Днк ген: что это такое, как работает, на что влияет, структура и функции

Гены: что это и как связаны с характером

Большинство генов у человека и шимпанзе практически идентичны: разница в ДНК составляет всего 1–3%. Но именно эта разница делает нас людьми. Разбираемся, как гены влияют на наши внешность, интеллект и поведение

  1. Что это
  2. Доминантные и рецессивные
  3. Гены и наследственность
  4. На что влияют
  5. Мутации
  6. Изучение генов

Что такое гены

Гены — это небольшие участки молекулы ДНК (дезоксирибонуклеиновой кислоты), в которых закодирована информация о строении одной молекулы белка или РНК (рибонуклеиновой кислоты).

ДНК, РНК и белки — это строительные материалы для всех живых организмов. Поэтому информация, которую несет ген, очень важна: благодаря ей организм «знает», какие белки ему производить. В этом смысле ген часто сравнивают с чертежом или планом, по которому организм строит себя.

Ген — самый маленький кусочек, на который можно разделить ДНК. Его можно «разобрать» на более мелкие химические элементы, но именно ген передается от родителей потомству как одно целое.

У растений, грибов, животных и человека ДНК находятся в ядре любой клетки организма. Форма ДНК — перекрещивающиеся «нити»-хромосомы. Если мы увеличим ДНК и «растянем» ее на отдельные цепочки то увидим гены — отдельные участки ДНК.

Точное число генов в организме одного человека пока неизвестно: мы знаем только приблизительные данные, например, что генов, кодирующих белки, у человека около 20 тыс.

Еще в середине XIX века Грегор Мендель и другие ученые высказывали предположения, что наследование специфических черт у организмов происходит при помощи особых частиц. В 1889 году голландский ботаник, один из основателей генетики Хуго де Фриз в своей книге «Внутриклеточный пангенезис» (Intracellular Pangenesis) назвал такие частицы «пангенами», а в 1909 году датский биолог Вильгельм Иогансен ввел термин «ген». В 40-е годы XX века американские бактериологи доказали, что передача признаков от одного организма к другому происходит именно при помощи ДНК, а не других белков или химических соединений. Еще через несколько лет были получены первые высококачественные снимки структуры ДНК. С этого момента изучение отдельных участков ДНК — генов — пошло полным ходом.

Самый крупный международный проект, когда-либо проводившийся в биологии, — проект «Геном человека». Он был начат в 1990 году в США. Геном — это вся совокупность ДНК человека, включая всю информацию, которая содержится в генах.

Считается, что 85% генома человека к 2003 году были «прочитаны» или, говоря научным языком, секвенированы. И хотя проект уже закрыт, до сих пор термин «полная расшифровка генома человека» употребляют с осторожностью — к 2022 году около 8% генома остается «непрочитанным».

Когда в 2003 проект «Геном человека» был завершен, весь на тот момент расшифрованный человеческий геном был опубликован в 23 томах. Они содержат 3 млрд букв, обозначающих последовательности генов. Все книги находятся в лондонском музее Wellcome Collection.

(Фото: Phys. org)

Доминантные и рецессивные гены

Аллели — это варианты одного гена, которых может быть огромное количество. Вариант гена, который подавляет другие, называется доминантным аллелем. Доминантный аллель будет подавлять вторую вариацию — рецессивную.

От родителей ребенку могут перейти и доминантные, и рецессивные варианты гена. Но рецессивный ген проявит себя только в том случае, если он присутствует у обоих родителей. В противном случае его подавит доминантный ген.

Самый популярный пример — цвет глаз. Карий цвет — доминантный признак, а за серые, голубые и зеленые глаза отвечает рецессивный ген. Но и у кареглазых родителей (как на рисунке) может родиться голубоглазый ребенок, хотя вероятность этого небольшая. Это произойдет в случае, если ребенок получил два рецессивных гена.

(Фото: «Лекции по общей биологии», Пименова И. Н., Пименов А.В.)

По наследству могут передаваться и другие внешние признаки: рост, цвет кожи, волос, какие-то отличительные черты. Это зависит от доминантных генов, которые передаются со стороны отца и матери.

Гены и наследственность

В большинстве клеток человека находится 23 пары хромосом ДНК, то есть 46 на клетку. Исключение составляют «родительские» клетки — сперматозоид и яйцеклетка. У каждой из них «половинный» набор — только 23 штуки. Когда половые клетки объединяются, они формируют зародыш, где гены из разных наборов встречаются друг с другом. И в каждом участке ДНК, ответственном за какой-либо признак, оказываются два гена. Но в виде внешнего признака проявится только доминантный ген, который подавит действие другого, рецессивного гена.

Это описание — очень упрощенная схема наследования. У разных организмов наследование может проявляться по-разному. Например, выделяют типы наследственности с полным и неполным доминированием:

При полном доминировании доминантный ген полностью подавляет рецессивный, который «маскируется», то есть совсем не проявляется. Так наследуется резус-фактор у человека, цвет волос и глаз.

При неполном доминировании встречаются два доминантных или два рецессивных гена, и ни один не может подавить другой. В этом случае появляется новый признак, отличный от родительского. Пример — волнистые волосы как результат взаимодействия кудрявых и прямых волос родителей. Или промежуточные цвета кожи и волос.

Не все типы наследования хорошо изучены: например, некоторые генетические заболевания пока невозможно классифицировать ни по одному из типов. Изучением механизмов наследования, зависимостью заболеваний от генетической предрасположенности и условий окружающей среды занимается медицинская генетика.

На что влияют гены

Гены, полученные от родителей, во многом определяют:

  • внешний облик человека: цвет кожи, глаз и волос, форму глаз, носа, ушей, рост, длину рук и размер ноги;
  • физические качества: например, типы телосложения или скорость обмена веществ;
  • предрасположенность или устойчивость к определенным болезням.

Многие важные параметры зависят не только от генов. Например, последние исследования говорят о том, что продолжительность жизни человека определяется наследственным факторами только на 15–30%, остальное зависит от среды и случайности. И даже эти процентные соотношения неточны: часто генетикам трудно отделить наследственные факторы от влияния среды.

То же касается и умственных способностей. Вопрос, можно ли унаследовать высокий интеллект — предмет ожесточенных споров, в том числе и в науке. Некоторые параметры мозга, например, размеры разных участков мозга, действительно зависят от генов — по меньшей мере на 85%, как говорят некоторые ученые. Но однозначные выводы о непременном наследовании интеллекта, таланта и гениальности сделать пока невозможно. Ученые убеждены, что «хорошие» гены помогают быстрее учиться и легче осваивать трудные дисциплины, но так же сильно на интеллект влияют образование и образ жизни.

Семья Иоганна Себастиана Баха обычно приводится в качестве примера передачи музыкального таланта по наследству. Среди 7 поколений ученые насчитывают более 20 талантливых музыкантов.

С психическими заболеваниями все тоже неоднозначно. Пока ученые не обнаружили ни одного гена, который может вызвать ту или иную психическую болезнь. Таких генов не существует — в том смысле, в каком есть гены цвета глаз, или гены, ответственные за определенные генетические заболевания. При этом обнаружены гены, которые увеличивают риск психического заболевания, например шизофрении или биполярного расстройства — на 5% или менее.

Влияют ли гены на характер?

Ученые также ищут связи между генами и поведением человека. Генетика поведения изучает, насколько гены определяют семейные отношения, социальные связи и даже политические убеждения. Несмотря на то, что четкой и однозначной связи между ними не обнаружено, ученые пришли к выводу, что определенные мутации генов могут менять поведение. Муха-дрозофил, у которой был определенный вариант особого гена, искала корм активнее, чем носители другого варианта. У людей ученые нашли участок гена, который соотносится с альтруизмом — взаимопомощью и добротой. Он влияет в том числе и на семейную жизнь: женщины, которым достался муж с «неправильным» вариантом гена, обычно недовольны отношениями в семье.

Константин Хоманов, врач-терапевт, клинический фармаколог, основатель приложения «Справочник Врача» и «Мое Здоровье» подчеркивает, что особенности поведения или характер нельзя объяснить только патологиями или особым набором генов. Но иногда изменения в генах могут вызвать нарушения аминокислотного, углеводного, жирового обмена — от этого страдает головной мозг и могут появиться специфические черты личности.

Анна Волкова, биохимик, нутрициолог и специалист по работе с генетическими тестами Basis Genomic Group, рассказывает, что гены определяют характер, склонность к заболеваниям, спортивные таланты, здоровье кожи и даже предпочтения в еде. Все основы нашего метаболизма заложены природой. Например, ген DRD4 отвечает за чувствительность нейронов к дофамину. Дофамин — это гормон радости, азарта, предвкушения и стремления к прекрасному. Есть несколько вариантов этого гена. Если чувствительность к дофамину низкая, то человек предпочитает тихий спокойный образ жизни, а если высокая — это охотник за яркими впечатлениями.

Еще один ген — FTO, кодирует белок, участвующий в энергетическом балансе. Если этот ген изменен, то такого белка вырабатывается мало, и человек постоянно испытывает голод. Чувство насыщения запаздывает, что приводит к перееданию и частым обильным перекусам. Предпочтения в еде, скорее всего, будут тоже нездоровые: выпечка, сладости, жирные жареные блюда, фаст-фуд. Носителям такого измененного гена нужно следить за своим рационом, быть физически активными и в целом вести здоровый образ жизни.

Почему возникают мутации генов

Генная мутация — это изменение, происходящее на маленьком участке ДНК, внутри одного гена, которое может быть унаследовано потомками. Изменения на более длинном участке ДНК называются хромосомными. Есть еще геномные мутации — изменения, затрагивающие целые хромосомы в геноме. У человека геномные мутации обычно приводят к тяжелым наследственным заболеваниям: например, к синдрому Шерешевского-Тернера, характеризующемуся физическим, умственным и половым недоразвитием у носителя этой мутации.

А вот последствия генных мутаций могут быть разными: некоторые из них связаны с генетическими особенностями или заболеваниями, такими как дальтонизм или гемофилия. Другие мутации дают своим носителями способности, которые пригодились бы каждому: например, люди с мутацией гена hDEC2 чувствуют себя отдохнувшими после всего 4 часов сна.

Редкая мутация дистихиаз была у американской актрисы Элизабет Тейлор. У нее был дополнительный ряд ресниц позади нормально растущих, что делало ее глаза очень выразительными. Эта аномалия довольно редкая у людей, но часто встречается у собак.

(Фото: Pinterest. com)

Что такое мутагенные факторы

Факторы, способствующие появлению мутаций, называются мутагенными. К таким факторам относится, например, радиация: в облученных клетках происходит повреждение ДНК. Еще в 1927 году американский генетик и впоследствии лауреат Нобелевской премии Герман Меллер продемонстрировал, что облучение рентгеновскими лучами приводит к существенному увеличению частоты мутаций у мухи-дрозофилы.

Вирусы как биологический фактор также является причиной мутации — около 8% ДНК человека приходится на фрагменты древних вирусов. Эти фрагменты встроились в геном в древние времена, когда человечество переживало пандемии. Некоторые современные исследования подтверждают, что фрагменты генома коронавируса COVID-19 тоже способны встраиваться в геном человека.

Есть и химические вещества, которые вызывают мутации ДНК — например, бензол, который входит в состав нефти и бензина. Если человек надышится парами бензола, то может умереть. Даже в небольших количествах бензол может вызвать мутации, приводящие к раковым заболеваниям.

Мутации — необходимое условие многообразия жизни на планете. Без них живые существа не смогли бы приспособиться к постоянно меняющимся условиям существования. Но у этого есть и своя отрицательная сторона — последствия от мутаций для отдельного организма могут быть фатальными. Радует то, что только небольшой процент генетических изменений вызывает генетические отклонения. Большинство мутаций не оказывают никакого влияния на развитие и здоровье человека.

Зачем изучать свои гены

Генетическое тестирование — это метод, с помощью которого можно выявить мутации в генах. Генетические тесты отличаются друг от друга по технологии: например, полимеразная цепная реакция исследует набор конкретных участков ДНК, а секвенирование нового поколения (NGS) может прочесть за один раз большинство участков полного генома человека. Врач-генетик знает о преимуществах и недостатках методов и посоветует пациенту подходящий, исходя из его проблемы.

Обращаются за генетическим исследованием, чтобы:

  • диагностировать заболевание, тип заболевания, а иногда найти причину и варианты лечения — например, при определенных видах онкологии генетическое тестирование очень важно;
  • определить риск заболеть определенным заболеваниям;
  • измерить риск передачи заболевания потомкам;
  • определить непереносимость каких-то лекарств;
  • обследовать эмбрион или плод на предмет генетических мутаций.

Примерно один из 200 человек расположен к мутации в генах BRCA1 или BRCA2. Эти мутации в том числе повышают риск развития рака молочной железы, от которого умерла мать Анджелины Джоли. Сама актриса сделала генетическое тестирование, которое показало 87% вероятность развития рака груди и 50% вероятность развития рака яичников в течение жизни. Чтобы снизить риски до минимальных, в 2013 году Анджелине Джоли провели профилактическую двустороннюю мастэктомию и реконструкцию груди.

(Фото: Akns-images.eonline.com)

Генетические тесты делают и государственные, и крупные частные лаборатории, их востребованность с каждым годом увеличивается. Константин Хоманов объясняет, что часто по направлению от врача-генетика генетическое тестирование проходят, чтобы поставить верный диагноз у детей, иногда — взрослым. Тесты дают врачу и пациенту информацию для персонализированного лечения — чтобы правильно спланировать беременность или успеть начать лечение ребенка до прогрессирования патологии. Например, лечение самым дорогим лекарством в мире — «Золгесма», которое заменяет отсутствующий или нерабочий ген на его функциональную копию, лучше проводить до двухлетнего возраста. Если диагноз поставлен слишком поздно, то в получении лекарства могут отказать.

Наверное, самые «известные» генетические тесты — это ДНК-тесты на родство. С их помощью можно не только определить отцовство или материнство, но и в целом степень родственных отношений между людьми. Кроме того, пользуются популярностью тесты на определение генетических болезней перед зачатием или ЭКО, в ранние сроки беременности — это так называемый неинвазивный пренатальный тест (НИПТ).

А еще генетическое тестирование помогает определить свой этнический состав. Национальность человека по ДНК узнать нельзя, так как она определяется не генетикой, а самосознанием. Но зато можно выяснить, сколько различных народов оставили след в геноме. С помощью тестов можно выявить предрасположенность к алкогольной и другим зависимостям и даже суицидальному поведению.

Генетические тестирование пригодится и людям, увлеченным спортом. Анна Волкова поясняет, что есть несколько генов, которые отвечают за выносливость, если они «правильные», то такому человеку подойдет бег на длинные дистанции, плавание, лыжи, коньки, велосипед. При других генетических особенностях можно выбрать другой вид спорта — силовой или забеги на короткие дистанции. Также с помощью специальных генетических тестов можно определить скорость восстановления после физической нагрузки.

Зная о своих генетических особенностях, можно предупредить хронические заболевания или смягчить их проявления. Ведь генетика определяет до 50%, остальное — это наш образ жизни и среда, в которой мы обитаем.

(Фото: Unsplash)

В России представили крупнейший каталог замен, влияющих на активность генов человека в ДНК


12 мая, 2021 18:39


Источник:

ТАСС



Российские ученые представили крупнейший каталог нуклеотидных замен, определяющих активность генов человека, что позволит лучше понять механизмы различных генетических заболеваний. Результаты работы опубликованы в журнале Nature Communications, сообщила в среду пресс-служба Российского научного фонда.


Поделиться


Источник: Пресс-служба РНФ


Иллюстрация эффекта нуклеотидных замен в регуляторном участке генома. Если при замене нарушается связывание транскрипционного фактора с «посадочной площадкой», то чтение подконтрольного гена происходит неправильно, что может привести к развитию патологий.


«Особенно ценными эти данные могут оказаться для медицинских генетиков, которым важно понимать функциональную роль вариантов, расположенных в регуляторных областях генов. Наша карта будет полезна и вычислительным биологам для построения и проверки новых моделей взаимодействия факторов транскрипции и ДНК на основе машинного обучения», — сказал старший научный сотрудник Института белка РАН Иван Кулаковский, слова которого приводятся в сообщении.


Все белки организма, как напоминают авторы работы, закодированы в определенных участках ДНК — генах. Как уже существующие в популяции геномные варианты, так и произошедшие всего поколение назад мутации могут приводить к изменению последовательности белка, его структуры и функции. В некоторых случаях это может вызвать развитие и усугубление различных заболеваний, включая аутоиммунные, а также повышение риска развития рака, воспалительных осложнений при диабете, туберкулезе и прочих болезнях.


Считывание информации, а по факту синтез рибонуклеиновой кислоты (РНК) на основе ДНК, называется транскрипцией. На основе рибонуклеиновой копии будут синтезироваться белки, определяющие признаки клетки и, в конечном счете, организма. Если это происходит не в то время и не в том месте или не происходит тогда, когда необходимо, возникают патологии.

Каталог из сотни тысяч геномных вариантов


Исследователи из Института белка РАН, Института общей генетики имени Н.И. Вавилова РАН и Московского физико-технического института в новой работе провели масштабный вычислительный анализ опубликованных экспериментов по картированию взаимодействий регуляторных белков и ДНК. С помощью продвинутого статистического подхода им удалось единым образом проанализировать результаты нескольких тысяч экспериментов для разнообразных типов клеток.


Полученная в результате исследования карта содержит сотни тысяч событий так называемого аллель-специфичного связывания, когда разница в один нуклеотид в конкретном участке пары хромосом (аллельный вариант) приводит к тому, что регуляторный белок предпочтительно связывается с одной хромосомой из пары.


«Сопоставление с данными о генетике различных заболеваний показало: те варианты, которые приводят к потере связывания регуляторного белка (или, наоборот, к связыванию того, который раньше в этом месте не садился), гораздо чаще оказываются вовлеченными в развитие болезни», — выяснили авторы работы.

Теги

Президентская программа, Биология, Спецпроект, Инициативные проекты

Наследственность, гены и ДНК. Клетка

Пожалуй, самым фундаментальным свойством всех живых существ является способность к размножению. Все организмы наследуют генетическую информацию, определяющую их структуру и функции, от своих родителей. Точно так же все клетки возникают из ранее существовавших клеток, поэтому генетический материал должен реплицироваться и передаваться от родительской клетки к потомству при каждом клеточном делении. Таким образом, вопрос о том, как генетическая информация воспроизводится и передается от клетки к клетке и от организма к организму, является центральным для всей биологии. Следовательно, выяснение механизмов генетической передачи и идентификация генетического материала как ДНК были открытиями, которые легли в основу нашего нынешнего понимания биологии на молекулярном уровне.

Гены и хромосомы

Классические принципы генетики были выведены Грегором Менделем в 1865 г. на основе результатов селекционных экспериментов с горохом. Мендель изучил наследование ряда четко определенных признаков, таких как цвет семян, и смог вывести общие правила их передачи. Во всех случаях он мог правильно интерпретировать наблюдаемые закономерности наследования, предполагая, что каждый признак определяется парой унаследованных факторов, которые теперь называются генами. Одна копия гена (называемая аллелью), определяющая каждый признак, наследуется от каждого родителя. Например, скрещивание двух сортов гороха — одного с желтыми семенами и другого с зелеными семенами — дает следующие результаты (). Каждый из родительских штаммов имеет по две идентичные копии гена, определяющего желтый цвет (9). 0007 Y ) или зеленые ( y ) семена соответственно. Таким образом, растения-потомки являются гибридами, унаследовавшими один ген желтых семян ( Y ) и один ген зеленых семян ( y ). Все эти растения-потомки (первое дочернее поколение, или поколение F 1 ) имеют желтые семена, поэтому желтые ( Y ) считаются доминантными, а зеленые ( y ) рецессивными. Таким образом, генотип (генетический состав) гороха F 1 равен Yy , а их фенотип (физический вид) желтый. Если один F 1 потомство скрещивается с другим, давая потомство F 2 , гены желтых и зеленых семян сегрегируют характерным образом, так что соотношение между F 2 растениями с желтыми семенами и растениями с зелеными семенами составляет 3 :1.

Рисунок 3.1

Наследование доминантных и рецессивных генов.

Открытия Менделя, явно опередившие свое время, в значительной степени игнорировались до 1900 года, когда были заново открыты законы Менделя и признана их важность. Вскоре после этого была предложена роль хромосом как носителей генов. Было установлено, что большинство клеток высших растений и животных диплоидны, т. е. содержат по две копии каждой хромосомы. Однако формирование зародышевых клеток (сперматозоидов и яйцеклеток) включает уникальный тип клеточного деления (мейоз), при котором только один член каждой пары хромосом передается каждой клетке-потомку (4). Следовательно, сперматозоиды и яйцеклетки являются гаплоидными, содержащими только одну копию каждой хромосомы. Объединение этих двух гаплоидных клеток при оплодотворении создает новый диплоидный организм, теперь содержащий по одному члену каждой пары хромосом, полученной от мужчины, и один от женщины-родителя. Таким образом, поведение пар хромосом аналогично поведению генов, что позволяет сделать вывод о том, что гены переносятся на хромосомах.

Рисунок 3.2

Хромосомы при мейозе и оплодотворении. Проиллюстрированы две пары хромосом гипотетического организма.

Основы мутации, генетического сцепления и отношений между генами и хромосомами были в основном установлены в ходе экспериментов, проведенных с плодовой мухой Drosophila melanogaster . Дрозофилы легко содержать в лаборатории, и они размножаются примерно каждые две недели, что является значительным преимуществом для генетических экспериментов. Действительно, эти функции продолжают делать Drosophila Организм выбора для генетических исследований животных, особенно для генетического анализа развития и дифференцировки.

В начале 1900-х годов у Drosophila был идентифицирован ряд генетических изменений (мутаций), обычно влияющих на легко наблюдаемые характеристики, такие как цвет глаз или форма крыльев. Эксперименты по разведению показали, что некоторые гены, управляющие этими признаками, наследуются независимо друг от друга, предполагая, что эти гены расположены на разных хромосомах, которые независимо сегрегируют во время мейоза. Однако другие гены часто наследуются вместе как парные признаки. Говорят, что такие гены связаны друг с другом в силу того, что они расположены на одной и той же хромосоме. Количество групп сцепленных генов равно количеству хромосом (четыре в Drosophila ), поддерживая идею о том, что хромосомы являются носителями генов.

Рисунок 3.3

Генная сегрегация и сцепление. (A) Разделение двух гипотетических генов формы ( A / a = квадратный/круглый) и цвета ( B / b = красный/синий), расположенных на разных хромосомах. (B) Сцепление двух генов, расположенных на одной хромосоме.

Однако связь между генами неполная; хромосомы обмениваются материалом во время мейоза, что приводит к рекомбинации между сцепленными генами (). Частота рекомбинации между двумя сцепленными генами зависит от расстояния между ними на хромосоме; гены, расположенные близко друг к другу, рекомбинируют реже, чем гены, расположенные дальше друг от друга. Таким образом, частоты, с которыми рекомбинируют разные гены, можно использовать для определения их относительного положения на хромосоме, что позволяет построить генетических карт (). К 1915 году было определено и картировано почти сто генов на четырех хромосомах дрозофилы , что привело к общему признанию хромосомной основы наследственности.

Рисунок 3.4

Генетическая рекомбинация. Во время мейоза члены хромосомных пар обмениваются материалом. Результатом является рекомбинация между сцепленными генами.

Рисунок 3.5

Генетическая карта. Три гена локализованы на гипотетической хромосоме на основании частоты рекомбинации между ними (1% рекомбинации между а и б ; 3% между b и c ; 4% между и и c ). Частоты рекомбинации примерно пропорциональны (подробнее…)

Гены и ферменты

Ранние генетические исследования были сосредоточены на идентификации и хромосомной локализации генов, которые контролируют легко наблюдаемые характеристики, такие как цвет глаз дрозофилы . Однако было неясно, как эти гены приводят к наблюдаемым фенотипам. Первое понимание взаимосвязи между генами и ферментами появилось в 19 г.09, когда выяснилось, что наследственное заболевание человека фенилкетонурия (см. Молекулярная медицина в главе 2) возникает в результате генетического дефекта метаболизма аминокислоты фенилаланина. Было высказано предположение, что этот дефект является результатом дефицита фермента, необходимого для катализа соответствующей метаболической реакции, что привело к общему предположению, что гены определяют синтез ферментов.

Более четкие доказательства связи генов с синтезом ферментов были получены в экспериментах Джорджа Бидла и Эдварда Татума, проведенных в 1919 г.41 с грибком Neurospora crassa . В лаборатории Neurospora можно выращивать на минимальной или богатой среде, аналогичной тем, которые обсуждались в главе 1 для выращивания E . кишечная палочка . Для Neurospora минимальные среды состоят только из солей, глюкозы и биотина; богатые среды дополнены аминокислотами, витаминами, пуринами и пиримидинами. Бидл и Татум выделили мутанты Neurospora , которые нормально росли на богатой среде, но не могли расти на минимальной среде. Было обнаружено, что каждому мутанту для роста требуется определенная пищевая добавка, такая как определенная аминокислота. Кроме того, потребность в конкретной пищевой добавке коррелировала с неспособностью мутанта синтезировать это конкретное соединение. Таким образом, каждая мутация приводила к дефициту определенного метаболического пути. Поскольку было известно, что такие метаболические пути регулируются ферментами, из этих экспериментов был сделан вывод, что каждый ген определяет структуру одного фермента — гипотеза один ген-один фермент . В настоящее время известно, что многие ферменты состоят из нескольких полипептидов, поэтому в настоящее время общепринятым утверждением этой гипотезы является то, что каждый ген определяет структуру одной полипептидной цепи.

Идентификация ДНК как генетического материала

Понимание хромосомной основы наследственности и взаимоотношений между генами и ферментами само по себе не дает молекулярного объяснения гена. Хромосомы содержат белки, а также ДНК, и первоначально считалось, что гены — это белки. Первые доказательства, ведущие к идентификации ДНК как генетического материала, были получены в результате исследований бактерий. Эти эксперименты представляют собой прототип современных подходов к определению функции генов путем введения в клетки новых последовательностей ДНК, как будет обсуждаться далее в этой главе.

Эксперименты, определяющие роль ДНК, были проведены на основе исследований бактерии, вызывающей пневмонию ( Pneumococcus ). Вирулентные штаммы Pneumococcus окружены полисахаридной капсулой, которая защищает бактерии от атаки иммунной системы хозяина. Поскольку капсула придает бактериальным колониям гладкий вид в культуре, инкапсулированные штаммы обозначаются S. Мутантные штаммы, утратившие способность образовывать капсулу (обозначаемые R), образуют в культуре колонии с неровными краями и больше не смертельны при инокуляции мышам. В 1928 было замечено, что у мышей, инокулированных неинкапсулированными (R) бактериями плюс убитыми нагреванием инкапсулированными (S) бактериями, развилась пневмония, и они умерли. Важно отметить, что бактерии, которые затем были выделены из этих мышей, относились к S-типу. Последующие эксперименты показали, что бесклеточный экстракт S-бактерий также способен преобразовывать (или трансформировать) R-бактерии в S-состояние. Таким образом, вещество в экстракте S (называемое трансформирующим принципом) было ответственно за индукцию генетического трансформация R в S бактерий.

В 1944 г. Освальд Эвери, Колин Маклауд и Маклин Маккарти установили, что трансформирующим принципом является ДНК, очистив ее от бактериальных экстрактов и продемонстрировав, что активность трансформирующего принципа устраняется ферментативным расщеплением ДНК, но не перевариванием ДНК. белки (). Хотя эти исследования не сразу привели к признанию ДНК в качестве генетического материала, в течение нескольких лет они были расширены за счет экспериментов с бактериальными вирусами. В частности, было показано, что, когда бактериальный вирус инфицирует клетку, для репликации вируса в клетку должна проникнуть вирусная ДНК, а не вирусный белок. Более того, родительская вирусная ДНК (но не белок) передается дочерним вирусным частицам. Совпадение этих результатов с продолжающимися исследованиями активности ДНК в бактериальной трансформации привело к принятию идеи, что ДНК является генетическим материалом.

Рисунок 3.6

Перенос генетической информации с помощью ДНК. ДНК выделяют из патогенного штамма Pneumococcus , который окружен капсулой и образует гладкие колонии (S). Добавление очищенной ДНК S к культуре непатогенных, неинкапсулированных бактерий (R (подробнее…)

Структура ДНК

Наше понимание трехмерной -мерной структуры ДНК, полученное в 1953 г. Джеймсом Уотсоном и Фрэнсис Крик, был основой современной молекулярной биологии. Во время работы Уотсона и Крика ДНК была известна как полимер, состоящий из четырех оснований нуклеиновых кислот — двух пуринов (аденина [A] и гуанина [G]). и два пиримидина (цитозин [C] и тимин [T]), связанные с фосфорилированными сахарами. Учитывая центральную роль ДНК как генетического материала, выяснение ее трехмерной структуры оказалось критически важным для понимания ее функции. Рассмотрение Уотсоном и Криком на проблему сильно повлияло описание Лайнусом Полингом водородных связей и α-спирали, общего элемента вторичной структуры белков (см. главу 2). кристаллографические исследования Мориса Уилкинса и Розалинды Франклин. Анализ этих данных показал, что молекула ДНК представляет собой спираль, которая поворачивается каждые 3,4 нм. Кроме того, данные показали, что расстояние между соседними основаниями составляет 0,34 нм, поэтому на один виток спирали приходится десять оснований. Важным открытием было то, что диаметр спирали составляет примерно 2 нм, что позволяет предположить, что она состоит не из одной, а из двух цепей ДНК.

На основе этих данных Уотсон и Крик построили свою модель ДНК (). Центральная особенность модели заключается в том, что ДНК представляет собой двойную спираль с сахаро-фосфатными остовами снаружи молекулы. Основания находятся внутри, ориентированы так, что водородные связи образуются между пуринами и пиримидинами в противоположных цепях. Спаривание оснований очень специфично: A всегда сочетается с T, а G с C. Эта специфичность объясняет более ранние результаты Эрвина Чаргаффа, который проанализировал состав различных ДНК и обнаружил, что количество аденина всегда равно количеству аденина. тимина, а количество гуанина к количеству цитозина. Из-за этого специфического спаривания оснований две цепи молекулы ДНК комплементарны: каждая цепь содержит всю информацию, необходимую для определения последовательностей оснований на другой.

Рисунок 3.7

Структура ДНК.

Репликация ДНК

Открытие комплементарного спаривания оснований между цепями ДНК сразу же предложило молекулярное решение вопроса о том, как генетический материал может управлять собственной репликацией — процессом, который требуется каждый раз при делении клетки. Было высказано предположение, что две нити молекулы ДНК могут разделяться и служить матрицами для синтеза новых комплементарных цепей, последовательность которых будет определяться специфичностью спаривания оснований (). Процесс называется полуконсервативная репликация , потому что одна цепь родительской ДНК консервативна в каждой молекуле ДНК потомства.

Рисунок 3.8

Полуконсервативная репликация ДНК. Две нити родительской ДНК разделяются, и каждая служит матрицей для синтеза новой дочерней цепи путем комплементарного спаривания оснований.

Прямая поддержка полуконсервативной репликации ДНК была получена в 1958 г. в результате элегантных экспериментов, проведенных Мэтью Мезельсоном и Франком Сталем, в которых ДНК была помечена изотопами, изменяющими ее плотность (). Е . coli сначала выращивали на средах, содержащих тяжелый изотоп азота ( 15 N) вместо нормального легкого изотопа ( 14 N). Следовательно, ДНК этих бактерий содержала 15 N и была тяжелее ДНК бактерий, выращенных в среде 14 N. Такую тяжелую ДНК можно было отделить от ДНК, содержащей 14 N, равновесным центрифугированием в градиенте плотности CsCl. Эта способность отделять тяжелую ( 15 N) ДНК от легкой ( 14 N) ДНК позволила изучить синтез ДНК. Е . coli , которые были выращены в среде 15 N, переносили на среду, содержащую 14 N, и давали возможность повториться еще раз. Затем их ДНК экстрагировали и анализировали центрифугированием в градиенте плотности CsCl. Результаты этого анализа показали, что вся тяжелая ДНК была заменена вновь синтезированной ДНК с плотностью, промежуточной между плотностью тяжелой ( 15 Н) и легкой ( 14 N) Молекулы ДНК. Подразумевалось, что во время репликации две родительские нити тяжелой ДНК разделялись и служили матрицами для вновь синтезированных дочерних нитей легкой ДНК, давая двухцепочечные молекулы промежуточной плотности. Таким образом, этот эксперимент предоставил прямые доказательства полуконсервативной репликации ДНК, ясно подчеркнув важность комплементарного спаривания оснований между нитями двойной спирали.

Рисунок 3.9

Экспериментальная демонстрация полуконсервативной репликации. Бактерии, выращенные в среде, содержащей нормальный изотоп азота ( 14 N) переносят на среду, содержащую тяжелый изотоп ( 15 N), и выращивают на этой среде несколько поколений. Они (далее…)

Способность ДНК служить матрицей для собственной репликации была дополнительно подтверждена демонстрацией фермента, очищенного от E . coli (ДНК-полимераза) может катализировать репликацию ДНК in vitro . В присутствии ДНК, выступающей в качестве матрицы, ДНК-полимераза могла направлять включение нуклеотидов в комплементарную молекулу ДНК.

Гены и хромосомы. Основы

Гены представляют собой сегменты дезоксирибонуклеиновой кислоты (ДНК), содержащие код определенного белка, функционирующего в одном или нескольких типах клеток организма. Хромосомы — это структуры внутри клеток, которые содержат гены человека.

  • Гены содержатся в хромосомах, находящихся в ядре клетки.

  • Хромосома содержит от сотен до тысяч генов.

  • Каждая нормальная клетка человека содержит 23 пары хромосом, всего 46 хромосом.

  • Признак – это любая определяемая генами характеристика, которая часто определяется более чем одним геном.

  • Некоторые признаки обусловлены мутировавшими генами, которые передаются по наследству или являются результатом мутации нового гена.

Белки, вероятно, являются самым важным классом веществ в организме. Белки — это не просто строительные блоки для мышц, соединительных тканей, кожи и других структур. Они также необходимы для производства ферментов. Ферменты представляют собой сложные белки, которые контролируют и осуществляют почти все химические процессы и реакции в организме. Организм вырабатывает тысячи различных ферментов. Таким образом, вся структура и функции организма регулируются типами и количествами белков, синтезируемых организмом. Синтез белка контролируется генами, содержащимися в хромосомах.

Генотип (или геном) — это уникальная комбинация генов или генетическая структура человека. Таким образом, генотип представляет собой полный набор инструкций о том, как тело этого человека синтезирует белки и, следовательно, как это тело должно быть построено и функционировать.

Фенотип — это фактическая структура и функция тела человека. Фенотип — это то, как генотип проявляется у человека — не все инструкции генотипа могут выполняться (или выражаться). Экспрессия гена определяется не только генотипом, но и окружающей средой (включая болезни и диету) и другими факторами, некоторые из которых неизвестны.

Кариотип — это изображение полного набора хромосом в клетках человека.

У человека от 20 000 до 23 000 генов.

Гены состоят из дезоксирибонуклеиновой кислоты (ДНК). ДНК содержит код или план, используемый для синтеза белка. Гены различаются по размеру в зависимости от размеров белков, которые они кодируют. Каждая молекула ДНК представляет собой длинную двойную спираль, напоминающую винтовую лестницу, содержащую миллионы ступенек. Ступени лестницы состоят из пар четырех типов молекул, называемых основаниями (нуклеотидами). На каждом этапе основание аденина (A) соединяется с основанием тимина (T) или основание гуанина (G) соединяется с основанием цитозина (C). Каждая чрезвычайно длинная молекула ДНК закручена внутри одной из хромосом. Хромосомы Гены представляют собой сегменты дезоксирибонуклеиновой кислоты (ДНК), которые содержат код определенного белка, функционирующего в одном или нескольких типах клеток организма. Хромосомы — это структуры внутри клеток… читать дальше.

Структура ДНК

ДНК (дезоксирибонуклеиновая кислота) представляет собой генетический материал клетки, содержащийся в хромосомах внутри клеточного ядра и митохондрий.

За исключением некоторых клеток (например, сперматозоидов, яйцеклеток и эритроцитов), ядро ​​клетки содержит 23 пары хромосом. Хромосома содержит множество генов. Ген — это сегмент ДНК, который обеспечивает код для построения белка.

Молекула ДНК представляет собой длинную закрученную двойную спираль, напоминающую винтовую лестницу. В нем две нити, состоящие из молекул сахара (дезоксирибозы) и фосфата, соединены парами из четырех молекул, называемых основаниями, которые образуют ступени лестницы. На этапах аденин соединяется с тимином, а гуанин соединяется с цитозином. Каждая пара оснований удерживается вместе водородной связью. Ген состоит из последовательности оснований. Последовательности из трех оснований кодируют аминокислоту (аминокислоты являются строительными блоками белков) или другую информацию.

Белки состоят из длинной цепочки аминокислот, связанных друг с другом. Существует 20 различных аминокислот, которые могут использоваться в синтезе белка: некоторые должны поступать с пищей (незаменимые аминокислоты), а некоторые вырабатываются ферментами в организме. По мере того, как цепочка аминокислот собирается вместе, она складывается, создавая сложную трехмерную структуру. Именно форма складчатой ​​структуры определяет ее функцию в организме. Поскольку укладка определяется точной последовательностью аминокислот, каждая отдельная последовательность приводит к разным белкам. Некоторые белки (например, гемоглобин) содержат несколько различных свернутых цепей. Инструкции по синтезу белков закодированы в ДНК.

Информация закодирована в ДНК последовательностью расположения оснований (A, T, G и C). Код написан триплетами. То есть базы располагаются группами по три. Конкретные последовательности из трех оснований в ДНК кодируют определенные инструкции, такие как добавление одной аминокислоты в цепь. Например, GCT (гуанин, цитозин, тимин) кодирует добавление аминокислоты аланина, а GTT (гуанин, тимин, тимин) кодирует добавление аминокислоты валина. Таким образом, последовательность аминокислот в белке определяется порядком триплетных пар оснований в гене этого белка в молекуле ДНК. Процесс превращения закодированной генетической информации в белок включает транскрипцию и трансляцию.

Транскрипция — это процесс, при котором информация, закодированная в ДНК, переносится (транскрибируется) на рибонуклеиновую кислоту (РНК). РНК представляет собой длинную цепь оснований, как и цепь ДНК, за исключением того, что основание урацил (U) заменяет основание тимин (T). Таким образом, РНК, как и ДНК, содержит информацию, закодированную триплетом.

При инициации транскрипции часть двойной спирали ДНК открывается и раскручивается. Одна из размотанных цепей ДНК действует как матрица, против которой формируется комплементарная нить РНК. Комплементарная цепь РНК называется матричной РНК (мРНК). мРНК отделяется от ДНК, покидает ядро ​​и перемещается в цитоплазму клетки (часть клетки вне ядра — см. рисунок). Там мРНК присоединяется к рибосоме, крошечной структуре в клетке, где происходит синтез белка.

С переводом , код мРНК (из ДНК) сообщает рибосоме порядок и тип аминокислот, которые нужно связать вместе. Аминокислоты доставляются к рибосоме гораздо меньшим типом РНК, называемым транспортной РНК (тРНК). Каждая молекула тРНК приносит одну аминокислоту для включения в растущую цепь белка, которая сворачивается в сложную трехмерную структуру под влиянием близлежащих молекул, называемых молекулами-шаперонами.

В организме человека существует много типов клеток, таких как клетки сердца, клетки печени и мышечные клетки. Эти клетки выглядят и действуют по-разному и производят очень разные химические вещества. Однако каждая клетка является потомком одной оплодотворенной яйцеклетки и поэтому содержит практически одинаковую ДНК. Клетки приобретают очень разный внешний вид и функции, потому что разные гены экспрессируются в разных клетках (и в разное время в одной и той же клетке). Информация о том, когда ген должен экспрессироваться, также закодирована в ДНК. Экспрессия генов зависит от типа ткани, возраста человека, наличия специфических химических сигналов и множества других факторов и механизмов. Знание этих других факторов и механизмов, контролирующих экспрессию генов, быстро растет, но многие из этих факторов и механизмов все еще плохо изучены.

Механизмы, с помощью которых гены контролируют друг друга, очень сложны. Гены имеют химические маркеры, указывающие, где должна начинаться и заканчиваться транскрипция. Различные химические вещества (например, гистоны) внутри и вокруг ДНК блокируют или разрешают транскрипцию. Кроме того, цепь РНК, называемая антисмысловой РНК, может соединяться с комплементарной цепью мРНК и блокировать трансляцию.

Клетки размножаются делением надвое. Поскольку каждой новой клетке требуется полный набор молекул ДНК, молекулы ДНК в исходной клетке должны воспроизводить (реплицировать) себя во время клеточного деления. Репликация происходит аналогично транскрипции, за исключением того, что вся двухцепочечная молекула ДНК раскручивается и разделяется на две части. После расщепления основания на каждой цепи связываются с комплементарными основаниями (А с Т и G с С), плавающими поблизости. Когда этот процесс завершен, существуют две идентичные двухцепочечные молекулы ДНК.

Чтобы предотвратить ошибки во время репликации, в ячейках предусмотрена функция «вычитки», помогающая убедиться, что основания спарены правильно. Существуют также химические механизмы для восстановления ДНК, которая не была скопирована должным образом. Однако из-за того, что в процесс синтеза белка вовлечены миллиарды пар оснований, а также из-за его сложности, могут возникать ошибки. Такие ошибки могут возникать по многим причинам (включая воздействие радиации, лекарств или вирусов) или без видимой причины. Незначительные вариации в ДНК очень распространены и встречаются у большинства людей. Большинство вариаций не влияют на последующие копии гена. Ошибки, которые дублируются в последующих копиях, называются мутациями.

Наследственные мутации — это мутации, которые могут передаваться потомству. Мутации могут передаваться по наследству только тогда, когда они затрагивают половые клетки (сперматозоид или яйцеклетку). Мутации, не затрагивающие половые клетки, влияют на потомков мутировавшей клетки (например, превращаясь в рак), но не передаются потомству.

Мутации могут быть уникальными для отдельного человека или семьи, и большинство вредных мутаций встречаются редко. Мутации, которые становятся настолько распространенными, что затрагивают более 1% популяции, называются полиморфизмами (например, группы крови человека А, В, АВ и О). Большинство полиморфизмов практически не влияют на фенотип ( фактическое строение и функции организма человека).

Мутации могут затрагивать маленькие или большие сегменты ДНК. В зависимости от размера и локализации мутация может не иметь явного эффекта или может изменить последовательность аминокислот в белке или уменьшить количество продуцируемого белка. Если белок имеет другую аминокислотную последовательность, он может функционировать иначе или вообще не функционировать. Отсутствующий или нефункционирующий белок часто вреден или смертелен. Например, при фенилкетонурии Фенилкетонурия (ФКУ) Фенилкетонурия представляет собой нарушение метаболизма аминокислот, возникающее у младенцев, рожденных без способности нормально расщеплять аминокислоту, называемую фенилаланином. Фенилаланин, который токсичен… читать далее , мутация приводит к дефициту или отсутствию фермента фенилаланингидроксилазы. Этот дефицит позволяет аминокислоте фенилаланину (всасываемой из пищи) накапливаться в организме, что в конечном итоге вызывает тяжелую умственную отсталость. В редких случаях мутация вносит полезное изменение. Например, в случае гена серповидноклеточной анемии, когда человек наследует две копии аномального гена, у него разовьется серповидноклеточная анемия. в эритроцитах) характеризуется наличием серповидных (полумесяцев) эритроцитов и хроническим… читать далее . Однако, когда человек наследует только одну копию гена серповидноклеточной анемии (называемую носителем), у него развивается некоторая защита от малярии. Малярия Малярия — это заражение эритроцитов одним из пяти видов из 9.0007 Плазмодий, простейшее. Малярия вызывает лихорадку, озноб, потливость, общее недомогание (недомогание), а иногда… читать далее (заражение крови). Хотя защита от малярии может помочь выжить носителю, серповидно-клеточная анемия (у человека с двумя копиями гена) вызывает симптомы и осложнения, которые могут сократить продолжительность жизни.

Естественный отбор относится к концепции, согласно которой мутации, ухудшающие выживаемость в данной среде, с меньшей вероятностью передаются потомству (и, таким образом, становятся менее распространенными в популяции), в то время как мутации, улучшающие выживаемость, постепенно становятся более распространенными. Таким образом, полезные мутации, хотя изначально редкие, со временем становятся обычным явлением. Медленные изменения, которые происходят с течением времени, вызванные мутациями и естественным отбором в скрещивающейся популяции, в совокупности называются эволюция.

Знаете ли вы…

Хромосома состоит из очень длинной цепи ДНК и содержит множество генов Гены Гены представляют собой сегменты дезоксирибонуклеиновой кислоты (ДНК), которые содержат код определенного белка, функционирующего в одном или нескольких типы клеток в организме. Хромосомы — это структуры внутри клеток… читать дальше (от сотен до тысяч). Гены на каждой хромосоме расположены в определенной последовательности, и каждый ген имеет определенное место на хромосоме (называемое его локусом). Помимо ДНК, хромосомы содержат другие химические компоненты, влияющие на функцию генов.

За исключением некоторых клеток (например, сперматозоидов и яйцеклеток или эритроцитов), ядро ​​каждой нормальной человеческой клетки содержит 23 пары хромосом, всего 46 хромосом. В норме каждая пара состоит из одной хромосомы от матери и одной от отца.

Имеется 22 пары неполовых (аутосомных) хромосом и одна пара половых хромосом. Парные неполовые хромосомы для практических целей идентичны по размеру, форме, положению и количеству генов. Поскольку каждый член пары неполовых хромосом содержит по одному соответствующему гену, существует в некотором смысле резервная копия генов на этих хромосомах.

23-я пара — половые хромосомы (X и Y).

Пара половых хромосом определяет, станет ли плод мужчиной или женщиной. У мужчин есть одна Х- и одна Y-хромосома. X у мужчин происходит от его матери, а Y — от отца. Женщины имеют две Х-хромосомы, одну от матери и одну от отца. В некотором смысле половые хромосомы функционируют иначе, чем неполовые хромосомы.

Меньшая Y-хромосома несет гены, определяющие мужской пол, а также несколько других генов. Х-хромосома содержит гораздо больше генов, чем Y-хромосома, многие из которых выполняют функции помимо определения пола и не имеют аналога в Y-хромосоме. У мужчин из-за отсутствия второй Х-хромосомы эти дополнительные гены на Х-хромосоме не являются парными, и практически все они экспрессируются. Гены на Х-хромосоме называются сцепленными с полом или Х-сцепленными генами.

В норме в неполовых хромосомах гены обеих пар хромосом способны к полной экспрессии. Однако у самок большинство генов на одной из двух Х-хромосом отключаются в результате процесса, называемого инактивацией Х (за исключением яйцеклеток в яичниках). Инактивация X происходит в начале жизни плода. В одних клетках Х от отца становится неактивным, а в других клетках становится неактивным Х от матери. Таким образом, одна клетка может иметь ген матери человека, а другая клетка — ген отца человека. Из-за инактивации Х отсутствие одной Х-хромосомы обычно приводит к относительно незначительным аномалиям (таким как синдром Тернера Синдром Тернера Синдром Тернера — это аномалия половой хромосомы, при которой девочки рождаются с частично или полностью отсутствующей одной из двух Х-хромосом). Синдром Тернера вызвано удалением части… читать далее ). Таким образом, отсутствие Х-хромосомы гораздо менее вредно, чем отсутствие неполовой хромосомы ( Обзор аномалий половых хромосом Обзор аномалий половых хромосом Аномалии половых хромосом могут быть вызваны полными или частичными делециями или дупликациями половых хромосом. Хромосомы представляют собой структуры внутри клеток, которые содержат ДНК и множество генов.Ген — это… читать дальше ).

Если у женщины заболевание, при котором у нее имеется более двух Х-хромосом, дополнительные хромосомы, как правило, неактивны. Таким образом, наличие одной или нескольких дополнительных Х-хромосом вызывает гораздо меньше аномалий развития, чем наличие одной или нескольких дополнительных неполовых хромосом. Например, женщины с тремя Х-хромосомами (синдром тройной Х-хромосомы Трисомия Х Трисомия Х — распространенная аномалия половых хромосом, при которой девочки рождаются с тремя Х-хромосомами (XXX). Хромосомы представляют собой структуры внутри клеток, которые содержат ДНК и множество генов. Гены содержат. .. читать дальше ) часто физически и психически нормальны. Мужчины, имеющие более одной Y-хромосомы ( Главная страница. См. Синдром XYY Синдром XYY Синдром XYY — это аномалия половых хромосом, при которой мальчики рождаются с двумя Y-хромосомами и одной X-хромосомой. Хромосомы представляют собой структуры внутри клеток, которые содержат ДНК и множество генов. Гены … читать дальше ) могут иметь физические и психические отклонения.

Существует несколько типов хромосомных аномалий Обзор хромосомных и генных нарушений Хромосомы представляют собой структуры внутри клеток, которые содержат гены человека. Ген представляет собой сегмент дезоксирибонуклеиновой кислоты (ДНК) и содержит код определенного белка, функционирующего в одном… читать далее . У человека может быть аномальное количество хромосом или аномальные области на одной или нескольких хромосомах. Многие такие аномалии можно диагностировать до рождения (см. Тестирование на хромосомные и генные аномалии Тестирование на хромосомные и генные аномалии Хромосомы — это структуры внутри клеток, содержащие гены человека. Ген — это сегмент дезоксирибонуклеиновой кислоты (ДНК), содержащий код специфический белок, функционирующий в одном… читать далее ).

Аномальное число неполовых хромосом обычно приводит к серьезным аномалиям. Например, получение лишней неполовой хромосомы может быть смертельным для плода или привести к аномалиям, таким как синдром Дауна. Синдром Дауна (трисомия 21) Синдром Дауна — это хромосомное нарушение, вызванное дополнительной 21-й хромосомой, которое приводит к умственной отсталости и физическим отклонениям. Синдром Дауна вызывается дополнительной хромосомой 21… читать далее , которая обычно является результатом наличия у человека трех копий хромосомы 21. Отсутствие неполовой хромосомы фатально для плода.

Большие области на хромосоме могут быть аномальными, обычно из-за того, что целый участок был исключен (так называемая делеция) или ошибочно помещен в другую хромосому (так называемая транслокация). Например, хронический миелогенный лейкоз Хронический миелоидный лейкоз (ХМЛ) Хронический миелоидный лейкоз — это медленно прогрессирующее заболевание, при котором клетки, которые в норме превращаются в типы лейкоцитов, называемые нейтрофилами, базофилами, эозинофилами и моноцитами. .. иногда в результате транслокации части хромосомы 9на хромосоме 22. Эта аномалия может передаваться по наследству или быть результатом новой мутации. Гены мутаций представляют собой сегменты дезоксирибонуклеиновой кислоты (ДНК), которые содержат код определенного белка, функционирующего в одном или нескольких типах клеток организма. Хромосомы — это структуры внутри клеток… читать дальше.

— это крошечные структуры внутри клеток, которые синтезируют молекулы, используемые для производства энергии. В отличие от других структур внутри клеток, каждая митохондрия содержит свою кольцевую хромосому. Эта хромосома содержит ДНК (митохондриальную ДНК), которая кодирует некоторые, но не все белки, составляющие эту митохондрию. Митохондриальная ДНК обычно происходит только от матери человека, потому что, как правило, при оплодотворении яйцеклетки только митохондрии из яйца становятся частью развивающегося эмбриона. Митохондрии из сперматозоидов обычно не становятся частью развивающегося зародыша.

Признак – это любая определяемая геном характеристика. Многие признаки определяются функцией более чем одного гена. Например, рост человека, скорее всего, определяется многими генами, включая те, которые влияют на рост, аппетит, мышечную массу и уровень активности. Однако некоторые признаки определяются функцией одного гена.

Изменение некоторых признаков, таких как цвет глаз или группа крови, считается нормальным. Другие вариации, такие как альбинизм Альбинизм Альбинизм является редким наследственным заболеванием, при котором мало или совсем не образуется пигмента меланина кожи. Поражаются кожа, волосы и глаза, а иногда и только глаза. Как правило, волосы… читать далее , Синдром Марфана Синдром Марфана Синдром Марфана – редкое наследственное заболевание соединительной ткани, приводящее к аномалиям глаз, костей, сердца, кровеносных сосудов, легких и центральной нервной системы. Этот синдром обусловлен… читать далее и болезнь Гентингтона Болезнь Гентингтона Болезнь Гентингтона — наследственное заболевание, которое начинается с периодических непроизвольных подергиваний или спазмов, затем прогрессирует в более выраженные непроизвольные движения (хорея и атетоз), психические. .. читать далее , наносят вред структуре или функции тела и считаются расстройствами. Однако не все такие генные аномалии одинаково опасны. Например, одна копия гена серповидноклеточной анемии может обеспечить защиту от малярии, а две копии гена вызывают серповидноклеточную анемию.

Знаете ли вы…

Генетическое заболевание — это вредная черта, вызванная аномальным геном. Аномальный ген может передаваться по наследству или возникать спонтанно в результате новой мутации. Генные аномалии довольно распространены. Каждый человек несет в среднем от 100 до 400 аномальных генов (разных у разных людей). Однако в большинстве случаев соответствующий ген на другой хромосоме в паре является нормальным и предотвращает любые вредные воздействия. В общей популяции вероятность наличия у человека двух копий одного и того же аномального гена (и, следовательно, расстройства) очень мала. Однако у детей, являющихся потомками близких кровных родственников, шансы выше. Шансы также выше среди детей родителей, вступивших в брак с изолированным населением, таким как амиши или меннониты.