Десять крупнейших событий 2017 года в физике и астрономии. Новые открытия в квантовой физике 2018


Квантовый блокчейн: как открытия физиков произведут революцию в IT

МОСКВА, 10 мар — РИА Новости. Создатель первого квантового блокчейна Алексей Федоров рассказал о том, кого может заинтересовать подобное объединение инноваций в IT и физике и как квантовые технологии поменяют весь цифровой мир.

Система квантовой шифрации данных, создаваемая в РКЦФизики из России создали первый в мире квантовый блокчейнИдея распределенных реестров — баз данных, копии которых хранятся и обновляются сразу у нескольких независимых пользователей, появилась достаточно давно, около 30 лет назад. Несмотря на перспективность этой идеи, массовый интерес к ней возник относительно недавно, в 2008 году, когда была создана первая криптовалюта на ее основе, биткоин.

Прорывной идеей в области распределенных реестров стал блокчейн — способ хранения информации о совершенных транзакциях в виде последовательности блоков, следующих друг за другом.

Ключ к корректной работе блокчейна — обеспечение целостности базы данных у всех независимых пользователей. Иными словами, каждый участник сети должен быть уверен, что его версия реестра совпадает с версиями остальных пользователей, у каждого есть собственная копия таблицы проведенных операций и ни один другой человек не сможет распоряжаться его ресурсами внутри этой базы данных.

Для решения этих вопросов программисты используют криптографические хэш-функции, электронно–цифровые подписи и прочие математические приемы, затрудняющие подделку и взлом этого реестра.

Пункт обмена биткоинов в Нью-ЙоркеЦепная реакция: криптовалюты, умные контракты и честные выборы

Сегодня считается, что такие криптографические алгоритмы неуязвимы для атак при помощи обычных компьютеров, однако быстрое развитие квантовых вычислений может лишить их этой "суперспособности". Тогда существующие блокчейны уже не смогут обеспечить защиту финансовых сведений и других данных.

Летом прошлого года Алексей Федоров и его коллеги из Российского квантового центра — группа Юрия Курочкина и Александра Львовского — впервые предложили решение этой проблемы, соединив две набирающие популярность технологии: блокчейн и квантовую криптографию.

— Алексей, помимо очевидного интереса со стороны банковского и финансового секторов, где еще можно использовать подобные квантово-защищенные блокчейны и где их применение было бы целесообразным?

— Квантовые технологии традиционно привлекают внимание финансовых организаций — не только в России, по всему миру. Это очень хорошо, что именно банки становятся своеобразными тестовыми площадками для нас.

Что может быть дальше? Как мне кажется, квантовые блокчейны и близкие к ним разработки пригодятся в государственной сфере — в направлениях, стратегически важных с точки зрения информационной безопасности.

Наступление квантового века неизбежно, считают ученыеСкачок в будущее: как Россия и Германия победят в квантовой гонке

Об их массовом коммерческом применении пока говорить сложно, поскольку этому мешают ограничения, накладываемые самой технологией квантового блокчейна, и отсутствие необходимой для нее инфраструктуры в виде квантовых сетей.

Сначала необходимо создать квантовый интернет — глобальную многопользовательскую сеть, защищенную квантовой криптографией, а это потребует много времени и ресурсов. Поэтому вряд ли конечные пользователи смогут воспользоваться квантовым блокчейном в обозримом будущем.

Алексей Федоров, физик из Российского квантового центра

Как и всегда, возникает вопрос о целесообразности: нужна ли столь защищенная система обычному пользователю? С одной стороны, кажется, что сейчас она не нужна. С другой стороны, каждый раз, когда я так говорю, вспоминаю прогноз Томаса Уотсона, президента IBM, считавшего, что мировому рынку потребуется не больше пяти компьютеров.

Создание квантового интернета требует огромных ресурсов, но гарантирует абсолютный уровень защиты. С развитием технологий квантовый интернет вполне может стать такой же естественной частью нашей жизни, как нынешний.

Полагаю, наше предложение важно не только само по себе, но еще и потому, что оно привлекло внимание публики и научного сообщества к новым информационным технологиям, таким как блокчейн, и к тем проблемам безопасности, которые неразрывно с ними связаны.

Игра в покерФизики создали абсолютно честное квантовое казино

Множество людей пытается сегодня внедрить блокчейны в нашу жизнь, не уделяя достаточного внимания проблемам безопасности. Собственно, любой человек, знакомый с квантовыми вычислениями и безопасностью, мог бы найти эту уязвимость в работе блокчейнов, объяснить ее и предложить решение. Этого почему-то никто не сделал, и мы были первыми, кому удалось это реализовать.

Что интересно, почти все крупные квантовые сети, уже существующие в мире, можно использовать подобным образом, хотя никто об этом и не думал раньше. Так они принесут больше пользы, чем если мы просто будем шифровать абсолютно все, что через них передается.

— Помимо самих квантовых каналов и технологий передачи данных, в обмене ими участвуют и люди, и классические компьютеры, не отличающиеся абсолютной стойкостью к взлому. Можно ли как-то ликвидировать эту уязвимость?

— Полностью избавиться от этой проблемы не получится, однако мне кажется, что можно сделать задачу написания вируса или организации фишинга настолько сложной, что подобные занятия станут коммерчески неинтересными. Это, на мой взгляд, наиболее рациональный подход — сделать зло невыгодным для злоумышленника. Часть этой задачи можно решить посредством криптографии.

С другой стороны, есть такая вещь, как социальная инженерия, с которой бороться гораздо сложнее. Конечно, можно создать систему искусственного интеллекта, подсказывающую пользователям, как защититься от подобных атак, однако в данном случае мы сталкиваемся не только с математической проблемой, но и с реальной жизнью.

Звездное небо, наблюдаемое в Краснодарском крае во время метеорного потока ПерсеидыУченые подсчитали мощность компьютера размером с Вселенную

Технологии квантовой защиты здесь, к сожалению, сейчас не помогут, так как они нацелены на решение одной конкретной, совсем другой задачи.

— Помогут ли спутники, подобные недавно запущенному "Мо–Цзы", распространению квантовых блокчейнов и расширению их практического применения?

— По сути, это следующий шаг в развитии подобных технологий. Сегодня существуют небольшие сети, использующие оптоволоконные кабели и состоящие из двух-пяти узлов, средние и большие сети из десятков и сотен узлов, а затем должен появиться глобальный квантовый интернет.

Спутники критически важны для его создания — без них межконтинентальные системы связи крайне сложно реализовать.С другой стороны, из-за спутников возникает проблема доверия, доверенных узлов сети. Кто и как их контролирует — это тоже вопрос безопасности, для обеспечения которой необходим еще один уровень защиты.

— Попытается ли кто-нибудь взломать подобные квантовые блокчейны?

— Здесь та же ситуация, что и с квантовой криптографией: если рассматривать их как идеализированные математические концепции, то взламывать таковые нет смысла. Однако конкретная инженерная реализация этих идей необязательно будет абсолютно неуязвимой для взлома — к примеру, можно ослепить детекторы.

Иными словами, нельзя взять какую-то идеальную концепцию, поместить ее в реальный мир и ожидать, что она останется такой же неприступной. Всегда есть какие-то бэкдоры и дыры — любой специалист по безопасности скажет, что даже в самой идеальной системе защиты данных имеется как минимум одна уязвимость.

Система квантовой связи, созданная в Российском квантовом центре

Поэтому, как мне кажется, кто-нибудь обязательно попытается взломать блокчейн. Хотя интереснее было бы найти альтернативу. К примеру, есть такая вещь, как квантовые цифровые подписи, — я бы задумался, можно ли использовать их вместо обычных подписей или квантовой криптографии и обеспечит ли это достаточный уровень безопасности.

Квантовый телефон, созданный в МГУФизики из МГУ создали и проверили в деле "квантовый телефон"

Реализация этой идеи, к примеру, позволила бы "внешним" пользователям работать с блокчейном, не имея прямого доступа к квантовой сети, через которую происходит обмен данными в нашей системе сейчас. В отличие от технологий шифрования и связи, квантовые электронные подписи появились совсем недавно, инфраструктуры для их использования пока нет. Поэтому тут сложно приводить какие-то конкретные примеры и давать прогнозы.

— Повлияло ли создание квантового блокчейна на скорость разработки алгоритмов шифрования данных, стойких к квантовым компьютерам?

— Хотелось бы думать, что да — если привлечь внимание общественности к каким-либо проблемам, они, как правило, начинают решаться быстрее. Я, конечно, видел несколько попыток разобраться в этом до публикации нашего исследования, но все они не были достаточно серьезными.

После выхода нашей работы внезапно опубликовали еще пять-шесть статей, посвященных тому, как можно защитить биткоин, насколько вероятен взлом его блокчейна и так далее.

Система квантовой связи, созданная в университете ИТМО и КАИРоссийские физики запустили в Казани первый "квантовый телефон"

Технологии развиваются, и сейчас блокчейн-сообщество, в том числе и Etherium, внимательно присматривается к тому, что может предложить квантовая криптография и алгоритмы защиты данных, стойкие к квантовому взлому.

— Сегодня большая часть квантовых сетей и систем передачи данных создается на базе уже существующей инфраструктуры, изначально не приспособленной для решения таких задач. Что оптимальнее для развития квантовых сетей и блокчейнов?

— На самом деле, нужно и то и другое. Можно привести следующую аналогию — практически у каждого из нас есть компьютер, и мы периодически меняем его на более современную модель. Пока он справляется со своей задачей, брать новый смысла нет.

Аналогичным образом — когда люди увидят, что защищенная сеть работает в десять раз быстрее, если поставить новый оптоволоконный кабель, и в этом будет потребность, тогда инфраструктуру обновят.

К примеру, в эксперименте со Сбербанком нам выделили оптоволоконный канал длиной в 25 километров, состоявший из восьми спаек. Каждая такая спайка отражает часть фотонов назад и создает другие помехи. Если бы это оптоволокно было качественным и не состояло из отдельных кусков, такой уровень потерь наблюдался бы на канале длиной не в 25, а 75 километров. Качество линии очень влияет на скорость распределения ключей. 

Система квантового шифрования данных, создаваемая в РКЦ

При этом надо понимать, что устройство, которое получало квантовые ключи, могло считывать их лишь раз в четыре минуты, поэтому даже такого канала нам хватало с избытком. Мы могли бы, в принципе, подключить еще несколько передатчиков и приемников, если бы возникла такая необходимость.

В общем, если говорить, что данные — это новая нефть, то надо строить не только новые трубопроводы, но и улучшать старые, если это требуется для нефтехранилищ, и делать их безопасными настолько, насколько это возможно.

— В прошлом году ученые активно обсуждали возможность использования квантовых вычислительных систем для обучения систем ИИ и создания нейросетей. Насколько это реалистично?

— Эту идею очень серьезно изучает и рассматривает группа Джейкоба Биамонте из "Сколтеха" в рамках проекта Quantum Complexity Science Initiative. На самом деле, подобных приложений у квантовых компьютеров может быть масса, и поэтому здесь нам стоит сначала определиться с тем, что мы имеем в виду под терминами "искусственный интеллект" и его обучение.

Система квантовой связи, созданная в Российском квантовом центре
Российские физики объединили банки первой рабочей линией квантовой связи

К примеру, квантовые алгоритмы можно применять для того, чтобы ускорять математические процедуры, задействованные в работе систем машинного обучения. Кроме того, квантовые системы реально использовать для решения задач оптимизации и множеством других способов.

Интересно также, что математические структуры, возникающие в нейронных сетях, иногда бывают полезны для описания некоторых квантовых физических систем, содержащих в себе множество частиц, которые интересны уже ученым, а не программистам. В общем, внимание к нейросетям со всех сторон говорит о том, что у них очень большой потенциал.

Лично мне кажется, что подобные системы ИИ можно использовать для демонстрации так называемого квантового превосходства. Доказательства того, что квантовые вычислительные системы способны решать те задачи, которые обычным компьютерам не под силу.

Конечно, есть и другие варианты проверки "превосходства" квантовых компьютеров, однако они или бесполезны с практической точки зрения, или же слишком сложны для реализации с учетом ограничений существующих систем. Квантовое обучение нейросетей не потребует столь больших ресурсов и при этом принесет нам что-то, что в будущем даст конкретную пользу.

Искусственный интеллектУченые из "Сколтеха" предлагают создать квантовый искусственный интеллект

В общем, будущие или уже существующие системы из 50 или 60 кубитов, такие как программируемый квантовый симулятор Михаила Лукина, позволят нам решать интересные и практически значимые задачи.

В этом плане очень умно поступает компания IBM, создавшая первое облако квантовых вычислений. Они коллекционируют запросы, знания и подходы всех людей со всего мира, и это очень ценно и важно на данном этапе развития квантовых вычислительных технологий и квантового ИИ.

ria.ru

ПОТРЯСАЮЩИЕ ОТКРЫТИЯ КВАНТОВОЙ ФИЗИКИ — "Эзотерика-инфо"- портал самопознания и духовного развития"

ПОТРЯСАЮЩИЕ ОТКРЫТИЯ КВАНТОВОЙ ФИЗИКИ

«Тот, кто не был потрясен при первом знакомстве с квантовой теорией, скорее всего, просто ничего не понял». Нильс Бор

Положения квантовой теории настолько ошеломительны, что она больше похожа на научную фантастику.

Частица микромира может находиться в двух и более местах одновременно!

(Один из совсем недавних экспериментов показал, что одна из таких частиц может находиться одновременно в 3000 мест!)

Один и тот же «объект» может быть и локализованной частицей, и энергетической волной, распространяющейся в пространстве.

Эйнштейн выдвинул постулат: ничто не может двигаться быстрее скорости света. Но квантовая физика доказала: субатомные частицы могут обмениваться информацией мгновенно — находясь друг от друга на любом удалении.

Классическая физика была детерминированной: исходя из начальных условий, вроде местоположения и скорости объекта, мы можем рассчитать, куда он будет двигаться. Квантовая физика — вероятностна: мы никогда не можем с абсолютной уверенностью сказать, как поведет себя исследуемый объект.

Классическая физика была механистичной. Она основана на предпосылке: только зная отдельные части объекта, мы в конечном счете можем понять, что он из себя представляет.

Квантовая физика целостна: она рисует картину Вселенной как единого целого, части которого взаимосвязаны и влияют друг на друга.

И, наверно, наиболее важно то, что квантовая физика уничтожила представление о принципиальном различии между субъектом или объектом, наблюдателем и наблюдаемым — а ведь оно властвовало над учёными умами в течение 400 лет!

В квартовой физике наблюдатель влияет на наблюдаемый объект. Нет никаких изолированных наблюдателей механической Вселенной — всё принимает участие в её существовании.

ПОТРЯСЕНИЕ №1 — ПУСТОЕ ПРОСТРАНСТВО

Одну из первых трещин в прочной конструкции ньютоновской физики сделало следующее открытие: атомы — эти твёрдые стандартные блоки физической Вселенной! — состоят главным образом из пустого пространства. Насколько пустого? Если увеличить ядро атома водорода до размера баскетбольного мяча, то единственный вращающийся вокруг него электрон будет находиться на расстоянии в тридцать километров, а между ядром и электроном — ничего. Так что глядя вокруг, помните: реальность — это мельчайшие точечки материи, окружённые пустотой.

Впрочем, не совсем так. Эта предполагаемая «пустота» на самом деле не пуста: она содержит колоссальное количество невероятно мощной энергии. мы знаем, что энергия становится всё плотнее по мере перехода на более низкий уровень материи (например, ядерная энергия в миллион раз мощнее химической). Сейчас учёные говорят, что в одном кубическом сантиметре пустого пространства больше энергии, чем во всей материи известной Вселенной. Хотя учёные не смогли измерить её, они видят результаты действия этого моря энергии.

ПОТРЯСЕНИЕ №2 — ЧАСТИЦА, ВОЛНА ИЛИ ВОЛНОЧАСТИЦА?

Мало того, что атом почти сплошь состоит из «пространства» — когда учёные более глубоко исследовали его, обнаружили, что субатомные (составляющие атом) частицы также не сплошные. И, похоже, они имеют двойственную природу. В зависимости от того, как мы их наблюдаем, они могут вести себя или как твёрдые микротела, или как волны.

Частицы — это отдельные твёрдые объекты, занимающие определённое положение в пространстве. А волны не имеют «тела», они не локализованы и распространяются в пространстве.

В качестве волны электрон или фотон (частица света) не имеет точного местоположения, но существует как «поле вероятностей». В состоянии частицы поле вероятностей «схлопывается» (коллапсирует) в твёрдый объект. Его координаты в четырёхмерном пространстве-времени уже можно определить.

Это удивительно, но состояние частицы (волна или твёрдый объект) задаётся актами наблюдения и измерения. Не измеряемые и не наблюдаемые электроны ведут себя подобно волнам. Как только мы подвергаем их наблюдению в процессе эксперимента, они «схлопываются» в твёрдые частицы и могут быть зафиксированы в пространстве.

Но как может быть что-то одновременно и твёрдо частицей и текучей волной? Возможно, парадокс будет разрешён, если мы вспомним то, о чём недавно говорили: частицы ведут себя как волны или как твёрдые объекты. Но понятия «волна» и «частица» — это всего лишь аналогии, взятые из нашего повседневного мира. Понятие волны было введено в квантовую теорию Эрвином Шредингером. Он автор знаменитого «волнового уравнения», которое математически обосновывает существование у твёрдой частицы волновых свойств до акта наблюдения. Некоторые физики — в попытке объяснить то, с чем они никогда не сталкивались и не могут до конца разобраться, — называют субатомные частицы «волночастицами».

ПОТРЯСЕНИЕ №3 — КВАНТОВЫЕ СКАЧКИ И ВЕРОЯТНОСТЬ

Изучая атом, учёные обнаружили: когда электроны, вращаясь вокруг ядра, перемещаются с орбиты на орбиту, они не движутся в пространстве как обычные объекты. Нет, они покрывают расстояние мгновенно. То есть исчезают в одном месте и появляются в другом. Этот феномен назвали квантовым скачком.

Мало того, учёные поняли, что не могут точно определить, где именно на новой орбите появится исчезнувший электрон или в какой момент он будет совершать скачок. Самое большее, что они смогли сделать — рассчитать вероятность (на основании волнового уравнения Шредингера) нового местоположения электрона.

«Реальность, как мы её ощущаем, создаётся в каждый момент времени в совокупности бесчисленных возможностей, — говорит доктор Сатиновер. — Но настоящая тайна — в том, что нет ничего в физической Вселенной, что бы определяло, какая именно возможность из этой совокупности осуществится. Нет процесса, который это устанавливает».

Таким образом, квантовые скачки — единственные по-настоящему случайные события во Вселенной.

ПОТРЯСЕНИЕ №4 — ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ

В классической физике все параметры объекта, включая его пространственные координаты и скорость, могут быть измерены с точностью, ограниченной только возможностями экспериментальных технологий. Но на квантовом уровне всякий раз, когда вы определяете одну количественную характеристику объекта, например скорость, вы не можете получить точных значений других его параметров, например координат. Другими словами: если вы знаете, как быстро объект движется, вы не можете знать, где он находится. И наоборот: если вы знаете, где он находится, не можете знать, с какой скоростью он движется.

Как бы ни изощрялись экспериментаторы, какие бы продвинутые технологии измерений ни использовали — заглянуть за эту завесу им не удаётся.

Вернер Гейзенберг, один из пионеров квантовой физики, сформулировал принцип неопределённости. Суть его в следующем: как ни бейся, одновременно невозможно получить точные значения координат и скорости квантового объекта. Чем большей точности мы добиваемся в измерении одного параметра, тем более неопределённым становится другой.

ПОТРЯСЕНИЕ №5 — НЕЛОКАЛЬНОСТЬ, ЭПР-ПАРАДОКС И ТЕОРЕМА БЕЛЛА

Альберт Эйнштейн недолюбливал квантовую физику. Оценивая изложенную в квантовой физике вероятностную природу субатомных процессов, он говорил: «Бог не играет в кости с Вселенной». А вот Нильс Бор ему отвечал: «Перестаньте учить Бога, что ему делать!»

В 1935 году Энштейн и его коллеги Подольский и Розен (ЭПР) попытались нанести поражение квантовой теории. Учёные на основании положений квантовой механики провели мысленный эксперимент и пришли к парадоксальному выводу. (Он должен был показать ущербность квантовой теории). Суть их размышлений такова. Если мы имеем две одновременно возникшие частицы, то это означает, что они взаимосвязаны или находятся в состоянии суперпозиции. Отправим их в разные концы Вселенной. Затем изменим состояние одной из частиц. Тогда, согласно квантовой теории, другая частица мгновенно приходит в то же состояние. Мгновенно! На другом краю мироздания!

Подобная идея была настолько смехотворна, что Эйнштейн саркастически отозвался о ней как о «сверхъестественном дальнодействии». Согласно его теории относительности, ничто не может двигаться быстрее света. А в ЭПР-эксперименте выходило, что скорость обмена информацией между частицами бесконечна! Кроме того, сама мысль, что электрон может «отслеживать» состояние другого электрона на противоположном краю Вселенной, полностью противоречила общепринятым представлениям о реальности, да и вообще здравому смыслу.

Но вот в 1964 году ирландский физик-теоретик Джон Белл сформулировал и доказал теорему, из которой следовало: «смехотворные» выводы из мысленного эксперимента ЭПР — истинны!

Частицы тесно связаны на определённом уровне, выходящем за рамки времени и пространства. Поэтому способны мгновенно обмениваться информацией.

Представление о том, что любой объект Вселенной локален — т.е. существует в каком-то одном месте (точке) пространства — не верно. Все в этом мире нелокально.

С той поры, как Белл опубликовал свою теорему, её теоретическое доказательство снова и снова экспериментально подтверждалось в лабораториях.

Тем не менее этот феномен является действующим законом Вселенной. Шредингер говорил, что взаимосвязь между объектами — не единственный интересный аспект квантовой теории, но важнейший. В 1975 году физик-теоретик Генри Стэпп назвал теорему Белла «самым значительным открытием науки». Обратите внимание, что он говорил о науке, а не только о физике.

(статья подготовлена по материалам книги У. Арнтц, Б. Чейс, М. Висенте «Кроличья нора, или что мы знаем о себе и Вселенной?», глава «Квантовая физика»)

ПОТРЯСАЮЩИЕ ОТКРЫТИЯ КВАНТОВОЙ ФИЗИКИ

3.3 (65%) 4 votes

ezoterika-info.ru

10 потрясающих открытий в физике

Изучать физику значит изучать Вселенную. Точнее, как работает Вселенная. Вне всяких сомнений, физика — самая интересная ветвь науки, поскольку Вселенная куда сложнее, чем кажется, и она вмещает в себя все сущее. Иногда мир ведет себя очень странно, и возможно, вы должны быть настоящим энтузиастом, чтобы разделить с нами радость по поводу этого списка. Перед вами десять самых удивительных открытий в новейшей физике, которые заставили многих и многих ученых ломать головы не годами — десятилетиями.

На скорости света время останавливается

Согласно специальной теории относительности Эйнштейна, скорость света неизменна — и равна приблизительно 300 000 000 метров в секунду, вне зависимости от наблюдателя. Это само по себе невероятно, учитывая что ничто не может двигаться быстрее света, но все еще сугубо теоретично. В специальной теории относительности есть интересная часть, которая называется «замедление времени» и которая говорит, что чем быстрее вы движетесь, тем медленнее для вас движется время, в отличие от окружения. Если вы будете ехать на автомобиле час, вы постареете немного меньше, чем если бы просто сидели у себя дома за компьютером. Дополнительные наносекунды вряд ли существенно изменят вашу жизнь, но все же факт остается фактом.

Выходит, если двигаться со скоростью света, время вообще застынет на месте? Это так. Но прежде чем вы попытаетесь стать бессмертным, учтите, что двигаться со скоростью света невозможно, если вам не повезло родиться светом. С технической точки зрения движение со скоростью света потребует бесконечного количества энергии.

Квантовая запутанность

Только что мы пришли к выводу, что ничто не может двигаться быстрее, чем со скоростью света. Что ж… и да, и нет. Хотя технически это остается верным, в теории существует лазейка, которую нашли в самой невероятной ветви физики — в квантовой механике.

Квантовая механика, по сути, это изучение физики на микроскопических масштабах, таких как поведение субатомных частиц. Эти типы частиц невероятно малы, но крайне важны, поскольку именно они образуют строительные блоки всего во Вселенной. Можете представить их как крошечные вращающиеся электрически заряженные шарики. Без лишних сложностей.

Итак, у нас есть два электрона (субатомных частиц с отрицательным зарядом). Квантовая запутанность — это особый процесс, который связывает эти частицы таким образом, что они становятся идентичными (обладают одинаковым спином и зарядом). Когда это происходит, с этого момента электроны становятся идентичными. Это означает, что если вы измените один из них — скажем, измените спин — второй отреагирует незамедлительно. Вне зависимости от того, где он находится. Даже если вы его не будете трогать. Влияние этого процесса потрясающее — вы понимаете, что в теории эту информацию (в данном случае, направление спина) можно телепортировать куда угодно во вселенной.

Гравитация влияет на свет

Вернемся к свету и поговорим об общей теории относительности (тоже за авторством Эйнштейна). В эту теорию входит понятие, известное как отклонение света — путь света не всегда может быть прямым.

Как бы это странно ни звучало, это было доказано неоднократно. Хотя у света нет никакой массы, его путь зависит от вещей, у которых эта масса есть — вроде солнца. Поэтому если свет от далекой звезды пройдет достаточно близко к другой звезде, он обогнет ее. Как это касается нас? Да просто: возможно, те звезды, которые мы видим, находятся совсем в других местах. Помните, когда в следующий раз будете смотреть на звезды: все это может быть просто игра света.

Темная материя

Благодаря некоторым теориям, которые мы уже обсудили, у физиков есть довольно точные способы измерения общей массы, присутствующей во Вселенной. Также у них есть довольно точные способы измерения общей массы, которую мы можем наблюдать — но вот незадача, два этих числа не совпадают.

На самом деле, объем общей массы во Вселенной значительно больше, чем общая масса, которую мы можем посчитать. Физикам пришлось искать объяснение этому, и в результате появилась теория, включающая темную материю — таинственное вещество, которое не испускает света и берет на себя примерно 95% массы во Вселенной. Хотя существование темной материи формально не доказано (потому что мы не можем ее наблюдать), в пользу темной материи говорит масса свидетельств, и она должна существовать в той или иной форме.

Наша Вселенная быстро расширяется

Понятия усложняются, и чтобы понять почему, нам нужно вернуться к теории Большого Взрыва. До того как стать популярным телешоу, теория Большого Взрыва была важным объяснением происхождения нашей Вселенной. Если проще: наша вселенная началась со взрыва. Обломки (планеты, звезды и прочее) распространились во всех направлениях, движимые огромной энергией взрыва. Поскольку обломки достаточно тяжелые, мы ожидали, что это взрывное распространение должно замедлиться со временем.

Но этого не произошло. На самом деле, расширение нашей Вселенной происходит все быстрее и быстрее с течением времени. И это странно. Это означает, что космос постоянно растет. Единственный возможный способ объяснить это — темная материя, а точнее темная энергия, которая и вызывает это постоянное ускорение. А что такое темная энергия? Вам лучше не знать.

Любая материя — это энергия

Материя и энергия — это просто две стороны одной медали. На самом деле, вы всегда это знали, если когда-нибудь видели формулу  E = mc2. E — это энергия, а m — масса. Количество энергии, содержащейся в конкретном количестве массы, определяется умножением массы на квадрат скорости света.

Объяснение этого явления весьма захватывает и связано с тем, что масса объекта возрастает по мере приближения к скорости света (даже если время замедлится). Доказательство довольно сложное, поэтому можете просто поверить на слово. Посмотрите на атомные бомбы, которые преобразуют довольно небольшие объемы материи в мощные выбросы энергии.

Корпускулярно-волновой дуализм

Некоторые вещи не так однозначны, какими кажутся. На первый взгляд, частицы (например, электрон) и волны (например, свет) кажутся совершенно разными. Первые — твердые куски материи, вторые — пучки излучаемой энергии, или что-то типа того. Как яблоки и апельсины. Оказывается, вещи вроде света и электронов не ограничиваются лишь одним состоянием — они могут быть и частицами, и волнами одновременно, в зависимости от того, кто на них смотрит.

Серьезно. Звучит смешно, но существуют конкретные доказательства того, что свет — это волна, и свет — это частица. Свет — это и то, и другое. Одновременно. Не какой-то посредник между двумя состояниями, а именно и то и другое. Мы вернулись в область квантовой механики, а в квантовой механике Вселенная любит именно так, а не иначе.

Все объекты падают с одинаковой скоростью

Многим может показаться, что тяжелые объекты падают быстрее, чем легкие — это звучит здраво. Наверняка, шар для боулинга падает быстрее, чем перышко. Это действительно так, но не по вине гравитации — единственная причина, по которой получается так, в том, что земная атмосфера обеспечивает сопротивление. Еще 400 лет назад Галилей впервые понял, что гравитация работает одинаково на всех объектах, вне зависимости от их масс. Если бы вы повторили эксперимент с шаром для боулинга и пером на Луне (на которой нет атмосферы), они упали бы одновременно.

Квантовая пена

Ну все. На этом пункте можно тронуться умом.

Вы думаете, что пространство само по себе пустое. Это предположение довольно разумное — на то оно и пространство, космос. Но Вселенная не терпит пустоты, поэтому в космосе, в пространстве, в пустоте постоянно рождаются и гибнут частицы. Они называются виртуальными, но на самом деле они реальны, и это доказано. Они существуют доли секунды, но это достаточно долго, чтобы сломать некоторые фундаментальные законы физики. Ученые называют это явление «квантовой пеной», поскольку оно ужасно напоминает газовые пузырьки в безалкогольном газированном напитке.

Эксперимент с двойной щелью

Выше мы отмечали, что все может быть и частицей, и волной одновременно. Но вот в чем загвоздка: если в руке лежит яблоко, мы точно знаем, какой оно формы. Это яблоко, а не какая-нибудь яблочная волна. Что же определяет состояние частицы? Ответ: мы.

Эксперимент с двумя щелями — это просто невероятно простой и загадочный эксперимент. Вот в чем он заключается. Ученые размещают экран с двумя щелями напротив стены и выстреливают пучком света через щель, чтобы мы могли видеть, где он будет падать на стену. Поскольку свет — это волна, он создаст определенную дифракционную картину, и вы увидите полоски света, рассыпанные по всей стене. Хотя щели было две.

Но частицы должны реагировать иначе — пролетая через две щели, они должны оставлять две полоски на стене строго напротив щелей. И если свет — это частица, почему же он не демонстрирует такое поведение? Ответ заключается в том, что свет будет демонстрировать такое поведение — но только если мы захотим. Будучи волной, свет пролетает через обе щели одновременно, но будучи частицей, он будет пролетать только через одну. Все, что нам нужно, чтобы превратить свет в частицу — измерять каждую частицу света (фотон), пролетающую сквозь щель. Представьте себе камеру, которая фотографирует каждый фотон, пролетающий через щель. Этот же фотон не может пролетать через другую щель, не будучи волной. Интерференционная картина на стене будет простой: две полоски света. Мы физически меняем результаты события, просто измеряя их, наблюдая за ними.

Это называется «эффект наблюдателя». И хотя это хороший способ закончить эту статью, она даже поверхностно не копнула в совершенно невероятные вещи, которые находят физики. Есть куча вариаций эксперимента с двойной щелью, еще более безумные и интересные. Можете поискать их, только если не боитесь, что квантовая механика засосет вас с головой.

hi-news.ru

Десять крупнейших событий 2017 года в физике и астрономии

Гравитационные волны от слияния нейтронных звёзд

Столкновение нейтронных звёзд. Иллюстрация: NSF/LIGO/Sonoma State University/A. Simonnet.

Завершённый туннель ускорителя. Фото: European XFEL / Heiner Muller-Elsner.

Компактный нейтринный детектор, который сжимает в руках физик Бьёрн Шольц, по форме и размеру напоминает обычную бутылку. Фото: Juan Collar/uchicago.edu.

Планеты системы TRAPPIST-1 в сравнении с планетами Солнечной системы. Иллюстрация: NASA/JPL-Caltech.

Снимок колец Сатурна, полученный с помощью аппарата «Кассини». Фото: Space Science Institute/JPL-Caltech/NASA.

Самым значимым открытием 2017 года стала первая в истории регистрация гравитационных волн от слияния двух нейтронных звёзд. Астрономам впервые удалось одновременно зафиксировать возникшие при слиянии гамма-вспышки, а затем найти и исследовать место, где произошла космическая катастрофа, — в 100 миллионах световых лет от Земли.

Обнаружили гравитационные волны 17 августа гравитационно-волновые детекторы LIGO (США) и Virgo (Франция, Италия), а спустя пару секунд космические обсерватории «Интеграл» (ЕКА) и «Ферми» (НАСА) зафиксировали короткие гамма-вспышки. К поиску источника сигнала подключились наземные и космические обсерватории, которые затем в течение нескольких десятков дней следили за постепенно гаснущим остатком «взрыва». В работе приняли участие и российские исследователи из ИКИ РАН, ГАИШ МГУ и ФТИ им. А. Ф. Иоффе.

Это открытие имеет отношение сразу к нескольким проблемам астрофизики. В первую очередь — к вопросу о происхождении мощных гамма-лучевых всплесков, которые испускают за доли секунды энергии больше, чем Солнце за миллиарды лет.

Астрофизики давно предполагали, что источником всплесков может быть слияние двух нейтронных звёзд, но теперь они получили экспериментальное доказательство справедливости разработанной теории. В результате столкновения звёзд одновременно с гамма-всплеском часть звёздного вещества с большой скоростью выбрасывается в окружающий космос. Это явление, открытое в 2013 году, получило название килоновой. Затем радиоактивные элементы из образовавшегося облака распадаются на стабильные, порождая его излучение. Астрономы обнаружили в облаке большое количество тяжёлых элементов, таких как золото и платина, что позволяет считать слияния звёзд настоящими галактическими фабриками тяжёлых элементов, отсутствовавших в молодой Вселенной.

Квантовый компьютер в 53 кубита

Квантовые компьютеры, с которыми связаны большие ожидания, пока не созданы, но в 2017 году сделаны важные шаги на пути к воплощению этой идеи в жизнь. Квантовые вычислительные устройства работают с кубитами — объектами, хранящими наименьший элемент информации, аналогами бита в обычном компьютере. Количество кубитов определяет возможности квантового компьютера.

В ноябре в журнале «Nature» опубликованы статьи, посвящённые моделированию квантовых систем с помощью квантовых компьютеров из 51 и 53 кубитов. До этого подобные универсальные устройства были ограничены 20 кубитами. Увеличение количества кубитов в 2,5 раза многократно повысило возможности вычислителей. 51-кубитный квантовый компьютер создан под руководством Михаила Лукина, работающего в Российском квантовом центре и Гарвардском университете. 28 июля года такое устройство было представлено на Международной конференции по квантовым технологиям в Москве.

Стабильный металлический водород

В январе физики из Гарварда сообщили, что они впервые в истории получили небольшое количество стабильного металлического водорода. Образец имел размеры 1,5 х 10 мкм. Теоретически существование металлического водорода при больших давлениях было предсказано в 1935 году. В природе такие условия реализуются в недрах звёзд и планет-гигантов. С 1996 года его несколько раз получали ударным сжатием, но существовал водород в таком состоянии очень короткое время.

Для получения стабильного металлического водорода команда из Гарварда использовала установку, где алмазные наковальни развивали давление 495 гигапаскалей, что примерно в пять миллионов раз больше нормального атмосферного давления.

Помимо чисто научной ценности у этого экзотического материала может найтись и практическое применение — он обладает высокотемпературной сверхпроводимостью (в данном случае она наступала при -58оС).

Рентгеновский лазер на свободных электронах начал работу

1 сентября состоялась официальная церемония открытия самого крупного в мире Европейского рентгеновского лазера на свободных электронах XFEL (x-ray free electron laser), в создании которого принимала участие и Россия. На самом деле лазером, то есть источником оптического излучения определённого вида, эта установка не является. В ней рентгеновское излучение, аналогичное по свойствам лазерному, создаёт пучок электронов, разогнанный до скоростей, близких к скорости света. В XFEL для этого используется самый большой в мире сверхпроводящий линейный ускоритель длиной 1,7 км. Ускоренные электроны попадают в ондулятор — устройство, создающее в пространстве периодически изменяющееся магнитное поле. Двигаясь в нём по зигзагообразной траектории, электроны излучают в рентгеновском диапазоне. Новая уникальная установка будет генерировать ультракороткие рентгеновские вспышки с рекордной частотой — 27 000 раз в секунду, а её пиковая яркость ожидается в миллиард раз выше существующих источников рентгеновского излучения.

Более 60 научных коллективов уже подали заявки на проведение экспериментов. С помощью рекордно ярких и очень коротких рентгеновских импульсов исследователи смогут увидеть не только расположение атомов в молекулах, но и происходящие там процессы. Это позволит выйти на новый уровень в исследованиях в области физики, химии, материаловедения, наук о жизни, биомедицины. Например, при создании новых лекарств специалисты, зная точное расположение атомов в молекулах белков, смогут подобрать вещества, которые будут блокировать или, наоборот, стимулировать их работу. Знание же структуры кристаллов позволит разрабатывать материалы с заданными свойствами.

Регистрация нейтрино по упругому отскоку

В сентябре 2017 года большой международный коллектив физиков, в том числе и из России, сообщил об открытии упругого когерентного рассеяния нейтрино на ядрах вещества. Это явление предсказал в 1974 году теоретик из Массачусетского технологического института Даниэль Фридман. Нейтрино — неуловимая частица, и для её поимки исследователи строят огромные установки, содержащие десятки тысяч тонн воды. Фридман выяснил, что из-за волновых свойств нейтрино будет согласованно взаимодействовать со всеми протонами и нейтронами ядра, что значительно повысит число рассматриваемых взаимодействий — отскоков нейтрино от ядра. За 461 день исследователи наблюдали 134 таких события.

Это открытие не заставит переписывать учебники. Его значение заключается в создании экспериментаторами детектора небольшого размера, в котором находится всего лишь 14,6 кг кристаллов иодида цезия. Малые переносные нейтринные детекторы найдут разнообразные применения, например для мониторинга ядерных реакторов. К сожалению, они не смогут заменить детекторы-гиганты во всех экспериментах, поскольку детектор, основанный на когерентном рассеянии, не способен различать типы нейтрино.

Темпоральный кристалл — два варианта

В марте две команды исследователей из США сообщили об обнаружении нового состояния материи, получившего название кристалла времени — темпорального кристалла (см. «Наука и жизнь» № 6, 2017 г., «Рябь времени, или Когда физика лучше фантастики»). Это новая идея в физике, широко обсуждаемая в последние годы. Подобные кристаллы представляют собой вечно движущиеся структуры частиц, сами по себе повторяющиеся во времени. Одна группа использовала цепочку атомов иттербия, в которой под действием лазеров колебалась проекция магнитного момента системы. Другая рассматривала кристалл, содержащий порядка миллиона расположенных в беспорядке дефектов, каждый из которых обладал своим магнитным моментом. Когда такой кристалл подвергли воздействию импульсов микроволнового излучения для перевёртывания спинов, физики зафиксировали отклик системы на частоте, которая составила лишь долю частоты возбуждающего излучения. Работы вызвали дискуссию: можно ли считать подобные системы темпоральными кристаллами. Ведь теоретически системы должны колебаться без внешнего воздействия. Но в любом случае такие темпоральные кристаллы найдут применение в роли суперточных сенсоров, например для измерения малейших изменений температуры и магнитных полей.

Экзопланеты, похожие на землю

В последние годы астрономы обнаружили много экзопланет — планет, обращающихся вокруг других звёзд. Однако находки землеподобных планет в зоне, где может существовать жидкая вода, а значит, и жизнь (зона обитаемости), не так уж и часты. В феврале астрономы НАСА объявили об открытии в системе красного карлика TRAPPIST-1 семи экзопланет (три планеты найдены ещё в 2016 году), из которых пять близки по размеру к Земле, а две несколько меньше Земли, но крупнее Марса. Это больше, чем в какой-либо другой системе. По крайней мере три планеты, а возможно и все, находятся в зоне обитаемости.

TRAPPIST-1 — ультрахолодная, с температурой около 2500 К, карликовая звезда массой всего лишь 8% массы Солнца (то есть чуть больше планеты Юпитер), расположенная примерно в 40 световых годах от Земли. Планеты находятся очень близко к звезде, а орбита самой дальней из них намного меньше орбиты Меркурия. В августе астрономы, использующие космический телескоп Хаббл, сообщили о первых намёках на содержание воды в системе TRAPPIST-1, что делает возможным существование там жизни.

В апреле астрономы сообщили об открытии каменистой планеты по размеру в 1,4 раза больше Земли в зоне обитаемости другого красного карлика — LHS 1140. Света она получает в два раза меньше, чем Земля. Авторы открытия считают её хорошим кандидатом для поиска внеземной жизни.

В декабре американские астрономы сообщили об открытии восьмой планеты в системе звезды Кеплер-90, расположенной на расстоянии около 2500 световых лет от Земли. Эта система по числу планет наиболее близка к Солнечной системе. Правда, найденная планета располагается слишком близко к звезде, и температура на её поверхности более 400оС. Интересно, что планета была найдена при обработке данных телескопа Кеплер с помощью нейронной сети.

Завершение миссии «Кассини»

15 сентября падением на поверхность Сатурна завершилась 13-летняя миссия космического зонда «Кассини». Запущенный в 1997 году, он с 2004 года исследовал седьмую планету, передав на Землю огромное число данных и уникальных фотографий. Последний этап его жизни — «Большой финал» начался 26 апреля 2017 года. «Кассини» совершил 22 пролёта между планетой и внутренним кольцом. Такие глубокие «нырки» дали много новой информации, в частности об электрической и химической связи ионосферы Сатурна с кольцами.

На основании данных зонда в 2017 году астрономы пришли к выводу, что кольца Сатурна значительно моложе планеты, которой около 4,5 млрд лет. Возраст колец оценили в 100 млн лет, так что они современники динозавров.

Исследователи решили «уронить» зонд на планету, чтобы он случайно не занёс земные бактерии на спутники Сатурна Титан и Энцелад, где, возможно, имеются местные микроорганизмы.

Кварковый термояд

В ноябре в журнале «Nature» появилась статья, в которой два физика, из США и Израиля, теоретически предположили возможность протекания на кварковом уровне реакции, аналогичной термоядерной, но со значительно большим выделением энергии. Как известно, при термоядерной реакции лёгкие элементы сливаются с выделением энергии. Подобная реакция может происходить и при столкновении элементарных частиц, которые, по современным представлениям, состоят из кварков. В этом случае кварки столкнувшихся частиц будут взаимодействовать и перегруппировываться. В результате появится новая частица с другой энергией связи кварков и выделится энергия.

Исследователи указали две возможные реакции. В первой из них при слиянии двух очарованных кварков будет выделяться энергия 12 МэВ. При слиянии же двух нижних кварков должно выделяться 138 МэВ, что почти в восемь раз больше, чем в отдельном слиянии дейтерия и трития в термоядерной реакции (18 МэВ). Практическое применение этих предположений пока не рассматривается в силу малости жизни кварков.

Экситоны удалось сконденсировать

В декабре команда физиков из США, Великобритании и Нидерландов объявила об открытии новой формы материи, которую они назвали экситоний. Квазичастица экситон — особое возбуждённое состояние кристалла, которое можно представить как соединение электрона и дырки, похожее на атом водорода, — была предсказана в 1931 году советским физиком Яковом Ильичём Френкелем.

Экситон относится к бозонам, частицам с целым спином, а при достаточно низкой температуре система бозонов переходит в особое состояние, называемое конденсатом, в котором все частицы находятся в одном и том же квантовом состоянии и ведут себя как одна большая квантовая волна. Благодаря этому бозе-жидкость становится сверхтекучей или сверхпроводящей. Исследователям удалось обнаружить бозе-конденсат экситонов в кристаллах 1T-TiSe2.

Открытие важно для дальнейшего развития квантовой механики, а на практике, возможно, найдёт применение сверхпроводимость и сверхтекучесть экситония.

www.nkj.ru

10 крупнейших открытий в области физики за 2016 год

Schrodinger's Cat paradox - illustrationПравообладатель иллюстрации Science Photo Library Image caption Парадокс Шрёдингера известен давно, но продемонстировать его на физическом уровне до сих пор не удавалось

Обнаружение гравитационных волн в пространстве-времени, а также первая практическая демонстрация знаменитого парадокса Шрёдингера включены в список крупнейших достижений физики за 2016 год, по версии журнала Physics World.

В нем также присутствует и открытие первой экзопланеты в ближайшей к нам звездной системе.

Обнаружение гравитационных волн, признанное крупнейшим открытием года, было достигнуто научным сообществом LIGO, в котором участвует более 80 научных институтов всего мира.

Сообщество использует несколько лабораторий, пытающихся обнаружить отклонения в структуре пространства-времени, возникающие при прохождении мощного лазерного импульса в вакуумном тоннеле.

Первый сигнал, зафиксированный ими, был порождением столкновения двух черных дыр на расстоянии более миллиарда световых лет от Земли.

По словам Хамиша Джонстона, редактора журнала Physics World, где опубликован список достижений, эти наблюдения стали первым прямым свидетельством существования черных дыр.

Правообладатель иллюстрации LIGO/T. Pyle/SCIENCE PHOTO LIBRARY Image caption Альберт Эйнштейн первым предположил возможность существования гравитационных волн

Среди других крупнейших физических открытий года:

Кот Шрёдингера: ученые в течение многих лет ломают голову над загадкой кота Шрёдингера. Это мысленный эксперимент австрийского ученого Эрвина Шредингера. Кот находится в ящике. В ящике имеется механизм, содержащий радиоактивное атомное ядро и ёмкость с ядовитым газом. Парадокс заключается в том, что животное может быть живым или мертвым в одно и то же время. Узнать это точно можно, только открыв ящик. Это означает, что открытие ящика выделяет одно из множества состояний кота. Но до того, как ящик будет открыт, животное нельзя считать живым или мертвым - кот может находиться в двух состояниях одновременно.

Однако американские и французские физики впервые смогли отследить состояние кота на примере внутреннего устройства молекулы, проявляющегося в одновременном нахождении системы в двух квантовых состояниях.

Для этого специалисты привели молекулы в возбужденное состояние с помощью рентгеновского лазера (разера). Из полученных дифракционных картин высокого пространственного и временного разрешений физики смонтировали видео.

Компактный "гравиметр": ученые из университета Глазго построили гравиметр, которые способен очень точно измерять силу тяжести на Земле. Это компактное, точное и недорогое устройство. Прибор может быть использован при поиске полезных ископаемых, в строительстве и исследовании вулканов.

Ближайшая к нам экзопланета: астрономы обнаружили признаки присутствия в системе Проксима Центавра планеты, находящейся в обитаемой зоне. Эта планета, получившая название Proxima b, по массе всего в 1,3 больше Земли и может иметь жидкую воду на своей поверхности.

Правообладатель иллюстрации ESO/M.Kornmesser Image caption Так может выглядить поверхность планеты Proxima b

Квантовое запутывание: группе физиков из США удалось впервые продемонстрировать эффект квантовомеханического запутывания на примере макроскопической механической системы.

Развитие экспериментальных методов изучения квантовых систем и отработка методик по запутыванию разного рода объектов должна, по прогнозам физиков, привести к появлению принципиально новых компьютеров.

Чудо-материал: ученым удалось впервые измерить свойство материала графена - так называемую негативную рефракцию. Это явление может быть использовано при создании новых типов оптических устройств, например, крайне чувствительных линз и объективов.

Атомные часы: немецкие физики обнаружили трансмутацию изотопа тория-229, которая может стать основой конструкции нового типа атомных часов. Такие часы будут гораздо более устойчивыми, чем существующие приборы этого типа.

Оптика для микроскопов: шотландские ученые из Университета Стратклайда создали новый тип линзы для микроскопов, получившей название Mesolens. Новые линзы имеют большое поле зрения и высокое разрешение.

Правообладатель иллюстрации Mesolens Image caption Эти структуры в мозгу крыс были зафиксированы новым микроскопом на основе линз Mesolens

Сверхбыстрый компьютер: австрийские ученые достигли крупного успеха в разработке квантовых компьютеров. Они создали модель фундаментальных взаимодействий элементарных частиц, которая может применяться прототипами квантовых компьютеров.

Атомный двигатель: ученые из университета Майнца в Германии разработали прототип теплового двигателя, который состоит из одного атома. Он конвертирует разницу в температуре в механическую работу, помещая единственный ион кальция в ловушку в форме воронки.

www.bbc.com

Квантовый блокчейн: как открытия физиков произведут революцию в IT - 10 Марта 2018 | Земля

Создатель первого квантового блокчейна Алексей Федоров рассказал о том, кого может заинтересовать подобное объединение инноваций в IT и физике и как квантовые технологии поменяют весь цифровой мир. 

Идея распределенных реестров — баз данных, копии которых хранятся и обновляются сразу у нескольких независимых пользователей, появилась достаточно давно, около 30 лет назад. Несмотря на перспективность этой идеи, массовый интерес к ней возник относительно недавно, в 2008 году, когда была создана первая криптовалюта на ее основе, биткоин.

Прорывной идеей в области распределенных реестров стал блокчейн — способ хранения информации о совершенных транзакциях в виде последовательности блоков, следующих друг за другом.

Ключ к корректной работе блокчейна — обеспечение целостности базы данных у всех независимых пользователей. Иными словами, каждый участник сети должен быть уверен, что его версия реестра совпадает с версиями остальных пользователей, у каждого есть собственная копия таблицы проведенных операций и ни один другой человек не сможет распоряжаться его ресурсами внутри этой базы данных.

Для решения этих вопросов программисты используют криптографические хэш-функции, электронно–цифровые подписи и прочие математические приемы, затрудняющие подделку и взлом этого реестра.

Сегодня считается, что такие криптографические алгоритмы неуязвимы для атак при помощи обычных компьютеров, однако быстрое развитие квантовых вычислений может лишить их этой "суперспособности". Тогда существующие блокчейны уже не смогут обеспечить защиту финансовых сведений и других данных.

Летом прошлого года Алексей Федоров и его коллеги из Российского квантового центра — группа Юрия Курочкина и Александра Львовского — впервые предложили решение этой проблемы, соединив две набирающие популярность технологии: блокчейн и квантовую криптографию.

— Алексей, помимо очевидного интереса со стороны банковского и финансового секторов, где еще можно использовать подобные квантово-защищенные блокчейны и где их применение было бы целесообразным?

— Квантовые технологии традиционно привлекают внимание финансовых организаций — не только в России, по всему миру. Это очень хорошо, что именно банки становятся своеобразными тестовыми площадками для нас.

Что может быть дальше? Как мне кажется, квантовые блокчейны и близкие к ним разработки пригодятся в государственной сфере — в направлениях, стратегически важных с точки зрения информационной безопасности.

Об их массовом коммерческом применении пока говорить сложно, поскольку этому мешают ограничения, накладываемые самой технологией квантового блокчейна, и отсутствие необходимой для нее инфраструктуры в виде квантовых сетей.

Сначала необходимо создать квантовый интернет — глобальную многопользовательскую сеть, защищенную квантовой криптографией, а это потребует много времени и ресурсов. Поэтому вряд ли конечные пользователи смогут воспользоваться квантовым блокчейном в обозримом будущем.

  Алексей Федоров, физик из Российского квантового центра   Как и всегда, возникает вопрос о целесообразности: нужна ли столь защищенная система обычному пользователю? С одной стороны, кажется, что сейчас она не нужна. С другой стороны, каждый раз, когда я так говорю, вспоминаю прогноз Томаса Уотсона, президента IBM, считавшего, что мировому рынку потребуется не больше пяти компьютеров.

Создание квантового интернета требует огромных ресурсов, но гарантирует абсолютный уровень защиты. С развитием технологий квантовый интернет вполне может стать такой же естественной частью нашей жизни, как нынешний.

Полагаю, наше предложение важно не только само по себе, но еще и потому, что оно привлекло внимание публики и научного сообщества к новым информационным технологиям, таким как блокчейн, и к тем проблемам безопасности, которые неразрывно с ними связаны.

Множество людей пытается сегодня внедрить блокчейны в нашу жизнь, не уделяя достаточного внимания проблемам безопасности. Собственно, любой человек, знакомый с квантовыми вычислениями и безопасностью, мог бы найти эту уязвимость в работе блокчейнов, объяснить ее и предложить решение. Этого почему-то никто не сделал, и мы были первыми, кому удалось это реализовать.

Что интересно, почти все крупные квантовые сети, уже существующие в мире, можно использовать подобным образом, хотя никто об этом и не думал раньше. Так они принесут больше пользы, чем если мы просто будем шифровать абсолютно все, что через них передается.

— Помимо самих квантовых каналов и технологий передачи данных, в обмене ими участвуют и люди, и классические компьютеры, не отличающиеся абсолютной стойкостью к взлому. Можно ли как-то ликвидировать эту уязвимость?

— Полностью избавиться от этой проблемы не получится, однако мне кажется, что можно сделать задачу написания вируса или организации фишинга настолько сложной, что подобные занятия станут коммерчески неинтересными. Это, на мой взгляд, наиболее рациональный подход — сделать зло невыгодным для злоумышленника. Часть этой задачи можно решить посредством криптографии.

С другой стороны, есть такая вещь, как социальная инженерия, с которой бороться гораздо сложнее. Конечно, можно создать систему искусственного интеллекта, подсказывающую пользователям, как защититься от подобных атак, однако в данном случае мы сталкиваемся не только с математической проблемой, но и с реальной жизнью.

Технологии квантовой защиты здесь, к сожалению, сейчас не помогут, так как они нацелены на решение одной конкретной, совсем другой задачи.

— Помогут ли спутники, подобные недавно запущенному "Мо–Цзы", распространению квантовых блокчейнов и расширению их практического применения?

— По сути, это следующий шаг в развитии подобных технологий. Сегодня существуют небольшие сети, использующие оптоволоконные кабели и состоящие из двух-пяти узлов, средние и большие сети из десятков и сотен узлов, а затем должен появиться глобальный квантовый интернет.

Спутники критически важны для его создания — без них межконтинентальные системы связи крайне сложно реализовать.С другой стороны, из-за спутников возникает проблема доверия, доверенных узлов сети. Кто и как их контролирует — это тоже вопрос безопасности, для обеспечения которой необходим еще один уровень защиты.

— Попытается ли кто-нибудь взломать подобные квантовые блокчейны?

— Здесь та же ситуация, что и с квантовой криптографией: если рассматривать их как идеализированные математические концепции, то взламывать таковые нет смысла. Однако конкретная инженерная реализация этих идей необязательно будет абсолютно неуязвимой для взлома — к примеру, можно ослепить детекторы.

Иными словами, нельзя взять какую-то идеальную концепцию, поместить ее в реальный мир и ожидать, что она останется такой же неприступной. Всегда есть какие-то бэкдоры и дыры — любой специалист по безопасности скажет, что даже в самой идеальной системе защиты данных имеется как минимум одна уязвимость.

  Система квантовой связи, созданная в Российском квантовом центре   Поэтому, как мне кажется, кто-нибудь обязательно попытается взломать блокчейн. Хотя интереснее было бы найти альтернативу. К примеру, есть такая вещь, как квантовые цифровые подписи, — я бы задумался, можно ли использовать их вместо обычных подписей или квантовой криптографии и обеспечит ли это достаточный уровень безопасности.

Реализация этой идеи, к примеру, позволила бы "внешним" пользователям работать с блокчейном, не имея прямого доступа к квантовой сети, через которую происходит обмен данными в нашей системе сейчас. В отличие от технологий шифрования и связи, квантовые электронные подписи появились совсем недавно, инфраструктуры для их использования пока нет. Поэтому тут сложно приводить какие-то конкретные примеры и давать прогнозы.

— Повлияло ли создание квантового блокчейна на скорость разработки алгоритмов шифрования данных, стойких к квантовым компьютерам?

— Хотелось бы думать, что да — если привлечь внимание общественности к каким-либо проблемам, они, как правило, начинают решаться быстрее. Я, конечно, видел несколько попыток разобраться в этом до публикации нашего исследования, но все они не были достаточно серьезными.

После выхода нашей работы внезапно опубликовали еще пять-шесть статей, посвященных тому, как можно защитить биткоин, насколько вероятен взлом его блокчейна и так далее.

Технологии развиваются, и сейчас блокчейн-сообщество, в том числе и Etherium, внимательно присматривается к тому, что может предложить квантовая криптография и алгоритмы защиты данных, стойкие к квантовому взлому.

— Сегодня большая часть квантовых сетей и систем передачи данных создается на базе уже существующей инфраструктуры, изначально не приспособленной для решения таких задач. Что оптимальнее для развития квантовых сетей и блокчейнов?

— На самом деле, нужно и то и другое. Можно привести следующую аналогию — практически у каждого из нас есть компьютер, и мы периодически меняем его на более современную модель. Пока он справляется со своей задачей, брать новый смысла нет.

Аналогичным образом — когда люди увидят, что защищенная сеть работает в десять раз быстрее, если поставить новый оптоволоконный кабель, и в этом будет потребность, тогда инфраструктуру обновят.

К примеру, в эксперименте со Сбербанком нам выделили оптоволоконный канал длиной в 25 километров, состоявший из восьми спаек. Каждая такая спайка отражает часть фотонов назад и создает другие помехи. Если бы это оптоволокно было качественным и не состояло из отдельных кусков, такой уровень потерь наблюдался бы на канале длиной не в 25, а 75 километров. Качество линии очень влияет на скорость распределения ключей. 

  Система квантового шифрования данных, создаваемая в РКЦ   При этом надо понимать, что устройство, которое получало квантовые ключи, могло считывать их лишь раз в четыре минуты, поэтому даже такого канала нам хватало с избытком. Мы могли бы, в принципе, подключить еще несколько передатчиков и приемников, если бы возникла такая необходимость.

В общем, если говорить, что данные — это новая нефть, то надо строить не только новые трубопроводы, но и улучшать старые, если это требуется для нефтехранилищ, и делать их безопасными настолько, насколько это возможно.

— В прошлом году ученые активно обсуждали возможность использования квантовых вычислительных систем для обучения систем ИИ и создания нейросетей. Насколько это реалистично?

— Эту идею очень серьезно изучает и рассматривает группа Джейкоба Биамонте из "Сколтеха" в рамках проекта Quantum Complexity Science Initiative. На самом деле, подобных приложений у квантовых компьютеров может быть масса, и поэтому здесь нам стоит сначала определиться с тем, что мы имеем в виду под терминами "искусственный интеллект" и его обучение.

© Фото : RQCРоссийские физики объединили банки первой рабочей линией квантовой связиК примеру, квантовые алгоритмы можно применять для того, чтобы ускорять математические процедуры, задействованные в работе систем машинного обучения. Кроме того, квантовые системы реально использовать для решения задач оптимизации и множеством других способов.

Интересно также, что математические структуры, возникающие в нейронных сетях, иногда бывают полезны для описания некоторых квантовых физических систем, содержащих в себе множество частиц, которые интересны уже ученым, а не программистам. В общем, внимание к нейросетям со всех сторон говорит о том, что у них очень большой потенциал.

Лично мне кажется, что подобные системы ИИ можно использовать для демонстрации так называемого квантового превосходства. Доказательства того, что квантовые вычислительные системы способны решать те задачи, которые обычным компьютерам не под силу.

Конечно, есть и другие варианты проверки "превосходства" квантовых компьютеров, однако они или бесполезны с практической точки зрения, или же слишком сложны для реализации с учетом ограничений существующих систем. Квантовое обучение нейросетей не потребует столь больших ресурсов и при этом принесет нам что-то, что в будущем даст конкретную пользу.

В общем, будущие или уже существующие системы из 50 или 60 кубитов, такие как программируемый квантовый симулятор Михаила Лукина, позволят нам решать интересные и практически значимые задачи.

В этом плане очень умно поступает компания IBM, создавшая первое облако квантовых вычислений. Они коллекционируют запросы, знания и подходы всех людей со всего мира, и это очень ценно и важно на данном этапе развития квантовых вычислительных технологий и квантового ИИ. 

earth-chronicles.ru

Физики из России раскрыли сущность "квантовых вампиров"

МОСКВА, 3 июн – РИА Новости. Ученые из МГУ, НИЯУ МИФИ и МИЭТа детально изучили свойства "квантовых вампиров" – особых частиц света, не оставляющих "тени" при исчезновении. Их выводы были представлены в статье в журнале Optica.

Физики из РКЦ за процессом откармливания кошки ШредингераРоссийские физики научились "откармливать" котов Шредингера"Наша группа теоретически и экспериментально показала, что этот эффект может также работать и для классических тепловых состояний света. Это показывает, что эффект основан не на квантовой перепутанности, а на классических корреляциях", – рассказывает Константин Катамадзе, физик из Московского государственного университета имени М.В. Ломоносова.

Четыре года назад исследователи из Российского квантового центра открыли крайне любопытный феномен. Наблюдая за поведением запутанных частиц света, Александр Львовский, Юрий Курочкин, Илья Федоров и Александр Уланов заметили, что "уничтожение" одного из фотонов при помощи полупрозрачного зеркала почти никак не сказывалось на состоянии остальных частиц.

Иными словами, они исчезали бесследно, не оставляя "тени" и не нарушая запутанность остальных частиц света. По этой причине ученые назвали подобный феномен "эффектом квантового вампира", и предположили, что он носит исключительно квантовую природу.

Канадо-украинский физик Александр ЗагоскинКвантовые покемоны: физик Александр Загоскин о квантовых компьютерах

Опыты Катамадзе и его коллег показывают, что это, скорее всего, не так – как и многие другие необычные примеры поведения фотонов, открытые в последние годы, "квантовый вампиризм" может иметь вполне классическую природу, объяснимую в рамках теорий Ньютона и Эйнштейна.

К примеру, в данном случае, как отмечает Катамадзе, нет никаких намеков на то, что воздействие на "съедаемый" фотон мгновенным образом меняет поведение других частиц света, "нарушая" скорость света.

Его команда проверила, так ли это на самом деле, наблюдая за тем, как ведут себя в аналогичных условиях не только потоки фотонов, запутанных на квантовом уровне, но и обычные частицы света, "рассортированные" и разбитые на порции при помощи вращающегося матового диска, через который пропускался луч лазера.

Физик Джон Белл в 1982 годуУченые: квантовая физика успешно прошла самую жесткую проверку

Как показали эти опыты, одиночные частицы света и даже пары фотонов, не запутанные друг с другом, могут вести себя, как "квантовые вампиры", если они будут правильно "рассортированы" до контакта с зеркалом.

Это, с одной стороны, заставило Катамадзе и его коллег усомниться в квантовой природе этого эффекта, а с другой — делает его доступным для более широкого круга экспериментаторов, что может привести к созданию новых оптических приборов и компонентов будущих световых компьютеров.

ria.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики