Введение, история суперкомпьютеров. Суперкомпьютер это
Персональный суперкомпьютер - это... Что такое Персональный суперкомпьютер?
Персональный суперкомпьютер — условная характеристика высокопроизводительной электронно-вычислительной машины, ориентированной на решение задач интенсивной числовой обработки, выполненной в компактном корпусе, обычно в форм-факторе настольного компьютера, которая может быть установлена непосредственно на рабочем месте, а не в специально отведенных помещениях, как это необходимо для кластерных суперкомпьютеров. Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений (например, в молекулярной динамике, генетике), что в том числе это отличает их от серверов и мэйнфреймов — компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей).
На основе GPU
Наиболее широкое распространение на сегодняшний день получили персональные суперкомпьютеры, построенные на принципе использования вычислительных мощностей графических процессоров (GPU), параллелизма (многопоточность). Подобные суперкомпьютеры строятся на основе специальных графических адаптеров используемых как вычислители. Возможна установка в один персональный суперкомпьютер сразу нескольких вычислителей, что обеспечит общую производительность до 4х терафлоп. Вычислители подобного рода выпускаются в основном двумя производителями: NVIDIA — NVIDIA Tesla и AMD — AMD FireStream. Планируется также выход подобного устройства от Intel под названием Larrabee.
Для персональных суперкомпьютеров на GPU NVIDIA существует особая среда разработки — CUDA, позволяющая программистам и разработчикам писать программное обеспечение для решения большинства вычислительных задач благодаря многоядерной вычислительной мощности графических процессоров на языке Си. CUDA даёт разработчику возможность по своему усмотрению организовывать доступ к набору инструкций графического ускорителя и управлять его памятью, организовывать на нём сложные параллельные вычисления. Графический ускоритель с поддержкой CUDA становится мощной программируемой открытой архитектурой подобно сегодняшним центральным процессорам.
На основе FPGA
Copacobana — проект специализированного суперкомпьютера для криптоанализа. Использует множество FPGA-микросхем.
На основе микропроцессоров
- SGI Octane III — персональный суперкомпьютер на основе процессоров Atom.
- T-Mini — персональный суперкомпьютер на основе процессоров Intel Xeon разработки компании Т-Платформы.[1]
Примечания
См. также
Ссылки
Официальные ресурсы NVIDIA
dic.academic.ru
Введение, история суперкомпьютеров
Определение понятия суперкомпьютер (англ. supercomputer) не раз было предметом многочисленных споров и дискуссий. Можно дать следующие определения: Суперкомпьютер - вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров (Википедия). Суперкомпьютер - вычислительная установка, ЭВМ мелкосерийного или штучного выпуска, многократно превосходящая по вычислительной мощности массово выпускаемые компьютеры, когда быстродействие измеряется в миллионах/триллионах операций в секунду. Суперкомпьютер - машина, нацеленная прежде всего на масштабные вычисления, а значит на снижение времени выполнения сложных, как правило, инженерных или научных расчетов (itpedia.ru). Суперкомпьютер - мощный компьютер с производительностью свыше 100 миллионов операций с плавающей точкой в секунду. Суперкомпьютер представляет собой многопроцессорный и/или многомашинный комплекс, работающий на общую память и общее поле внешних устройств (Словарь по естественным наукам. Глоссарий.ру).
Чаще всего авторство термина приписывается Джорджу Мишелю и Сиднею Фернбачу, в конце 60-х годов XX века работавшим в Ливерморской национальной лаборатории и компании CDC. Тем не менее, известен тот факт, что ещё в 1920 году газета New York World рассказывала о "супервычислениях", выполняемых при помощи табулятора IBM, собранного по заказу Колумбийского университета.
В общеупотребительный лексикон термин "суперкомпьютер" вошёл благодаря распространённости компьютерных систем Сеймура Крея, таких как, CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3 и Cray-4. Сеймур Крей разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996 года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: - "любой компьютер, который создал Сеймур Крей". Сам Крей никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название "компьютер".
Компьютерные системы Крея удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-х большинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о "крахе рынка суперкомпьютеров". На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми "традиционными" игроками компьютерного рынка, такими как IBM, Hewlett-Packard, NEC и другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Cray по прежнему занимает достойное место в ряду производителей суперкомпьютерной техники.
Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии "суперкомпьютер". Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989 году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжёлый компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер - это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом, скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером.
Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями. Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров. Массивно-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массивно-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.
В конце 90-х годов высокая стоимость специализированных суперкомпьютерных решений и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Эти системы характеризует использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерного рынка, обеспечивая высочайшую производительность при минимальной стоимости решений.
В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью ("числодробилки" или "числогрызы"). Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений (например, прогнозирование погодно-климатических условий, моделирование ядерных испытаний и т. п.), что в том числе отличает их от серверов и мэйнфреймов (англ. mainframe) - компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей). (Подробнее о Задачах, решаемых на суперкомпьютерах)
Иногда суперкомпютеры используются для работы с одним-единственным приложением, использующим всю память и все процессоры системы; в других случаях они обеспечивают выполнение большого числа разнообразных приложений.
О современно состоянии дел
На данном этапе можно сказать что имеется некий кризис эффективного использования суперкомпьютеров и существенный разрыв между теми возможностями что суперкомпьютеры могут предоставить и теми что реально используются. Вычислительная мощность суперкомпьютеров быстро растет, однако примеров успешного полноценного использования суперкомпьютеров немного. В подавляющем числе случаем используется десятки, в лучшем случае сотни процессоров. Случаев полноценного использования тысяч процессоров очень мало. Есть единицы приложений позволяющих полноценно использовать тысячи процессоров. Основная масса приложений, что специализированных, написанных в рамках каких либо научных исследований, что коммерческих, ориентированы на использование систем средней производительности, имеющих несколько десятков, в лучшем случае несколько сотен процессоров. В среднем вычислительная мощность суперкомпьютеров используется не более чем на несколько процентов. Одна из основных причин состоит в том, что вычислительная мощность суперкомпьютера не более чем прямая сумма мощностей большого числа входящих в его состав процессоров или процессорных ядер. Поэтому большинство алгоритмом, в том числе разработанных за последние двадцать лет, не могут в полной мере использовать вычислительную мощность. В лучшем случае используют несколько сотен процессоров. Современные алгоритмы не могут автоматически использовать такую "распределенную" мощность. Время вычислительных систем, обладающих существенной производительностью и имеющих в своем составе только один процессор прошло, и, по всей видимости, безвозвратно
На протяжении многих лет увеличение производительность компьютера автоматически означало снижение времени работы существующих программ. Теперь это не так. Последовательные программы не могут работать на суперкомпьютерах быстрее. Если запустить "обыкновенную" программу на суперкомпьютере, то значительного увеления производительности не будет. Но проблема не является неразрешимой. Неходимо изучать известные методы анализа и создания параллельных алгоритмов, а также создавать новые методы использования многопроцессорных систем для решения актуальных значимых задач
Наиболее дешёвым видом современных "суперкомпьютеров" является персональный суперкомпьютер на основе графических процессоров GPU. (см. Персональный суперкомпьютер) За счёт применения возможностей архитектуры CUDA графические процессоры используются в качестве вычислителей. Установленные в настольные ПК графические вычислители могут предоставлять мощности до 4 терафлоп на каждом индивидуальном рабочем месте. Примером графических адаптеров для построения персональных суперкомпьютеров являются вычислители NVIDIA Tesla. Персональный суперкомпьютер позволяет исследователям решать ресурсоёмкие задачи, не обращаясь к массивным кластерным системам, значительно ускоряя работу.
elanina.narod.ru
Суперкомпьютер — Machinepedia
Суперкомпью́тер (англ. supercomputer, СуперЭВМ) — вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.
Определение понятия суперкомпьютер
Определение понятия «суперкомпьютер» не раз было предметом многочисленных споров и дискуссий.
Чаще всего авторство термина приписывается Джорджу Мишелю и Сиднею Фернбачу, в конце 60-х годов XX века работавшим в Ливерморской национальной лаборатории и компании CDC (англ.). Тем не менее, известен тот факт, что ещё в 1920 году газета New York World (англ.) рассказывала о «супервычислениях», выполняемых при помощи табулятора IBM, собранного по заказу Колумбийского университета.
В общеупотребительный лексикон термин «суперкомпьютер» вошёл благодаря распространённости компьютерных систем Сеймура Крея, таких как, CDC 6600 (англ.), CDC 7600 (англ.), Cray-1, Cray-2, Cray-3 (англ.) и Cray-4 (англ.). Сеймур Крей разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996 года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: — «любой компьютер, который создал Сеймур Крей». Сам Крей никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название «компьютер».
Компьютерные системы Крея удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-х большинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о «крахе рынка суперкомпьютеров». На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми «традиционными» игроками компьютерного рынка, такими как IBM, Hewlett-Packard, NEC и другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Cray по-прежнему занимает достойное место в ряду производителей суперкомпьютерной техники.
Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989 году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжёлый компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер — это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером.
Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями.
Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.
Массивно-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массивно-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.
В конце 90-х годов высокая стоимость специализированных суперкомпьютерных решений и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Эти системы характеризует использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерного рынка, обеспечивая высочайшую производительность при минимальной стоимости решений.
В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью («числодробилки» или «числогрызы»). Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений (например, прогнозирование погодно-климатических условий, моделирование ядерных испытаний и т. п.), что в том числе отличает их от серверов и мэйнфреймов (англ. mainframe) — компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей).
Иногда суперкомпьютеры используются для работы с одним-единственным приложением, использующим всю память и все процессоры системы; в других случаях они обеспечивают выполнение большого числа разнообразных приложений.
Программное обеспечение суперкомпьютеров
Наиболее распространёнными программными средствами суперкомпьютеров, также как и параллельных или распределённых компьютерных систем являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.
В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.
machinepedia.org
Суперкомпьютер - это... Что такое Суперкомпьютер?
Суперкомпью́тер (англ. supercomputer, СуперЭВМ) — вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.
Определение понятия суперкомпьютер
Определение понятия «суперкомпьютер» не раз было предметом многочисленных споров и дискуссий.
Чаще всего авторство термина приписывается Джорджу Майклу (George Anthony Michael) и Сиднею Фернбачу (Sidney Fernbach), в конце 60-х годов XX века работавшим в Ливерморской национальной лаборатории, и компании CDC (англ.). Тем не менее, известен тот факт, что ещё в 1920 году газета New York World (англ.) рассказывала о «супервычислениях», выполняемых при помощи табулятора IBM, собранного по заказу Колумбийского университета.
В общеупотребительный лексикон термин «суперкомпьютер» вошёл благодаря распространённости компьютерных систем Сеймура Крея, таких как, CDC 6600 (англ.), CDC 7600 (англ.), Cray-1, Cray-2, Cray-3 (англ.) и Cray-4 (англ.). Сеймур Крей разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996 года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: — «любой компьютер, который создал Сеймур Крей». Сам Крей никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название «компьютер».
Компьютерные системы Крея удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-х большинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о «крахе рынка суперкомпьютеров». На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми «традиционными» игроками компьютерного рынка, такими как IBM, Hewlett-Packard, NEC и другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Cray по-прежнему занимает достойное место в ряду производителей суперкомпьютерной техники.
Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989 году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжёлый компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер — это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером.
Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями.
Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.
Массово-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массивно-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.
В конце 90-х годов высокая стоимость специализированных суперкомпьютерных решений и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Эти системы характеризует использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерного рынка, обеспечивая высочайшую производительность при минимальной стоимости решений.
В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью («числодробилки» или «числогрызы»). Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений (например, прогнозирование погодно-климатических условий, моделирование ядерных испытаний и т. п.), что в том числе отличает их от серверов и мэйнфреймов (англ. mainframe) — компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей).
Иногда суперкомпьютеры используются для работы с одним-единственным приложением, использующим всю память и все процессоры системы; в других случаях они обеспечивают выполнение большого числа разнообразных приложений.
Производительность
Производительность суперкомпьютеров чаще всего оценивается и выражается в количестве операций с плавающей точкой в секунду (FLOPS). Это связано с тем, что задачи численного моделирования, под которые и создаются суперкомпьютеры, чаще всего требуют вычислений, связанных с вещественными числами с высокой степенью точности, а не целыми числами. Поэтому для суперкомпьютеров неприменима мера быстродействия обычных компьютерных систем - количество миллионов операций в секунду (MIPS). При всей своей неоднозначности и приблизительности, оценка в флопсах позволяет легко сравнивать суперкомпьютерные системы друг с другом, опираясь на объективный критерий.
Первые суперкомпьютеры имели производительность порядка 1 флопс, т.е. 1000 операций с плавающей точкой в секунду. Компьютер CDC 6600, имевший производительность в 1 миллион флопсов (1 Мфлопс) был создан в 1964 году. Планка в 1 миллиард флопс (1 Гигафлопс) была преодолена суперкомпьютером Cray-2 в 1985 с большим запасом (1.9 Гигафлопс). Граница в 1 триллион флопс (1 Тфлопс) была достигнута в 1996 году суперкомпьютером ASCI Red (англ.). Рубеж 1 квадриллион флопс (1 Пфлопс) был взят в 2008 году суперкомпьютером IBM Roadrunner. Сейчас ведутся работы по созданию к 2016 году экзафлопсных компьютеров, способных выполнять 1 квинтиллион операций с плавающей точкой в секунду.
Программное обеспечение суперкомпьютеров
Наиболее распространёнными программными средствами суперкомпьютеров, также как и параллельных или распределённых компьютерных систем являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.
В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.
Top500
Основная статья: TOP500Начиная с 1993, суперкомпьютеры ранжируют в списке Top500. Список составляется на основе теста LINPACK по решению системы линейных алгебраических уравнений, являющейся общей задачей для численного моделирования.
См. также
Примечания
Ссылки
Литература
xn--httpsdic-56g3h1cya1j.academic.ru
Суперкомпьютер — Викизнание... Это Вам НЕ Википедия!
Суперкомпьютер - компьютер, предназначенный для высокоскоростного выполнения прикладных процессов.
Определение понятия[править]
В 1976 году корпорация Gray Research изготовила первый сверхбыстродействующий компьютер, образовав новый класс компьютеров. Вначале Gray Research предполагала, что потребность в таких компьютерах будет небольшой. Однако она нарастает и особенно в последние годы. Кроме этого, производители суперкомпьютеров постоянно улучшали показатель стоимость/производительность. Появился и получил большую популярность новый класс - суперминикомпьютеры. Это - уменьшенные по габаритам и более экономичные варианты суперкомпьютеров нередко - настольного исполнения. Суперкомпьютер может иметь один процессор. Тогда в нем организауется "один поток команд, один поток данных" SISD. Вместе с этим, большие скорости обработки данных можно получить лишь в многопроцессорных системах. Поэтому во всех новых архитектурах суперкомпьютеров степень параллельной обработки возрастает. Растет, соответственно, и число образующих суперкомпьютер процессоров. В дополнение к обычным (скалярным) подключаются и векторные процессоры. Первые обрабатывают величины, а вторые - векторы. Внедрение суперкомпьютеров до сих пор сдерживалось отсутствием развитого для них Программного Обеспечения (ПО).В настоящее время ситуация изменяется. Появились языки, предназначенные для параллельной обработки, все больше предлагается эффективных Операционных Систем (ОС). В суперкомпьютерах различают симметричную мультипроцессорную обработку и асимметричную мультипроцессорную обработку. Суперкомпьютеры выпускаются значительным числом предприятий. Например, корпорацией Fujitsu. Корпорация IBM создала суперкомпьютер в одном кристалле Интегральной Схемы (ИС).
Производительность[править]
Производительность суперкомпьютеров обычно оценивают и выражают в количестве операций с плавающей точкой в секунду (FLOPS). Это связано с тем, что задачи численного моделирования, под которые и создаются суперкомпьютеры, чаще всего требуют вычислений, связанных с вещественными числами с высокой степенью точности, а не целыми числами. Поэтому для суперкомпьютеров неприменима мера быстродействия обычных компьютерных систем - количество миллионов операций в секунду (MIPS). При всей своей неоднозначности и приблизительности, оценка в флопсах позволяет легко сравнивать суперкомпьютерные системы друг с другом, опираясь на объективный критерий.
Первые суперкомпьютеры имели производительность порядка 1 кфлопс, т.е. 1000 операций с плавающей точкой в секунду. Компьютер CDC 6600, имевший производительность в 1 миллион флопсов (1 Мфлопс) был создан в 1964 году. Планка в 1 миллиард флопс (1 Гигафлопс) была преодолена суперкомпьютером Cray-2 в 1985 с большим запасом (1.9 Гигафлопс). Граница в 1 триллион флопс (1 Тфлопс) была достигнута в 1996 году суперкомпьютером Шаблон:Не переведено. Рубеж 1 квадриллион флопс (1 Пфлопс) был взят в 2008 году суперкомпьютером IBM Roadrunner. Сейчас ведутся работы по созданию к 2016 году экзафлопсных компьютеров, способных выполнять 1 квинтиллион операций с плавающей точкой в секунду.
Основная статья: TOP500Начиная с 1993, суперкомпьютеры ранжируют в списке Top500. Список составляется на основе теста LINPACK по решению системы линейных алгебраических уравнений, являющейся общей задачей для численного моделирования.
www.wikiznanie.ru
Суперкомпьютер
Оглавление:1. Суперкомпьютер2. Программное обеспечение суперкомпьютеров3. Список 500 самых быстрых в мире
«Cray-2» самый быстрый компьютер 1985—1989 годов.
Суперкомпьютер вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.
Определение понятия суперкомпьютер
Определение понятия суперкомпьютер не раз было предметом многочисленных споров и дискуссий.
Чаще всего авторство термина приписывается Джорджу Мишелю и Сиднею Фернбачу, в конце 60-х годов XX века работавшим в Ливерморской национальной лаборатории и компании CDC . Тем не менее, известен тот факт, что ещё в 1920 году газета New York World рассказывала о «супервычислениях», выполняемых при помощи табулятора IBM, собранного по заказу Колумбийского университета.
В общеупотребительный лексикон термин «суперкомпьютер» вошёл благодаря распространённости компьютерных систем Сеймура Крея, таких как, CDC 6600 , CDC 7600 , Cray-1, Cray-2, Cray-3 и Cray-4 . Сеймур Крей разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996 года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: «любой компьютер, который создал Сеймур Крей». Сам Крей никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название «компьютер».
Компьютерные системы Крея удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-х большинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о «крахе рынка суперкомпьютеров». На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми «традиционными» игроками компьютерного рынка, такими как IBM, Hewlett-Packard, NEC и другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Cray по-прежнему занимает достойное место в ряду производителей суперкомпьютерной техники.
Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989 году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжёлый компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером.
Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями.
Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.
Массивно-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массивно-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.
В конце 90-х годов высокая стоимость специализированных суперкомпьютерных решений и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Эти системы характеризует использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерного рынка, обеспечивая высочайшую производительность при минимальной стоимости решений.
В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью. Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений, что в том числе отличает их от серверов и мэйнфреймов компьютеров с высокой общей производительностью, призванных решать типовые задачи.
Иногда суперкомпьютеры используются для работы с одним-единственным приложением, использующим всю память и все процессоры системы; в других случаях они обеспечивают выполнение большого числа разнообразных приложений.
Просмотров: 3555
www.chinapads.ru