Содержание
Чёрная дыра — простым языком о сложном космическом явлении
admin
Время чтения примерно: 2 — 4 минуты
Чёрная дыра — это место в космосе, где гравитация настолько сильна, что даже объекты движущиеся со скоростью света не могут ей сопротивляться, в том числе сами частицы света. Такое гравитационное притяжение возникает, потому что материя была сжата в крошечное пространство. Считается, что подобные явления происходят, когда умирают звёзды.
Поскольку никакой свет не может покинуть эту область, чёрные дыры буквально невидимы. Однако космические телескопы со специальным оборудованием способны их обнаруживать. Например, можно фиксировать необычное поведение объектов, которые находятся близко к чёрной дыре.
Содержание
Размеры чёрных дыр
Учёные считают, что самые маленькие чёрные дыры, размером всего в один атом, могли возникнуть в первые мгновения существования Вселенной. Подобные условия создают на большом адронном коллайдере, и у общественности возникают опасения, что это может привести к возникновению чёрной дыры.
Другой вид чёрных дыр называется «звёздным». Их масса может быть в 20 раз больше массы Солнца. В нашей галактике возможно существование множества чёрных дыр звёздной массы.
Первое реальное фото тени чёрной дыры, полученное напрямую в радиодиапазоне
Самые большие чёрные дыры называются «сверхмассивными». Они имеют массы, которые составляют более 1 миллиона Солнц. Ученые нашли доказательства того, что каждая большая галактика содержит сверхмассивную черную дыру в своем центре. Такой объект в центре галактики Млечный Путь называется Стрелец А. Она имеет массу, равную примерно 4 миллионам Солнц.
Как образуются чёрные дыры
Такие большие объекты, как звёзды, обладают большой гравитацией. Вся материя звезды всегда притягивается к центру, но термоядерные реакции не позволяют ей схлопнуться. То есть с одной стороны работает притяжение, а с другой давление, которое удерживает форму звезды.
Самой популярной считается теория, что чёрная дыра — это конечная стадия жизни звезды с очень большой массой, превышающей как минимум массу 20 Солнц. Когда внутри такой звезды прекращаются термоядерные реакции (заканчивается топливо), то под действием своей огромной гравитации она ускоренно сжимается в нейтронную звезду. В зависимости от своей начальной массы, она может остаться сверхплотной нейтронной звездой либо продолжить сжиматься с такой силой, что даже свет не сможет покинуть её пределы — это и будет чёрная дыра.
Существует и другой сценарий, когда все те же процессы происходят с межзвёздным газом, находящимся на стадии превращения в галактику или какое-то скопление. Если внутреннее давление не может компенсировать гравитацию, то вся материя начинает сжиматься, что приводит к образованию чёрной дыры.
youtube.com/embed/fl2NAl8IjJs?version=3&rel=1&showsearch=0&showinfo=1&iv_load_policy=1&fs=1&hl=ru-RU&autohide=2&wmode=transparent» allowfullscreen=»true» sandbox=»allow-scripts allow-same-origin allow-popups allow-presentation»>
Как учёные узнают о чёрных дырах
Чёрная дыра не излучает и не отражает свет подобно большинству других объектов во Вселенной. Но ученые могут фиксировать, как сильная гравитация влияет на звёзды и газ вокруг чёрной дыры. По поведению объектов, рядом с которыми есть чёрная дыра, собственно можно доказать её наличие.
- Звёзды вращаются вокруг центра гравитации. Если в этом месте ничего нет, значит есть вероятность, что это чёрная дыра.
- Из окружающего пространства чёрная дыра постоянно притягивает материю. Космическая пыль, газ, вещество ближайших звезд — всё это падает на неё по спирали, образуя аккреционный диск. Испытывая ускорение, частицы порождают излучение в характерном спектре. В области, откуда это излучение пришло, наверняка есть чёрная дыра.
Модель пространства вокруг чёрной дыры
Может ли чёрная дыра уничтожить Землю
Чёрные дыры не передвигаются по космосу, поглощая звёзды, луны и планеты. Земля не упадет в чёрную дыру, потому что ни одна из них не находится достаточно близко к Солнечной системе.
Вас может заинтересовать: Что будет, если Земля перестанет вращаться
Даже если бы в центре нашей системы образовалась чёрная дыра той же массы, что Солнце, Землю всё равно бы не затянуло туда. Чёрная дыра будет иметь ту же гравитацию, что и Солнце. Земля и другие планеты будут вращаться вокруг неё, как они вращаются вокруг Солнца.
В Солнечной системе мало что изменится, не считая неприятностей на Земле…
В любом случае Солнце не такая большая звезда, чтобы когда-то превратиться в чёрную дыру.
Сумели разобраться, что такое чёрные дыры?
Да, всё ясно
В общих чертах
Хотелось бы получить больше информации
Нет, ничего не понял
Другой вариант (напишу в комментариях)
Poll Options are limited because JavaScript is disabled in your browser.
Опрос из статьи: Что такое чёрные дыры
О выходе новых статей рассказываем в соцсетях
Актуально
ЧЕРНАЯ ДЫРА | это… Что такое ЧЕРНАЯ ДЫРА?
ТолкованиеПеревод
- ЧЕРНАЯ ДЫРА
- область в пространстве, возникшая в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют «горизонтом событий». Поскольку до сих пор имеются лишь косвенные указания на существование черных дыр на расстояниях в тысячи световых лет от Земли, наше дальнейшее изложение основывается главным образом на теоретических результатах. Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Их открытие и изучение может принципиально изменить наши представления о пространстве и времени.
Образование черных дыр. Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет «битву с гравитацией»: ее гравитационный коллапс будет остановлен давлением «вырожденного» вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой. У сферической черной дыры массы M горизонт событий образует сферу с окружностью по экватору в 2p раз большей «гравитационного радиуса» черной дыры RG = 2GM/c2, где c — скорость света, а G — постоянная тяготения. Черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.ЧЕРНАЯ ДЫРА ИСКРИВЛЯЕТ ВОКРУГ СЕБЯ ГЕОМЕТРИЮ ПРОСТРАНСТВА. Согласно общей теории относительности Альберта Эйнштейна (1915), гравитация, т.е. взаимное притяжение между всеми материальными телами, — это вовсе не сила, а результат искривления пространства-времени. Чем больше плотность объекта, тем сильнее его гравитационное притяжение, т.е. больше искривление пространства-времени. Вещество в ядрах некоторых коллапсирующих звезд достигает такой плотности, что пространство в их окрестности сильно искривлено, как показывают кривые линии на рисунке. Сильно искривленные области пространства-времени и есть черные дыры.
Если астроном будет наблюдать звезду в момент ее превращения в черную дыру, то сначала он увидит, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть, пока не потухнет совсем. Это происходит потому, что в борьбе с гигантской силой тяжести свет теряет энергию и ему требуется все больше времени, чтобы достичь наблюдателя. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь наблюдателя (и при этом фотоны полностью потеряют свою энергию). Следовательно, астроном никогда не дождется этого момента и тем более не увидит того, что происходит со звездой под горизонтом событий. Но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время звезда сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют «сингулярностью». Более того, общий математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако все это верно лишь в том случае, если общая теория относительности применима вплоть до очень маленьких пространственных масштабов, в чем мы пока не уверены. В микромире действуют квантовые законы, а квантовая теория гравитации пока не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд. К тому же черные дыры очень большой массы могут находиться в ядрах крупных галактик, в том числе и нашей. Как уже отмечалось, в нашу эпоху черной дырой может стать лишь масса, более чем втрое превышающая солнечную. Однако сразу после Большого взрыва, с которого ок. 15 млрд. лет назад началось расширение Вселенной, могли рождаться черные дыры любой массы. Самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. Но «первичные черные дыры» с массой более 1015 г могли сохраниться до наших дней. Все расчеты коллапса звезд делаются в предположении слабого отклонения от сферической симметрии и показывают, что горизонт событий формируется всегда. Однако при сильном отклонении от сферической симметрии коллапс звезды может привести к образованию области с бесконечно сильной гравитацией, но не окруженной горизонтом событий; ее называют «голой сингулярностью». Это уже не черная дыра в том смысле, как мы обсуждали выше. Физические законы вблизи голой сингулярности могут иметь весьма неожиданный вид. В настоящее время голая сингулярность рассматривается как маловероятный объект, тогда как в существование черных дыр верит большинство астрофизиков.
Свойства черных дыр. Для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой. В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с неоднородностью исходной звезды, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра «забывает» всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, имела ли она форму сигары или блина и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся «шварцшильдовой черной дырой», которая характеризуется только массой, либо вращающейся «керровской черной дырой», которая характеризуется массой и моментом импульса. Единственность указанных выше типов стационарных черных дыр была доказана в рамках общей теории относительности В. Израэлем, Б. Картером, С. Хокингом и Д. Робинсоном. Согласно общей теории относительности, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно назвать «интервалом времени». Замечательно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки — что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Любое тело, падающее на черную дыру, задолго до пересечения горизонта событий будет разорвано на части мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра. Черная дыра всегда готова поглотить вещество или излучение, увеличив этим свою массу. Ее взаимодействие с окружающим миром определяется простым принципом Хокинга: площадь горизонта событий черной дыры никогда не уменьшается, если не учитывать квантового рождения частиц. Дж. Бекенстейн в 1973 предположил, что черные дыры подчиняются тем же физическим законам, что и физические тела, испускающие и поглощающие излучение (модель «абсолютно черного тела»). Под влиянием этой идеи Хокинг в 1974 показал, что черные дыры могут испускать вещество и излучение, но заметно это будет лишь в том случае, если масса самой черной дыры относительно невелика. Такие черные дыры могли рождаться сразу после Большого взрыва, с которого началось расширение Вселенной. Массы этих первичных черных дыр должны быть не более 1015 г (как у небольшого астероида), а размер 10-15 м (как у протона или нейтрона). Мощное гравитационное поле вблизи черной дыры рождает пары частица-античастица; одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Черная дыра с массой 1015 г должно вести себя как тело с температурой 1011 К. Идея об «испарении» черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.
Поиск черных дыр. Расчеты в рамках общей теории относительности Эйнштейна указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире; открытие настоящей черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе безнадежно труден: мы не сможем заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них. Сверхмассивные черные дыры могут находиться в центрах галактик, непрерывно пожирая там звезды. Сконцентрировавшись вокруг черной дыры, звезды должны образовать центральные пики яркости в ядрах галактик; их поиски сейчас активно ведутся. Другой метод поиска состоит в измерении скорости движения звезд и газа вокруг центрального объекта в галактике. Если известно их расстояние от центрального объекта, то можно вычислить его массу и среднюю плотность. Если она существенно превосходит плотность, возможную для звездных скоплений, то полагают, что это черная дыра. Этим способом в 1996 Дж.Моран с коллегами определили, что в центре галактики NGC 4258, вероятно, находится черная дыра с массой 40 млн. солнечных. Наиболее перспективным является поиск черной дыры в двойных системах, где она в паре с нормальной звездой может обращаться вокруг общего центра масс. По периодическому доплеровскому смещению линий в спектре звезды можно понять, что она обращается в паре с неким телом и даже оценить массу последнего. Если эта масса превышает 3 массы Солнца, а заметить излучение самого тела не удается, то очень возможно, что это черная дыра. В компактной двойной системе черная дыра может захватывать газ с поверхности нормальной звезды. Двигаясь по орбите вокруг черной дыры, этот газ образует диск и, приближаясь по спирали к черной дыре, сильно нагревается и становится источником мощного рентгеновского излучения. Быстрые флуктуации этого излучения должны указывать, что газ стремительно движется по орбите небольшого радиуса вокруг крохотного массивного объекта. С 1970-х годов обнаружено несколько рентгеновских источников в двойных системах с явными признаками присутствия черных дыр. Самой перспективной считается рентгеновская двойная V 404 Лебедя, масса невидимого компонента которой оценивается не менее чем в 6 масс Солнца. Другие замечательные кандидаты в черные дыры находятся в двойных рентгеновских системах Лебедь X-1, LMCX-3, V 616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. За исключением LMCX-3, расположенной в Большом Магеллановом Облаке, все они находятся в нашей Галактике на расстояниях порядка 8000 св. лет от Земли.
См. также
КОСМОЛОГИЯ;
ТЯГОТЕНИЕ;
ГРАВИТАЦИОННЫЙ КОЛЛАПС;
ОТНОСИТЕЛЬНОСТЬ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ.
ЛИТЕРАТУРА
Черепащук А.М. Массы черных дыр в двойных системах. Успехи физических наук, т. 166, с. 809, 1996
Энциклопедия Кольера. — Открытое общество.
2000.
Поможем написать курсовую
Синонимы:
звезда
- АСТЕРОИД
- БОДЕ ЗАКОН
Полезное
«Чёрные дыры» — Яндекс Кью
Сообщества
Чёрные дыры
Стать экспертом
- Популярные
- Открытые
- Все вопросы
- Посты и опросы41
- Новые ответы
Сергей Леонтьев
Математика
6мес
156
Астрономия, криптография
Сам процесс появления ЧД понятен. Но как же могут сталкнуться 2 ЧД друг с другом за… Развернуть
спрашиваетТимофей · 9 ответов
> Но как же могут сталкнуться 2 ЧД друг с другом за конечное время, если время вблизи горизонта событий останавливается?
Как бы, два объекта с массой (зарядом) сконцентрированным вблизи… Читать далее
Павел Масюк2мес
8
Инженер фармацевтической промышленности. Любитель физики и математики.
Анонимный вопрос · 4 ответа
Теоритически — да. Такая дыра называется Кугельблитц. Предлагаю дальше почитать самому. Это гипотетический объект, существуюший только на кончике пера физиков. Масса фотона вычисляется по… Читать далее
Алексей Казаков2г
108
спрашиваетВиталий Бабушкин · 11 ответов
(Ответ ребёнку будет вряд ли понятен т.к. вопрос далеко не детский)Доброго времени суток. Говоря простым языком-да, существуют. Только вот одну из них мы наблюдаем каждый день-Солнце. Я… Читать далее
Университет Детей4г
7,2 K
Университет детей рассказывает об окружающем мире доступным научным языком.
Анонимный вопрос · 1 ответ
У каждого небесного тела есть масса и притяжение. Для того, чтобы с этого тела можно было куда-нибудь вырваться, нужно преодолеть его притяжение, а для этого необходима большая скорость… Читать далее
Андрей Дюк
Астрономия
1г
303
Издание физико-математического факультета, эпизодический любитель истории, чуть-чуть литератор и слегка музыкант.
спрашиваетОльга Камышева · 2 ответа
На каком расстоянии от горизонта событий? Чем ближе к горизонту событий, тем больше. На самом — бесконечность. Чуть дальше — сотни тысяч лет. Все по экспоненте.
«Мой ангел, сплюнув от досады, улетел…»
Перейти на andrew-duke.ru
Леонид Л1г
50
Инженер-электронщик.
спрашиваетАлександр Мынов · 7 ответов
У меня есть большое подозрение (обосновать которое расчётами мне, увы, не по силам), что устойчивых орбит вокруг чёрной дыры нет вообще. И дело, да, в Общей теории относительности.
Движени… Читать далее
Первый
Владимир П.2г
1,0 K
Интересуюсь, техникой, наукой, историей, военным делом.
Анонимный вопрос · 2 ответа
Я считаю чёрные дыры портала ми в паралельные вселённых. Вещество и любой предмет имеющий массу притягивает ся чёрной дырой, попав в неё он становится не видим для нас. Часть весщества… Читать далее
Сергей Шарков2г
24
Человек издавна живущий на планете Земля. Увлекаюсь только жизнью, а она мной (взаимность). Ушел ввиду невозможности общаться конструктивно
спрашиваетПавел Щербаков · 2 ответа
Была такая космологическая модель, но не «выдержала критики» (проверки фактами). Кстати, модель эта никак не связана ни логически ни расчетно-физически с «черной дырой» (ЧД).
Нужно всего… Читать далее
Андрей Смирнов2г
1,3 K
кандидат технических наук
спрашиваетАлексей Панов · 3 ответа
Попробуем смоделировать в грубом приближении.
Вещество, вызвавшее гравитационный коллапс, в результате аннигиляции за «горизонтом событий» (условная граница черной дыры) превращается в… Читать далее
Антон Фурс
Физика
2г
100
программист, интересны квантовая механика, теория относительности и астрономия
Согласно теории относительности Эйнштейна известно, что для стороннего наблюдателя. .. Развернуть
спрашиваетRendoul · 3 ответа
не путайте «вечное наблюдение за падением» и само падение. Если вы далёкий наблюдатель, то увидеть сигналы испущенные с горизонта (и тем более из под него) вы конечно не сможете, но само… Читать далее
Черные дыры: все, что вам нужно знать
Черные дыры — одни из самых удивительных объектов в космосе.
(Изображение предоставлено: solarseven через Getty Images)
Черные дыры — одни из самых странных и увлекательных объектов в космосе. Они чрезвычайно плотные, с таким сильным гравитационным притяжением, что даже свет не может ускользнуть от их хватки.
Млечный Путь может содержать более 100 миллионов черных дыр, хотя обнаружить этих прожорливых зверей очень сложно. В центре Млечного Пути находится сверхмассивная черная дыра — Стрелец А*. Колоссальное сооружение примерно в 4 миллиона раз больше массы Солнца и расположено примерно в 26 000 световых лет на расстоянии от Земли , согласно заявлению НАСА (открывается в новой вкладке).
Первое изображение черной дыры было получено в 2019 году коллаборацией Event Horizon Telescope (EHT). Поразительное фото черной дыры в центре галактики M87 в 55 миллионах световых лет от Земли взволновало ученых всего мира.
Связанный: Белые дыры: что мы знаем о забытых близнецах черных дыр
Открытие черной дыры
Альберт Эйнштейн впервые предсказал существование черных дыр в 1916 году в своей общей теории относительности. Термин «черная дыра» был придуман много лет спустя, в 1967 году, американским астрономом Джоном Уилером. После десятилетий черные дыры были известны только как теоретические объекты.
Первой обнаруженной черной дырой была Лебедь X-1, расположенная в Млечном Пути в созвездии Лебедя. По данным НАСА, астрономы увидели первые признаки черной дыры в 1964 году, когда зондирующая ракета обнаружила небесные источники рентгеновского излучения . В 1971 астрономы определили, что рентгеновские лучи исходят от ярко-голубой звезды, вращающейся вокруг странного темного объекта. Было высказано предположение, что обнаруженные рентгеновские лучи были результатом того, что звездный материал отрывался от яркой звезды и «поглощался» темным объектом — всепоглощающей черной дырой.
Сколько существует черных дыр?
В центре Млечного Пути находится сверхмассивная черная дыра Стрелец A* (Sgr A*). (Изображение предоставлено: NASA/UMass/D.Wang et al., IR: NASA/STScI)
По данным Научного института космического телескопа (STScI), примерно одна из каждой тысячи звезд имеет достаточную массу, чтобы стать черной дырой. Поскольку Млечный Путь содержит более 100 миллиардов характеристик, в нашей родной галактике должно быть около 100 миллионов черных дыр.
Хотя обнаружение черных дыр — сложная задача, по оценкам НАСА , в Млечном Пути может быть от 10 миллионов до миллиарда звездных черных дыр.
Ближайшая к Земле черная дыра называется «Единорог» и находится примерно в 1500 световых годах от нас. Прозвище имеет двойное значение. Мало того, что кандидат в черные дыры находится в созвездии Единорога («единорог»), его невероятно малая масса — примерно в три раза больше массы Солнца — делает его почти единственным в своем роде.
Связанный: Сколько черных дыр во Вселенной?
Изображения черной дыры
Телескоп горизонта событий, массив планетарного масштаба из восьми наземных радиотелескопов, созданный в результате международного сотрудничества, сделал это изображение сверхмассивной черной дыры в центре галактики M87 и ее тени. (Изображение предоставлено коллаборацией EHT)
В 2019 году коллаборация Event Horizon Telescope (EHT) опубликовала первое в истории изображение черной дыры. EHT увидел черную дыру в центре галактики M87, в то время как телескоп изучал горизонт событий или область, за которую ничто не может уйти от черной дыры. Изображение отображает внезапную потерю фотонов (частиц света). Это также открывает совершенно новую область исследований черных дыр, теперь, когда астрономы знают, как выглядит черная дыра.
В 2021 году астрономы показали новый вид гигантской черной дыры в центре M87, показывающий, как выглядит колоссальная структура в поляризованном свете. Поскольку поляризованные световые волны имеют другую ориентацию и яркость по сравнению с неполяризованным светом, новое изображение показывает черную дыру еще более подробно. Поляризация — это признак магнитных полей, и изображение ясно показывает, что кольцо черной дыры намагничено.
После публикации первого изображения черной дыры в 2019 году, астрономы получили новый поляризованный вид черной дыры. (Изображение предоставлено коллаборацией EHT)
(открывается в новой вкладке)
Как выглядят черные дыры?
Черные дыры имеют три «слоя»: внешний и внутренний горизонт событий и сингулярность.
Горизонт событий черной дыры — это граница вокруг устья черной дыры, за которую свет не может выйти. Как только частица пересекает горизонт событий, она не может покинуть его. Гравитация постоянна на горизонте событий.
Внутренняя область черной дыры, где находится масса объекта, известна как ее сингулярность, единственная точка в пространстве-времени, где сосредоточена масса черной дыры.
Ученые не могут видеть черные дыры так же, как звезды и другие объекты в космосе. Вместо этого астрономы должны полагаться на обнаружение радиации, испускаемой черными дырами, когда пыль и газ втягиваются в плотные существа. Но сверхмассивные черные дыры, лежащие в центре галактики, могут быть окутаны густым слоем пыли и газа вокруг них, что может блокировать контрольные выбросы.
Истории по теме:
Иногда, когда материя притягивается к черной дыре, она рикошетом отлетает от горизонта событий и выбрасывается наружу, а не затягивается в пасть. Создаются яркие струи вещества, движущиеся с почти релятивистскими скоростями. Хотя черная дыра остается невидимой, эти мощные струи можно наблюдать с больших расстояний.
Изображение черной дыры в M87, сделанное EHT (опубликовано в 2019 году), потребовало невероятных усилий, потребовавших двух лет исследований даже после того, как изображения были сделаны. Это потому, что сотрудничество телескопов, которое охватывает множество обсерваторий по всему миру, дает поразительное количество данных, которые слишком велики для передачи через Интернет.
Со временем исследователи рассчитывают получить изображения других черных дыр и создать хранилище того, как выглядят эти объекты. Следующей целью, вероятно, будет Стрелец A*, черная дыра в центре нашей собственной галактики Млечный Путь. Стрелец А* интригует, потому что он тише, чем ожидалось, что может быть связано с магнитными полями, подавляющими его активность, сообщается в исследовании 2019 года. Другое исследование того же года показало, что Стрелец А* окружен холодным газовым ореолом, что дает беспрецедентное представление о том, как выглядит среда вокруг черной дыры.
Схема анатомии черной дыры ESO показывает, как выглядит черная дыра, и помечает различные компоненты. (Изображение предоставлено ESO)
Типы черных дыр
На данный момент астрономы определили три типа черных дыр: звездные черные дыры, сверхмассивные черные дыры и промежуточные черные дыры.
Звездные черные дыры — маленькие, но смертоносные
Когда звезда сгорает до конца своего топлива, объект может разрушиться или упасть сам на себя. Для меньших звезд (тех, которые примерно в три раза Солнца с массой ), новое ядро станет нейтронной звездой или белым карликом. Но когда более крупная звезда коллапсирует, она продолжает сжиматься и создает звездную черную дыру.
Черные дыры, образовавшиеся в результате коллапса отдельных звезд, относительно малы, но невероятно плотны. Один из этих объектов упаковывает массу, более чем в три раза превышающую массу Солнца, в диаметре города. Это приводит к безумной гравитационной силе, притягивающей объекты вокруг объекта. Затем звездные черные дыры поглощают пыль и газ из окружающих их галактик, что заставляет их расти в размерах.
Сверхмассивные черные дыры — рождение гигантов
Маленькие черные дыры населяют Вселенную, но доминируют их родственники, сверхмассивные черные дыры. Эти огромные черные дыры в миллионы или даже миллиарды раз массивнее Солнца, но имеют примерно такой же размер в диаметре. Считается, что такие черные дыры находятся в центре почти каждой галактики, включая Млечный Путь.
Ученые не уверены, как появляются такие большие черные дыры. После того, как эти гиганты сформировались, они собирают массу из пыли и газа вокруг них, материала, которого много в центре галактик, что позволяет им расти до еще более огромных размеров.
Сверхмассивные черные дыры могут быть результатом слияния сотен или тысяч крошечных черных дыр. Большие газовые облака также могут быть ответственны за схлопывание и быстрое накопление массы. Третий вариант — это коллапс звездного скопления, когда группа звезд падает вместе. В-четвертых, сверхмассивные черные дыры могут возникать из больших скоплений темной материи. Это вещество, которое мы можем наблюдать по его гравитационному воздействию на другие объекты; однако мы не знаем, из чего состоит темная материя, потому что она не излучает свет и не может наблюдаться напрямую.
Промежуточные черные дыры
Когда-то ученые думали, что черные дыры бывают только малых и больших размеров, но исследования показали возможность существования средних или промежуточных черных дыр (ЧДЧД). Такие тела могут образовываться, когда звезды в скоплении сталкиваются в результате цепной реакции. Несколько таких IMBH, сформировавшихся в одном и том же регионе, могут в конечном итоге собраться вместе в центре галактики и создать сверхмассивную черную дыру.
В 2014 году астрономы обнаружили черную дыру промежуточной массы в рукаве спиральная галактика . А в 2021 году астрономы воспользовались древним гамма-всплеском, чтобы обнаружить его.
«Астрономы очень усердно искали эти черные дыры среднего размера», — говорится в заявлении соавтора исследования Тима Робертса из Даремского университета в Соединенном Королевстве . «Были намеки на то, что они существуют, но IMBH вели себя как давно потерянный родственник, который не заинтересован в том, чтобы его нашли».
Исследование, проведенное в 2018 году, показало, что эти IMBH могут существовать в центре карликовых галактик (или очень маленьких галактик). Наблюдения за 10 такими галактиками (пять из которых ранее были неизвестны науке до этого последнего обзора) выявили рентгеновскую активность, характерную для черных дыр, что свидетельствует о наличии черных дыр с массой от 36 000 до 316 000 солнечных. Информация поступила из Слоановского цифрового обзора неба, который исследует около 1 миллиона галактик и может обнаруживать вид света, который часто наблюдается от черных дыр, собирающих близлежащие обломки.
Двойные черные дыры: двойная проблема
Художественная иллюстрация сверхмассивной черной дыры с черной дырой-компаньоном, вращающейся вокруг нее. (Изображение предоставлено Caltech-IPAC)
В 2015 году астрономы с помощью Лазерной интерферометрической гравитационно-волновой обсерватории (LIGO) обнаружили гравитационные волны от слияния звездных черных дыр.
«У нас есть еще одно подтверждение существования черных дыр звездной массы, которые больше 20 масс Солнца — это объекты, о существовании которых мы не знали до того, как их обнаружил LIGO», — Дэвид Шумейкер, представитель научного сотрудничества LIGO ( LSC), говорится в заявлении (откроется в новой вкладке). Наблюдения LIGO также дают представление о направлении вращения черной дыры. Когда две черные дыры вращаются вокруг друг друга, они могут вращаться в одном и том же направлении или в противоположном направлении.
Существует две теории образования бинарных черных дыр. Первый предполагает, что две черные дыры в бинарной системе сформировались примерно в одно и то же время из двух звезд, которые родились вместе и умерли взрывом примерно в одно и то же время. Звезды-компаньоны имели бы такую же ориентацию вращения, как и две оставшиеся черные дыры.
Согласно второй модели, черные дыры в звездном скоплении опускаются к центру скопления и образуют пары. По данным LIGO Scientific Collaboration, эти компаньоны будут иметь случайную ориентацию вращения по сравнению друг с другом. Наблюдения LIGO за черными дырами-компаньонами с различной ориентацией спина дают более убедительные доказательства этой теории формирования.
«Мы начинаем собирать реальную статистику о двойных системах черных дыр», — сказал ученый LIGO Кейта Кавабе из Калифорнийского технологического института, работающий в Хэнфордской обсерватории LIGO. «Это интересно, потому что некоторые модели формирования двойных черных дыр даже сейчас несколько предпочтительнее других, и в будущем мы можем еще больше сузить круг».
Факты о черных дырах
- Теория давно предполагает, что если вы упадете в черную дыру, гравитация растянет вас, как спагетти, хотя ваша смерть наступит до того, как вы достигнете сингулярности. Но исследование 2012 года, опубликованное в журнале Nature , предполагает, что квантовые эффекты заставят горизонт событий действовать подобно стене огня, которая мгновенно сожжет вас до смерти.
- Черные дыры не отстой. Всасывание вызвано втягиванием чего-то в вакуум, чем массивная черная дыра определенно не является. Вместо этого объекты падают в них точно так же, как они падают на все, что обладает гравитацией, например на Землю.
- Первым объектом, считающимся черной дырой, является Лебедь X-1. Лебедь X-1 был предметом дружеского пари 1974 года между Стивеном Хокингом и коллегой-физиком Кипом Торном, при этом Хокинг сделал ставку на то, что источником не была черная дыра. В 1990 году Хокинг признал поражение.
- Миниатюрные черные дыры могли образоваться сразу после Большого взрыва. Быстро расширяющееся пространство могло сжать некоторые регионы в крошечные плотные черные дыры, менее массивные, чем Солнце.
- Если звезда проходит слишком близко к черной дыре, звезда может быть разорвана на части (откроется в новой вкладке).
- По оценкам астрономов, в Млечном Пути насчитывается от 10 миллионов до 1 миллиарда звездных черных дыр с массой примерно в три раза больше солнечной.
- Черные дыры остаются прекрасным материалом для научно-фантастических книг и фильмов. Посмотрите фильм «Интерстеллар», в котором Торн в значительной степени полагался на науку. Работа Торна с командой спецэффектов фильма привела к лучшему пониманию учеными того, как могут выглядеть далекие звезды, если их увидеть вблизи быстро вращающейся черной дыры.
Дополнительные ресурсы
Погрузитесь глубже в тайну черных дыр (открывается в новой вкладке) вместе с NASA Science. Посмотрите видео и узнайте больше о черных дырах (откроется в новой вкладке) на сайте NASA Hubble. Узнайте больше о черных дырах (откроется в новой вкладке) вместе с Национальным научным фондом.
Библиография
Сайт Хаббла: Черные дыры: Беспощадное притяжение гравитации, интерактивный (открывается в новой вкладке): Энциклопедия. ГНИЦ Главная. Проверено 6 мая 2022 г.
НАСА. Представьте вселенную! (откроется в новой вкладке) НАСА. Проверено 6 мая 2022 г.
Боэн, Б. ( 2013 г., 29 августа (открывается в новой вкладке)). Сверхмассивная черная дыра Стрелец A*. НАСА. Проверено 6 мая 2022 года .
Чандра НАСА находит интригующего члена генеалогического древа черной дыры. (открывается в новой вкладке) Рентгеновская обсерватория Чандра. (2015, 25 февраля). Проверено 6 мая 2022 г.
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: community@space. com.
Дейзи Добриевич присоединилась к Space.com в феврале 2022 года в качестве справочного автора, ранее работавшего штатным автором в нашем сестринском журнале All About Space. Прежде чем присоединиться к нам, Дейзи прошла редакционную стажировку в журнале BBC Sky at Night Magazine и работала в Национальном космическом центре в Лестере, Великобритания, где ей нравилось знакомить общественность с космической наукой. В 2021 году Дейзи защитила докторскую диссертацию по физиологии растений, а также имеет степень магистра наук об окружающей среде. В настоящее время она живет в Ноттингеме, Великобритания.0003
Черные дыры: все, что вам нужно знать
Черные дыры — одни из самых удивительных объектов в космосе.
(Изображение предоставлено: solarseven через Getty Images)
Черные дыры — одни из самых странных и увлекательных объектов в космосе. Они чрезвычайно плотные, с таким сильным гравитационным притяжением, что даже свет не может ускользнуть от их хватки.
Млечный Путь может содержать более 100 миллионов черных дыр, хотя обнаружить этих прожорливых зверей очень сложно. В центре Млечного Пути находится сверхмассивная черная дыра — Стрелец А*. Колоссальное сооружение примерно в 4 миллиона раз больше массы Солнца и расположено примерно в 26 000 световых лет на расстоянии от Земли , согласно заявлению НАСА (открывается в новой вкладке).
Первое изображение черной дыры было получено в 2019 году коллаборацией Event Horizon Telescope (EHT). Поразительное фото черной дыры в центре галактики M87 в 55 миллионах световых лет от Земли взволновало ученых всего мира.
Связанный: Белые дыры: что мы знаем о забытых близнецах черных дыр
Открытие черной дыры
Альберт Эйнштейн впервые предсказал существование черных дыр в 1916 году в своей общей теории относительности. Термин «черная дыра» был придуман много лет спустя, в 1967 году, американским астрономом Джоном Уилером. После десятилетий черные дыры были известны только как теоретические объекты.
Первой обнаруженной черной дырой была Лебедь X-1, расположенная в Млечном Пути в созвездии Лебедя. По данным НАСА, астрономы увидели первые признаки черной дыры в 1964 году, когда зондирующая ракета обнаружила небесные источники рентгеновского излучения . В 1971 астрономы определили, что рентгеновские лучи исходят от ярко-голубой звезды, вращающейся вокруг странного темного объекта. Было высказано предположение, что обнаруженные рентгеновские лучи были результатом того, что звездный материал отрывался от яркой звезды и «поглощался» темным объектом — всепоглощающей черной дырой.
Сколько существует черных дыр?
В центре Млечного Пути находится сверхмассивная черная дыра Стрелец A* (Sgr A*). (Изображение предоставлено: NASA/UMass/D.Wang et al., IR: NASA/STScI)
По данным Научного института космического телескопа (STScI), примерно одна из каждой тысячи звезд имеет достаточную массу, чтобы стать черной дырой. Поскольку Млечный Путь содержит более 100 миллиардов характеристик, в нашей родной галактике должно быть около 100 миллионов черных дыр.
Хотя обнаружение черных дыр — сложная задача, по оценкам НАСА , в Млечном Пути может быть от 10 миллионов до миллиарда звездных черных дыр.
Ближайшая к Земле черная дыра называется «Единорог» и находится примерно в 1500 световых годах от нас. Прозвище имеет двойное значение. Мало того, что кандидат в черные дыры находится в созвездии Единорога («единорог»), его невероятно малая масса — примерно в три раза больше массы Солнца — делает его почти единственным в своем роде.
Связанный: Сколько черных дыр во Вселенной?
Изображения черной дыры
Телескоп горизонта событий, массив планетарного масштаба из восьми наземных радиотелескопов, созданный в результате международного сотрудничества, сделал это изображение сверхмассивной черной дыры в центре галактики M87 и ее тени. (Изображение предоставлено коллаборацией EHT)
В 2019 году коллаборация Event Horizon Telescope (EHT) опубликовала первое в истории изображение черной дыры. EHT увидел черную дыру в центре галактики M87, в то время как телескоп изучал горизонт событий или область, за которую ничто не может уйти от черной дыры. Изображение отображает внезапную потерю фотонов (частиц света). Это также открывает совершенно новую область исследований черных дыр, теперь, когда астрономы знают, как выглядит черная дыра.
В 2021 году астрономы показали новый вид гигантской черной дыры в центре M87, показывающий, как выглядит колоссальная структура в поляризованном свете. Поскольку поляризованные световые волны имеют другую ориентацию и яркость по сравнению с неполяризованным светом, новое изображение показывает черную дыру еще более подробно. Поляризация — это признак магнитных полей, и изображение ясно показывает, что кольцо черной дыры намагничено.
После публикации первого изображения черной дыры в 2019 году, астрономы получили новый поляризованный вид черной дыры. (Изображение предоставлено коллаборацией EHT)
(открывается в новой вкладке)
Как выглядят черные дыры?
Черные дыры имеют три «слоя»: внешний и внутренний горизонт событий и сингулярность.
Горизонт событий черной дыры — это граница вокруг устья черной дыры, за которую свет не может выйти. Как только частица пересекает горизонт событий, она не может покинуть его. Гравитация постоянна на горизонте событий.
Внутренняя область черной дыры, где находится масса объекта, известна как ее сингулярность, единственная точка в пространстве-времени, где сосредоточена масса черной дыры.
Ученые не могут видеть черные дыры так же, как звезды и другие объекты в космосе. Вместо этого астрономы должны полагаться на обнаружение радиации, испускаемой черными дырами, когда пыль и газ втягиваются в плотные существа. Но сверхмассивные черные дыры, лежащие в центре галактики, могут быть окутаны густым слоем пыли и газа вокруг них, что может блокировать контрольные выбросы.
Истории по теме:
Иногда, когда материя притягивается к черной дыре, она рикошетом отлетает от горизонта событий и выбрасывается наружу, а не затягивается в пасть. Создаются яркие струи вещества, движущиеся с почти релятивистскими скоростями. Хотя черная дыра остается невидимой, эти мощные струи можно наблюдать с больших расстояний.
Изображение черной дыры в M87, сделанное EHT (опубликовано в 2019 году), потребовало невероятных усилий, потребовавших двух лет исследований даже после того, как изображения были сделаны. Это потому, что сотрудничество телескопов, которое охватывает множество обсерваторий по всему миру, дает поразительное количество данных, которые слишком велики для передачи через Интернет.
Со временем исследователи рассчитывают получить изображения других черных дыр и создать хранилище того, как выглядят эти объекты. Следующей целью, вероятно, будет Стрелец A*, черная дыра в центре нашей собственной галактики Млечный Путь. Стрелец А* интригует, потому что он тише, чем ожидалось, что может быть связано с магнитными полями, подавляющими его активность, сообщается в исследовании 2019 года. Другое исследование того же года показало, что Стрелец А* окружен холодным газовым ореолом, что дает беспрецедентное представление о том, как выглядит среда вокруг черной дыры.
Схема анатомии черной дыры ESO показывает, как выглядит черная дыра, и помечает различные компоненты. (Изображение предоставлено ESO)
Типы черных дыр
На данный момент астрономы определили три типа черных дыр: звездные черные дыры, сверхмассивные черные дыры и промежуточные черные дыры.
Звездные черные дыры — маленькие, но смертоносные
Когда звезда сгорает до конца своего топлива, объект может разрушиться или упасть сам на себя. Для меньших звезд (тех, которые примерно в три раза Солнца с массой ), новое ядро станет нейтронной звездой или белым карликом. Но когда более крупная звезда коллапсирует, она продолжает сжиматься и создает звездную черную дыру.
Черные дыры, образовавшиеся в результате коллапса отдельных звезд, относительно малы, но невероятно плотны. Один из этих объектов упаковывает массу, более чем в три раза превышающую массу Солнца, в диаметре города. Это приводит к безумной гравитационной силе, притягивающей объекты вокруг объекта. Затем звездные черные дыры поглощают пыль и газ из окружающих их галактик, что заставляет их расти в размерах.
Сверхмассивные черные дыры — рождение гигантов
Маленькие черные дыры населяют Вселенную, но доминируют их родственники, сверхмассивные черные дыры. Эти огромные черные дыры в миллионы или даже миллиарды раз массивнее Солнца, но имеют примерно такой же размер в диаметре. Считается, что такие черные дыры находятся в центре почти каждой галактики, включая Млечный Путь.
Ученые не уверены, как появляются такие большие черные дыры. После того, как эти гиганты сформировались, они собирают массу из пыли и газа вокруг них, материала, которого много в центре галактик, что позволяет им расти до еще более огромных размеров.
Сверхмассивные черные дыры могут быть результатом слияния сотен или тысяч крошечных черных дыр. Большие газовые облака также могут быть ответственны за схлопывание и быстрое накопление массы. Третий вариант — это коллапс звездного скопления, когда группа звезд падает вместе. В-четвертых, сверхмассивные черные дыры могут возникать из больших скоплений темной материи. Это вещество, которое мы можем наблюдать по его гравитационному воздействию на другие объекты; однако мы не знаем, из чего состоит темная материя, потому что она не излучает свет и не может наблюдаться напрямую.
Промежуточные черные дыры
Когда-то ученые думали, что черные дыры бывают только малых и больших размеров, но исследования показали возможность существования средних или промежуточных черных дыр (ЧДЧД). Такие тела могут образовываться, когда звезды в скоплении сталкиваются в результате цепной реакции. Несколько таких IMBH, сформировавшихся в одном и том же регионе, могут в конечном итоге собраться вместе в центре галактики и создать сверхмассивную черную дыру.
В 2014 году астрономы обнаружили черную дыру промежуточной массы в рукаве спиральная галактика . А в 2021 году астрономы воспользовались древним гамма-всплеском, чтобы обнаружить его.
«Астрономы очень усердно искали эти черные дыры среднего размера», — говорится в заявлении соавтора исследования Тима Робертса из Даремского университета в Соединенном Королевстве . «Были намеки на то, что они существуют, но IMBH вели себя как давно потерянный родственник, который не заинтересован в том, чтобы его нашли».
Исследование, проведенное в 2018 году, показало, что эти IMBH могут существовать в центре карликовых галактик (или очень маленьких галактик). Наблюдения за 10 такими галактиками (пять из которых ранее были неизвестны науке до этого последнего обзора) выявили рентгеновскую активность, характерную для черных дыр, что свидетельствует о наличии черных дыр с массой от 36 000 до 316 000 солнечных. Информация поступила из Слоановского цифрового обзора неба, который исследует около 1 миллиона галактик и может обнаруживать вид света, который часто наблюдается от черных дыр, собирающих близлежащие обломки.
Двойные черные дыры: двойная проблема
Художественная иллюстрация сверхмассивной черной дыры с черной дырой-компаньоном, вращающейся вокруг нее. (Изображение предоставлено Caltech-IPAC)
В 2015 году астрономы с помощью Лазерной интерферометрической гравитационно-волновой обсерватории (LIGO) обнаружили гравитационные волны от слияния звездных черных дыр.
«У нас есть еще одно подтверждение существования черных дыр звездной массы, которые больше 20 масс Солнца — это объекты, о существовании которых мы не знали до того, как их обнаружил LIGO», — Дэвид Шумейкер, представитель научного сотрудничества LIGO ( LSC), говорится в заявлении (откроется в новой вкладке). Наблюдения LIGO также дают представление о направлении вращения черной дыры. Когда две черные дыры вращаются вокруг друг друга, они могут вращаться в одном и том же направлении или в противоположном направлении.
Существует две теории образования бинарных черных дыр. Первый предполагает, что две черные дыры в бинарной системе сформировались примерно в одно и то же время из двух звезд, которые родились вместе и умерли взрывом примерно в одно и то же время. Звезды-компаньоны имели бы такую же ориентацию вращения, как и две оставшиеся черные дыры.
Согласно второй модели, черные дыры в звездном скоплении опускаются к центру скопления и образуют пары. По данным LIGO Scientific Collaboration, эти компаньоны будут иметь случайную ориентацию вращения по сравнению друг с другом. Наблюдения LIGO за черными дырами-компаньонами с различной ориентацией спина дают более убедительные доказательства этой теории формирования.
«Мы начинаем собирать реальную статистику о двойных системах черных дыр», — сказал ученый LIGO Кейта Кавабе из Калифорнийского технологического института, работающий в Хэнфордской обсерватории LIGO. «Это интересно, потому что некоторые модели формирования двойных черных дыр даже сейчас несколько предпочтительнее других, и в будущем мы можем еще больше сузить круг».
Факты о черных дырах
- Теория давно предполагает, что если вы упадете в черную дыру, гравитация растянет вас, как спагетти, хотя ваша смерть наступит до того, как вы достигнете сингулярности. Но исследование 2012 года, опубликованное в журнале Nature , предполагает, что квантовые эффекты заставят горизонт событий действовать подобно стене огня, которая мгновенно сожжет вас до смерти.
- Черные дыры не отстой. Всасывание вызвано втягиванием чего-то в вакуум, чем массивная черная дыра определенно не является. Вместо этого объекты падают в них точно так же, как они падают на все, что обладает гравитацией, например на Землю.
- Первым объектом, считающимся черной дырой, является Лебедь X-1. Лебедь X-1 был предметом дружеского пари 1974 года между Стивеном Хокингом и коллегой-физиком Кипом Торном, при этом Хокинг сделал ставку на то, что источником не была черная дыра. В 1990 году Хокинг признал поражение.
- Миниатюрные черные дыры могли образоваться сразу после Большого взрыва. Быстро расширяющееся пространство могло сжать некоторые регионы в крошечные плотные черные дыры, менее массивные, чем Солнце.
- Если звезда проходит слишком близко к черной дыре, звезда может быть разорвана на части (откроется в новой вкладке).
- По оценкам астрономов, в Млечном Пути насчитывается от 10 миллионов до 1 миллиарда звездных черных дыр с массой примерно в три раза больше солнечной.
- Черные дыры остаются прекрасным материалом для научно-фантастических книг и фильмов. Посмотрите фильм «Интерстеллар», в котором Торн в значительной степени полагался на науку. Работа Торна с командой спецэффектов фильма привела к лучшему пониманию учеными того, как могут выглядеть далекие звезды, если их увидеть вблизи быстро вращающейся черной дыры.
Дополнительные ресурсы
Погрузитесь глубже в тайну черных дыр (открывается в новой вкладке) вместе с NASA Science. Посмотрите видео и узнайте больше о черных дырах (откроется в новой вкладке) на сайте NASA Hubble. Узнайте больше о черных дырах (откроется в новой вкладке) вместе с Национальным научным фондом.
Библиография
Сайт Хаббла: Черные дыры: Беспощадное притяжение гравитации, интерактивный (открывается в новой вкладке): Энциклопедия. ГНИЦ Главная. Проверено 6 мая 2022 г.
НАСА. Представьте вселенную! (откроется в новой вкладке) НАСА. Проверено 6 мая 2022 г.
Боэн, Б. ( 2013 г., 29 августа (открывается в новой вкладке)). Сверхмассивная черная дыра Стрелец A*. НАСА. Проверено 6 мая 2022 года .
Чандра НАСА находит интригующего члена генеалогического древа черной дыры. (открывается в новой вкладке) Рентгеновская обсерватория Чандра. (2015, 25 февраля). Проверено 6 мая 2022 г.
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Дейзи Добриевич присоединилась к Space.com в феврале 2022 года в качестве справочного автора, ранее работавшего штатным автором в нашем сестринском журнале All About Space. Прежде чем присоединиться к нам, Дейзи прошла редакционную стажировку в журнале BBC Sky at Night Magazine и работала в Национальном космическом центре в Лестере, Великобритания, где ей нравилось знакомить общественность с космической наукой. В 2021 году Дейзи защитила докторскую диссертацию по физиологии растений, а также имеет степень магистра наук об окружающей среде. В настоящее время она живет в Ноттингеме, Великобритания.0003
Что такое черная дыра простыми словами? (Для чайников)
Это про черные дыры.
Черные дыры — это остатки массивных умирающих звезд.
Итак, если вы хотите подробно узнать, что такое черная дыра, то эта статья для вас.
Начинаем!
Черные дыры — умирающие звезды
Черная дыра образовалась из умирающей звезды. Но не любая звезда. Он должен быть массовым. Как минимум в 20 раз больше массы нашего Солнца, которое и без того огромно.
По мере того, как звезда проходит через процесс насильственной смерти, все ее вещество сжимается настолько сильно, что процессы и физика, какими мы их знаем, ломаются и теряют смысл.
Плотность, масса и гравитация в этом пространстве теперь настолько разрушительны, что ничто не может ускользнуть, даже сам свет. Отсюда и название черная дыра .
Каким бы сложным и таинственным ни был этот процесс, его относительно просто понять при очень высоком общем виде.
Давайте проверим!
Ядерный синтез
В течение долгой жизни звезда живет за счет топлива, которое создает сама. Очень зеленый, правда?!
Звезды создают это топливо с помощью процесса, называемого Ядерный синтез.
Среда внутри звезды горячая и экстремальная, а ее внутренние молекулы безрассудно движутся с большой скоростью.
Когда молекулы подпрыгивают, они врезаются друг в друга.
Обычно молекулы обладают чрезвычайно сильными защитными силами, препятствующими их соединению друг с другом, известными в науке как сильная ядерная сила .
Однако в экстремальных условиях в звезде силы молекул преодолеваются, и молекулы начинают сталкиваться и объединяться, создавая более тяжелые элементы.
Водород объединяется, чтобы сформировать гелий, гелий в конечном итоге объединяется, чтобы создать кислород, и так далее. Это процесс ядерного синтеза ( ЯДРА атомов равно СЛИЯНИЮ … понятно?).
Когда эти атомы сливаются вместе, они теперь несут дополнительную энергию и становятся очень нестабильными, и не знают, что с ней делать.
Итак, они избавляются от вновь обретенной энергии, испуская ее в виде мощного излучения. Из-за этого испускаемого излучения мы должны быть осторожны с опасным светом, исходящим от нашего Солнца в яркий летний день. Это остаточная энергия, исходящая от нашего Солнца, звезды, когда оно сжигает свое топливо.
Умирающая звезда
По мере того, как звезда создает и сжигает свое ядерное топливо, она постоянно создает мощный поток энергии.
Но, поскольку звезды также чрезвычайно велики и массивны, они также вызывают чрезвычайно сильную гравитацию, толкающую внутрь самих себя.
Итак, звезда постоянно сохраняет свою структуру и остается живой, борясь с собственной внутренней гравитацией с помощью собственной внешней энергии.
В конце концов, у звезды заканчиваются молекулы, необходимые для превращения в ядерное топливо, и начинаются проблемы.
Топливо закончилось, а гравитация осталась прежней и начинает побеждать.
Огромный вес звезды сжимается внутрь самой себя на околосветовых скоростях и вызывает разрушительный взрыв, называемый Суперновая .
Оболочка звезды сдувается, и вся ее оставшаяся масса обрушивается на ядро звезды.
Весь оставшийся звездный материал втиснут в удивительно маленькое пространство, плотно сжатое за пределами того, что может воспринять наш человеческий мозг. Это черная дыра.
Анатомия черной дыры
Горизонт событий
Горизонт событий — это место, где начинается черная дыра. Это парадная дверь черной дыры, если хотите.
На нашей картинке показана конусообразная структура, которая создана для того, чтобы помочь вам понять эту концепцию.
Астрономы на самом деле считают, что черная дыра не имеет фактической структуры, а горизонт событий простирается во всех направлениях, как сфера.
За пределами горизонта событий масса, давление, плотность, гравитация и все остальное настолько сильны, что ничто не может снова ускользнуть, включая сам свет. Вот почему мы называем это черной дырой.
Итак, по мере того, как черная дыра всасывает близлежащую материю, ее тянет за горизонт событий, и она никогда больше не появляется.
Конечно, с его огромной гравитацией целые звезды и даже галактики могут быть затянуты и уничтожены!
Сингулярность
Сингулярность черной дыры заключается в том, что все ее вещество в конце концов собирается в одной точке.
Помните, ранее мы говорили, что вся материя умирающей звезды превратилась в крошечное пространство? Ну, это было экстремально.
Но теперь вся материя внутри черной дыры в конце концов разбивается на микроскопическую булавочную точку. Это еще более экстремально.
Настолько экстремально, что мы, люди, не можем этого понять.
Вся наша астрономия и физика, которые мы изучали сотни лет, теперь полностью разваливаются, и ничто из того, что мы знаем, не имеет никакого смысла.
Поскольку по понятным причинам астронавты не могут отправиться внутрь черной дыры, чтобы исследовать и учиться, мы очень мало знаем о сингулярности. Это было и будет одним из самых востребованных ответов в астрономии и науке.
Как мы находим черные дыры?
У вас может возникнуть естественный вопрос: если свет не может уйти, то откуда мы знаем, что черная дыра существует? И это отличный вопрос!
Астрономы могут обнаружить эти невидимые объекты несколькими способами. Во-первых, мы можем наблюдать, как материя и объекты ведут себя вокруг черной дыры, чтобы точно определить ее существование и местоположение.
Из-за сильных сил звезды, газы и другие объекты вокруг черной дыры начинают двигаться очень быстро и хаотично.
Астрономы наблюдают за отдельными местами, где, по их мнению, находится черная дыра, и годами следят за окружающей обстановкой, наблюдая за изменениями.
Черные дыры периодически питаются окружающими материалами. Пока они едят, огромное количество энергии высвобождается, когда они переваривают пищу.
Ученые могут использовать это космическое время обеда для обнаружения и изучения энергии, выделяемой пищей.