Баллада о быстрых нейтронах: уникальный реактор Белоярской АЭС. Аэс на быстрых нейтронах
Рекордсмен на быстрых нейтронах
Нейтроны — это частицы, входящие в состав большинства атомных ядер наряду с протонами. В ходе реакции ядерного распада ядро урана делится на две части и вдобавок испускает несколько нейтронов. Они могут попасть в другие атомы и спровоцировать еще одну или несколько реакций деления. Если каждый выпущенный при распаде ядер урана нейтрон будет попадать в соседние атомы, то начнется лавинообразная цепочка реакций с выделением все большей и большей энергии. При отсутствии сдерживающих факторов произойдет ядерный взрыв.
Но в ядерном реакторе часть нейтронов либо выходит наружу, либо поглощается специальными поглотителями. Поэтому число реакций деления все время остается одним и тем же, ровно таким, какое необходимо для получения энергии. Энергия реакции радиоактивного распада дает тепло, которое затем используется для получения крутящего турбины электростанции пара.
Нейтроны, которые поддерживают ядерную реакцию на постоянном уровне, могут иметь разную энергию. В зависимости от энергии их называют либо тепловыми, либо быстрыми (есть еще холодные, но те для АЭС не годятся). Большинство реакторов в мире основаны на использовании тепловых нейтронов, а вот на Белоярской АЭС стоит реактор на быстрых. Почему?
В чем преимущества?
В реакторе на быстрых нейтронах часть энергии нейтронов идет, как и в обычных реакторах, на поддержание реакции деления основного компонента ядерного топлива, урана-235. А еще часть энергии поглощается оболочкой, сделанной из урана-238 или тория-232. Эти элементы для обычных реакторов бесполезны. Когда в их ядра попадают нейтроны, они превращаются в изотопы, пригодные для использования в ядерной энергетике в качестве топлива: плутоний-239 или уран-233.
Обогащенный уран. В отличие от отработанного ядерного топлива уран далеко не столь радиоактивен, чтобы с ним приходилось работать только при помощи роботов. Его даже можно ненадолго брать руками в плотных перчатках. Фото: Департамент энергетики США Таким образом, реакторы на быстрых нейтронах можно использовать не только для энергоснабжения городов и заводов, но и для получения нового ядерного топлива из сравнительно недорого сырья. В пользу экономической выгоды говорят такие факты: килограмм выплавленного из руды урана стоит около полусотни долларов, содержит всего два грамма урана-235, а остальное приходится на уран-238.В чем проблема?
В натрии. В любом ядерном реакторе обязательно должно быть несколько узлов и элементов: тепловыделяющие сборки с ядерным топливом, элементы для управления ядерной реакцией и теплоноситель, который забирает выделяющееся в устройстве тепло. Конструкция этих узлов, состав топлива и теплоносителя могут отличаться, но без них реактор невозможен по определению.
В реакторе на быстрых нейтронах в качестве теплоносителя нужно использовать материал, который не задерживает нейтроны, иначе они из быстрых станут медленными, тепловыми. На заре атомной энергетики конструкторы попробовали использовать ртуть, но она растворила трубы внутри реактора и начала протекать наружу. Нагретый ядовитый металл, который к тому же стал под действием облучения радиоактивным, причинил так много хлопот, что проект ртутного реактора быстро закрыли.
Кусочки натрия хранят обычно под слоем керосина. Эта жидкость хоть и горюча, с натрием не реагирует и не пускает к нему пары воды из воздуха. Фото: Superplus / Wikipedia В БН-600 используется жидкий натрий. На первый взгляд, натрий немногим лучше ртути: он чрезвычайно активен химически, бурно реагирует с водой (проще говоря, взрывается, если кинуть в воду) и вступает в реакцию даже с входящими в состав бетона веществами. Однако он не мешает нейтронам, а при должном уровне строительных работ и последующего техобслуживания риск утечки не так уж велик. Кроме того, натрий, в отличие от водяного пара, можно перекачивать при нормальном давлении. Струя пара из прорвавшегося паропровода под давлением в сотни атмосфер режет металл, так что в этом смысле натрий безопаснее. А что касается химической активности, то и ее можно обратить во благо. В случае аварии натрий реагирует не только с бетоном, но и с радиоактивным йодом. Йодид натрия уже не покидает пределы здания АЭС, в то время как на газообразный йод пришлась едва ли не половина выбросов при аварии на АЭС в Фукусиме.БН-800 уже построен. 27 июня 2014 года реактор заработал на минимальной мощности, а в 2015 году ожидается и энергетический пуск. Поскольку запуск ядерного реактора представляет собой весьма сложный процесс, специалисты разделяют физический пуск (начало самоподдерживающейся цепной реакции) и энергетический пуск, при котором энергоблок начинает выдавать в сеть первые мегаватты электроэнергии.
Белоярская АЭС, пульт управления. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru В БН-800 конструкторы воплотили ряд важных усовершенствований, включая, к примеру, аварийную систему воздушного охлаждения реактора. Ее достоинством разработчики называют независимость от источников энергии. Если, как на Фукусиме, на АЭС исчезнет электричество, то охлаждающий реактор поток все равно не исчезнет — циркуляция будет поддерживаться естественным путем, за счет конвекции, поднятия вверх нагретого воздуха. А если вдруг произойдет расплавление активной зоны, то радиоактивный расплав уйдет не вовне, а в специальную ловушку. Наконец, защитой от перегрева выступает большой запас натрия, который в случае аварии может принять выделяемое тепло даже при полном отказе всех систем охлаждения.В экономике и экологии топлива. Реакторы на быстрых нейтронах работают на смеси обогащенной окиси урана и окиси плутония — это так называемое мокс-топливо. Теоретически оно может быть дешевле обычного в силу того, что использует плутоний или уран-233 из облученного в других реакторах недорогого урана-238 или тория, но пока мокс-топливо проигрывает в цене обычному. Получается своего рода замкнутый круг, который не так просто разорвать: нужно отладить и технологию постройки реакторов, и извлечение плутония с ураном из облученного в реакторе материала, и обеспечить контроль за нераспространением высокоактивных материалов. Некоторые экологи, к примеру представители некоммерческого центра «Беллона», указывают на большой объем получаемых при переработке облученного материала отходов, ведь наряду с ценными изотопами в реакторе на быстрых нейтронах образуется значительное количество радионуклидов, которые нужно где-то захоранивать.
Иными словами, даже успешная эксплуатация реактора на быстрых нейтронах сама по себе еще не гарантирует революции в атомной энергетике. Она является необходимым, но не достаточным условием для того, чтобы все-таки перейти с ограниченных запасов урана-235 на куда более доступные уран-238 и торий-232. Смогут ли технологи, занятые процессами переработки ядерного топлива и утилизацией ядерных отходов, справиться со своими задачами — тема для отдельного рассказа.
chrdk.ru
Баллада о быстрых нейтронах: уникальный реактор Белоярской АЭС
Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985−1997), Monju (Япония, 1994−1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.
Они возвращаются
Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране — всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!
Цех сборки реактора, где из отдельных деталей методом крупноузловой сборки собирают отдельные части реактора
Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.
Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.
Перезагрузка вслепую
В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотная пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены. Процесс перегрузки выключает множество этапов. Сначала захват подводится к одной из сборок, находящихся во внутриреакторном хранилище отработанных сборок, извлекает ее и переносит в элеватор выгрузки. Затем ее поднимают в передаточный бокс и помещают в барабан отработавших сборок, откуда она после очистки паром (от натрия) попадет в бассейн выдержки. На следующем этапе механизм извлекает одну из сборок активной зоны и переставляет ее во внутриреакторное хранилище. После этого из барабана свежих сборок (в который заранее устанавливают ТВСы, пришедшие с завода) извлекают нужную, устанавливают ее в элеватор свежих сборок, который подает ее к механизму перегрузки. Последний этап — установка ТВС в освободившуюся ячейку. При этом на работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне. Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи, и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования — менее 0,01 градуса), усилий извлечения и постановки.
Процесс перезагрузки включает множество этапов, производится с помощью специального механизма и напоминает игру в «15». Конечная цель — попадание свежих сборок из соответствующего барабана в нужное гнездо, а отработавших — в свой барабан, откуда они после очистки паром (от натрия) попадут в бассейн выдержки.
Гладко только на бумаге
Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии — от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).
«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, — объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. — Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию'. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, — оно лишь чуть выше атмосферного».
По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы — как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».
www.popmech.ru
Реактор на быстрых нейтронах
Хотя в основе работы любого ядерного реактора лежит деление радиоактивного вещества, сопровождающееся выделением температуры, в зависимости от конструктивных особенностей различают две их разновидности - реактор на быстрых нейтронах и медленных, иногда называемых тепловыми.
Нейтроны, выделившиеся в процессе реакции, обладают очень высокой начальной скоростью, теоретически преодолевая за секунду тысячи километров. Это - быстрые нейтроны. В процессе перемещения из-за столкновения с атомами окружающей материи их скорость замедляется. Одним из простых и доступных способов искусственно снизить скорость является размещение у них на пути воды или графита. Таким образом, научившись регулировать уровень кинетической энергии этих частиц, человек получил возможность создать два типа реакторов. Свое название «тепловые» нейтроны получили благодаря тому, что скорость их перемещения после замедления практически соответствует естественной скорости внутриатомного теплового движения. В численном эквиваленте она составляет до 10 км в секунду. Для микромира это значение относительно низко, поэтому захват частиц ядрами происходит очень часто, вызывая новые витки деления (цепную реакцию). Следствием этого является необходимость в гораздо меньшем количестве делящегося вещества, чем не могут похвастаться реакторы на быстрых нейтронах. Кроме того, снижаются некоторые другие накладные расходы. Данный момент как раз и объясняет, почему большинство работающих ядерных станций используют именно медленные нейтроны.
Казалось бы – если все просчитано, то зачем нужен реактор на быстрых нейтронах? Оказывается, не все так однозначно. Важнейшее преимущество таких установок – способность обеспечивать ядерным топливом другие реакторы, а также создавать увеличенный цикл деления. Остановимся на этом более подробно.
Реактор на быстрых нейтронах более полно использует загруженное в активную зону топливо. Начнем по порядку. Теоретически, использовать в качестве горючего можно лишь два элемента: плутоний-239 и уран (изотопы 233 и 235). В природе встречается лишь изотоп U-235, но его совсем мало, чтобы говорить о перспективности такого выбора. Указанные уран и плутоний – это производные от тория-232 и урана-238, которые образуются в результате воздействия на них потока нейтронов. А вот уже эти два радиоактивных материала гораздо чаще встречаются в естественной форме. Таким образом, если бы удалось запустить самоподдерживающуюся цепную реакцию деления U-238 (или плутония-232) , то ее результатом стало бы возникновение новых порций делящегося вещества – урана-233 или плутония-239. При замедлении нейтронов до тепловой скорости (классические реакторы) такой процесс невозможен: топливом в них служат именно U-233 и Pu-239, а вот реактор на быстрых нейтронах позволяет выполнить такое дополнительное преобразование.
Процесс выглядит следующим образом: загружаем уран-235 или торий-232 (сырье), а также порцию урана-233 или плутония-239 (топливо). Последние (любой из них) обеспечивают поток нейтронов, необходимый для «зажигания» реакции в первых элементах. В процессе распада выделяется тепловая энергия, преобразуемая генераторами станции в электричество. Быстрые нейтроны воздействуют на сырье, преобразуя эти элементы в…новые порции топлива. Обычно количества сгоревшего и образовавшегося топлива равны, но если сырья загружено больше, то генерация новых порций делящегося материала происходит даже быстрее, чем расход. Отсюда второе название таких реакторов – размножители. Излишки топлива можно использовать в классических медленных разновидностях реакторов.
Недостаток моделей на быстрых нейтронах в том, что перед загрузкой уран-235 должен быть обогащен, что требует дополнительных финансовых вложений. Кроме того, сама конструкция активной зоны более сложна.
fb.ru
Почему США так и не создали коммерческую АЭС на быстрых нейтронах
Многие специалисты сегодня считают, что будущим ядерной энергетики являются реакторы на быстрых нейтронах. Одним из пионеров в освоении этой технологии является Россия, где уже 30 лет без серьезных происшествий работает реактор на быстрых нейтронах БН-600 на Белоярской АЭС, там же строится реактор БН-800 и планируется создание коммерческого реактора БН-1200. Опыт эксплуатации АЭС на быстрых нейтронах имеется у Франции и Японии, рассматриваются планы строительства АЭС на быстрых нейтронах в Индии и Китае. Спрашивается, почему же в стране с очень высокоразвитой ядерной энергетикой – в США – практических программ по развитию энергетики на быстрых нейтронах не наблюдается?
На самом деле такой проект в США был. Речь идет о проекте реактора-бридера Клинч Ривер (по английски - The Clinch River Breeder Reactor, сокращенно CRBRP). Целью этого проекта были разработка и создание натриевого реактора на быстрых нейтронах, который должен был быть демонстрационным прототипом для следующего класса аналогичных американских реакторов под названием LMFBR (сокращение от фразы Liquid Metal Fast Breeder Reactors – жидкометаллический быстрый реактор). При этом реактор Клинч-Ривер задумывался как существенный шаг на пути к освоению технологии жидкометаллических быстрых реакторов с целью их коммерческого использования в электроэнергетике. Местом размещения реактора Клинч-Ривер должен был стать участок площадью 6 км2, административно входящий в состав города Оук-Ридж в штате Теннесси.
Гетерогенная активная зона бридера Клинч РиверРеактор должен был иметь тепловую мощность 1000 Мвт и электрическую мощность в интервале 350-380 МВт. Топливом для него должны были быть 198 шестигранных сборок, собранных в форме цилиндра с двумя зонами обогащения топлива. Внутренняя часть реактора должна была состоять из 108 сборок, содержащих плутоний, обогащенный до 18%. Их должна была окружать внешняя зона, состоящая из 90 сборок с плутонием, обогащенным до 24%. Такая конфигурация должна была обеспечить наилучшие условия для тепловыделения.
Впервые проект был представлен в 1970 году. В 1971 году президент США Ричард Никсон установил эту технологию как один из высших приоритетов для научно-исследовательских работ страны.
Что же помешало его реализации?
Одной из причин такого решения была продолжающаяся эскалация стоимости проекта. В 1971 году Комиссия по атомной энергии США установила, что стоимость проекта составит порядка 400 млн долларов. Частный сектор обещал профинансировать большую часть проекта, выделив 257 млн долларов. В последующие годы, однако, стоимость проекта подпрыгнула до 700 млн. По состоянию на 1981 год был потрачен уже миллиард долларов бюджетных средств, при том, что стоимость проекта оценивалась в тот момент в 3 – 3,2 млрд долларов, не считая еще одного миллиарда, который был необходим для строительства завода по производству гененерированного топлива. В 1981 году комитет Конгресса вскрыл случаи различных злоупотреблений, что еще более утяжелило стоимость проекта.
Перед тем, как принять решение о закрытии, стоимость проекта оценивалась уже в 8 млрд долларов.
Другой причиной стала высокая стоимость строительства и эксплуатации самого реактора-бридера для производства электричества. В 1981 году было оценено, что стоимость строительства быстрого реактора будет вдвое больше строительства стандартного легководного реактора такой же мощности. Было также подсчитано, что для того, чтобы бридер мог экономически конкурировать с обычными легководными реакторами, цена урана должна составлять 165 долларов за фунт, в то время как в действительности эта цена находилась тогда на уровне 25 долларов за фунт. Частные генерирующие компании не пожелали вкладывать деньги в такую рискованную технологию.
Еще одной серьезной причиной для сворачивания программы бридеров стала угроза возможного нарушения режима нераспространения, поскольку в этой технологии происходит наработка плутония, который также может быть использован для производства ядерного оружия. Из-за международной озабоченности по поводу вопросов распространения ядерных материалов, в апреле 1977 году президент США Джимми Картер призвал отложить на неопределенный срок строительство коммерческих быстрых реакторов.
Президент Картер вообще был последовательным оппонентом проекта Клинч Ривер. В ноябре 1977 года, наложив вето на законопроект о продолжении финансирования, Картер сказал, что это будет «неоправданно дорого» и «после завершения строительства станет технически устаревшим и экономически необоснованным». Кроме этого он заявил о бесперспективности технологии быстрых реакторов вообще. Вместо того, чтобы вкладывать ресурсы в демонстрационный проект на быстрых нейтронах, Картер предлагал взамен «потратиться на увеличение безопасности существующих ядерных технологий».
Проект Клинч Ривер был возобновлен после прихода к власти Рональда Рейгана в 1981 году. Несмотря на растущую оппозицию со стороны Конгресса, он отменил запрет своего предшественника, и строительство возобновилось. Однако, 26 октября 1983 года, несмотря на успешный ход строительных работ, Сенат США большинством (56 против 40) призвал отказаться от дальнейшего финансирования строительства и объект был заброшен.
В очередной раз о нем вспомнили совсем недавно, когда в США стал разрабатываться проект маломощного реактора mPower. В качестве места его строительства как раз и рассматривается площадка планировавшегося строительства АЭС Клинч-Ривер.
www.atomic-energy.ru
Первая АЭС на быстрых нейтронах — История Росатома
Белоярская АЭС
После пуска и успешной эксплуатации Первой в мире АЭС в 1955 году по инициативе И. Курчатова было принято решение о строительстве на Урале промышленной атомной электростанции с водо-водяным реактором канального типа. К особенностям этого типа реакторов относится перегрев пара до высоких параметров непосредственно в активной зоне, что открывало возможность для использования серийного турбинного оборудования.
В 1958 году в центре России в одном из живописнейших уголков уральской природы развернулось строительство Белоярской АЭС. Для монтажников эта станция началась еще в 1957 году, а так как в те времена тема атомных станций была закрыта, в переписке и жизни она называлась Белоярская ГРЭС. Начинали эту станцию работники треста «Уралэнергомонтаж». Их усилиями в 1959 году была создана база с цехом изготовления водопаропроводов (1 контур реактора), построено три жилых дома в поселке Заречный и начато возведение главного корпуса.
В 1959 году на строительстве появились работники треста «Центроэнергомонтаж», которым поручалось монтировать реактор. В конце 1959 года на строительство АЭС был перебазирован участок из Дорогобужа Смоленской области и монтажные работы возглавил В. Невский, будущий директор Белоярской АЭС. Все работы по монтажу тепломеханического оборудования были полностью переданы тресту «Центроэнергомонтаж».
Интенсивный период строительства Белоярской АЭС начался с 1960 года. В это время монтажникам пришлось вместе с ведением строительных работ осваивать новые технологии по монтажу нержавеющих трубопроводов, облицовок спецпомещений и хранилищ радиоактивных отходов, монтаж конструкций реактора, графитовую кладку, автоматическую сварку и т.д. Обучались на ходу у специалистов, которые уже принимали участие в сооружении атомных объектов. Перейдя от технологии монтажа тепловых электростанции к монтажу оборудования атомных электростанций, работники «Центроэнергомонтажа» успешно справились со своими задачами, и 26 апреля 1964 года первый энергоблок Белоярской АЭС с реактором АМБ-100 выдал первый ток в Свердловскую энергосистему. Это событие наряду с вводом в эксплуатацию 1-го энергоблока Нововоронежской АЭС означало рождение большой ядерной энергетики страны.
Реактор АМБ-100 стал дальнейшим усовершенствованием конструкции реактора Первой в мире атомной электростанции в Обнинске. Он представлял собой реактор канального типа с более высокими тепловыми характеристиками активной зоны. Получение пара высоких параметров за счет ядерного перегрева непосредственно в реакторе стало большим шагом вперед в развитии атомной энергетики. реактор работал в одном блоке с турбогенератором мощностью 100 МВт.
В конструктивном отношении реактор первого энергоблока Белоярской АЭС оказался интересен тем, что он создавался фактически бескорпусным, т. е, реактор не имел тяжелого многотонного прочного корпуса, как, скажем, аналогичный по мощности реактор водо-водяного типа ВВЭР с корпусом длиной 11-12 м, диаметром 3-3,5 м, толщиной стенок и днища 100-150 мм и более. Возможность строительства АЭС с реакторами бескорпусного канального типа оказалась весьма заманчивой, поскольку освобождала заводы тяжелого машиностроения от необходимости изготовления стальных изделий массой 200-500 т. Но осуществление ядерного перегрева непосредственно в реакторе оказалось связано с известными трудностями регулирования процесса, особенно в части контроля за его ходом, с требованием точности работы очень многих приборов, наличием большого количества труб различных размеров, находящихся под высоким давлением, и т. д.
Первый блок Белоярской АЭС достиг полной проектной мощности, однако из-за относительно небольшой установленной мощности блока (100 МВт), сложности его технологических каналов и, следовательно, дороговизны, стоимость 1 кВтч электроэнергии оказалось существенно выше, чем у тепловых станций Урала.
Второй блок Белоярской АЭС с реактором АМБ-200 был построен быстрее, без больших напряжений в работе, так как строительно-монтажный коллектив был уже подготовлен. Реакторная установка была значительно усовершенствована. Она имела одноконтурную схему охлаждения, что упростило технологическую схему всей АЭС. Так же как в первом энергоблоке, главная особенность реактора АМБ-200 выдаче пара высоких параметров непосредственно в турбину. 31 декабря 1967 года энергоблок № 2 был включен в сеть – этим было завершено сооружение 1-й очереди станции.
Значительная часть истории эксплуатации 1-й очереди БАЭС была наполнена романтикой и драматизмом, свойственными всему новому. В особенности это было присуще периоду освоения блоков. Считалось, что проблем в этом быть не должно – были прототипы от реактора АМ «Первой в мире» до промышленных реакторов для наработки плутония, на которых апробировались основные концепции, технологии, конструктивные решения, многие типы оборудования и систем, и даже значительная часть технологических режимов. Однако оказалось, что разница между промышленной АЭС и ее предшественниками настолько велика и своеобразна, что возникли новые, ранее неведомые проблемы.
Наиболее крупной и явной из них оказалась неудовлетворительная надежность испарительных и пароперегревательных каналов. После непродолжительного периода их работы появлялась разгерметизация твэлов по газу или течь теплоносителя с неприемлемыми последствиями для графитовой кладки реакторов, технологических режимов эксплуатации и ремонта, радиационного воздействия на персонал и окружающую среду. По научным канонам и расчетным нормативам того времени этого не должно было быть. Углубленные исследования этого нового явления заставили пересмотреть установившиеся представления о фундаментальных закономерностях кипения воды в трубах, так как даже при малой плотности теплового потока возникал неизвестный ранее вид кризиса теплообмена, который был открыт в 1979 году В.Е. Дорощуком (ВТИ) и впоследствии назван «кризис теплообмена II рода».
В 1968 году было принято решение о строительстве на Белоярской АЭС третьего энергоблока с реактором на быстрых нейтронах – БН-600. Научное руководство созданием БН-600 осуществлялось Физико-энергетическим институтом, проект реакторной установки был выполнен Опытным конструкторским бюро машиностроения, а генеральное проектирование блока осуществляло Ленинградское отделение «Атомэлектропроект». Строил блок генеральный подрядчик – трест «Уралэнергострой».
При его проектировании учитывался опыт эксплуатации реакторов БН-350 в г. Шевченко и реактора БОР-60. Для БН-600 была принята более экономичная и конструктивно удачная интегральная компоновка первого контура, в соответствии с которой активная зона реактора, насосы и промежуточные теплообменники размещаются в одном корпусе. Корпус реактора, имеющий диаметр 12,8 м и высоту 12,5 м, устанавливался на катковых опорах, закрепленных на фундаментной плите шахты реактора. Масса реактора в сборе составляла 3900 т., а общее количество натрия в установке превышает 1900 тонн. Биологическая защита была выполнена из стальных цилиндрических экранов, стальных болванок и труб с графитовым заполнителем.
Требования к качеству монтажных и сварочных работ для БН-600 оказались на порядок выше достигнутых ранее, и коллективу монтажников пришлось срочно переобучать персонал и осваивать новые технологии. Так в 1972 году при сборке корпуса реактора из аустенитных сталей на контроле просвечиванием крупных сварных швов впервые был применен бетатрон.
Кроме того, при монтаже внутрикорпусных устройств реактора БН-600 предъявлялись особые требования по чистоте, велась регистрация всех вносимых и выносимых деталей из внутриреакторного пространства. Это было обусловлено невозможностью в дальнейшем промывки реактора и трубопроводов с теплоносителем-натрием.
Большую роль в разработке технологии монтажа реактора сыграл Николай Муравьев, которого удалось пригласить на работу из Нижнего Новгорода, где он раньше работал в конструкторском бюро. Он являлся одним из разработчиков проекта реактора БН-600, и к тому времени уже находился на пенсии.
Коллектив монтажников успешно справился с поставленными задачами по монтажу блока на быстрых нейтронах. Заливка реактора натрием показала, что чистота контура была выдержана даже выше требуемой, так как температура застывания натрия, которая зависит в жидком металле от наличия посторонних загрязнений и окислов, оказалась ниже достигнутых на монтаже реакторов БН-350, БОР-60 в СССР и АЭС «Феникс» во Франции.
Успех работы монтажных коллективов на сооружении Белоярской АЭС во многом зависел от руководителей. Сначала это был Павел Рябуха, потом пришел молодой энергичный Владимир Невский, затем его сменил Вазген Казаров. В. Невский много сделал для становления коллектива монтажников. В 1963 году его назначили директором Белоярской АЭС, а в дальнейшем он возглавил «Главатомэнерго», где много трудился для становления атомной энергетики страны.
Наконец, 8 апреля 1980 г. состоялся энергетический пуск энергоблока № 3 Белоярской АЭС с реактором на быстрых нейтронах БН-600. Некоторые проектные характеристики БН-600:
- электрическая мощность – 600 МВт;
- тепловая мощность – 1470 МВт;
- температура пара – 505 оС;
- давление пара – 13,7 МПа;
- термодинамический КПД брутто – 40,59 %.
Следует специально остановиться на опыте обращения с натрием в качестве теплоносителя. Он имеет неплохие теплофизические и удовлетворительные ядерно-физические свойства, хорошо совместим с нержавеющими сталями, двуокисью урана и плутония. Наконец, он не дефицитен и относительно недорог. Однако он весьма химически активен, из-за чего его применение потребовало решения, по крайней мере, двух серьезных задач: сведения к минимуму вероятности течи натрия из контуров циркуляции и межконтурных течей в парогенераторах и обеспечения эффективной локализации и прекращения горения натрия в случае го утечки.
Первая задача в целом довольно успешно была решена в стадии разработки проектов оборудования и трубопроводов. Весьма удачной оказалась интегральная компоновка реактора, при которой все основное оборудование и трубопроводы 1-го контура с радиоактивным натрием были «спрятаны» внутри корпуса реактора, и поэтому его утечка в принципе оказалась возможной только из немногочисленных вспомогательных систем.
И хотя БН-600 сегодня является самым крупным энергоблоком с реактором на быстрых нейтронах в мире, Белоярская АЭС не входит в число атомных станций с большой установленной мощностью. Ее отличия и достоинства определяются новизной и уникальностью производства, его целей, технологии и оборудования. Все реакторные установки БелАЭС были предназначены для опытно-промышленного подтверждения или отрицания заложенных проектировщиками и конструкторами технических идей и решений, исследования технологических режимов, конструкционных материалов, тепловыделяющих элементов, управляющих и защитных систем.
Все три энергоблока не имеют прямых аналогов ни у нас в стране, ни за рубежом. В них были воплощены многие из идей перспективного развития ядерной энергетики:
- сооружены и освоены энергоблоки с канальными водографитовыми реакторами промышленных масштабов;
- применены серийные турбоустановки высоких параметров с КПД теплосилового цикла от 36 до 42 %, чего не имеет ни одна АЭС в мире;
- применены ТВС, конструкция которых исключает возможность попаданий осколочной активности в теплоноситель даже при разрушении твэлов;
- в первом контуре реактора 2-го блока применены углеродистые стали;
- в значительной мере освоена технология применения и обращения с жидкометаллическим теплоносителем;
Белоярской АЭС первой из атомных электростанций России столкнулась на практике с необходимостью решения задачи вывода из эксплуатации отработавших ресурс реакторных установок. Развитие этого весьма актуального для всей атомной энергетики направления деятельности из-за отсутствия организационно-нормативной документальной базы и нерешенности вопроса финансового обеспечения имело длительный инкубационный период.
Более чем 50-летний период эксплуатации Белоярской АЭС имеет три достаточно выраженных этапа, каждому из которых были присущи свои направлений деятельности, специфические трудности ее осуществления, успехи и разочарования.
Первый этап (с 1964 года до середины 70-х гг.) был всецело связан с пуском, освоением и достижением проектного уровня мощности энергоблоков 1-й очереди, множеством реконструктивных работ и решением проблем, связанных с несовершенством проектов блоков, технологических режимов и обеспечением устойчивой работы топливных каналов. Все это потребовало от коллектива станции огромных физических и интеллектуальных усилий, которые, к сожалению, не увенчались уверенностью в правильности и перспективности выбора уран-графитовых реакторов с ядерным перегревом пара для дальнейшего развития атомной энергетики. Однако наиболее существенная часть накопленного опыта эксплуатации 1-й очереди была учтена проектировщиками и конструкторами при создании уран-графитовых реакторов последующего поколения.
Начало 70-х годов связано с выбором для дальнейшего развития атомной энергетики страны нового направления – реакторных установок на быстрых нейтронах с последующей перспективой строительства нескольких энергоблоков с реакторами-размножителями на смешанном уран-плутониевом топливе. При определении места строительства первого опытно-промышленного блока на быстрых нейтронах выбор пал на Белоярскую АЭС. Существенное влияние на этот выбор оказало признание способностей коллективов строителей, монтажников и персонала станции должным образом построить этот уникальный энергоблок и в дальнейшем обеспечить его надежную эксплуатацию.
Это решение обозначило второй этап в развитии Белоярской АЭС, которым большей своей частью был завершен с решением Государственной комиссии о приемке законченного строительства энергоблока с реактором БН-600 с редко применяемой в практике оценкой «отлично».
Обеспечение качественного выполнения работ этого этапа было поручено лучшим специалистам как у подрядчиков по строительству и монтажу, так и из состава эксплуатационного персонала станции. Персонал станции приобрел большой опыт в наладке и освоении оборудования АЭС, что было активно и плодотворно использовано в ходе пусконаладочных работ на Чернобыльской и Курской АЭС. Особо следует сказать о Билибинской АЭС, на которой кроме пуско-наладочных работ был выполнен глубокий анализ проекта, на базе которого был внесен ряд значительных усовершенствований.
С пуском в эксплуатацию третьего блока начался третий этап существования станции, продолжающийся уже более 35 лет. Целями этого этапа было достижение проектных показателей блока, подтверждение практикой жизнеспособности конструктивных решений и приобретение опыта эксплуатации для последующего учета в проекте серийного блока с реактором-размножителем. Все эти цели к настоящему времени успешно достигнуты.
Концепции обеспечения безопасности, заложенные в проекте блока, в целом подтвердились. Так как точка кипения натрия почти на 300оС превышает его рабочую температуру, реактор БН-600 работает почти без давления в корпусе реактора, который стало возможным изготовить из высокопластичной стали. Это практически исключает возможность возникновения быстроразвивающихся трещин. А трехконтурная схема передачи тепла от активной зоны реактора с увеличением давления в каждом последующем контуре полностью исключает возможность попадания радиоактивного натрия 1-го контура во второй (не радиоактивный) и тем более – в пароводяной третий контур.
Подтверждением достигнутого высокого уровня безопасности и надежности БН-600 является выполненный после аварии на Чернобыльской АЭС анализ безопасности, который не выявил необходимости каких-либо технических усовершенствований срочного характера. Статистика срабатывания аварийных защит, аварийных отключений, неплановых снижений рабочей мощности и других отказов показывает, что реактор БН-6ОО находится, по крайней мере, в числе 25 % лучших ядерных блоков мира.
По итогам ежегодного конкурса Белоярская АЭС в 1994, 1995, 1997 и 2001 гг. удостаивалась звания «Лучшая АЭС России».
В предпусковой стадии находится энергоблок № 4 с реактором на быстрых нейтронах БН-800. Новый 4-й энергоблок с реактором БН-800 мощностью 880 МВт 27 июня 2014 года был выведен на минимальный контролируемый уровень мощности. Энергоблок призван существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счёт организации замкнутого ядерно-топливного цикла.
Рассматривается возможность дальнейшего расширения Белоярской АЭС энергоблоком № 5 с быстрым реактором мощностью 1200 МВт – головного коммерческого энергоблока для серийного строительства.
www.biblioatom.ru
Реактор на быстрых нейтронах БН-800 вышел на уровень мощности 880 МВт
Уникальный российский реактор на быстрых нейтронах, работающий на Белоярской АЭС, вывели на мощность 880 мегаватт — об этом сообщает пресс-служба Росатома.
Реактор работает на энергоблоке № 4 Белоярской АЭС и сейчас проходят плановые испытания генерирующего оборудования. В соответствии с программой испытаний энергоблок обеспечивает в течение 8 часов поддержание электрической мощности на уровне не ниже 880 мегаватт.
Мощность реактора поднимается поэтапно, для того что бы в итоге по результатам испытаний получить аттестацию на проектном уровне мощности в 885 мегаватт. На данный момент реактор аттестован на мощность 874 мегаватта.
Напомним, что на Белоярской АЭС работает два реактора на быстрых нейтронах. С 1980 года здесь работает реактор БН-600 — долгое время он был единственным в мире реактором этого типа. Но в 2015 году начался поэтапный запуск второго реактора БН-800.
Почему это так важно и считается историческим событием для мировой атомной отрасли?
Реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.
Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.
Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии – от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).
«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, – объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. – Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, – оно лишь чуть выше атмосферного».
По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы – как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».
«Проблемы действительно были одни и те же, – добавляет директор Белоярской АЭС Николай Ошканов, – но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,– открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».
Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями
370 топливных сборок образуют три зоны с различным обогащением по урану-235 – 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).
Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) – трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.
В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней – головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.
Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» – фотонейтронный источник (гамма-излучатель плюс бериллий).
Энергоблоки с реакторами на быстрых нейтронах могут существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счет организации замкнутого ядерно-топливного цикла. Подобными технологиями обладают лишь некоторые страны, и РФ, по признанию экспертов, является мировым лидером в этой области.
Реактор БН-800 (от «быстрый натриевый», электрической мощностью 880 мегаватт) — опытно-промышленный реактор на быстрых нейтронах с жидкометаллическим теплоносителем, натрием. Он должен стать прототипом коммерческих, более мощных энергоблоков с реакторами БН-1200.
[источники]источникиhttp://www.rosenergoatom.ru/zhurnalistam/novosti-kompanii/26857/https://masterok.livejournal.com/2666223.html
masterok.livejournal.com
Запущен новый блок Белоярской АЭС на быстрых нейтронах - Портал-Энерго.ru
Историческое событие не только для российской, но и для всей мировой атомной отрасли произошло в прошлый четверг на Белоярской АЭС: в энергосистему России выдал свои первые киловатт-часы электроэнергии четвертый блок станции с реактором на быстрых нейтронах БН-800 — прототипом более мощных коммерческих «быстрых» реакторов, которые, как считается, дадут большие преимущества для развития атомной энергетики.
«10 декабря 2015 г., в 21:21 по местному времени (19:21 мск) энергоблок № 4 Белоярской АЭС с реактором БН-800 был включен в сеть и выработал первую электроэнергию в энергосистему Урала», — говорится в сообщении концерна «Росэнергоатом».
По словам генерального директора Концерна «Росэнергоатом» Андрея Петрова, энергопуск БН-800 является выдающимся событием для всей атомной энергетики России. Для обеспечения процедуры тепловая мощность реактора БН-800 была поднята до уровня 25 % от номинальной, турбина К-800-130/3000 выведена на частоту вращения три тысячи оборотов в минуту. Затем была произведена синхронизация генератора нового энергоблока с энергосистемой и тепловая мощность реактора увеличена до 35 % от номинальной. Энергоблок включен сейчас на минимальном уровне мощности 235 мегаватт. Белоярская атомная электростанция была введена в работу в апреле 1964 года. Первые энергоблоки БАЭС с реакторами на тепловых нейтронах АМБ-100 и АМБ-200 остановлены в связи с выработкой ресурса. В эксплуатации находится третий энергоблок с реактором на быстрых нейтронах промышленного уровня мощности БН-600. Предполагается, что выработка электроэнергии новейшим, уже четвертым для БАЭС, энергоблоком БН-800 в энергосистему Урала уже в декабре текущего года может составить порядка 30 млн кВтч.
«Предыдущий энергоблок с реактором такого типа БН-600 был пущен 35 лет назад, в прошлом столетии. БН-800 сооружён в принципиально изменившихся условиях, поэтому его пуск я по праву считаю трудовым подвигом проектировщиков, конструкторов, строителей, монтажников, изготовителей, наладчиков оборудования, и, конечно, эксплуатационного персонала», — сказал Петров, слова которого цитируются в сообщении.
«Это действительно значимая для нас победа. БН-800 дался нам нелегко, но главное, благодаря этому энергоблоку мы восстановили свои компетенции в области проектирования и сооружения «быстрых» реакторов. Сегодня сделан еще один важный шаг на пути перехода атомной энергетики России к новой технологической платформе», — отметил Петров.
Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi – уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).
В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.
Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985–1997), Monju (Япония, 1994–1995) и БН-600 (Белоярская АЭС, 1980), а теперь и БН-800 которые в настоящий момент является единственными в мире действующим промышленным энергетическим реактором.
Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране – всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!
Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.
Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.
Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии – от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).
«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, – объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. – Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, – оно лишь чуть выше атмосферного».
По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы – как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».
«Проблемы действительно были одни и те же, – добавляет директор Белоярской АЭС Николай Ошканов, – но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,– открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».
Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями
370 топливных сборок образуют три зоны с различным обогащением по урану-235 – 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).
Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) – трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.
В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней – головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.
Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» – фотонейтронный источник (гамма-излучатель плюс бериллий).
Перед строящимся реактором БН-800 поставлены следующие важные задачи:
• Обеспечение эксплуатации на MOX-топливе.• Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла.• Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.• Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем: ◦ испытания и аттестация перспективного топлива и конструкционных материалов;◦ демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.
Энергоблоки с реакторами на быстрых нейтронах могут существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счет организации замкнутого ядерно-топливного цикла. Подобными технологиями обладают лишь некоторые страны, и РФ, по признанию экспертов, является мировым лидером в этой области.
Реактор БН-800 (от «быстрый натриевый», электрической мощностью 880 мегаватт) — опытно-промышленный реактор на быстрых нейтронах с жидкометаллическим теплоносителем, натрием. Он должен стать прототипом коммерческих, более мощных энергоблоков с реакторами БН-1200.
Реактор БН-1200 (вертикальный разрез)
Планируется следующая программа реализации этого проекта:
• 2010…2016 гг. – разработка техпроекта реакторной установки и выполнение программы НИОКР.• 2020 г. – ввод в действие головного энергоблока на МОХ- топливе и организация его централизованного производства.• 2023…2030 гг. – ввод в эксплуатацию серии энергоблоков суммарной мощностью около 11 ГВт.
Источник
portal-energo.ru