Физики из MIT и России раскрыли принципы работы первого в мире 51-кубитного квантового компьютера. Михаил лукин квантовый компьютер
На международной квантовой конференции в Москве представили мощнейшие в мире квантовые компьютеры
Сложнейшие вычисления - в одно мгновение, и как результат - прорывы во многих областях, в том числе, в создании искусственного интеллекта. Все это сделают реальным квантовые компьютеры, которые сейчас создают ученые. Образец российских специалистов на данный момент - мощнейший в мире. Есть и американский аналог. Их представили на международной квантовой конференции в Москве.
Это казалось фантастикой еще вчера - квантовые компьютеры, способные обогнать все существующие устройства. Они настолько мощные, что могут или открыть человечеству новые горизонты, или обрушить все системы безопасности, потому что смогут взломать их.
«Квантовый компьютер функционирующий, он гораздо страшнее атомный бомбы», - считает генеральный директор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.
В разработку вкладываются крупнейшие корпорации. Google, IBM, Microsoft, Alibaba. Но сегодня в центре внимания — Михаил Лукин, физик из Гарварда и один из основателей Российского квантового центра. Его команде удалось создать самый мощный на данный момент квантовый компьютер.
«Это одна из самых больших квантовых систем, которые были созданы. Мы входим в тот режим, где уже классические компьютеры не могут справится с вычислениями. Делаем маленькие открытия уже, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, мы даже до конца их не понимаем», - рассказывает профессор Гарвардского университета, сооснователь Российского квантового центра Михаил Лукин.
Все - из-за мощности таких устройств. Расчеты, которые на сегодняшнем суперкомпьютере займут тысячи лет, квантовый может сделать в один миг. Как это работает? В обычных компьютерах информация и вычисления - это биты. Каждый бит - либо ноль, либо единица. Но квантовые компьютеры основаны на кубитах, а они могут находиться в состоянии суперпозиции. Каждый кубит - одновременно и ноль, и единица. И если для какого-нибудь расчета обычным компьютерам нужно, грубо говоря, выстроить последовательности, то квантовые вычисления происходят параллельно, в одно мгновение. В компьютере Михаила Лукина таких кубитов — 51.
«Во-первых, он сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это больше чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что Google все время говорил, что сделает 49», - объясняет Сергей Белоусов.
Создание самого мощного квантового компьютера пророчили ему. Джон Мартинес — руководитель крупнейшей в мире квантовой лаборатории корпорации Google. И свой 49-кубитный компьютер он планировал закончить только через несколько месяцев.
«22 кубита — это максимум, что мы смогли сделать, мы использовали все свое волшебство и профессионализм», - рассказывает он.
Мартинес и Лукин выступили на одной сцене — в Москве, на Четвертой международной квантовой конференции. Впрочем, соперниками ученые себя не считают.
«Неправильно думать об этом, как о гонке. Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов», - говорит глава лаборатории «Квантовый искусственный интеллект» компании Google Джон Мартинес.
Но для чего нам понадобятся квантовые компьютеры? Даже сами их создатели не знают наверняка. С их помощью могут быть разработаны совершенно новые материалы, сотни новых открытий в физике и химии. Квантовые компьютеры - пожалуй, единственное, что может приоткрыть тайну человеческого мозга и искусственного интеллекта.
«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет. Здесь можно привести пример транзистора. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили первый компьютер, никто не представлял, как сильно изменится наша жизнь», - говорит директор Российского квантового центра Руслан Юнусов.
Один из первых компьютеров был создан в 40-х годах ХХ века и весил 27 тонн. Если сравнить с современными устройствами, то обычный смартфон по мощности - это как 20 000 таких машин. И это за 70 лет прогресса. Но если наступит эра квантовых компьютеров, уже наши потомки будут удивляться, как вообще пользоваться этим антиквариатом?
www.1tv.ru
Большая игра: как выходцы из России могут стать лидерами "квантовой гонки" | Блог Владимир Гавриков
МОСКВА, 9 янв — РИА Новости. Михаил Лукин, сооснователь Российского квантового центра и профессор Гарварда, рассказал, как его команде удалось создать самый большой и точный на сегодняшний день квантовый компьютер, кто победит в "квантовой гонке", а также поделился прогнозами о том, как подобные машины могут преобразить мир.
Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря применению законов квантовой механики. Такие машины состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить спектр значений между нулем и единицей.
На сегодняшний день есть два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого пытаются создать универсальный квантовый компьютер, чьи кубиты подчинялись бы тем же правилам, по которым работают обычные цифровые устройства. Его эксплуатация в идеале будет не сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами.
Адиабатический компьютер создать проще, но по принципам работы он ближе к арифмометрам, логарифмическим линейкам и аналоговым вычислительным машинам начала прошлого века.
В минувшем году сразу несколько команд ученых и инженеров из США, Австралии и некоторых европейских стран заявляли, что близки к созданию квантового компьютера. Лидером в этой неформальной гонке считалась группа Джона Мартиниса, разрабатывающая "гибридный" вариант универсального вычислителя, сочетающего элементы аналогового и цифрового подхода.
Большая квантовая игра
Михаил Лукин неожиданно для всех опередил Мартиниса: 14 июля 2017 года он заявил, что его команде удалось создать 51-кубитную машину. О принципах ее работы и устройства он рассказал в одном из ведущих научных журналов в конце ноября.
Неожиданность заявления Лукина во многом была связана не только с самим фактом создания столь сложной машины, но и с тем, что она оказалась основана не на тех квантовых технологиях (алмазных кубитах), которые его команда разрабатывала на протяжении последнего десятилетия.
"Мы не отказывались от них и продолжаем работу и с алмазами, и с другими аналогами твердотельных систем. Многие из наших разработок сегодня используются не только в рамках наших собственных экспериментов по созданию квантовых компьютеров и сетей, но и на практике, в качестве различных сенсоров", — заявил ученый.
Как отметил Лукин, его команда параллельно рассматривала и другие варианты создания квантовых компьютеров. По его словам, эксперимент с нейтральными атомами возник не на пустом месте — Лукин и его коллега Игнацио Ширак (Ignatio Cirac) впервые задумались об этом еще в 2001 году, но реализовать эту идею удалось только сейчас благодаря развитию лазерных и квантовых технологий.
"В принципе, как мне кажется, еще очень рано объявлять победителя в "квантовой гонке" — разные квантовые платформы имеют свои плюсы и минусы. Поэтому нам крайне важно не фокусироваться на одной из версий, а исследовать все возможные варианты", — продолжает Лукин.
Так художник представил себе то, как работает квантовый компьютер Михаила Лукина и его коллег
К примеру, атомные и ионные кубиты, на базе которых Лукин и его конкуренты из университета Мэриленда под руководством Кристофера Монро (Christopher Monroe) создали свои вычислители, отличают высокая гибкость и удобство в работе.
"Кубиты на базе холодных атомов и ионов невероятно гибки в работе — фактически ими можно двигать, перепрограммировать и менять их конфигурацию прямо во время проведения вычислений. В этом плане твердотельные платформы, которые создают наши австралийские коллеги на базе кремния и фосфора, им сильно уступают, так как их почти нельзя поменять после того, как был создан чип", — отмечает физик.
Этот плюс атомных и ионных систем, как считает Лукин, позволит в ближайшее время занять лидирующие позиции в "квантовой гонке", так как ничто, в принципе, не мешает ни его команде, ни группе Монро создать более сложные вычислительные системы из сотен, а не десятков кубитов.
Атомные кубиты, по мнению основателя РКЦ, смогут достичь этой отметки быстрее, так как их гораздо проще контролировать, чем ионные, которым они пока уступают в качестве работы.
"Дело в том, что при повышении числа ионов они начнут все сильнее отталкивать друг друга, в результате чего система станет неустойчивой. Крис и его коллеги смогли решить эту проблему для 53 ионов, однако что произойдет дальше, пока непонятно. Будет очень интересно взглянуть на то, как станет развиваться ситуация, когда мы выйдем на уровень в несколько сот кубитов", — поясняет исследователь.
Квантовые шрамы
Главным своим достижением профессор Лукин считает не само создание компьютера, а необычный квантовый феномен, который удалось открыть его команде, наблюдая за поведением атомов и электронов.
"Мы перешли порог, когда можем совершать открытия, используя подобные машины. Сейчас теоретики думают о том, как можно объяснить то устойчивое состояние, которое возникает в нашей системе, если привести ее в неравновесие. Сейчас они пытаются объяснить это, используя некий аналог математической теории хаоса, называя этот феномен "квантовыми ранами" или "квантовыми шрамами". Как мне кажется, все самое интересное в ближайшие годы будет открыто именно здесь", — заявил физик.
Несмотря на то что квантовая машина, созданная Лукиным и его коллегами, представляет собой адиабатический компьютер, те же самые кубиты, как отметил ученый, можно использовать и для создания универсальных квантовых вычислителей.
"Безусловно, мы могли бы проводить такие эксперименты прямо сейчас, но нужно понимать, что сегодня в нашей области науки нет четкой границы между адиабатическим подходом и принципами, которые используются при реализации отдельных логических операций. Высокая гибкость и настраиваемость нашей системы еще больше размывает эту границу. Скорее всего, гибридный подход к вычислениям, сочетающий плюсы того и другого, будет самым интересным для нас", — пояснил ученый.
Лаборатория квантовой оптики в Российском Квантовом Центре
Как отметил Лукин, его команда уже работает над созданием алгоритмов коррекции ошибок и соответствующей архитектуры, которая позволяла бы их воплощать на базе атомных кубитов, однако эти опыты имеет смысл проводить только после того, когда вычислительных модулей станет значительно больше.
"Пока мы не знаем, как создать компьютер, состоящий из нескольких тысяч или даже сотен кубитов. Добавление алгоритмов корректировки ошибок повысит сложность такой системы еще на порядок, и мы просто не понимаем, как такую систему можно масштабировать. Скорее всего, мы сейчас даже отдаленно не можем представить себе, как будет выглядеть подобный универсальный и расширяемый компьютер будущего", — заявил Лукин.
По его словам, архитектура первых крупных квантовых компьютеров, вероятно, будут не монолитной, а состоящей из модулей — наборов из нескольких десятков кубитов. Эти блоки свяжут между собой при помощи специальной сети, так называемого квантового интернета, что позволит им проводить довольно сложные и объемные вычисления, недоступные на обычных суперкомпьютерах.
Практическое "квантовое превосходство"
Другой большой проблемой станет, как бы это парадоксально ни звучало для обывателя, проверка корректности результатов, выдаваемых такими машинами. Сложность заключается в том, что обычные суперкомпьютеры в принципе не могут проверить результаты квантовых вычислений, если число кубитов достигнет той отметки, когда машины на их базе станут полезными на практике.
Как считает Лукин, для проверки не обязательно создавать сложные алгоритмы и хитрые математические подходы, которые сейчас разрабатывает команда ученых под руководством Мартиниса. Для этого, по мнению физика, достаточно попытаться решить при их помощи известные оптимизационные задачи, например распределить потоки машин по городу или спрогнозировать поведение экономики.
"Что точно можно сделать — попробовать решить оптимизационную задачу. Прелесть таких задач заключается в том, что решать их сложно, а проверить — очень просто. Есть множество алгоритмов, которые могут эффективно справляться с ними, используя относительно немного — около 100 или 200 — кубитов. И если они покажут себя с хорошей стороны, то тогда мы решим сразу две актуальные проблемы — покажем, что такие компьютеры полезны и что они работают корректно", — отмечает Лукин.
Есть и другие квантовые "программы", способные решить схожие задачи, — такие, например, как знаменитый алгоритм Шора, позволяющий взломать систему шифрования RSA, но они имеют более узкий спектр применения и экономическую нишу.
Оптимизационные задачи, в свою очередь, затрагивают множество областей науки и жизни, в том числе искусственный интеллект и машинное обучение, и их эффективная реализация резко расширит поле, где квантовые компьютеры могут применяться. Подобная демонстрация практического "квантового превосходства", как считает Лукин, привлечет внимание и деньги инвесторов.
Этот успех станет большим плюсом и для науки — только реальная квантовая машина, по мнению гарвардского физика, позволит ученым, занимающимся разработкой программ для будущих квантовых компьютеров, проверить множество алгоритмов и теорий.
"Если посмотреть на то, как развивались классические компьютеры (об этом, кстати, писал сам Питер Шор), можно увидеть, что на заре их развития существовало много алгоритмов, которые считались тогда очень эффективными. Но оказалось, что многие из них бесполезны на практике. И только недавно математики выяснили, почему они не работают. То же самое, как мне кажется, произойдет с квантовыми компьютерами — жизнь полна сюрпризов", — заключает Лукин.
РИА Новости https://ria.ru/science/2018010...
×cont.ws
«В стадии мирной коллаборации» - Физика
Громких заголовков про успехи квантовых компьютеров появляется все больше: одни ученые сделали рабочий кубит — элемент квантовой информации, другие — собрали компьютер на десяти кубитах, третьи — показали преимущество квантовых компьютеров над обычными в некоторых частных задачах. Как разглядеть за этим гигантскую историю, меняющую весь мир, рассказывает Сергей Белоусов, генеральный директор компании Acronis и один из основателей Российского квантового центра.
Основа обычных компьютеров — бит — это некоторый объект, который может находиться в двух взаимоисключающих состояниях: либо «0», либо «1». Бит может кодироваться, например, напряжением полупроводникового транзистора: если оно больше некоторого значения, то значения бита — логическая «1», а если меньше — то логический «0». Память компьютера — это массив битов, а все вычисления — определенные операции, изменяющие состояния битов.
Кубиты в отличие от битов могут находиться одновременно сразу в двух логических состояниях. Если бы кубит можно было построить на полупроводником транзисторе, то такой транзистор при попытке измерить его напряжение с определенной вероятностью выдал бы логическую единицу, а с другой, тоже ненулевой вероятностью, — логический ноль. Но получить кубит на транзисторе невозможно, поскольку напряжение на нем всегда определяется однозначно — вместо этого их делают на различных миниатюрных системах, поведение которых описывается законами квантовой физики. Здесь есть два основных направления: одни группы работают с кубитами на основе микроскопических сверхпроводящих колец (логические «0» и «1» кодируют направления тока по кольцу, ток в такой системе может одновременно течь как по часовой, так и против часовой стрелки), а другие — на основе атомов, охлажденных до температуры в несколько кельвин («0» и «1» — это разные энергетические состояния атомов).
В перспективе вычислительная мощность квантовых компьютеров значительно превосходит мощности компьютеров обыкновенных. Если система из двух битов кодирует только два состояния, то система из двух кубитов — сразу четыре (каждый кубит по отдельности одновременно и «0» и «1», а значит два кубита одновременно в четырех состояниях — «00», «01», «10», «11»), а система из 10 кубитов будет кодировать 210, то есть 1024 состояний. При этом вычислительные операции над каждым из этих состояний можно совершать параллельно, и поэтому квантовый компьютер в каком-то смысле — это огромный массив параллельных процессоров
В качестве возможных применений квантовых компьютеров разработчики чаще всего говорят о моделировании различных физических процессов — это очень большие вычислительные задачи, которые не под силу классическим компьютерам. Кроме этого, квантовые компьютеры часто упоминают в контексте кибербезопасности, поскольку многие современные методы шифрования могут быть легко взломаны за счет квантовых вычислений.
Считается, что на отметке примерно в 50 кубит наступит «квантовое превосходство»: универсальные квантовые компьютеры, то есть умеющие проводить все логические операции, превзойдут обычные не только количественно, по вычислительной мощности, но и качественно — они будут проводить вычисления с точностью, недостижимой для современных технологий. Однако сейчас таких машин пока нет. Самый мощный квантовый компьютер, если ориентироваться только на количество кубитов, у компании IBM: это машина на 17 кубитов.
Главным соперником IBM чаще всего называют Google: у них, по словам руководителя группы квантовых вычислений Google Джона Мартиниса, сейчас идут испытания 22-кубитного компьютера.
Кроме крупных технологических корпораций в квантовой гонке участвуют и различные научные коллективы. Например, на прошлой неделе сообщалось о создании 51-кубитного квантового компьютера группой американских физиков во главе с Михаилом Лукиным, но эта информация оказалась неточной: в препринте научной статьи, рассказывающей об этом открытии, новая система описывается учеными как квантовый симулятор, а не квантовый компьютер, то есть она может моделировать определенные физические процессы, но не может проводить основные квантовые логические операции.
Однако сам Лукин в телефонном разговоре с корреспондентом «Чердака» уточнил, что в будущем они планируют использовать эти наработки для создания универсального квантового компьютера.
Сергей Белоусов. Фото: Сергей Фадеичев / ИТАР-ТАСС
— Сергей, когда мы сможем сказать: «Человечество создало квантовый компьютер»? Я имею ввиду не дату, а критерии — как понять, что какое-нибудь устройство — это уже настоящий универсальный квантовый компьютер, а не только его прототип?
— Во-первых, когда мы сделаем на квантовом компьютере симуляцию какого-нибудь действительно важного физического процесса. Например, сегодня Джон Мартинис (14 июля Мартинис читал в Москве открытую лекцию на международной конференции по квантовым технологиям ICQT — прим. «Чердака») привел хороший пример с аммиаком — удобрением, которое гораздо эффективнее синтезируется нашим организмом, чем современной химической промышленностью. Если вы сделаете квантовую систему, которая рассчитает оптимальный синтез аммония, то это будет уже серьезно. Грубо говоря, будет серьезный экономический эффект
Во-вторых, нужно сделать квантовый симулятор, о котором говорил еще Фейнман, — такой, на котором моделируют процессы, не просчитываемые на классическом компьютере. И здесь есть важный промежуточный результат Миши Лукина (Белоусов имеет в виду статью о 51-кубитном симуляторе — прим. «Чердака»). Я думаю еще до конца этого года они смогут решить какую-нибудь задачу, которая на классическом компьютере хотя и решаема тоже, но только за какое-то очень длительное время.
Наконец, третий шаг — это универсальный квантовый компьютер, на котором можно просчитать какую-нибудь задачу — например, факторизовать числа (разложить на множители — прим. «Чердака»), которые на классическом компьютере решаются только за экспоненциальное время, то есть, грубо говоря, за время жизни Вселенной. Когда такое станет реально, то будет понятно, что у нас есть настоящий квантовый компьютер. То есть три стадии: некий квантовый компьютер с узкими задачами, полезный квантовый симулятор, реально полезный квантовый универсальный компьютер.
— Получается, критерии только в решенных задачах? Не в количестве кубитов?
— Количество кубитов — это только одна часть квантового компьютера. Есть еще много других параметров: как долго могут существовать кубиты, насколько легко ими управлять, воспроизводятся ли результаты вычислений, можно ли масштабировать систему до больших размеров. И пока непонятно, сколько кубитов и какое железо будет у универсального квантового компьютера. К примеру, архитектура, которую представил Миша, кажется, удовлетворяет всем вышеназванным критериям в некой достаточно далекой перспективе.
— Но это же пока совсем не универсальный квантовый компьютер?
— Это похоже на то, что может стать универсальный квантовым компьютером. Когда люди изобрели первые кремниевые транзисторы, они не представляли, что на их основе можно сделать процессоры Intel, хотя с точки зрения дизайна, архитектуры это был точно такой же элемент, который теперь лежит в основе вычислительных плат.
— Все сравнивают квантовые компьютеры и компьютеры полупроводниковые, но почему никто не упоминает, что еще есть другие альтернативы — оптические компьютеры, молекулярные компьютеры?
— Есть два мира — цифровой и квантовый, а в промежутке между ними — разные комбинации. В этом смысле биологические вычисления и любые другие вычисления — просто некоторые вырожденные версии квантовых вычислений: если сделать универсальный квантовый компьютер, то на нем можно будет симулировать все остальные промежуточные компьютеры.
Безусловно, биологические компьютеры более энергоэффективны, чем классические компьютеры, и это очень важно: сейчас вычисления съедают несколько процентов от мировой электроэнергии, а если нам понадобятся еще более мощные компьютеры, то сначала они сожрут уже все электричество, а потом выделят столько тепла, что мы превратимся в маленькое Солнце. Но это не единственная проблема с классическими компьютерами: они еще слишком большие и слишком медленные, а с этим справиться могут только квантовые вычисления.
— И вы, и другие чаще всего говорят о том, что квантовые компьютеры будут использовать для моделирования различных физических процессов. Не сломает ли это классическое разделение труда у исследователей: теоретик — экспериментатор — моделист?
— Знаете, квантовые компьютеры вместе с технологией глубокого машинного обучения могут вообще отменить необходимость, например, Миши Лукина. То есть они один раз научатся делать эксперименты, а потом будут работать сами.
— Вот как. Так говорят про многие профессии, но физиков в списке возможных жертв искусственного интеллекта упоминают в самую последнюю очередь.
— Теоретически в этом нет ничего невозможного, но ответить точней нельзя хотя бы потому, что человеческий мозг — это самый сложный объект во Вселенной. На эту тему есть три варианта мыслей. Первый представляет [американский футуролог] Рэй Курцвейл, который в своей книге How to Create a Mind пишет, что человека можно создать, грубо говоря, на мощном суперкомпьютере: нужно только много процессоров, хороший алгоритм — и все сработает.
Другой взгляд — это профессор математики MIT Скотт Ааронсон (сейчас он работает в Техасском университете в Остине — прим. «Чердака»), который написал книгу Quantum Computing since Democritus. У него позиция не совсем четкая: он то ли считает, что разум человека можно воспроизвести в классическом компьютере, то ли в квантовом, и сам до конца не определился. Наконец есть слегка сумасшедший Роджер Пенроуз, который тоже написал очень известную книгу (скорее всего, Белоусов имеет в виду книгу «Новый ум короля» — прим. «Чердака»), где основной смысл в том, что человека нельзя никогда создать ни на классическом компьютере, ни на квантовом, и поэтому нельзя будет никогда заменить нашего Мишу Лукина.
Я же склоняюсь к тому, что на квантовом компьютере это будет вполне реально. Но это чисто интуитивное ощущение. Оно может быть обманчивым и выглядеть странным, хотя квантовая механика, к примеру, тоже выглядит странной.
— Люди, разрабатывающие квантовый компьютер, часто повторяют, что это большая гонка, а потом оговариваются, что в ней все участвуют сообща — соревнуются только с природой. Это выглядит странно. Обычно такое противоречие объясняется одной из двух причин: либо общая цель гораздо меньше, чем о ней говорят, и все только изображают гонку, либо общая цель гораздо больше и настоящая работа идет в тайне, как это было с Манхэттенским проектом. Какой вариант здесь?
— Есть два ответа на этот вопрос. Первый заключается в том, что люди плохо видят два типа вещей. Во-первых, маленькие объекты, которые двигаются с большой скоростью: как пули — пиу, и не видно ничего. А во-вторых, это очень большие вещи, которые двигаются сравнительно медленно, — такие как изменения климата. Квантовый компьютер несет огромные перемены, и люди пока их пытаются не замечать.
Что касается второго варианта ответа, то еще с того момента, как вышла общая теория относительности, люди, наверное, понимали, что можно сделать атомную бомбу. А может быть, даже немножко раньше. Общая теория относительности появилась в начале XX века, а Манхэттенский проект возник в 39-м, то есть несколько десятилетий люди мирно коллаборировали, а потом началась тайная работа.
Квантовый компьютер сейчас тоже в стадии мирной коллаборации. Все понимают, что это вроде бы достаточно страшная штука, хотя и полезная, и просто сотрудничают друг с другом, но в некоторый момент такое, наверное, закончится. Мы еще до такой стадии не дошли, но это может произойти, а в мире, где у одной страны есть квантовой компьютер, а у другой нет, все, действительно, может быть не очень хорошо. Это как с ядерной бомбой. Но тут, главное, чтобы это не Северная Корея была.
— По-моему, есть еще одна опасность: порог входа на рынок квантовых вычислений очень высокий. Нужна команда высококлассных физиков, дорогое оборудование. Квантовые компьютеры под силу только государственным структурам или большим корпорациям.
— Нет-нет, это совершенно не так. Люди сравнивают квантовые компьютеры с Манхэттенским проектом или, например, Bell Labs (в лаборатории разработали много важных технологий: от транзистора до языка С++ — прим. «Чердака»), которая в некоторые моменты обходилась в несколько миллиардов долларов в год, но у квантовых компьютеров совершенно другие масштабы. Например, группа Джона Мартиниса состоит всего из 23 человек — на нее нельзя потратить так уж много денег. Создание квантового компьютера — это не обязательно такой тяжелый процесс, его можно сделать, скажем, за сто миллионов долларов. И это, кстати, очень тяжело донести, например, до российского государства.
— Все-таки это не гаражный стартап. Да и свой Цукерберг, пишущий прототип продукта на коленке, в области квантовых вычислений вряд ли появится.
— Сложно сказать. Они все равно появляются! Вот, например, одна компания в Калифорнии недавно подняла под строительство квантового компьютера 64 миллиона долларов, и похожую сумму сейчас собирает один из соперников Миши Лукина, с которым он, собственно, коллаборирует, — Крис Манро из Университета Балтимора. Это не масштабы гаражных стартапов в привычном понимании, но сколько, например, Илон Маск уже потратил на свою «Теслу»? То, что сейчас в квантовые компьютеры не вкладывают повсеместно больших денег, на мой взгляд, объясняется только одним: это настолько большие изменения, что мы их пока не замечаем. Они движутся так, понемногу — у-у-у, все ближе, ближе, ближе, а кажется, что ничего не меняется.
За помощь в организации интервью с Сергеем Белоусовым «Чердак» благодарит организаторов международной конференции по квантовым технологиям ICQT17, проходившей в Москве с 11 по 16 июля.
chrdk.ru
Русские ученые в Москве представили мощнейшие в мире квантовые компьютеры
Сложнейшие вычисления — в одно мгновение, и как результат — прорывы во многих областях, в том числе, в создании искусственного интеллекта. Все это сделают реальным квантовые компьютеры, которые сейчас создают ученые. Образец российских специалистов на данный момент — мощнейший в мире. Есть и американский аналог. Их представили на международной квантовой конференции в Москве.
Это казалось фантастикой еще вчера — квантовые компьютеры, способные обогнать все существующие устройства. Они настолько мощные, что могут или открыть человечеству новые горизонты, или обрушить все системы безопасности, потому что смогут взломать их.
«Квантовый компьютер функционирующий, он гораздо страшнее атомный бомбы», — считает генеральный директор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.
В разработку вкладываются крупнейшие корпорации. Google, IBM, Microsoft, Alibaba. Но сегодня в центре внимания — Михаил Лукин, физик из Гарварда и один из основателей Российского квантового центра. Его команде удалось создать самый мощный на данный момент квантовый компьютер.
«Это одна из самых больших квантовых систем, которые были созданы. Мы входим в тот режим, где уже классические компьютеры не могут справится с вычислениями. Делаем маленькие открытия уже, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, мы даже до конца их не понимаем», — рассказывает профессор Гарвардского университета, сооснователь Российского квантового центра Михаил Лукин.
Все — из-за мощности таких устройств. Расчеты, которые на сегодняшнем суперкомпьютере займут тысячи лет, квантовый может сделать в один миг. Как это работает? В обычных компьютерах информация и вычисления — это биты. Каждый бит-либо ноль, либо единица. Но квантовые компьютеры основаны на кубитах, а они могут находиться в состоянии суперпозиции. Каждый кубит — одновременно и ноль, и единица. И если для какого-нибудь расчета обычным компьютерам нужно, грубо говоря, выстроить последовательности, то квантовые вычисления происходят параллельно, в одно мгновение. В компьютере Михаила Лукина таких кубитов — 51.
«Во-первых, он сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это больше чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что Google все время говорил, что сделает 49», — объясняет Сергей Белоусов.
Создание самого мощного квантового компьютера пророчили ему. Джон Мартинес — руководитель крупнейшей в мире квантовой лаборатории корпорации Google. И свой 49-кубитный компьютер он планировал закончить только через несколько месяцев.
«22 кубита — это максимум, что мы смогли сделать, мы использовали все свое волшебство и профессионализм», — рассказывает он.
Мартинес и Лукин выступили на одной сцене — в Москве, на Четвертой международной квантовой конференции. Впрочем, соперниками ученые себя не считают.
«Неправильно думать об этом, как о гонке. Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов», — говорит глава лаборатории «Квантовый искусственный интеллект» компании Google Джон Мартинес.
Но для чего нам понадобятся квантовые компьютеры? Даже сами их создатели не знают наверняка. С их помощью могут быть разработаны совершенно новые материалы, сотни новых открытий в физике и химии. Квантовые компьютеры — пожалуй, единственное, что может приоткрыть тайну человеческого мозга и искусственного интеллекта.
«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет. Здесь можно привести пример транзистора. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили первый компьютер, никто не представлял, как сильно изменится наша жизнь», — говорит директор Российского квантового центра Руслан Юнусов.
Один из первых компьютеров был создан в 40-х годах ХХ века и весил 27 тонн. Если сравнить с современными устройствами, то обычный смартфон по мощности — это как 20 000 таких машин. И это за 70 лет прогресса. Но если наступит эра квантовых компьютеров, уже наши потомки будут удивляться, как вообще пользоваться этим антиквариатом?
rusnext.ru
как выходцы из России могут стать лидерами «квантовой гонки» — Рамблер/новости
Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе. Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.
Сегодня есть два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого пытаются создать универсальный квантовый компьютер, чьи кубиты подчинялись бы тем правилам, по которым работают обычные цифровые устройства. Эксплуатация подобного вычислительного устройства в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами.
Адиабатический компьютер проще создать, но он ближе по принципам своей работы к арифмометрам, логарифмическим линейкам и аналоговым вычислительным машинам начала прошлого века, а не к цифровым устройствам современности.
В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что близки к созданию подобной машины. Лидером в этой неформальной гонке считалась группа Джона Мартиниса, разрабатывающая необычный «гибридный» вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.Большая квантовая игра
Михаил Лукин неожиданно для всех опередил Мартиниса, заявив 14 июля 2017 года о том, что его команде удалось создать 51-кубитную машину, и пообещав рассказать о принципах ее работы и устройства в одном из ведущих научных журналов, что произошло уже в конце ноября.
Неожиданность заявления Лукина во многом была связана не только с самим фактом создания столь сложной машины, но и с тем, что она была основана не на тех квантовых технологиях, «алмазных» кубитах, которые его команда разрабатывала на протяжении последнего десятилетия.
"Мы не отказывались от них и продолжаем работу и с алмазами, и с другими аналогами твердотельных систем. Многие из наших разработок сегодня используются не только в рамках наших собственных экспериментов по созданию квантовых компьютеров и сетей, но и на практике, в качестве различных сенсоров", — заявил ученый.
Как отметил Лукин, его команда параллельно думала о применении других вариантов создания квантовых компьютеров. По его словам, эксперимент с нейтральными атомами возник не на пустом месте — Лукин и его коллега Игнацио Ширак (Ignatio Cirac) впервые задумались об этом еще в 2001 году, но только сейчас им удалось реализовать эту идею благодаря развитию лазерных и квантовых технологий.
"В принципе, как мне кажется, еще очень рано объявлять победителя в «квантовой гонке» — разные квантовые платформы имеют свои плюсы и минусы. Поэтому нам крайне важно не фокусироваться на одной из версий, а исследовать все возможные варианты", — продолжает Лукин.
Так художник представил себе то, как работает квантовый компьютер Михаила Лукина и его коллег
К примеру, атомные и ионные кубиты, на базе которых Лукин и его «конкуренты» из университета Мэриленда под руководством Кристофера Монро (Christopher Monroe) создали свои квантовые вычислители, отличают высокая гибкость и удобство в работе."Кубиты на базе холодных атомов и ионов невероятно гибки в работе — фактически ими можно двигать, перепрограммировать и менять их конфигурацию прямо во время проведения вычислений. В этом плане твердотельные платформы, которые создают наши австралийские коллеги на базе кремния и фосфора, им сильно уступают, так как их почти нельзя поменять после того, как был создан чип", — отмечает физик.
Этот плюс атомных и ионных систем, как считает Лукин, позволит в ближайшее время занять лидирующие позиции в «квантовой гонке», так как ничто, в принципе, не мешает ни его команде, ни группе Монро создать более сложные вычислительные системы, которые будут включать в себя не десятки, а сотни кубитов.
Атомные кубиты, по мнению основателя РКЦ, смогут достичь этой отметки быстрее, чем их ионные аналоги, так как их гораздо проще контролировать, чем большое число ионов, несмотря на то, что пока первые уступают вторым в качестве работы.
"Дело в том, что при повышении числа ионов они начнут все сильнее отталкивать друг друга, в результате чего система станет неустойчивой. Крис и его коллеги смогли решить эту проблему для 53 ионов, однако что произойдет дальше, пока не понятно. Будет очень интересно взглянуть на то, как станет развиваться ситуация, когда мы выйдем на уровень в несколько сот кубитов", — поясняет исследователь.
Квантовые шрамы
Главным своим достижением профессор Лукин считает не сам факт создания компьютера, а необычный квантовый феномен, который удалось открыть его команде, наблюдая за поведением атомов и электронов во время работы этого вычислительного устройства.
"Мы перешли порог, когда можем совершать открытия, используя подобные машины. Сейчас теоретики думают о том, как можно объяснить то устойчивое состояние, которое возникает в нашей системе, если привести ее в неравновесие. Сейчас они пытаются объяснить это, используя некий аналог математической теории хаоса, называя этот феномен «квантовыми ранами» или «квантовыми шрамами». Как мне кажется, все самое интересное в ближайшие годы будет открыто именно здесь", — заявил физик.
Несмотря на то что квантовая машина, созданная Лукиным и его коллегами, представляет собой адиабатический компьютер, те же самые кубиты, как отметил ученый, можно использовать и для создания универсальных квантовых вычислителей.
"Безусловно, мы могли бы проводить такие эксперименты прямо сейчас, но нужно понимать, что сегодня в нашей области науки нет четкой границы между адиабатическим подходом и принципами, которые используются при реализации отдельных логических операций. Высокая гибкость и настраиваемость нашей системы еще больше размывает эту границу. Скорее всего, гибридный подход к вычислениям, сочетающий плюсы того и другого, будет самым интересным для нас", — пояснил ученый.
51-кубитный квантовый компьютер М. Д. Лукина
Как отметил Лукин, его команда уже работает над созданием алгоритмов коррекции ошибок и соответствующей архитектуры, которая позволяла бы их воплощать на базе атомных кубитов, однако подобные опыты имеет смысл проводить только после того, когда вычислительных модулей станет значительно больше.
"Пока мы не знаем, как создать компьютер, состоящий из нескольких тысяч или даже сотен кубитов. Добавление алгоритмов корректировки ошибок повысит сложность такой системы еще на порядок, и мы просто не понимаем, как такую систему можно масштабировать. Скорее всего, мы сейчас даже отдаленно не можем представить себе то, как будет выглядеть подобный универсальный и расширяемый компьютер будущего", — заявил Лукин.
По его словам, первые крупные квантовые компьютеры, вероятно, будут иметь не монолитную архитектуру, а состоять из «модулей» — наборов из нескольких десятков кубитов. Эти блоки свяжут между собой при помощи специальной сети, так называемого квантового интернета, что позволит им проводить достаточно сложные и объемные вычисления, недоступные для реализации на обычных суперкомпьютерах.
Практическое «квантовое превосходство»
Другой большой проблемой станет, как бы это парадоксально ни звучало для обывателя, проверка того, выдают ли подобные машины корректные результаты. Сложность заключается в том, что обычные суперкомпьютеры в принципе не могут проверить результаты квантовых вычислений, если число кубитов достигнет той отметки, когда машины на их базе станут полезными на практике.
Как считает Лукин, для их проверки не обязательно создавать сложные алгоритмы и хитрые математические подходы, которые сейчас разрабатывает команда ученых под руководством Джона Мартиниса (John Martinis). Для этого, по мнению физика, достаточно попытаться решить при их помощи известные оптимизационные задачи, например распределить потоки машин по городу или спрогнозировать поведение экономики страны.
"Что точно можно сделать — попробовать решить оптимизационную задачу. Прелесть таких задач заключается в том, что решать их сложно, а проверить — очень просто. Есть множество алгоритмов, которые могут эффективно справляться с ними, используя относительно немного — около 100 или 200 — кубитов. И если они покажут себя с хорошей стороны, то тогда мы решим сразу две актуальные проблемы — покажем, что такие компьютеры полезны и что они работают корректно", — отмечает Лукин.
Есть и другие квантовые «программы», позволяющие решить схожие задачи, такие, например, как знаменитый алгоритм Шора, позволяющий взломать систему шифрования RSA, но они имеют более узкий спектр применения и экономическую нишу.
Оптимизационные задачи, в свою очередь, затрагивают огромное число областей науки и жизни, в том числе искусственный интеллект и машинное обучение, и их эффективная реализация резко расширит поле, где квантовые компьютеры могут применяться. Подобная демонстрация практического «квантового превосходства», как считает Лукин, привлечет внимание и деньги инвесторов.
Этот успех станет большим плюсом и для науки — только реальная квантовая машина, по мнению гарвардского физика, позволит ученым, занимающимся разработкой программ для будущих квантовых компьютеров, проверить множество алгоритмов и теорий.
"Если посмотреть на то, как развивались классические компьютеры (об этом, кстати, писал сам Питер Шор), можно увидеть, что на заре их развития существовало много алгоритмов, которые считались тогда очень эффективными. Но оказалось, что многие из них бесполезны на практике. И только недавно математики выяснили, почему они не работают. То же самое, как мне кажется, произойдет с квантовыми компьютерами — жизнь полна сюрпризов", — заключает Лукин.
news.rambler.ru
анонс свежего номера журнала РБК :: Бизнес :: РБК
Главная тема свежего номера журнала РБК — квантовые технологии. В квантовой гонке участвует все больше государств и корпораций, и ее участники обещают, что квантовые компьютеры станут частью нашей жизни уже через пять-десять лет
Выходящий в конце года выпуск журнала РБК традиционно нумерован первыми месяцами 2018 года и посвящен прошлому и будущему. Проводить 2017-й редакция журнала решила, обозрев главные материалы, которые были опубликованы в уходящем году. Во всех выпусках нам удалось выделить минимум одну тему, которая «бомбила» в 2017-м и вряд ли пропадет с радаров в 2018-м, будь то падение крупнейших банков, бизнес-эмиграция, взлет видеоблогов, рэп-батлов, криптовалюты и так далее.
Один из номеров прошлого года был посвящен блокчейну — технологии, взрыв интереса к которой пришелся на 2017 год. Но на подходе еще более сложные квантовые технологии. Сейчас они проходят обкатку в лабораториях университетов и научных центров, но ждать осталось недолго: специалисты обещают, что полноценные квантовые компьютеры будут созданы в течение ближайших пяти-десяти лет.
Команда профессора Гарвардского университета Михаила Лукина в 2017 году создала один из самых мощных сегодня квантовых компьютеров. Лукин говорит, что его и его коллег много раз звали работать в корпорации, но он неизменно отказывается: «Я бы сказал, до сих пор самая креативная деятельность в этой области происходит все-таки в университетах». Когда у нас будут работающие квантовые компьютеры, что они будут уметь и почему их создание так важно, читайте в материале «Будущее наступило или нет: когда у нас будут квантовые компьютеры?». Также в этом номере фоторепортаж из Российского квантового центра, сооснователем которого является Михаил Лукин.
Квантовые технологии — поле битвы «больших батальонов», у стартаперов из родительских гаражей здесь нет шансов. Государства и корпорации вкладывают в квантовые программы уже сотни миллионов и миллиарды долларов: одним прыжком обогнать всех недавно решил Китай, пообещавший вложить $11,5 млрд в строительство нового квантового центра. Мы сделали подробную карту участников большой квантовой гонки. Из нее вы сможете узнать, сколько стоят квантовые программы разных стран, больших корпораций, институтов и квантовых центров.
Почти 40 лет назад американская IBM была пионером рынка персональных компьютеров. С тех пор компания выросла в глобального технологического гиганта, но проспала мобильную революцию и пропустила вперед многих конкурентов. Вновь возглавить гонку инноваций IBM надеется за счет развития квантовых технологий: журнал РБК изучил, как компания выстраивает полноценную экосистему из квантовых «железа», софта и коммуникаций. Читайте об этом в материале «Квантовый шанс».
Корреспондент журнала РБК съездила в Магнитогорск, где создают робота-спасателя по имени Федор. Российский «аватар» может повторить действия оператора даже на расстоянии тысячи километров. Это совместная работа Фонда перспективных исследований (ФПИ), МЧС и НПО «Андроидная̆ техника»: робот должен помогать МЧС, а в 2022 году — отправиться в космос на корабле «Федерация». Читайте о Федоре в рубрике «Лаборатория».
В 2017 году крупнейшая на постсоветском пространстве криптобиржа BTC-e лопнула, когда на пляже в Греции полиция задержала Александра Винника, а ФБР арестовало в США серверы площадки. Винника считают владельцем BTC-e, по данным обвинения, за шесть лет через биржу прошло $9 млрд. РБК выяснил, как криптобиржа прошла путь от перспективного стартапа до преследований ФБР, и кто является ее возможными бенефициарами — в расследовании «США против BTC-e».
Об этом и многом другом читайте в журнале РБК № 1–2 за 2018 год, который поступил в продажу 21 декабря.
www.rbc.ru
Физики из MIT и России раскрыли принципы работы первого в мире 51-кубитного квантового компьютера
Ученые надеются, что создание более сложных машин, состоящих из сотен кубитов, поможет раскрыть их природу и понять, можно ли использовать подобные вычислители для решения практических задач
Физики из MIT и России раскрыли принципы работы первого в мире 51-кубитного квантового компьютера, о создании которого Михаил Лукин объявил в июле этого года на конференции ICQT-2017 в Москве, сообщает РИА Новости. Об этом говорится в статье, опубликованной в журнале Nature.
"Подобные машины можно использовать не только для науки, но и решения оптимизационных задач. Похоже, что мы можем решить очень сложные проблемы, управляя положением атомов и тем, как они взаимодействуют друг с другом. Пока не понятно, будут ли такие квантовые алгоритмы быстрее их классических конкурентов, однако сейчас мы вплотную приблизились к их проверке на практике, используя квантовые системы, содержащие в себе сотни кубитов. Все это очень интересно и для науки", — рассказывает Лукин.
Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе. Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.
Сегодня существует два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства.
Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами. Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала XX века, а не к цифровым устройствам современности.
В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что они близки к созданию подобной машины. Лидером в этой неформальной гонке считалась команда Джона Мартиниса из компании Google, разрабатывающая необычный "гибридный" вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.
Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра (РКЦ), неожиданно для всех опередил Мартиниса в этой гонке, заявив 14 июля этого года о том, что его команде удалось создать 51-кубитную машину, и пообещав рассказать о принципах ее работы и устройства в одном из ведущих научных журналов.
"В нашем компьютере все происходит внутри небольшой вакуумной камеры, внутри которой находится очень разреженное облако из атомов, охлажденных до околонулевых температур. Когда мы "обстреливаем" это облако примерно сотней лазерных лучей, каждый из них превращается в ловушку, которая удерживает в себе ровно один атом и в принципе не может содержать два атома. После этого начинается все самое интересное", — рассказывает Лукин.
Роль кубитов в данном случае играют особые частицы, которые физики называют "атомами Ридберга". Они представляют собой атомы рубидия-87 или других щелочных металлов, чей свободный электрон был "отодвинут" на огромное расстояние от ядра при помощи особых лазерных или радиоволновых импульсов. Благодаря этому размеры атома увеличиваются примерно в миллион раз.
Подобными "атомами" гораздо проще манипулировать, чем их обычными "кузенами", и они обладают одним чрезвычайно полезным свойством для квантовых компьютеров – они отталкивают друг друга и взаимодействуют друг с другом на очень больших расстояниях.
Это позволило Лукину и его команде превратить набор из нескольких десятков подобных "атомов" в адиабатический квантовый компьютер, работой кубитов которых ученые могут управлять, обстреливая их еще одним лазером.
Данный компьютер, как и прочие аналоговые квантовые машины, работает "сам по себе", без вмешательства со стороны ученых, благодаря квантовым взаимодействиям атомов Ридберга между собой, которые происходят после того, как физики временно отключают лазеры, удерживавшие их на месте во время "настройки" компьютера.
Первые эксперименты с этим вычислителем, как рассказывал Лукин летом в Москве, уже позволили физикам раскрыть несколько любопытных квантовых эффектов, о существовании которых ученые раньше не подозревали. Лукин и его коллеги надеются, что создание более сложных машин, состоящих из сотен кубитов, поможет раскрыть их природу и понять, можно ли использовать подобные аналоговые вычислители для решения серьезных практических задач.
scientificrussia.ru