработчики делают ставку на то, чтобы девайсы выглядели шикарно: так, например, в одном из вариантов дизайна кольцо Oura включает в себя вставку из бриллиантов. Другие стремятся к тому, чтобы человек не замечал окружающие его устройства.

Уже сейчас мы пользуемся умными очками, часами, браслетами, кольцами и подвесками, но в будущем нас ожидают умная одежда и другие гаджеты, позволяющие собирать и обрабатывать информацию о нашей жизни и состоянии здоровья.

Квантовый компьютер

Если термины "нейросети" и "искусственный интеллект" уже не пугают обывателя, то квантовый компьютер пока еще кажется чем-то из области фантастики. Однако в этом направлении сейчас буквально вершится история.

Квантовый компьютер работает на основе явлений квантовой суперпозиции и квантовой запутанности. Главный его абстрактный элемент ("строительный кирпич" всех компьютерных операций) - это кубит (бит - его аналог в обычных компьютерах).

Кубит способен находиться в двух состояниях одновременно. Это позволяет значительно быстрее совершать перебор вариантов и проводить сложные вычисления.

Правообладатель иллюстрации Личный архив Антона Дворковича Image caption Так выглядит 50-кубитовый компьютер IBM Watson. Сам квантовый процессор крошечный и расположен в самом низу, в сердце устройства. Все остальное - охладительная система

В июле 2017 года на Четвертой международной конференции по квантовым технологиям в Москве международная команда ученых под руководством Михаила Лукина, одного из основателей Российского квантового центра и профессора из Гарвардского университета, объявила, что создала квантовый вычислитель на базе 51 кубита.

  • Создан ультратонкий магнит, необходимый для квантовых компьютеров
  • Samsung и LG показали в Лас-Вегасе новые супертелевизоры

До этого лидером в квантовой гонке считалась компания Google, которая работала над системой из 49 кубитов. Система из 50 кубитов считалась рубежом.

В ноябре IBM Watson представила свой 50-кубитовый процессор. Пока еще компания не запустила квантовые компьютеры в промышленное производство, но создание такого процессора - определенно поворотный этап развития компьютерных технологий.

Правообладатель иллюстрации ERIC FEFERBERG/AFP/Getty Images Image caption Доступные "перчатки-переводчики" с языка жестов сильно облегчили бы жизнь людям с пробемами голосового, зрительного и слухового аппаратов

Чуть раньше, в июне 2017 года ученые из Массачусетского технологического института и Вашингтонского университета в Сиэтле заявили, что им впервые удалось создать двухмерный магнит. Они доказали, что соединение под названием трийодид хрома способно сохранять магнитные свойства даже при толщине в один атом.

Это может открыть путь к новым экспериментам в области магнетизма, к созданию тончайших электронных устройств, новых форм цифровых хранилищ и квантовых компьютеров.

Создание практических квантовых компьютеров, вполне возможно, поставит под угрозу кибербезопасность, ведь такой компьютер сможет взломать любой шифр, благодаря своей огромной мощности. Однако плюсов от создания подобного компьютера тоже следует ожидать немалых: к примеру, он позволит моделировать работу мозга и сложных квантовых систем.

Совершенно точно можно сказать, что за квантовыми компьютерами - будущее не только компьютерных технологий, но и науки в целом.

Землеподобная планета

В ноябре 2017 года команда ученых Европейской южной обсерватории (ESO) объявила, что обнаружила землеподобную планету всего в 11 световых годах от Солнечной системы. Она получила обозначение Ross 128 b.

После Проксимы b это вторая по близости к нам землеподобная планета с умеренным климатом. Температура на ее поверхности должна находиться в диапазоне примерно между -60 и 20°C, сообщили ученые. Они надеются обнаружить на ней жизнь.

Правообладатель иллюстрации M. KORNMESSER/AFP/Getty Images Image caption Добраться до новой землеподобной планеты можно всего за 11 световых лет.

По словам ученых, звезда Ross 128 движется в сторону Земли, поэтому в будущем планета Ross 128 b отберет у Проксимы b первенство в списке ближайших к Земле экзопланет. Астрономам известны тысячи похожих на Землю планет, но все они расположены значительно дальше.

В феврале 2017 года НАСА объявило, что обнаружило в 40 световых годах от Солнечной системы семь новых похожих по своим размерам на Землю планет. Ученые сделали вывод, что на них теоретически может находиться вода, а на трех из них даже может быть жизнь.

Тогда замглавы директората научных миссий НАСА Томас Цурбюхен заявил, что обнаружение второй Земли - это не вопрос "если", а вопрос "когда".

Интересно, что в этих поисках астрономы используют современные наработки компьютерных технологий. Например, с помощью метода машинного обучения им удалось обнаружить планету размером с Землю, названную Кеплер-80g.

Дальнейшая интеграция быстроразвивающихся технологий должна ускорить и облегчить процесс этих поисков. Возможно, в результате сбудутся прогнозы футурологов, и человечество сможет создавать колонии на других планетах.

Вне зависимости от этого с каждым годом становится все яснее, что Земля не способна поддерживать жизнь человечества в прежних темпах. Остается искать, либо способы снизить потребление и загрязнение на этой планете, либо новый дом...

Нехватка пресной воды: ответ витает в воздухе

В апреле 2017 года ученые из Калифорнийского университета в Беркли и Массачусетского технологического института объявили, что создали аппарат, способный собирать 2,8 л воды в день на каждый килограмм абсорбента, который в нем используется, всего при 20% влажности воздуха.

Правообладатель иллюстрации MIGUEL RIOPA/AFP/Getty Images Image caption Почти половина населения планеты в той или иной степени страдает от нехватки пресной воды

Это означает, что подобным устройством можно пользоваться даже в пустыне. Аппарат впитывает влагу ночью, а днем с помощью солнечного света высвобождает ее в виде пара, который конденсируется в жидкость.

  • Энергия из воздуха, виски, фекалий и другие удивительные проекты
  • Города будущего: как улучшить качество воздуха?

По данным, опубликованным на сайте ООН, 40% человечества страдает от дефицита воды, и эта цифра с каждым годом только растет. При этом в земной атмосфере находится единовременно 13 трлн литров влаги, что равноценно 10% объема пресной воды во всех реках и озерах планеты.

Ученые давно пытаются придумать, как добывать из воздуха воду, однако изобретенные ранее способы были слишком энергозатратны и требовали более высокого уровня влаги в воздухе.

В этом же году американский стартап Zero Mass Water запустил продажи так называемой "гидропанели", работающей от энергии солнца. По словам компании, их устройство способно добывать из воздуха до 10 литров жидкости в день.

Кроме того, Zero Mass Water также насыщают получившуюся питьевую воду кальцием и магнием.

www.bbc.com

Российско-американские физики создали рекордно сложный 51-кубитный квантовый компьютер

Внешний вид оптической ловушки, использовавшейся другим коллективом физиков

Institut für Experimentalphysik

Российско-американская группа физиков под руководством Михаила Лукина, сооснователя Российского квантового центра и профессора Гарвардского университета, создала программируемый 51-кубитный квантовый компьютер. Это самая сложная подобная система из существующих. Авторы проверили работоспособность компьютера моделированием сложной системы из множества частиц — это позволило физикам предсказать некоторые ранее неизвестные эффекты. Работа принята к публикации в одном из престижных научных журналов, доклад, посвященный разработке, был сделан на конференции ICQT, которая проходит в эти дни в Москве. Подробный разбор препринта работы можно прочитать в нашем материале.

Квантовые компьютеры оперируют особым типом битов — кубитами. В отличие от классических битов, эти логические элементы могут находиться одновременно в состоянии «ноль» и «единица», выдавая при измерении одно из них с известной вероятностью. Это позволяет разрабатывать принципиально новые алгоритмы вычислений, которые в некоторых случаях оказываются гораздо продуктивнее классических. К примеру, алгоритм Шора оказался экспоненциально быстрее классических алгоритмов разложения чисел на простые множители, а алгоритм Гровера позволяет быстрее находить корни булевых уравнений. Подробнее о квантовых компьютерах можно прочесть в материале «Квантовой азбуки». 

Существует несколько платформ, на базе которых разрабатываются квантовые компьютеры. Основные — это сверхпроводящие квантовые кубиты и холодные атомы в оптических ловушках. Самой сложной программируемой универсальной системой до сегодняшнего дня был компьютер на 17 сверхпроводящих кубитах, разработанный IBM. Авторы новой работы улучшили результат в три раза, создав компьютер на холодных атомах, удерживаемых оптическими пинцетами. Как отмечает пресс-релиз, это полностью программируемый 51-кубитный квантовый компьютер. 

Работоспособность системы ученые проверили парой экспериментов: вычислением поведения сложной системы, состоящей из большого числа связанных частиц с помощью квантового и классического компьютера. Авторы отмечают, что такие задачи чрезвычайно сложны и практически нерешаемы для традиционных систем. Результаты моделирования не только совпали, но и позволили предсказать неизвестный ранее эффект. Оказывается, при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний. 

В будущем исследователи допускают реализацию на квантовом компьютере классического алгоритма Шора для разложения чисел на простые множители. 

Интересно отметить, что многие коллективы называют 50 кубитов достаточной системой для демонстрации квантового превосходства — квантового компьютера, решающего заведомо более сложные задачи, чем те, которые доступны классическим вычислителям. О планах достигнуть этой отметки к концу 2017 года заявляла группа ученых из Google под руководством Джона Мартиниса. 

В неуниверсальных квантовых вычислителях можно встретить и большее количество кубитов. К примеру, системы для квантового отжига компании D-wave состоят из тысячи и более сверхпроводящих кубитов. Однако на них нельзя реализовать классические алгоритмы — например, алгоритм Шора. Они подходят лишь для определенного класса задач оптимизации. Тем не менее, на них уже было показано, что квантовые системы могут превзойти современные компьютеры.

Владимир Королёв

nplus1.ru

В России создадут 50-кубитный квантовый компьютер

Фондом перспективных исследований МГУ, ВЭБ и рядом других российских организаций сформирован консорциум, целью которого является разработка квантового компьютера, состоящего не менее чем из 50 кубитов, заявляет пресс-служба «ВЭБ Инноваций». В то время как западные ученые уже демонстрировали установки с более чем 50 кубитами, российские специалисты до сих пор создавали только единичные кубиты. Но скоро это изменится.

«Фонд перспективных исследований, Внешэкономбанк, МГУ имени М. В. Ломоносова, компания «ВЭБ Инновации» и АНО «Цифровая экономика» в ходе Российского инвестиционного форума подписали соглашение о реализации научно-технического проекта по созданию многокубитного квантового компьютера», — говорится в сообщении.

Есть несколько типов квантовых компьютеров. Универсальные квантовые системы способны выполнять любые квантовые алгоритмы. В квантовых симуляторах квантовые объекты имитируют поведение реальных систем. Однако сложность допустимых вычислений во всех случаях зависит от количества задействованных в этих системах кубитов (квантовых битов). В отличие от обычных битов, кубит может находиться в суперпозиции нескольких состояний, что позволяет на квантовом вычислительном уровне выполнять одновременно множество вычислительных задач. Некоторые эксперты считают, что системы с 50 задействованными кубитами уже могут справляться с задачами, перед которыми пасуют даже мощнейшие современные суперкомпьютеры.

И все же пока квантовые компьютеры обладают преимуществом над классическими только в ограниченном диапазоне применений. Например, при работе с квантовыми алгоритмами, способными во много раз ускорить разложение чисел на простые множители (алгоритм Шора), поиске корней булевых функций (алгоритм Гровера) и так далее. Помимо этого, квантовые компьютеры позволяют эффективно предсказывать поведение реальных квантовых систем, например, молекул или электронов в кристаллах.

К настоящему моменту международными командами созданы квантовые симуляторы на основе 53 кубитов и 50-кубитные универсальные квантовые компьютеры. В обоих случаях важно то, на базе каких физических объектов построены кубиты. Два наиболее популярных направления — сверхпроводящие джозефсоновские контакты и холодные атомы и ионы. Например, рекордно сложный 53-кубитный вычислитель построен на основе ионов иттербия, а в универсальных компьютерах чаще используются сверхпроводящие системы.

Что же касается будущей российской разработки, то, как указывается в соглашении, подписанном в ходе Российского инвестиционного форума Фондом перспективных исследований, МГУ имени М. В. Ломоносова, Внешэкономбанком, «ВЭБ Инновации» и АНО «Цифровая экономика», создаваться она будет на базе фотонных чипов и нейтральных атомов. Систему планируют использовать для нужд производства новых материалов и фармпрепаратов. Когда конкретно специалисты приступят к созданию компьютера, а также кто будет финансировать эту разработку, в документе не указывается.

hi-news.ru

Google создала сверхмощный квантовый компьютер

Самый производительный

Quantum AI lab, совместное предприятие NASA (Космическое агентство США), USRA (Университетская ассоциация космического исследования) и американского поискового гиганта Google, объявило о создании эмулятора 72-кубитного компьютера на базе собственного квантового процессора Bristlecone. По заявлению организации, Bristlecone в данный момент является самым производительным решением в сфере квантовых вычислений.

Bristlecone, выполненный в компактном форм-факторе, базируется на предыдущем 9-кубитном процессоре Google, продемонстрировавшем низкий уровень ошибок при чтении данных (1%), а также при работе однокубитных (0,1%) и двухкубитных (0,6%) квантовых вентилей (квантовых логических элементов), что является лучшим результатом компании. Новый процессор использует ту же схему управления, но при этом масштабирован до 72 кубитов, объединенных в многомерный массив.

«Сегодня на ежегодной встрече Американского физического общества в Лос-Анджелесе мы представили Bristlecone – наш новый квантовый процессор, – сказала Джулиан Келли (Julian Kelly), сотрудница Quantum AI Lab, в официальном исследовательском блоге Google. – Наша система, основанная на принципах сверхпроводимости и квантовых вентилей, должна стать тестовым полигоном для исследования частоты возникновения ошибок при квантовых вычислениях и масштабируемости нашей кубитной технологии, а также для решения задач квантовой симуляции, оптимизации и машинного обучения».

Квантовый процессор Bristlecone и схема кубитов (обозначенных как X), связанных с ближайшими «соседями»

Ключевой задачей для Google остается создание квантового процессора, способного на практике превзойти современные суперкомпьютеры. Добиться этого возможно, достигнув гармонии между набором технологий, начиная от программного обеспечения и управляющей электроники до самого процессора.

Квантовые компьютеры и их проблемы

Квантовые компьютеры в отличие от традиционных вычислительных устройств оперируют не битами, а кубитами, которые могут находится не только в состояниях «1» и «0», но и их суперпозиции. Благодаря этому квантовые компьютеры в теории позволяют демонстрировать значительно более высокую производительность.

Диаграмма показывает отношение между частотой возникновения ошибок и числом кубитов. Красная стрелка обозначает направление исследований Quantum AI Lab для создания полноценного квантового компьютера с функцией коррекции ошибок

Важной вехой для квантовых технологий считается достижение так называемого квантового превосходства (Quantum Supremacy) — способности производить вычисления быстрее классических систем. Основная проблема при этом — большое количество ошибок, нуждающихся в коррекции.

Конкуренты Bristlecone

Квантовые технологии считаются перспективными и вызывают интерес у крупнейших игроков рынка вычислительной техники. Так, в январе 2018 г. Intel представила свой 49-кубитный Tangle Lake, а ранее CNews сообщал о создании учеными из Мэрилендского университета в Колледж-Парке симулятора 53-кубитного квантового компьютера на иттербиевых ионах и первого в мире коммерческого квантового компьютера IBM Q, доступ к которому возможен через IBM Cloud. Проект развивался на базе облачной вычислительной платформы IBM Quantum Experience.

www.cnews.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики