Содержание
Откуда берется ядерная энергия? Научные основы ядерной энергетики
Что есть что в ядерной сфере
03.11.2021
Андреа Галиндо, Бюро общественной информации и коммуникации МАГАТЭ
Ядерная энергия представляет собой разновидность энергии, которая высвобождается из ядра — центральной части атомов, состоящей из протонов и нейтронов. Источником этой энергии могут являться два физических процесса: деление, когда ядра атомов распадаются на несколько частей, и синтез, когда ядра сливаются вместе.
Ядерная энергия, используемая сегодня во всем мире для производства электроэнергии, вырабатывается посредством деления ядра, в то время как технология производства электроэнергии на основе синтеза пока еще находится на этапе исследований и экспериментальных разработок. В этой статье мы подробнее остановимся на делении ядра. Узнать больше о ядерном синтезе вы можете из этой статьи.
Что такое ядерное деление?
Ядерное деление — это реакция, в ходе которой ядро атома расщепляется на два или более меньших ядра, при этом происходит высвобождение энергии.
Например, ядро атома урана-235, при попадании в него нейтрона, расщепляется на ядро бария и ядро криптона и еще два или три нейтрона. Эти дополнительные нейтроны соударяются с другими находящимися вокруг ядрами урана-235, которые также расщепляются и порождают дополнительные нейтроны с эффектом многократного увеличения, в результате чего за долю секунды формируется цепная реакция.
Каждый раз такая реакция сопровождается высвобождением энергии в виде тепла и излучения. Подобно тому, как для получения электроэнергии используется тепло от ископаемых видов топлива, таких как уголь, газ и нефть, на атомной электростанции эта тепловая энергия может быть преобразована в электроэнергию.
Ядерная реакция деления (Графика: А. Варгас/МАГАТЭ)
Как работает атомная электростанция?
В реакторе атомной электростанции с помощью соответствующего оборудования локализуется и контролируется цепная ядерная реакция, чаще всего с использованием топлива на основе урана-235, в результате деления которого вырабатывается тепло. Это тепло используется для нагрева теплоносителя реактора, как правило, воды, чтобы получить пар. Затем пар направляется на турбины, заставляя их вращаться и активируя электрический генератор, что позволяет вырабатывать электроэнергию без выбросов углекислого газа.
Подробнее о различных типах ядерных энергетических реакторов читайте на этой странице.
Наибольшее распространение в мире получили реакторы с водой под давлением (PWR). (Графика: А. Варгас/МАГАТЭ)
Добыча, обогащение и утилизация урана
Уран — это металл, который встречается в горных породах по всему миру. Уран имеет несколько природных изотопов, которые представляют собой формы элемента, отличающиеся по массе и физическим свойствам, но с одинаковыми химическими свойствами. Уран имеет два первичных изотопа: уран-238 и уран-235. На уран-238 приходится большая часть урана в мире, но он не способен вступать в цепную реакцию деления, в то время как уран-235 может использоваться для получения энергии в результате деления, но составляет менее 1 процента от мировых запасов урана.
Чтобы повысить вероятность деления природного урана, необходимо увеличить содержащееся в нем количество урана-235 с помощью процесса, называемого обогащением урана. После обогащения урана он может эффективно использоваться на протяжении трех-пяти лет в качестве ядерного топлива на АЭС, после чего он все еще остается радиоактивным и должен утилизироваться в соответствии со строгими нормативными требованиями по защите людей и окружающей среды. Использованное топливо, так называемое отработавшее топливо, может также быть переработано в другие виды топлива, которые могут применяться в качестве нового топлива для специальных АЭС.
Что такое ядерный топливный цикл?
Ядерный топливный цикл — это включающий несколько этапов производственный процесс, необходимый для выработки электроэнергии с использованием урана в ядерных энергетических реакторах. Этот цикл начинается с добычи урана и завершается захоронением радиоактивных отходов.
Ядерные отходы
В процессе эксплуатации АЭС образуются отходы с различным уровнем радиоактивности. В зависимости от уровня радиоактивности и конечной цели применяются разные стратегии обращения с ними. Более подробную информацию по этой теме вы найдете в представленном ниже анимированном ролике.
Обращение с радиоактивными отходами
На радиоактивные отходы приходится небольшая доля общего объема отходов. Это побочный продукт миллионов медицинских процедур, проводимых каждый год, промышленных и сельскохозяйственных применений излучения и работы ядерных реакторов, которые производят около 10 процентов электричества в мире. В анимационном видео рассказывается о том, как осуществляется обращение с радиоактивными отходами, чтобы обеспечить защиту людей и окружающей среды от излучения сегодня и в будущем.
При работе следующего поколения АЭС на основе так называемых инновационных усовершенствованных реакторов будет образовываться гораздо меньше ядерных отходов, чем от сегодняшних реакторов. Ожидается, что строительство таких станций начнется ближе к 2030 году.
Ядерная энергетика и изменение климата
Ядерная энергия является низкоуглеродным источником энергии, поскольку, в отличие от электростанций, работающих на угле, нефтепродуктах или природном газе, атомные электростанции во время своей работы практически не производят CO2. Атомные электростанции используются для генерации почти трети мировой безуглеродной электроэнергии и имеют решающее значение для достижения целей в области борьбы с изменением климата.
Подробнее о ядерной энергетике и переходе к экологически чистой энергии читайте в этом выпуске Бюллетеня МАГАТЭ.
Какую роль играет МАГАТЭ?
- МАГАТЭ устанавливает международные нормы и руководящие принципы безопасного и надежного использования ядерной энергии для защиты людей и окружающей среды и способствует проведению их в жизнь.
- МАГАТЭ поддерживает существующие и новые ядерно-энергетические программы по всему миру, предлагая техническую помощь и услуги по управлению знаниями. Следуя веховому подходу, МАГАТЭ предоставляет необходимые технические знания и рекомендации странам, которые выводят свои ядерные объекты из эксплуатации.
- В рамках своей деятельности в области гарантий и проверки МАГАТЭ следит за тем, чтобы не происходило переключения ядерных материалов и технологий с мирного использования на другие цели.
- Методическую основу для организации необходимой деятельности в течение всего жизненного цикла производства ядерной энергии, от добычи урана до сооружения, технического обслуживания и вывода из эксплуатации атомных электростанций и обращения с ядерными отходами, обеспечивают миссии по экспертной оценке и консультационные услуги под руководством МАГАТЭ.
- Под управлением МАГАТЭ находится запас низкообогащенного урана (НОУ) в Казахстане, который может использоваться в случае крайней необходимости странами, срочно нуждающимися в поставках НОУ для мирных целей.
Ресурсы по теме
03.11.2021
Атомная энергетика спасает жизни | Организация Объединенных Наций
Об авторе
Сюзанна Даунс
Сюзанна Даунс — исполнительный директор и один из основателей компании Farnsworth Downs Technology, Соединенные Штаты Америки
Стоящие перед нами проблемы
В 2015 году Организация Объединенных Наций приняла цели в области устойчивого развития (ЦУР) для всего мира. Обобщая, их можно cформулировать следующим образом: искоренить нищету, обеспечить доступ к пище, чистой воде, энергии, здравоохранению и образованию по всему миру, достичь гендерного равенства, гарантировать достойную работу для всех, построить стойкую инфраструктуру, сократить неравенство доходов, содействовать развитию городов, рациональному потреблению и производству, найти решение проблемы изменения климата, сохранить океаны, предотвратить обезлесение, а также сформировать структуры, необходимые для достижения этих целей, включая глобальное партнерство, содействующее устойчивому развитию.
Это, безусловно, масштабные цели. Однако встает вопрос, как Организация Объединенных Наций и ее государства-члены будут подходить к решению этих проблем, а также как определить относительную значимость потенциальных решений.
На мой взгляд, развитие малых модульных жидкосолевых реакторов (ЖСР), включая реакторы, работающие на денатурированном ядерном топливе, может способствовать достижению нескольких ЦУР одновременно.
Концепции атомной энергетики
Использование ядерной энергетики может оказаться одним из вариантов решения этих насущных проблем, как бы маловероятным это ни казалось. Но для этого необходимо пересмотреть методы её применения. В основе производства атомной энергии лежит сила, которая удерживает части атома вместе. Если атом нестабилен, он будет стремиться перейти в более стабильное состояние путем расщепления. Нестабильность атома может быть естественной — или же вызвана добавлением дополнительных нейтронов в ядро.
Когда атом становится более стабильным и выбрасывает частицы, высвобождается огромное количество энергии, которое в закрытой системе может быть использовано для выработки тепла, достаточного для приведения в движение турбины. Радиация, представления о которой часто искажены, происходит по большей части в силу естественных причин. Существует несколько типов радиации, и все они имеют различные последствия и возможности применения.
Опасения относительно атомной энергетики касаются трех основных аспектов: ядерные боеголовки и их распространение, расплавление активной зоны ядерного реактора и сбои системы, а также ядерные отходы. Опасения по каждому из этих пунктов являются обоснованными, но связанные с ними проблемы можно решать путем принципиального и фундаментального переосмысления методов производства атомной энергии.
Малые модульные жидкосолевые реакторы: современное решение
Разработка ЖСР в Соединенных Штатах происходила в основном в 1950—1970-х гг. В отличие от реакторов, используемых сегодня, в ЖСР были предусмотрены уникальные решения для ряда проблем, возникающих при эксплуатации обычных реакторов.
- Соли уже находятся в расплавленном состоянии, поэтому «расплавление активной зоны ядерного реактора» невозможно. Если система перегревается, соли пассивно сливаются в охлаждающую емкость.
- Радиоактивные материалы образуют в системе прочные взаимосвязи. Летучие материалы постоянно удаляются из системы.
- Жидкосолевые реакторы работают при атмосферном давлении, что делает невозможным повторение инцидента, имевшего место на АЭС «Фукусима-1» в Японии в 2011 году.
- Многие ЖСР сконструированы таким образом, что имеющиеся ядерные отходы расщепляются прямо в реакторе-конверторе.
- Системы ЖСР могут использовать расщепляющийся материал гораздо эффективнее, чем обычные атомные реакторы.
- Можно использовать ЖСР в режиме, обусловленном нагрузкой; избыточная реактивность предотвращается благодаря сильному отрицательному паровому коэффициенту и температурному коэффициенту реактивности.
- Тория — материала, который используется в обогащённом виде для работы ЖСР — в земной коре в три раза больше чем урана. В настоящее время торий считается лишь побочным продуктом добычи редкоземельных ресурсов и его коммерческая ценность сравнительно невелика, но его можно добывать путем землечерпальных работ (в отличие от более инвазивных способов) или даже из океана.
- Теоретически системы ЖСР могут работать на денатурированном ядерном топливе; такие системы более безопасны с точки зрения ядерного нераспространения по сравнению с обычными жидкосолевыми или реакторами других более традиционных конструкций.
- Подобные установки могут эксплуатироваться в полностью замкнутом режиме с использованием турбины, работающей по циклу Ренкина или Брайтона, что позволяет исключить необходимость их расположения около крупных водных объектов, как в случае с современными реакторами.
- Возможно расширение применения этой технологии, в основу которой входит модульная система. Если использование ЖСР поставить на коммерческую основу, им можно найти самое широкое применение.
Базовая конструкция ЖСР выглядит следующим образом:
Существует множество вариантов данной конструкции, но именно эта модель подвергалась наибольшему количеству исследований и экспериментов.
Одна из конструкций, которую следует изучить подробнее, — это жидкосолевой реактор с использованием денатурированного топлива. Он может быть бесперебойным источником электроэнергии в течение нескольких лет, не требуя вмешательства человека. Это обеспечит возможность более быстрого и безопасного внедрения данной технологии по всему миру с меньшим риском утечки материалов для создания ядерного оружия.
Применение ЖСР
Существование целого ряда возможностей применения ЖСР является, вероятно, наиболее очевидной причиной, по которой необходимо развивать эту технологию, поскольку с ее помощью можно будет, кроме всего прочего, обеспечивать миллионы людей электроэнергией, водой, изотопами медицинского назначения, вырабатывать энергию, необходимую для производства продовольствия, а также сокращать накопившиеся запасы ядерных отходов и проводить электричество в удаленных районах.
Электричество и вода для всех
Учитывая характер насущных проблем планеты, в первую очередь необходимо обеспечить повсеместный адекватный доступ к электричеству, водным ресурсам и санитарии. ЖСР дают уникальную возможность осуществить эти намерения. В работе ЖСР могут быть использованы самые различные виды топлива, при этом эффективность расхода топлива на порядок выше, чем в случае со стандартными урановыми реакторами, а сфера возможного применения технологии крайне широка. Исходя из этого, трудно усомниться в ее потенциале и перспективности для будущего развития человечества.
Кроме того, поскольку в энергоустановке вообще не используются радиоактивные материалы и она работает при температуре, превышающей 100 °C, появляется возможность применения избыточного тепла для очищения воды и стерилизации отходов. Разместив такую установку на побережье океана, например в Калифорнии, возможно будет обеспечить снабжение населения чистой питьевой водой.
Ликвидация чрезвычайных ситуаций и микроэнергосистемы
Поскольку эти реакторы могут быть модульными и, соответственно варьироваться в размерах, возможно крупномасштабное производство и применение малых реакторов, с целью обеспечения электроэнергией объектов, не являющихся частью традиционной инфраструктуры. Такие решения могут быть востребованы на военных базах, в развивающихся странах, а также для оборудования сооружений при ликвидации чрезвычайных ситуаций там, где инфраструктура повреждена. Благодаря принципу своей работы эти реакторы вырабатывают количество энергии, требующейся в определённое время и при определённых обстоятельствах, поэтому это идеальное решение для краткосрочной эксплуатации.
Производство изотопов медицинского назначения
Медицинские изотопы являются побочным продуктом работы реактора и некоторых цепочек распада топлива. Такие изотопы можно использовать в медицинских целях, в исследованиях перспективного лечения пучком альфа-частиц, для радиографии и в ряде других случаев. В Англии торий уже является предметом исследований. Кроме того, производство радиоизотопов в настоящее время осуществляется в основном в устаревающих реакторах в Южной Африке и Канаде. Местное изготовление этих изотопов может сделать их более доступными и привести к их более широкому применению во множестве стран.
Обезвреживание ядерных отходов и предотвращение ядерного распространения
Как было упомянуто ранее, различные ЖСР представляют разные возможности, и некоторые из них чрезвычайно хорошо подходят для утилизации ядерных отходов и предотвращения ядерного распространения. Некоторые компании в Соединенных Штатах активно производят реакторы-сжигатели. Эти системы способны поддерживать более высокую плотность энерговыделения и используют ядерные отходы как топливо для такой реакции. Такая технология позволит сократить имеющиеся скопления ядерных отходов, превратив их в трансурановые элементы с незначительной долей реактивности. Будет больше не нужна добыча, разделение и производство дополнительного топлива; вместо этого можно будет использовать энергию, которая имеется в отработанном топливе и которую обычные реакторы не в состоянии утилизировать .
Другие ЖСР целиком направлены на предотвращение ядерного распространения. В стандартных ЖСР c химической переработкой и двухжидкостным устройством происходит разделение некоторых изотопов для увеличения полезного использования нейтронов в реакторе. Однако при этом можно выделить материал, который используется для производства радиоактивных вооружений. Несмотря на сложность процесса, это возможно. Чтобы снизить риск, в 1979—1980 годах был разработан ЖСР на денатурированном топливе. Систему можно модифицировать так, чтобы в ней использовался единый топливный резервуар, без разделения. Коэффициент преобразования воспроизводящего материала в расщепляющийся был ограничен, и доля денатурированного урана поддерживалась на достаточном уровне для того, чтобы материал был непригоден для создания ядерных бомб. После испытания и завершения работ такую конструкцию можно отправить в любую точку земного шара без опасения, что это приведет к распространению ядерного оружия. Это может помочь обеспечить электроэнергией и водой те страны, которые особенно в них нуждаются.
Не только на Земле
Наконец, эту технологию можно применять не только на Земле. ЖСР может быть хорошим вариантом энергетической установки, которую можно использовать для поддержания человеческой жизнедеятельности или автоматических станций, работающих без участия человека, в космосе. Энергетическую систему, систему обогрева и систему очищения воды можно оптимизировать, и реактор теоретически может работать несколько лет без человеческого вмешательства. Сточные воды могут быть переработаны и стерилизованы, что позволяет использовать их в устойчивых системах, поддерживающих жизнедеятельность за пределами Земли.
Перед планетой и ее жителями стоит множество проблем и задач. Поиск решения для любой из них может быть очень непростым, не говоря уже о таких решениях, которые могут одновременно способствовать достижению сразу нескольких целей в области устойчивого развития. Научно обоснованный и рациональный подход к использованию атомной энергетики может спасти жизни и сохранить ресурсы. Настало время фундаментальным образом переосмыслить её применение и продолжать изучать её потенциал в мирных целях. ЖСР представляют собой возрождение старой идеи, которая оказалась одним из лучших способов выработки безопасной, экологически чистой энергии в грядущие тысячелетия.
Винни Бьянима
Мы сможем покончить со СПИДом к 2030 году, если добьемся равенства
Мы сможем покончить со СПИДом к 2030 году, если добьемся РАВЕНСТВА.
Говоря о туалетах… Интервью «Хроники» с «Мистером Туалетом» Джеком Симом
В преддверии Всемирного дня туалета (19 ноября) «Хроника ООН» побеседовала с Джеком Симом, основателем и директором Всемирной туалетной организации. Г-н Сим, широко известный как «Мистер Туалет», рассказал о важной роли туалетов и санитарии в достижении устойчивого развития, о своей работе по улучшению систем санитарии во всем мире и о прогрессе в достижении цели обеспечения того, чтобы каждый человек в любой точке мира при необходимости имел доступ к функционирующему туалету.
Франческо Ла Камера
Одних наших слов недостаточно: только решительные действия в отношении возобновляемых источников энергии могут помочь планете
Использование новых, возобновляемых источников энергии может способствовать устранению глобального пристрастия к ископаемому топливу и поможет защитить страны от чрезвычайно резких колебаний на энергетических рынках.
Атом | Определение, структура, история, примеры, схема и факты
модель атомной оболочки
Посмотреть все медиа
- Ключевые люди:
- Эрнест Резерфорд
Нильс Бор
Лев Давидович Ландау
Стивен Чу
Уильям Д. Филлипс
- Похожие темы:
- субатомная частица
радиоактивность
изотоп
атомизм
периодическая таблица
Просмотреть весь связанный контент →
Популярные вопросы
Что такое атом?
Атом является основным строительным элементом химии. Это наименьшая единица, на которую можно разделить материю без высвобождения электрически заряженных частиц. Это также наименьшая единица материи, обладающая характерными свойствами химического элемента.
Все ли атомы одного размера?
Все атомы примерно одинакового размера, независимо от того, имеют ли они 3 или 90 электронов. Приблизительно 50 миллионов атомов твердого вещества, выстроенных в ряд, будут иметь размер 1 см (0,4 дюйма). Удобная единица длины для измерения размеров атомов — ангстрем, определяемый как 10 −10 метра.
Из чего состоит масса атома?
Масса атома состоит из массы ядра плюс массы электронов. Это означает, что единица атомной массы не совсем такая же, как масса протона или нейтрона.
Как определяется атомный номер атома?
Единственной наиболее важной характеристикой атома является его атомный номер (обычно обозначаемый буквой Z), который определяется как количество единиц положительного заряда (протонов) в ядре. Например, если атом имеет Z, равный 6, это углерод, а Z, равный 92, соответствует урану.
Сводка
Прочтите краткий обзор этой темы
атом , наименьшая единица, на которую можно разделить материю без высвобождения электрически заряженных частиц. Это также наименьшая единица материи, обладающая характерными свойствами химического элемента. Таким образом, атом является основным строительным блоком химии.
Исследование различных конфигураций электронов в электронных оболочках вокруг ядра атома
Просмотреть все видео к этой статье
Большая часть атома представляет собой пустое пространство. Остальное состоит из положительно заряженного ядра протонов и нейтронов, окруженного облаком отрицательно заряженных электронов. Ядро маленькое и плотное по сравнению с электронами, которые являются самыми легкими заряженными частицами в природе. Электроны притягиваются к любому положительному заряду своей электрической силой; в атоме электрические силы связывают электроны с ядром.
Из-за природы квантовой механики ни одно изображение не было полностью удовлетворительным для визуализации различных характеристик атома, что вынуждает физиков использовать дополнительные изображения атома для объяснения различных свойств. В некотором отношении электроны в атоме ведут себя как частицы, вращающиеся вокруг ядра. В других электроны ведут себя как волны, застывшие вокруг ядра. Такие волновые структуры, называемые орбиталями, описывают распределение отдельных электронов. Эти орбитальные свойства сильно влияют на поведение атома, а его химические свойства определяются орбитальными группировками, известными как оболочки.
Эта статья начинается с широкого обзора фундаментальных свойств атома и составляющих его частиц и взаимодействий. После этого обзора следует исторический обзор наиболее влиятельных концепций об атоме, которые были сформулированы на протяжении веков. Для получения дополнительной информации, касающейся структуры ядра и элементарных частиц, см. субатомные частицы.
Большая часть материи состоит из скоплений молекул, которые можно относительно легко разделить. Молекулы, в свою очередь, состоят из атомов, соединенных химическими связями, которые труднее разорвать. Каждый отдельный атом состоит из более мелких частиц, а именно электронов и ядер. Эти частицы электрически заряжены, и электрические силы на заряде ответственны за удержание атома вместе. Попытки разделить эти более мелкие составляющие частицы требуют все большего количества энергии и приводят к созданию новых субатомных частиц, многие из которых заряжены.
Как отмечалось во введении к этой статье, атом в основном состоит из пустого пространства. Ядро является положительно заряженным центром атома и содержит большую часть его массы. Он состоит из протонов, имеющих положительный заряд, и нейтронов, не имеющих заряда. Протоны, нейтроны и окружающие их электроны являются долгоживущими частицами, присутствующими во всех обычных атомах природного происхождения. Другие субатомные частицы могут быть обнаружены в ассоциации с этими тремя типами частиц. Однако они могут быть созданы только с добавлением огромного количества энергии и очень недолговечны.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Все атомы примерно одинакового размера, независимо от того, имеют ли они 3 или 90 электронов. Приблизительно 50 миллионов атомов твердого вещества, выстроенных в ряд, будут иметь размер 1 см (0,4 дюйма). Удобная единица длины для измерения размеров атомов — ангстрем (Å), определяемый как 10 −10 метра. Радиус атома составляет 1–2 Å. По сравнению с общим размером атома ядро еще меньше. Он находится в такой же пропорции к атому, как шарик к футбольному полю. По объему ядро занимает всего 10 −14 метра пространства в атоме, т. е. 1 часть на 100 000. Удобная единица длины для измерения размеров ядер — фемтометр (фм), который равен 10 −15 метра. Диаметр ядра зависит от числа содержащихся в нем частиц и колеблется примерно от 4 фм для легкого ядра, такого как углерод, до 15 фм для тяжелого ядра, такого как свинец. Несмотря на малые размеры ядра, в нем сосредоточена практически вся масса атома. Протоны — это массивные положительно заряженные частицы, тогда как нейтроны не имеют заряда и немного массивнее протонов. Тот факт, что ядра могут иметь от 1 до почти 300 протонов и нейтронов, объясняет их большие различия в массе. Самое легкое ядро, атом водорода, в 1836 раз массивнее электрона, а тяжелые ядра почти в 500 000 раз массивнее.
Основные свойства
Единственной наиболее важной характеристикой атома является его атомный номер (обычно обозначаемый буквой Z ), который определяется как количество единиц положительного заряда (протонов) в ядре. Например, если атом имеет Z из 6, это углерод, а Z из 92 соответствует урану. Нейтральный атом имеет равное количество протонов и электронов, поэтому положительные и отрицательные заряды точно уравновешиваются. Поскольку именно электроны определяют, как один атом взаимодействует с другим, в конечном итоге именно количество протонов в ядре определяет химические свойства атома.
Атомы и свет
Атомы и свет
Доктор Дэвид Р. Берджесс
Колледж Ривьер
Для большинства «повседневных» соображений атом состоит из положительных протонов,
нейтральные нейтроны и отрицательные электроны. Протоны и нейтроны примерно
одинаковой массы и находятся вместе в ядре атома. Электроны
намного меньше (масса протона примерно в 2000 раз больше массы электрона) и
находиться вне ядра. Положение электрона может быть только
описывается с помощью вероятностей. Используя квантовую механику, вероятность
нахождения электрона в определенной области пространства можно рассчитать,
но точное положение неизвестно. Электроны НЕ вращаются вокруг
ядра, как планеты вокруг Солнца.
Все атомы одного элемента имеют одинаковое число протонов, но
может различаться числом нейтронов или числом электронов. Если
число электронов меняется, атом становится заряженной частицей и называется
ион.
Каждый атом имеет набор связанных с ним энергетических уровней. Все атомы одного
Отдельный элемент имеет одинаковый набор энергетических уровней, но каждый элемент имеет
уникальный набор энергетических уровней, связанных с его атомами. Зная энергию
level идентифицирует элемент.
Каждый электрон в атоме связан с определенным энергетическим уровнем атома.
атом. Электроны на более высоких энергетических уровнях часто могут быть возбуждены
света, тепла, электричества и т. д. и «прыгать» на еще более высокий энергетический уровень, т. е.
доступны в атоме. Возбужденный электрон в конце концов «упадет» обратно вниз.
до наименьшей доступной энергии. Когда он возвращается на более низкий энергетический уровень
энергия отдается. Если испускаемая энергия находится в видимой области, она может
наблюдаться человеческим глазом.
Удивительная вещь об электронах заключается в том, что они могут принять только точное количество
энергии, необходимой для перехода на более высокий энергетический уровень. Меньше энергии или больше энергии
не заставляет электрон «перемещаться» с его нынешнего энергетического уровня. Это
пример избирательного поглощения энергии. Атом только поглощает энергию
связано с изменением энергетического уровня. Точно так же атом только дает
выключение энергии, связанное с изменением энергетических уровней. Поскольку энергетические уровни
характерны для элемента, энергии, поглощаемые и выделяемые, также
характеристика элемента. Каждый элемент имеет свою характерную черту
спектр.
Некоторые молекулы также избирательно поглощают световую энергию. Когда они впитываются в
видимый диапазон энергий, мы видим дополнение
цвет, который впитывается. Поэтому листья зеленые. Хлорофилл в составе
лист поглощает комплимент зеленого, и мы видим зеленый цвет.