Физика XXI века: основные открытия. Физики 21 века


Открытия в физике XXI века

На первое место издание, конечно же, поставило обнаружение частицы, похожей на бозон Хиггса, коллаборациями ATLAS и CMS на Большом адронном коллайдере (БАК). Как мы помним, открытие частицы, предсказанной почти полвека назад, должно было завершить экспериментальное подтверждение Стандартной модели. Вот почему многие ученые сочли обнаружение неуловимого бозона важнейшим прорывом в физике XXI века.

Бозон Хиггса был так важен ученым, потому что его поле позволяет объяснить, как сразу после Большого взрыва оказалась нарушена электрослабая симметрия, после чего элементарные частицы вдруг приобрели массу. Парадоксально, но одной из самых главных загадок для экспериментаторов долгое время оставалась ни что иное, как масса этого бозона, поскольку Стандартная модель не может ее предсказать. Приходилось действовать методом проб и ошибок, однако в итоге два эксперимента на БАК независимо друг от друга обнаружили частицу с массой около 125 ГэВ/с². Причем достоверность данного события достаточна велика.

Следует заметить, что в бочку меда все-таки прокралась небольшая ложка дегтя — до сих пор далеко не все уверены, что найденный физиками бозон является хиггсовским. Так, остается неясным, чему равен спин этой новой частицы. Согласно Стандартной модели, он должен быть нулевым, но есть вероятность, что он может быть равен 2 (вариант с единицей уже исключен). Обе коллаборации считают, что эту проблему можно решить путем анализа имеющихся данных.

Кроме того, есть некоторые сомнения относительно ряда каналов распада частицы — в некоторых случаях этот бозон распадался не так, как было предсказано все той же Стандартной моделью. Однако сотрудники коллабораций считают, что и это удастся прояснить, сделав более точный анализ результатов. Кстати, на ноябрьской конференции в Японии сотрудники БАК предоставили данные анализа новых столкновений с энергией 8 ТэВ, которые были произведены после июльского объявления. И то, что получилось в результате, говорило в пользу того, что летом был найден все же бозон Хиггса, а не какая-то другая частица.

Второе место  отдано группе ученых из Делфтского и Эйндховенского технологического университетов (Нидерланды) под руководством Лео Коувенховена, которые  первыми заметили признаки доселе неуловимых фермионов Майораны в твердом теле. Эти забавные частицы, существование которых предсказал еще в 1937 году физик Этторе Майорана, интересны тем, что они могут одновременно выступать в роли своих собственных античастиц. Предполагается также, что фермионы Майораны могут входить в состав загадочной темной материи. Неудивительно, что их экспериментального обнаружения ученые ждали не меньше, чем открытия бозона Хиггса.

На третье место — работа физиков из коллаборации BaBar на коллайдере PEP-II Национальной ускорительной лаборатории SLAC (США). И что самое интересное, эти ученые опять-таки экспериментально подтвердили предсказание, сделанное 50 лет тому назад — они доказали, что при распаде B-мезонов происходит нарушение Т-симметрии (так называют соотношение между прямым и обратным процессом в обратимых явлениях). В итоге исследователи выяснили, что при переходах между квантовыми состояниями B0-мезона их скорость варьируется.

На четвертом месте снова проверка давнего предсказания. Еще 40 лет назад советские физики Рашид Сюняев и Яков Зельдович рассчитали, что движение скоплений далеких галактик можно наблюдать путем измерения небольшого сдвига температуры реликтового излучения. И вот лишь в этом году это удалось осуществить на практике Нику Хэнду из Калифорнийского университета в Беркли (США), его коллеге и шестиметровому телескопу ACT (Atacama Cosmology Telescope) в рамках проекта «Спектроскопическое исследование барионных колебаний».

Пятое место заняло исследование группы Алларда Моска из Института нанотехнологий MESA+ и Университета Твенте (Нидерланды). Ученые предложили новый способ исследования процессов, происходящих в организмах живых существ, который менее вреден и более точен, чем известная всем рентгенография. Ученым удалось, используя эффект лазерного спекла (так называется случайная интерференционная картина, образующаяся при взаимной интерференции когерентных волн, имеющих случайные сдвиги фаз и случайный же набор интенсивностей), разглядеть микроскопические флюоресцирующие объекты сквозь несколько миллиметров непрозрачного материала. Нет нужды упоминать, что подобная технология тоже была предсказана несколькими десятилетиями раньше.

На шестом месте уверенно обосновались исследователи Марк Оксборроу из Национальной физической лаборатории, Джонатан Бризу и Нил Алфорд из Имперского колледжа Лондона (Великобритания). Им удалось построить то, о чем также мечтали долгие годы — мазер (квантовый генератор, излучающий когерентные электромагнитные волны сантиметрового диапазона), способный работать при комнатной температуре. До сих пор эти приборы приходилось охлаждать до чрезвычайно низкой температуры с помощью жидкого гелия, что делало нерентабельным их коммерческое использование. А теперь мазеры можно будет применять в телекоммуникациях и системах создания сверхточных изображений.

Седьмое место заслуженно присудили группе физиков из Германии и Франции, которые смогли установить связь между термодинамикой и теорией информации. Еще в 1961 году Рольф Ландауэр доказывал, что стиранию информации сопутствует рассеяние тепла. И вот в этом году это предположение экспериментально подтвердили ученые Антуан Беру, Артак Аракелян, Артем Петросян, Серджио Силлиберто, Рауль Деллиншнайдер и Эрик Лутц.

Австрийские физики Антон Цайлингер, Роберт Фиклер и их коллеги из Венского университета (Австрия), которые смогли запутать фотоны с орбитальным квантовым числом вплоть до 300, что в десять с лишним раз больше предыдущего рекорда, попали на восьмое место. Данное открытие имеет на только теоретический, но и практический выход — подобные «запутанные» фотоны смогут стать носителями информации в квантовых компьютерах и в системе оптической кодировки связи, а также в дистанционном зондировании.

На девятое место попала группе физиков под руководством Дэниэла Стэнсила из Университета Северной Каролины (США). Ученые работали с нейтринным лучом NuMI Национальной ускорительной лаборатории им. Ферми и детектором MINERvA. В итоге им удалось передать информацию при помощи нейтрино более чем на километр. Хотя скорость передачи была невелика (0,1 б/с), сообщение приняли почти без ошибок, что подтверждает принципиальную возможность связи на основе нейтрино, которую можно использовать при общении с космонавтами не только на соседней планете, но даже и в другой галактике. Кроме того, это открывает большие перспективы для нейтринного сканирования Земли — новой технологии поиска полезных ископаемых, а также для выявления землетрясений и вулканической активности на ранних стадиях.

Завершает же топ-10 открытие, сделанное физиками из США — Чжун Линь Ваном и его коллегами из Технологического института штата Джорджия. Они разработали устройство, которое добывает энергию из ходьбы и прочих движений и, конечно же, запасает ее. И хотя такой способ был известен и раньше, но на десятое место эта группа исследователей попала за то, что им впервые удалось научиться преобразовывать механическую энергию непосредственно в химическую потенциальную, минуя стадию электрической.

Источник: www.pravda.ru

 

О чем вы думаете?

Loading...

informat.com.ua

Самые важные научные открытия XXI века

Что сулит наступающий век..

- Человечество - будь оптимистом

экспонента есть вечный разбег

мы хозяева, а не туристы !

  Начало XXI века ознаменовано большим количеством научных открытий. Но за ними просто таки выстроилась вереница вопросов, которые заставляют учёный мир задуматься: а ведь на самом деле всё не так просто, как кажется даже светилам науки.

Поиски истины всё чаще и чаще направляют неугомонный человеческий разум в сторону познания многогранных проявлений неизведанного мироздания, начиная от строения атома и заканчивая космическим пространством.

За 15 лет с начала нового тысячелетия люди и не заметили, что попали в иной мир: мы живем в другой Солнечной системе, умеем ремонтировать гены и управлять протезами силой мысли. Ничего этого в XX столетии не было.

ГЕНЕТИКА

Геном человека полностью секвенирован

Робот сортирует ДНК человека в чашках Петри для проекта The Human Genome

Проект «Человеческий геном» (The Human Genome Project) начался в 1990 году, в 2000-м был выпущен рабочий черновик структуры генома, полный геном — в 2003 году. Однако и сегодня дополнительный анализ некоторых участков еще не закончен. В основном он был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Секвенирование генома имеет решающее значение для разработки лекарств и понимания того, как устроено человеческое тело.

Генная инженерия вышла на новый уровень

В последние годы был разработан революционный метод манипуляции ДНК при помощи так называемого CRISP-механизма. Эта методика позволяет избирательно редактировать определенные гены, что раньше было невозможно.

МАТЕМАТИКА

Доказана теорема Пуанкаре

В 2002 году российский математик Григорий Перельман доказал теорему Пуанкаре, одну из семи задач тысячелетия (важные математические проблемы, решение которых не найдено в течение десятков лет). Перельман показал, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу. За эту работу он получил престижную «медаль Филдса», аналог Нобелевской премии в математике.

АСТРОНОМИЯ

Открыта карликовая планета Эрида

Впервые Эриду сфотографировали еще 21 октября 2003 года, но заметили на снимках только в начале 2005-го. Ее открытие стало последней каплей в спорах о судьбе Плутона (продолжать ли его считать планетой или нет), что изменило привычный образ Солнечной системы.

Обнаружена вода на Марсе

В 2005 году аппарат «Марс Экспресс» Европейского космического агентства обнаружил большие залежи водяного льда недалеко от поверхности — это очень важно для последующей колонизации Красной планеты.

ФИЗИКА

Глобальное потепление — быстрее, чем ожидалось

В 2015 году ученые из Всемирного центра мониторинга ледников при Цюрихском университете (Швейцария) под руководством доктора Михаэля Цемпа, работая совместно с коллегами из 30 стран, установили, что темп таяния ледников на Земле к настоящему времени, по сравнению c усредненными показателями за XX век, вырос в два-три раза.

Обнаружена квантовая телепортация

Такая телепортация отличается от телепортации, о которой любят говорить фантасты, — при ней материя или энергия не передаются на расстояние. Эксперименты по передаче квантовых состояний на большие расстояния были удачно проведены за последние 15 лет не менее чем десятком научных групп. Квантовая телепортация очень важна для создания сверхзащищенных шифров и квантовых компьютеров.

Экспериментально подтверждено существование графена

Его двумерная (толщиной в один атом) кристаллическая решетка проявляет необычные электрофизические свойства. Впервые графен был получен Андреем Геймом и Константином Новоселовым в 2004 году (Нобелевская премия за 2010-й). Его планируется использовать в электронике (в сверхтонких и сверхбыстрых транзисторах), композитах, электродах и т. д. Кроме того, графен — второй по прочности материал на свете (на первом месте — карбин).

Доказано существование кварк-глюонной плазмы

В 2012 году эксперименты физиков, работающих с ускорителем RHIC в Брукхейвенской национальной лаборатории (США), попали в Книгу рекордов Гиннесса с формулировкой «за самую высокую температуру, полученную в лабораторных условиях». Сталкивая ионы золота на ускорителе, ученые добились возникновения кварк-глюонной плазмы с температурой 4 триллиона °С (в 250 тысяч раз горячее, чем в центре Солнца). Спустя примерно микросекунду после Большого взрыва Вселенная была наполнена как раз такой плазмой.

Найден бозон Хиггса

Существование этой элементарной частицы, отвечающей за массу всех прочих частиц, теоретически было предсказано Питером Хиггсом еще в 1960-х годах. А найдена она была во время экспериментов на Большом адронном коллайдере в 2012-м (за что Хиггс, совместно с Франсуа Энглером, получил Нобелевскую премию 2013 года).

БИОЛОГИЯ

Людей поделили на три энтеротипа

В 2011 году ученые из Германии, Франции и нескольких других исследовательских центров доказали, что по генетике населяющих нас бактерий люди делятся на три категории, или энтеротипа. Энтеротип человека проявляется в разной реакции на еду, лекарства и диеты, и потому стало ясно, что никаких универсальных рецептов в этих областях существовать не может.

Создана первая синтетическая бактериальная клетка

В 2010 году ученые из Института Крейга Вентера (был одним из лидеров гонки по расшифровке человеческого генома) создали первую полностью синтетическую хромосому с геномом. Когда ее встроили в бактериальную клетку, лишенную генетического материала, она начала функционировать и делиться по предписанным новым геномом законам. В перспективе синтетический геном позволит создавать вакцины против новых вирусных штаммов за часы, а не за недели, производить эффективное биотопливо, новые пищевые продукты и т. д.

Удачно записаны и перезаписаны воспоминания

Начиная с 2010 года несколько исследовательских групп (США, Франция, Германия) научились записывать в мозг мышей ложные воспоминания, стирать реальные, а также превращать приятные воспоминания в неприятные. До человеческого мозга дело пока не дошло, но осталось недолго.

Получены «этичные» (не из эмбрионов) плюрипотентные стволовые клетки

В 2012 году Синъя Яманака совместно с Джоном Гёрдоном стали лауреатами Нобелевской премии за открытие 2006 года — получение плюрипотентных стволовых клеток мыши путем эпигенетического перепрограммирования. За последующее десятилетие не менее десятка научных групп добились впечатляющих успехов в данной области, в том числе с человеческими клетками. Это предвещает скорые прорывы в терапии рака, регенеративной медицине, а также в клонировании человека (или его органов).

ПАЛЕОНТОЛОГИЯ

Впервые обнаружены мягкие ткани динозавра

Мэри Швейцер руководила научной группой, которая описала коллаген, выделенный из бедренной кости Tyrannosaurus reх

Молекулярный палеонтолог Университета Северной Каролины Мэри Швейцер в 2005 году в окаменевшей конечности подростка-тираннозавра из Монтаны (возрастом 65 млн лет) обнаружила мягкие ткани. Ранее считалось, что любые белки разложатся максимум за несколько тысяч лет, поэтому никто их в окаменелостях и не искал. После этого мягкие ткани (коллаген) были обнаружены и в других древнейших образцах.

У людей обнаружены гены неандертальцев и «денисовского человека»

Участники международного симпозиума «Переход к верхнему палеолиту в Евразии: культурная динамика и развитие рода Homo» осматривают место раскопок в центральном зале Денисовой пещеры

Из работ двух научных групп стало ясно, что от 1 до 3% генома среднестатистического европейца или азиата восходит к неандертальцам. Но у каждого современного индивидуума присутствуют несхожие неандертальские аллели (различные формы одного и того же гена), поэтому общая сумма «неандертальских» генов куда выше, до 30%. «Наследники» неандертальцев (скрещивание происходило около 45 тысяч лет назад) — в основном европейцы; у азиатов в геноме присутствуют следы скрещивания с еще одним гоминидом — «денисовским человеком». Самые «чистые» Homo sapiens — уроженцы Африканского континента.

МЕДИЦИНА

По дыханию распознана ранняя стадия рака легких

Год назад группа израильских, американских и британских ученых разработала устройство, которое способно точно идентифицировать рак легких и определить, в какой стадии он находится. Основой устройства стал анализатор дыхания со встроенным наночипом NaNose, способный «вынюхать» раковую опухоль с 90-процентной точностью, даже когда раковый узелок практически незаметен. В скором времени стоит ожидать анализаторов, которые смогут по «запаху» определять и другие виды рака.

Разработано первое полностью автономное искусственное сердце

Специалисты американской компании Abiomed разработали первое в мире полностью автономное постоянное искусственное сердце для имплантаций (AbioCor). Искусственное сердце предназначено для пациентов, у которых невозможно лечение собственного сердца или имплантация донорского, пишет Интересные факты.

БИОНИКА

Созданы биомеханические устройства и протезы, контролируемые усилием мысли

Американец Зак Вотер испытал бионический ножной протез, поднявшись по лестнице на 103-й этаж небоскреба Уиллис-тауэр, расположенного в Чикаго

В 2013 году появились первые опытные образцы «умных» протезов с обратной связью (эмуляцией осязательных ощущений), которые позволяют человеку чувствовать то, что «ощущает» протез. В 2010-х годах созданы и отдельные от человека устройства, управляемые только через мысленный интерфейс (иногда с инвазивными контактами, но чаще это похоже на головной обруч с сухим электродом), — компьютерные игры и тренажеры, манипуляторы, транспорт и пр.

ЭЛЕКТРОНИКА

Перейден петафлопсный барьер

В 2008 году новый суперкомпьютер в Лос-Аламосе (США) заработал со скоростью более квадриллиона (тысяча триллионов) операций в секунду. Следующий барьер, эксафлопсный (квинтиллион операций в секунду) будет достигнут в ближайшие годы. Системы с такой невероятной скоростью необходимы в первую очередь для высокопроизводительных вычислений — обработки данных научных экспериментов, климатического моделирования, финансовых операций и т. д.

 

maxpark.com

Лучшие открытия XXI века | Science Debate

Мы уже рассматривали XX век и его открытия, в корне изменившие наш мир, однако даже сейчас человечество в плане развития технологий и прогресса, видит лишь верхушку айсберга. Впрочем, это ничуть не остужает пыл ученых и исследователей различных мастей, а напротив – лишь подогревает их интерес.

Сегодня речь пойдет о нашем времени, которое все мы помним и знаем. Мы поговорим об открытиях, которые так или иначе стали настоящим прорывом в области науки и начнем, пожалуй, с самого значимого. Тут стоит оговориться, что самое значимое открытие не всегда значимо для обывателя, а в первую очередь важно для научного мира.

Первую позицию занимает совсем недавнее открытие, однако, его значимость для современной физики колоссальна, это открытие учеными «частицы-бога» или, как ее обычно называют – бозон Хиггса. По сути, открытие этой частицы объясняет причину возникновения массы у других элементарных частиц.

открытия 21 века

Стоит отметить, что доказать существование бозона Хиггса пытались на протяжении 45 лет, однако удалось это сделать лишь недавно. Еще в 1964 году Питер Хиггс, в честь которого названа частица, предсказывал ее существование, однако практически доказать это не было возможности.

большой адронный коллаидер

Но 26 апреля 2011 года, по просторам интернета волной прошла новость о том, что с помощью Большого адронного коллайдера, находящегося рядом с Женевой, ученым, наконец, удалось обнаружить искомую и ставшую чуть ли не легендарной частицу. Однако учеными это не сразу подтвердилось и лишь в июне 2012 года специалисты заявили о своей находке. Впрочем, к окончательному выводу пришли лишь в марте 2013 года, когда ученые ЦЕРН сделали заявление о том, что обнаруженная частица действительно является бозоном Хиггса.

бозон хиггса

Не смотря на то, что открытие этой частицы стало знаковым для научного мира, практическое ее использование на данном этапе развития остается под вопросом. Сам Питер Хиггс комментируя возможность использования бозона сказал следующее «Существование бозона длится лишь что-то около одной квинтиллионной доли секунды, и мне сложно представить, как столько короткоживущую частицу можно использовать. Частицы, которые живут миллионную долю секунды, сейчас, впрочем, находят применение в медицине». Так, в свое время, известный английский физик-экспериментатор, на вопрос о пользе и практическом применении открытой им магнитной индукции сказал «А какая польза может быть от новорожденного ребенка?» и этим, пожалуй, закрыл данную тему.

Вторую позицию среди самых интересных, перспективных и амбициозных проектов человечества в XXI веке занимает расшифровка генома человека. Проект «Геном человека» не зря имеет славу самого важного проекта в сфере биологических исследований, а работа над ним началась еще в 1990 году, хотя стоит упомянуть о том, что данный вопрос рассматривался и в 80-ых годах XX века.

Цель проекта была ясна – изначально планировалось определение последовательности более трех миллиардов нуклеотидов (нуклеотиды составляют ДНК), а так же определить более 20 тысяч генов в геноме человека. Впрочем, позже, несколько исследовательских групп расширили задачу. Стоит так же отметить, что исследование, завершившееся в 2006 году, израсходовало $3 млрд.

проект геном человека

Этапы проекта можно разбить на несколько частей:

1990-ый год. Конгресс США выделяет средства на изучение генома человека.1995-ый год. Публикуется первая полная последовательность ДНК живого организма. Рассматривалась бактерия Haemophilus influenzae1998-ой год. Публикуется первая последовательность ДНК многоклеточного организма. Рассматривался плоский червь Caenorhabditis elegans.1999-ый год. На данном этапе расшифровано более двух десятков геномов.2000-ый год. Было объявлено о «первой сборке генома человека» — первая реконструкция генома человека.2001-ый год. Первый набросок генома человека.2003-ий год. Полная расшифровка ДНК, остается расшифровать первую хромосому человека.2006-ой год. Последний этап работы по расшифровке полного генома человека.

Несмотря на то, что ученые всего мира строили грандиозные планы на момент окончания проекта, ожидания не оправдались. На данный момент научная общественность признала проект провальным по своей сути, однако говорить, что он был абсолютно бесполезен ни в коем случае нельзя. Новые данные позволили ускорить темпы развития, как медицины, так и биотехнологии.

И третью, последнюю позицию в сегодняшнем перечне занимает… Собственно, третья позиция останется свободной. Это не говорит о том, что больше никаких важных и интересных открытий не произошло – напротив, открытий и достижений в области науки более чем достаточно, однако определиться, какое именно из них достойно стоять на этой позиции мы предоставим вам. Можно посчитать это если не домашним заданием, то нашим желанием пообщаться и узнать мнение многих людей.

марсоход на красной планете

Так, например, кто-то может считать, что открытие воды на Марсе является отличным поводом объявить это достижение кандидатом на роль бронзового призера, иные же не согласятся и заявят, что получение нового материала – графена, куда более значимое событие. Так или иначе, каждый имеет право на свое мнение и мы уверены, что поделившись своими мыслями, вы сможете заинтересовать других и узнать много нового.

www.sciencedebate2008.com

ФИЗИКА НА ПОРОГЕ XXI ВЕКА

В январе 2000 года в Санкт-Петербурге прошла конференция "Российское естествознание на пороге третьего тысячелетия", организованная администрацией города и Международной Соросовской программой образования в области точных наук (ICCEP). Конференция, созванная специально для учителей общеобразовательных школ - число подобных конференций, проведенных за пять лет в 80 городах России, насчитывает без малого четыре сотни (!) - дала возможность непосредственного общения с величинами научного мира и коллегами из высших учебных заведений, с тем чтобы учителя из первых рук могли узнать о новейших достижениях в физике, химии, математике и биологии, услышать мнение ведущих ученых относительно свершенного в уходящем столетии и о путях возможного прорыва в будущем. И услышанное - пересказать ученикам.

Выступая на открытии конференции в Смольном с приветственным словом от имени Российской академии наук, ее вице-президент Ж. И. Алферов сказал, что, по его мнению, "будущее России определится не Богом и не верой в Бога, не верой в президента и его доброй волей, а научным потенциалом страны, развитием науки и образования". В этой связи помощь, которую американский меценат Дж. Сорос оказывал российской науке и образованию в трудное для них время, трудно переоценить. И дело тут не в сумме денег, потраченной за шесть лет существования программы ICCEP на те или иные гранты, а в том, что эти гранты выделялись не только (а точнее сказать, не столько даже) выдающимся ученым на проведение перспективных исследований, но в первую очередь преподавателям вузов, учителям общеобразовательных школ, лицеев, аспирантам, студентам - словом, тем, от кого зависит, чтобы не иссяк интерес к науке, чтобы "не прервалась связь времен". "И я надеюсь, - сказал в заключение Жорес Иванович Алферов, - что наша талантливая молодежь в XXI веке будет работать в подавляющем большинстве случаев в нашей стране".

Представляем вашему вниманию лекцию академика Ж. И. Алферова, члена редакционного совета журнала "Наука и жизнь", прочитанную в рамках Соросовской конференции в Петербурге. В ней дается обзор достижений физики - главной науки уходящего столетия, а также оцениваются ее перспективы в будущем веке.

Работающему научному сотруднику чрезвычайно сложно, а скорее всего просто не под силу предсказать то, какой будет целая область науки в следующем столетии.

Это сподручнее сделать писателям-фантастам, и на замечательных романах Жюля Верна многие из нас выросли. Научный же работник обременен грузом реальных и конкретных знаний, которые не позволяют ему делать очень смелые предсказания. Хотя в свое время Альберт Эйнштейн разъяснил, как делаются крупные открытия. Он сказал, что подавляющее большинство людей знает, что это невозможно. Затем находится один человек, который не знает, вот он и делает открытие.

Поэтому большую часть своей лекции я посвящу тому, что произошло в физике за почти истекшее XX столетие, ну а в той области, в которой работаю сам, позволю себе некие экстраполяции.

Двадцатое столетие называют веком войн и социальных революций, что совершенно справедливо, и Россия здесь получила, как говорится, сполна, больше, чем многие другие страны. Но вместе с тем XX столетие называют еще и веком физики, и это тоже правильно. Но я бы назвал его веком квантовой физики, поскольку именно квантовая физика определила лицо уходящего века.

Недавно журнал "Тайм" провел опрос, кого из жителей планеты можно признать олицетворившим XX век, и титул человека столетия с подавляющим преимуществом получил Альберт Эйнштейн - основной создатель (если говорить об индивидуальностях) квантовой физики.

Но говоря о том, что наш век есть столетие квантовой физики, мы должны понимать, что произошло это отнюдь не случайно и что революционные изменения в естествознании формировались во второй половине XIX столетия и были связаны, как и всегда, с практической деятельностью человека. Вообще вся современная наука сравнительно молода: она насчитывает примерно лет триста, ибо основателями современного естествознания, современной физики можно считать Исаака Ньютона, Галилео Галилея и Рене Декарта. Они сформировали классическую механику и классическую физику.

В конце XIX столетия благодаря техническому прогрессу - и прежде всего распространению электрического освещения и развитию светотехники - возник кризис естествознания - потребовалось четко обосновать особенности спектров излучения нагретых тел. Из исследования этих особенностей и родилась, по большому счету, современная квантовая физика.

В 1900 году Макс Планк, твердо стоявший на позиции классической физики и не желавший от нее уходить, предложил для объяснения именно спектров излучения идею кванта.

Между прочим, я горжусь тем, что почти 50 лет своей жизни отдал работе в одном из самых замечательных научных учреждений Петербурга, России и мира - Физико-техническом институте имени Абрама Федоровича Иоффе. А вот такое сочетание - физико-технический институт, насколько мне известно, впервые появилось в Германии в 80-е годы прошлого столетия, когда Вернер Сименс, создатель знаменитой одноименной фирмы, основал в Берлине институт, состоявший из двух отделов: физического и технического; физический занимался фундаментальными исследованиями, а технический - совершенствованием ламп накаливания. И вот в этом институте было очень много сделано для возникновения и обоснования квантовой теории.

Конечно, решающее слово было сказано Альбертом Эйнштейном, предложившим в 1905 году квантовое объяснение фотоэффекта. Именно за квантовую теорию фотоэффекта, а не за теорию относительности ему в 1922 году была присуждена Нобелевская премия по физике. Потому что эта работа А. Эйнштейна сыграла ключевую роль в формировании квантовой теории.

Дальше я должен был бы назвать целый ряд блестящих имен, которым мы обязаны не только формированием квантовой физики, но и современным пониманием физических явлений: Поль Дирак, Вернер Гейзенберг, Морис де Бройль, Нильс Бор, Лев Давидович Ландау и многие, многие другие. Назвав эти имена, я хочу подчеркнуть, что квантовая физика в ее золотое время - 1920-1930-е годы - сформировала не только современную физическую теорию, но и современное научное мировоззрение людей, занимающихся естественными науками. Именно физические методы исследования, физический подход способствовали взлету и развитию как химии, так и биологии.

А сейчас я хотел бы остановиться на открытиях - сугубо экспериментальных, - основанных на квантовой теории, которые, с моей точки зрения, не только определили научно-технический прогресс во второй половине XX века, по-новому объяснив многие вещи в физике, но и привели к масштабным социальным изменениям и во многом предопределили современное развитие как передовых стран, так и практически всего населения земного шара.

И первым из этих трех открытий в физике я бы назвал открытие деления урана под воздействием нейтронного облучения, сделанное О. Ганом и Ф. Штрассманом в 1938 году.

Вообще первые десятилетия XX столетия (подчеркиваю, в экспериментальном отношении) были отмечены прежде всего работами в области ядерной физики, исследованиями радиоактивности, созданием современной теории атомного ядра. Но открытие деления урана предвиделось, я бы даже сказал, ожидалось, причем значительно больше, чем происшедшее в 80-е годы открытие высокотемпературной сверхпроводимости, и было оценено практически сразу. У нас, в Ленинграде, его оценили два выдающихся советских физика, сыгравших огромную роль и в развитии фундаментальной физики, и в нашем атомном проекте: Яков Борисович Зельдович и Юлий Борисович Харитон, которые выполнили блестящую работу по расчету цепных реакций на основе деления урана.

Вы знаете, что в 1939 году венгерский физик Лео Сцилард, живший тогда в США, уговорил Альберта Эйнштейна подписать письмо к президенту Ф. Рузвельту, в котором высказывалось предостережение - нацисты могут первыми изготовить атомную бомбу. В связи с этим выражалась настойчивая просьба об ассигновании собственных атомных исследований. Спустя непродолжительное время такое решение было принято, и начался известный Манхеттенский проект.

У нас в стране одним из инициаторов советского атомного проекта стал Георгий Николаевич Флеров, аспирант Игоря Васильевича Курчатова в Физико-техническом институте. В то время он был призван в армию, но при каждом удобном случае продолжал просматривать научные журналы. Обнаружив, что в них исчезли публикации, связанные с атомной тематикой (а это означало, что работы в этой области засекречены), он начал бомбардировать письмами высокое начальство, включая Сталина, доказывая необходимость развития советского атомного проекта.

Изучая рассекреченные и опубликованные материалы 1938-1943 годов, стенограммы заседаний, выступлений, понимаешь, какие у нас были замечательные физики: Абрам Федорович Иоффе, Игорь Васильевич Курчатов, Сергей Иванович Вавилов. Особенно восхищают меня А. Ф. Иоффе и С. И. Вавилов, потому что они работали в других областях (как известно, А. Ф. Иоффе - основоположник науки о полупроводниках, С. И. Вавилов - о люминесценции) и проблемы ядра были от них далеки. Но они прекрасно разбирались в этих вопросах!

Сегодня появилось много публикаций, утверждающих, что нашим ученым якобы ничего не нужно было делать - мол, все принесла разведка. Да, конечно, разведка сделала свое дело (и, прежде всего, по идеологическим соображениям, Клаус Фукс). Но на самом деле никакая разведка не могла бы нам дать атомное оружие и решить атомную проблему. Атомное оружие было создано в СССР благодаря тому, что уже в 1920-1930-е

годы у нас была своя, отечественная школа физиков, возникшая прежде всего благодаря А. Ф. Иоффе и так называемому "детскому саду папы Иоффе", который сформировался в Физико-техническом институте. Начало было положено еще в 1919 году, когда Абрам Федорович вместе со Степаном Прокофьевичем Тимошенко основали физико-механический факультет Политехнического института. Это было совершенно новое для того времени образовательное учреждение, которое ставило своей целью подготовку физиков с пониманием инженерных проблем и подготовку инженеров с очень глубокой физико-математической базой. Именно вот этот "детский сад папы Иоффе", из которого вышла целая гвардия трижды Героев Социалистического Труда, десятки академиков, и решил в будущем для нашей страны и атомную, и полупроводниковую, и многие другие проблемы.

Конечно, сегодня, особенно после чернобыльской катастрофы, много говорится об опасности использования атомной энергии. И в целом ряде стран предпринимаются меры для сокращения атомной энергетики. Хотя я не являюсь специалистом в этой области, но из моих бесед, чтения соответствующих работ и обсуждения данной проблемы на весьма представительном научном уровне я вынес убеждение, что в XXI веке атомная энергетика будет основным источником энергии не только в нашей стране, но и во всем мире. И прежде всего потому, что запасы горючих ископаемых кончаются. Современная же атомная энергетика экологически значительно безопаснее, чем угольные или даже мазутные электростанции. В области реакторной техники мы имеем очень хорошие наработки, и я уверен - так будет, потому что термоядерная энергетика еще довольно далека от своей реализации. Примечателен в этой связи такой случай. Когда руководителя английской термоядерной программы сэра Джона Кокрофта, лауреата Нобелевской премии, журналисты спросили, когда же можно ожидать промышленной реализации термоядерной энергетики, он ответил: "Через двадцать лет". Семь лет спустя на аналогичной конференции Кокрофту вновь был задан тот же вопрос, на который последовал прежний ответ: "Через двадцать лет". А когда удивленные журналисты воскликнули: "Но, позвольте, это же вы говорили и семь лет назад!", невозмутимо возразил: "Вы видите, я не меняю своей точки зрения".

Сегодня эта точка зрения изменилась. Полным ходом и при нашем участии осуществляется международный проект термоядерного реактора ИТЕР, однако начало промышленного использования термоядерной энергии относят к середине XXI столетия. То есть это будет не через двадцать, а через все пятьдесят лет. Поэтому надежды можно возлагать на атомную энергетику. Дай только Бог, чтобы ни в одной стране мира открытие О. Гана и Ф. Штрассмана не пришлось употребить так, как это было сделано президентом США Г. Трумэном в 1945 году при бомбардировках Хиросимы и Нагасаки.

Второе крупнейшее открытие в физике XX столетия - это, безусловно, создание транзистора.

Оно было сделано в 1947 году тремя выдающимися американскими физиками - Джоном Бардиным, Уолтером Браттейном и Уильямом Шокли в лаборатории компании "Белл телефон". Открытие стало следствием бурного развития физики полупроводников, полупроводниковой технологии и прежде всего радиолокации в годы Второй мировой войны.

Джон Бардин - один из самых выдающихся физиков XX столетия прежде всего в области физики конденсированного состояния, единственный за историю физики дважды нобелевский лауреат по физике в одной и той же области науки. Первую премию он получил в 1956 году вместе с У. Браттейном и У. Шокли за открытие транзистора, а вторую - в 1972-м вместе с Л. Купером и Дж. Шриффером за теорию сверхпроводимости, впервые давшую полное объяснение этому загадочному явлению, открытому Гейке Камерлинг-Оннесом в 1911 году в Голландии.

Нильс Бор и Абрам Федорович Иоффе. Москва, 1934 год.

Рабочий стол Отто Гана. Немецкий музей, Мюнхен. На таком столе проводились первые опыты по исследованию радиоактивных веществ.

Семинар А. Ф. Иоффе, 1916 год. Сидят (слева направо): П. И. Лукирский, А. Ф. Иоффе, Н. Н. Семенов; стоят: Я. Г. Дорфман, Я. Р. Шмидт, К. Ф. Нестурх, Н. И. Добронравов, М. В. Кирпичева, Я. И. Френкель, А. П. Ющенко, И. К. Бобр и П. Л. Капица.

1947 год: Джон Бардин, Уильям Шокли и Уолтер Браттейн рассматривают в микроскоп свой первый транзистор (показан на снимке вверху).

Серийный исследовательский атомный реактор, сконструированный в производственном объединении "Атомэнергоэкспорт". 1980-е годы.

Первые ЭВМ, появившиеся в конце 1940-х годов, работали на радиолампах, которые сильно грелись и имели тенденцию неожиданно перегорать.

Молекулярный квантовый генератор (мазер). 1955 год. Музей истории Московского государственного инженерно-физического института (технического университета).

И. Е. Тамм, Ф. Дайсон, Р. Пайерлс и В. Л. Гинзбург на Международной конференции по физике элементарных частиц. Москва, 1956 год.

Нильс Бор и Лев Давидович Ландау на "празднике Архимеда" в МГУ, 1961 год.

Академики Я. Б. Зельдович, Ю. Б. Харитон и Н. Н. Семенов.

Президиум Академии наук СССР присудил Джону Бардину свою высшую награду - медаль М. В. Ломоносова. И Джон Бардин, выступая на заключительном заседании Международной конференции по физике полупроводников в 1960 году, сказал: "Наука интернациональна, интернациональна физика, нет национальной физики. И физика полупроводников это доказывает очень ярко: она создана прежде всего Вильсоном и Моттом в Англии, Шоттки - в Германии, Иоффе и Френкелем - в СССР". 23 декабря 1947 года был продемонстрирован первый транзисторный усилитель, началась новая эра в электронике. А несколько позже появилась широчайшая научно-техническая область, приведшая к огромным социальным изменениям в мире.

На то, что транзистор появился на свет в Соединенных Штатах Америки, были вполне определенные причины, но нельзя забывать и того, что большой вклад в это выдающееся открытие человечества внесен физиками нашей страны.

Работы эти, кстати, начались за много лет до войны, и для их развития многое дали работы Олега Васильевича Лосева, гениального изобретателя из нижегородской радиолаборатории, рано умершего. В числе прочих открытий Лосева было создание кристаллического усилителя "кристадин Лосева", но, как говорится, дорого яичко к Христову дню. Когда открытия делаются слишком рано и уровень техники и технологии не готов к этому, они обычно "не проходят" и о них забывают.

Но интересен, например, и такой факт. Вице-президент крупнейшей компании "Белл телефон" Мелвин Келли, формируя группу для проведения исследований в 1945 году в области физики твердого тела и разработки новых технических средств для радиолокации, сформулировал ее основную задачу как проверку квантовой теории для конденсированного состояния. Группа была необычайно сильной. В нее вошли те трое, кто затем получил Нобелевскую премию, а также выдающийся физик Джеральд Пирсон и многие очень квалифицированные инженеры-электрохимики, механики и лаборанты. Сотрудниками группы были открыты новые физические явления, ставшие основой полевого транзистора и так называемого биполярного транзистора.

В 1958 году была построена первая интегральная схема. Она представляла собой пластину из монокристалла кремния площадью несколько квадратных сантиметров, на которой были получены два транзистора и RC-цепочки транзисторов. Современный микропроцессор со стороной, скажем, 1,8 сантиметра имеет 8 миллионов транзисторов. Если размеры первых транзисторов исчислялись долями миллиметра, то сегодня фотолитографические методы позволяют получать размеры 0,35 микрона. Это современный технологический уровень. В самом ближайшем будущем ожидается переход на размеры 0,18 микрона и через 5-7 лет - на 0,1 микрона.

Но интересно другое. С одной стороны, можно говорить, что это огромный технический прогресс, а с другой - чисто физически там не появилось никаких новых явлений: тот же полевой и биполярный транзистор и те же эффекты, которые были открыты еще в конце 1940-х годов. Однако именно эта технология, именно эти физические открытия стали основой всей современной микроэлектроники, а современная микроэлектроника изменила мир.

Я приведу лишь очень простой пример. До начала XX века Соединенные Штаты Америки были сельскохозяйственной страной. Это означает, что из четырех основных групп работающего населения - занятых в промышленности, сельском хозяйстве, сфере обслуживания и в сфере информатики (куда относятся и бухгалтеры) - самая большая группа работающих - те, кто трудились в сельском хозяйстве. К середине века США становятся индустриальной страной, потому что самой многочисленной группой были работающие в промышленности. А примерно с 1955 года Соединенные Штаты - уже постиндустриальная страна, так как самой большой группой работающего населения оказываются те, кто занимается получением и использованием информации.

Но вот что примечательно: в 1970 году численность этой группы достигла 50% работающего населения США, и с тех пор, за 30 лет, ее доля практически не изменилась. По-прежнему незначительно падает численность занятых в промышленности и сельском хозяйстве, растет число работающих в сфере обслуживания, однако в процентном к ним отношении число людей, занятых в информатике, остается прежним. И происходит это благодаря компьютерной революции.

Таким образом, открытие транзистора привело к изменению социальной структуры населения сначала развитых стран, а затем постепенно и всех остальных. Именно открытие транзистора дает нам право говорить о наступлении постиндустриального времени, времени информационного общества.

Ну и третье глобальное научное событие XX века, в чем-то примыкающее к созданию транзистора, - это открытие лазерно-мазерного принципа. И сделано оно было в 1954- 1955 годах практически одновременно Чарльзом Таунсом в США и Николаем Геннадиевичем Басовым и Александром Михайловичем Прохоровым в Физическом институте Академии наук СССР.

Если в рассказе о транзисторе я говорил лишь о вкладе, внесенном в его открытие советскими учеными школы "папы Иоффе", то честь открытия лазерно-мазерного принципа американские коллеги по праву разделяют с нашими великими соотечественниками. Об этом красноречиво говорит тот факт, что в 1964 году Нобелевскую премию по физике - а ее советским и российским ученым никогда не давали с легкостью - в силу неотвратимых обстоятельств на этот раз Таунс должен был разделить с Басовым и Прохоровым.

В Американской энциклопедии по поводу присуждения премии в 1964 году Н. Г. Басову и А. М. Прохорову были процитированы слова председателя Нобелевского комитета по физике. Он сказал, что научный мир был потрясен, узнав, что хорошо известный миру ученый Чарльз Таунс разделил Нобелевскую премию с двумя никому не известными русскими, которые с помощью своих примитивных средств сделали такое же открытие, как и на современном оборудовании Ч. Таунс. "Но, - сказал он в заключение, - работы, проведенные примитивными экспериментальными средствами, нужно поощрять ничуть не менее, чем открытия, которые производятся нажатием кнопки на современном дорогом оборудовании". Однако уважаемый председатель Нобелевского комитета ошибался, потому что экспериментальные средства в ведущих наших физических институтах - ФИАНе и Физтехе - в те времена практически не отличались от аналогичных средств в западных, в том числе и американских, лабораториях.

Все знают, что лазерная техника быстро развивается и очень широко применяется. Она стала мощным техническим и технологическим средством в медицине, с ее помощью делаются сложнейшие, но ставшие уже вполне привычными операции, производятся сварка и резка материалов. Не секрет, что существует лазерное оружие, позволяющее сбивать спутники. Вместе с тем лазер сегодня - это могучее информационное средство, и в области информатики полупроводниковые лазеры играют огромную роль.

В 1970 году американцами были созданы первые волокна с малыми потерями, а в нашей, физтеховской, лаборатории в это время впервые в мире появились полупроводниковые лазеры, работающие в непрерывном режиме при комнатной температуре на основе так называемых полупроводниковых гетероструктур. Так возникла волоконно-оптическая связь. Потом полупроводниковые лазеры стали широко применяться в известных ныне всем лазерных проигрывателях, где иголочкой, снимающей информацию, служит крохотный полупроводниковый лазер.

Так что, с одной стороны, лазеры, лазерная технология, сама по себе физика создания лазера - это торжество квантовой теории. А с другой - это могучие технические средства, которые, я повторяю, в значительной степени определили и прогресс, и изменение социальной структуры общества.

Ну а что мы можем ожидать сейчас?

В ближайшие десятилетия, видимо, не приходится ждать нового всплеска в объяснении явлений неживой природы - а физика занимается именно этой областью.

Дело в том, что вряд ли возможна революционная ситуация, аналогичная той, которая вызвала появление блестящей плеяды выдающихся ученых, наших и зарубежных, создавших современную квантовую физику. Для этого, повторю, должен был бы возникнуть некий кризис ведущего научного направления, а сегодня мы пока не видим, происходит ли он в квантовой теории. По-видимому - не происходит.

В свое время один из выдающихся британских физиков Рудольф Пайерлс, один из активных участников и Манхеттенского проекта в США, и создания атомного оружия в Великобритании, много работавший и у нас в стране, в Ленинградском и Харьковском физтехах (до войны он довольно долго жил в Советском Союзе), говоря о золотой плеяде физиков 1920-х годов, сказал мне: "Да, это было особое время, когда люди, так сказать, "первого класса" делали в науке гениальные работы, а люди "второго сорта" - работы первоклассные". Конечно, в этом сказалась величайшая скромность одного из выдающихся физиков XX столетия, но вместе с тем его слова в чем-то отразили ситуацию, сложившуюся в эпоху золотого времени для физики.

Я как-то посмотрел, что было сделано в то время у нас, в относительно небольшом коллективе Физико-технического института, и был потрясен масштабом исполненного. И это в еще разоренной после гражданской войны стране!

В 1921 году Абрам Федорович Иоффе, Алексей Николаевич Крылов и Дмитрий Сергеевич Рождественский выехали в первый раз после революции за рубеж. Абрам Федорович взял с собой Петра Леонидовича Капицу, который был тогда в очень тяжелом состоянии (у него в 1919 году погибли жена и двое малолетних детей), и он поступил на работу к Э. Резерфорду. А сам Иоффе на выделенные на ту поездку бюджетные средства закупил 42 ящика современного оборудования для Физтеха и оформил подписку почти на 50 научных журналов. Дай Бог, чтоб можно было и теперь совершать столь эффективные поездки.

Конечно, в наше время, повторяю, подобной революционной ситуации нет. Но тем не менее интересные и важные изменения, наверное, произойдут. И прежде всего в физике так называемых полупроводниковых гетероструктур, монокристаллических структур, в которой имеет место переход к различным по химическому составу веществам. Сегодня уровень этой технологии достиг того состояния, когда мы действительно умеем "укладывать" атом к атому и создавать принципиально новые структуры. Можно сказать так: мы экспериментально делаем объекты, на которых можно проверять задачки для учебника квантовой механики, самым разным образом строя эти экспериментальные объекты.

Но не только это. Мы создаем системы с пониженной размерностью электронного газа, когда электроны ограничены либо в плоскости, либо в одном измерении, в проволоке, либо вообще являются нуль-мерными структурами, это так называемые квантовые точки, рукотворные, искусственные атомы. Их свойства мы можем менять так, как нам хочется. И вот из этой области, безусловно, вырастет совершенно новое поколение электронных компонент, которые кардинально изменят информационные системы и без того совершенные сегодня.

Квантовые точки, квантовые проволоки, квантово-размерная физика конденсированного состояния - здесь такое богатство новых физических явлений, новых физических идей, что, я надеюсь, через 10-20 лет про эту область можно будет сказать, что она не только изменила технические информационные системы, но и подарила нам массу новых физических явлений.

Возможно, это лишь очень слабые ростки, которые проявляются именно при исследовании полупроводниковых гетероструктур. Возможно и появление некоторых революционных идей. Мне думается, что открытие так называемого дробного квантового холл-эффекта Хорстом Л. Штормером, Дэниелем Цуи и Робертом Лохлином, за которое им в 1998 году была присуждена Нобелевская премия по физике, может стать предтечей новых революционных идей в физике конденсированного состояния (см. "Наука и жизнь" № 1, 1999 г. - Прим. ред). В сильных магнитных полях и очень низких температурах был открыт ряд явлений, которые удалось объяснить, только предположив, что у квантовой жидкости должен быть компонент, обладающий дробным зарядом. То, что появляются экспериментальные факты, которые требуют привлечения подобных, совершенно не тривиальных объяснений, уже говорит о том, что не все в порядке в "этом королевстве" и что-то новое и интересное здесь может произойти.

С известным сожалением можно сказать, что открытая Алексом Мюллером и Георгом Беднорцем в 1986 году высокотемпературная сверхпроводимость почти ничего не дала практике и даже в общем существенно не изменила наших представлений. Можно говорить о том, что великая программа управляемого термояда, давшая массу интересных вещей для физики плазмы, не нашла пока реального практического применения. Но, наверное, и в этих областях что-то произойдет. А вот что касается квантово-размерных объектов физики конденсированного состояния, квантовых проволок и квантовых точек, то здесь совершенно точно можно ожидать изменения фундаментальных физических представлений, а стало быть, и нового реального взрыва в науке.

Записала Н. ДОМРИНА.

www.nkj.ru

Цивилизация и физика XXI века

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

Научное познание неустанно движется вперед, и в физике, да и в других научных областях появляются все новые научно доказанные факты

Графен

 Графен – модификация углерода, представляющая собой плоский «лист» графита толщиной в один атом, где атомы соединены в гексагональную двумерную кристаллическую решётку.  Графен обладает великолепной электрической проводимостью, высокой теплопроводностью, исключительной прочностью и массой других удивительных свойств. Выделить и изолировать его не представлялось возможным из-за его крайней нестабильности. Однако именно это удалось Андрею Гейму и Константину Новосёлову в 2004 году.

Графит, который мы знаем как сырье для грифелей карандашей, образуется из миллиардов таких слоев. Отделить один слой всегда считалось делом невозможным, и это было теоретически доказано еще семьдесят лет назад физиками Львом Ландау и Рудольфом Пайерлсом. Их доказательства основаны на той схеме, что подобных материалов существовать не может, поскольку силы взаимодействия атомов приводят к свертыванию их в трубочку. Как оказалось, графен стал исключением из этого правила.

В 2010 году была присуждена Нобелевская премия. Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена"

Открытие Эриса

В январе 2005 года, ученый Майк Браун и его помощники на самом краю Солнечной системы  обнаружили маленькую планету Эрис, что вызвало дискуссии среди ученых о том, каково же на самом деле определение планеты. Названа открытая планета Эрис – в честь богини раздора в греческой мифологии. Эрис изначально считалась 10-й планетой Солнечной системы, но позднее она и другие объекты, расположенные в поясе Койпера, объединили в новый класс: карликовые планеты. Эрис находится за пределами орбиты Плутона и примерно такого же размера (диаметр планеты 2 326 километров) как Плутон.

Научная картина планеты Эрис не была ясной, потому что расстояние от Земли к ней в 3 раза больше, нежели от Плутона к Земле.

После Эрис оказался слажен из скальных пород, окруженных толстой мантией льда. Карликовая планета отражает почти весь падающий на нее свет. Возможно, Эрис покрыт очень тонким слоем замерзшей атмосферы из твердого азота и метана, который может быть результатом замерзания по мере удаления планеты-карлика от Солнца при ее движении по вытянутой орбите.

Эти важные новые наблюдения, сделанные с помощью относительно небольших телескопов, дали астрономам возможность измерить свойства Эрис лучше, чем раньше. Это еще один шаг, на пути  к пониманию загадочных объектов в удаленных областях солнечной системы.

Управление протезами с помощью сигналов мозга

Изобрели технологии, позволяющие человеку управлять протезами с помощью сигналов мозга. Почти девять лет в этой области предпринимались удачные и не очень попытки превратить неподвижный протез в полную имитацию здоровой человеческой руки или ноги.

В 2009 г. итальянец Пьерпаоло Петрузиелло научился контролировать свою биомеханическую "руку" с помощью электродов, посылавших сигнал мозгу. Он стал первым человеком, заставившим протез двигать силой мысли.

В основе технологии находится очень тонкий и легкий электродный лист, внешне напоминающий обыкновенный пластырь, который, при помещении на голову человека способен улавливать мозговые волны и при помощи электродов транслировать их в электронные сигналы.

Свет из вакуума

В 2011 году стало открытие, что вакуум может испускать свет, если в него в полную темноту поместить зеркало. Для этого потенциальный источник света надо перемещать со скоростью, близкой к световой. Так шведские ученые из Гетеборга буквально из ничего создали материю (фотоны).

Существование этого эффекта было предсказано более 40 лет назад. В ходе эксперимента, ученым удалось захватить фотоны, которые беспрерывно появляются и исчезают в вакууме.

Данный эксперимент основан на одном из самых парадоксальных и, в то же время, одном из самых главных принципов квантовой механики, который гласит, что вакуум не является абсолютной пустотой. Вакуум наполнен частицами, которые постоянно возникают и исчезают в нем. После своего возникновения, они существуют в течение очень короткого промежутка времени, после чего снова исчезают. Поскольку их существование столь скоротечно, они получили название виртуальных частиц.

Ученые из университета Чалмерса, Кристофер Уилсон с коллегами, смогли превратить виртуальные фотоны в настоящий свет. Физик Мур еще в 1970 году предсказывал, что это должно произойти, если виртуальные фотоны отразятся от зеркала двигающегося почти со скоростью света. Феномен, известный под названием динамический Эффект Казимира, был впервые продемонстрирован в ходе блестящего эксперимента Чалмерских ученых.

Вода на Марсе

Российский прибор, установленный на марсоходе Curiosity, обнаружил на Марсе водосодержащий грунт. Под сухим слоем грунта в 20-30 см, где содержание воды не превышает 1%, находится грунт с относительно высоким содержанием воды (более 4% по массе). Одним из таких участков является кратер Гейла - Каменное гнездо, где марсоход изучал свойства грунта около месяца. Полученные данные подтверждают предположения ученых о наличии воды на Марсе.

Также сообщается, что марсоход передал результаты анализа грунта Красной планеты и нашел там даже простейшие органические вещества. Ученые отнеслись к полученной информации осторожно: необходимо исключить то, что эти вещества мог занести на Марс сам аппарат. Однако надежда на то, что на планете была жизнь, все еще остается.

Большой адронный коллайдер (англ. Large Hadron Collider; LHC) — это ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire; CERN) на границе Швейцарии и Франции.Руководитель проекта – британский ученый, Линдон Эванс.

Большой адронный коллайдер – кольцевой туннель, расположенный на глубине 100 м под землей (проходит под территориями Швейцарии и Франции). В нем разгоняются до околосветовых скоростей и сталкиваются лоб в лоб пучки элементарных частиц – протонов. В результате рождаются новые элементарные частицы, которые регистрируются четырьмя гигантскими, высотой с пятиэтажный дом, детекторами.

 БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более, чем 100 стран

БАК, находящийся в Европейском центре ядерных исследований (ЦЕРН) в Швейцарии - прославился в первую очередь тем, что с его помощью в конце 2012 года были получены доказательства существования бозона Хиггса.

Открытие бозона Хиггса признано научным прорывом 2012 года.

Бозон Хи?ггса— элементарная частица, элементарный бозон, квант поля Хиггса, с необходимостью возникающий в Стандартной модели вследствие хиггсовского механизма спонтанного нарушения электрослабой симметрии. По построению, хиггсовский бозон является скалярной частицей, то есть обладает нулевым спином. Постулирован Питером Хиггсом в его фундаментальных статьях, вышедших в 1964 году. В рамках Стандартной модели отвечает за массу элементарных частиц.

Бозон Хиггса первоначально был предсказан в теории, и после нескольких десятков лет поиска 4 июля 2012 года представители ЦЕРН сообщили, что на обоих основных детекторах БАК наблюдалась новая частица с массой около 125—126 ГэВ. Есть веские основания считать, что эта частица является бозоном Хиггса.

В 1964 году Хиггс предсказал обнаружение частицы, определяющей наличие массы у материи. Позже за этой частицей закрепилось название «бозон Хиггса» или «частица Бога». В июле 2012 года ученые Европейского центра ядерных исследований (CERN) объявили об открытии частицы, имеющей характеристики бозона Хиггса.

Если бы бозон Хиггса не удалось обнаружить, это доказало бы ограниченность стандартной модели строения вещества. В результате возникла бы необходимость поиска альтернативной теории происхождения массы в соответствии с так называемой новой физикой.

Просмотр содержимого документа «Цивилизация и физика XXI века »

Цивилизация и физика 21 века

Цивилизация и физика 21 века

Константин Сергеевич Новосёлов Андрей Константинович Гейм 23 августа 1974 г. (38 лет) 21 октября 1958 (54 года)

Константин Сергеевич Новосёлов

Андрей Константинович Гейм

23 августа 1974 г. (38 лет)

21 октября 1958 (54 года)

Графитовая решетка

Графитовая решетка

Свойства графена Au контакт SiO 2 Самый тонкий: ~0.1 нм 1 атомный слой) Самый легкий: 2700 кв.м на грамм; Самый прочный: ( хим. sp2 cвязи прочнее чем sp3 cвязи в алмазе!) Максимальная плотность тока: в миллион раз больше чем в меди Рекордная теплопроводность Рекордная подвижность: сотни тысяч см2 /(В с) Максимальная длина свободного пробега при Т=300К : около микрона Индуцированная затвором концентрация электронов или дырок до 1014 см-2 графен Si

Свойства графена

Au контакт

SiO 2

  • Самый тонкий: ~0.1 нм 1 атомный слой)
  • Самый легкий: 2700 кв.м на грамм;
  • Самый прочный: ( хим. sp2 cвязи прочнее чем sp3 cвязи в алмазе!)
  • Максимальная плотность тока: в миллион раз больше чем в меди
  • Рекордная теплопроводность
  • Рекордная подвижность: сотни тысяч см2 /(В с)
  • Максимальная длина свободного пробега при Т=300К : около микрона
  • Индуцированная затвором концентрация электронов или дырок до 1014 см-2

графен

Si

НЕОБЫЧНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА НОСИТЕЛЕЙ В ГРАФЕНЕ 1. В графене у носителя нет массы! (псевдорелятивистская динамика) 2. Скорость носителей в графене постоянна 3. Величина импульса носителя в графене не связана со скоростью, а только с его энергий (как у фотона)

НЕОБЫЧНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА НОСИТЕЛЕЙ В ГРАФЕНЕ

1. В графене у носителя нет массы! (псевдорелятивистская динамика)

2. Скорость носителей в графене постоянна

3. Величина импульса носителя в графене не связана со скоростью, а только с его энергий (как у фотона)

  Планета Эрис Паломарская обсерватория Mike Brown

  Планета Эрис

Паломарская обсерватория

Mike Brown

Управление протезами с помощью сигналов мозга Пьерпаоло Петрузиелло

Управление протезами с помощью сигналов мозга

Пьерпаоло Петрузиелло

Пизанская Высшая школа Святой Анны

Пизанская Высшая школа Святой Анны

Свет из вакуума

Свет из вакуума

Университет Чалмерса

Университет Чалмерса

Вода на Марсе

Вода на Марсе

марсоход Curiosity

марсоход Curiosity

Большой адронный коллайдер

Большой адронный коллайдер

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; Адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; Коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.
  • Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м;
  • Адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков;
  • Коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.
Линдон Эванс — британский учёный, руководитель проекта «Большой адронный коллайдер». Родился в 1945 г., Абердэр

Линдон Эванс — британский учёный, руководитель проекта «Большой адронный коллайдер».

Родился в 1945 г., Абердэр

Зачем нужен БАК физикам? Проверить механизм возникновения массы у элементарных частиц. Элементарная частица Теперь ей трудно двигаться (ускоряться) Поле Хиггса

Зачем нужен БАК физикам?

Проверить механизм возникновения массы у элементарных частиц.

Элементарная частица

Теперь ей трудно двигаться (ускоряться)

Поле Хиггса

Английский физик-теоретик, член Королевского Общества Эдинбурга, член Лондонского королевского общества, в настоящее время профессор в отставке (emeritus) в Эдинбургском университете. Обучался в Королевском Колледже Лондона. Питер Хиггс 29 мая 1929 (84 года)

Английский физик-теоретик, член Королевского Общества Эдинбурга, член Лондонского королевского общества, в настоящее время профессор в отставке (emeritus) в Эдинбургском университете. Обучался в Королевском Колледже Лондона.

Питер Хиггс

29 мая 1929 (84 года)

бозон Хиггса

бозон Хиггса

Использованные источники

Использованные источники

  • http://ria.ru/spravka/20101005/282481792.html#ixzz2LGC3zTjv
  • http://www.ng.ru/science/2012-12-29/9_bozon.html
  • http:// maxpark.com/community/4057/content/1395754
  • http:// itnews.com.ua/47494.html
  • http:// elementy.ru/news?theme=21093

kopilkaurokov.ru

мир уже не будет прежним!

Наука работает на опережение: сегодняшние открытия становятся нашей реальностью, определяя ее облик. Поразительно, но с каждым годом этот процесс ускоряется. И начало XXI века уже подарило миру целую россыпь революционных находок, которые прямо сейчас меняют наш мир. Давай остановимся на самых значимых открытиях начала столетия.

1. Графен – практически полностью прозрачный, сверхтонкий и сверхпрочный (второй после карбина) двумерный материал с целой гаммой полезных свойств и перспективой применения в технике недалекого будущего.

material

Открыт Андре Геймом и Константином Новосёловым, за что ученым-физикам была присуждена Нобелевская премия 2010 года. Идеально подходит для создания мягких световых панелей, гибких, как прочная бумага, компьютеров, сенсорных экранов нового поколения, часов-браслетов и многих других ноу-хау. Кроме бытового применения, открытие фантастическим образом изменило представление о научных исследованиях. Теперь явления, для изучения которых ранее потребовались бы колоссальные и затратные установки типа адронного коллайдера, можно исследовать в лаборатории. Велики перспективы использования графена в солнечных батареях, электродах суперконденсаторов, для создания сверхлегких и высокопрочных «космических» композитных материалов.

2. Квантовые часы – наиболее точный в мире хронометр, превзошедший все ранее существовавшие. Нобелевские лауреаты 2012 года Серж Арош и Дэвид Уайнленд совершили открытие, позволившее преодолеть квантовый барьер.

Digital

Применение – создание квантовых компьютеров. Работа с квантовыми битами, или как их назвали «кубитами», позволяет в разы увеличить мощность компьютерной техники. Пока полноценная система подобного рода не создана, но это дело времени.

3. Магнитная оперативная память (MRAM) — результат открытия Альбером Фером и Петером Грюнбергом эффекта гигантского магнетосопротивления. В 2007 году ученые получили за него Нобелевскую премию, а мир — революционную технологию в сфере компактного хранения информации. Быстродействующая память характеризуется низким электропотреблением и высокой плотностью записи.

memory

Что немаловажно — содержимое MRAM сохраняется даже при отключении электропитания. Также, в отличие от динамической и ферромагнитной памяти, на ее работу не оказывает влияния ионизирующее излучение. А это уже говорит том, что ее с успехом можно применять в космической технике! Мы стали свидетелями того, как плотность записи информации на жесткие диски многократно возросла. И миниатюрные устройства с громадной информационной емкостью – наша реальность.

4. Расшифровка генома человека группами Фрэнсиса Коллинза и Грэга Вентера в 2006 году. В 2015 году работа по картированию генома была полностью завершена. Многолетнее изучение генома в перспективе сулит возможности индивидуального генетического обследования, более точного и «точечного» лечения на уровне «перепрограммирования» генов — генной терапии.

gene

В комплексе с созданием автономного искусственного сердца (2001 г.), сетчатки глаза (2002 г.), электронного носа (2006 г.) протезов артерий (2009 г.), протезов конечностей, управляемых мысленным интерфейсом (2010 г.), «этичных» не эмбриональных стволовых клеток (2012 г.) и других открытий в сфере медицины можно без труда представить себе будущее этой жизненно важной области знания.

Первая синтетическая хромосома с геномом, созданная в 2010 году, встроена в бактериальную клетку без генетического материала. После чего клетка «ожила» и начала делиться. Создание вакцин за считанные часы, производство эффективного биотоплива, новых пищевых продуктов – вот лишь малая часть прогнозов применения этого открытия.

5. Обнаружение воды на Марсе и открытие Эриды (Eris) — второй после Плутона массивной карликовой планеты Солнечной системы.

mars

Именно открытие Эриды привело к тому, что Плутон перестал быть девятой планетой, а перешел в разряд «карликовых».

Картина мира уже преобразилась, а знания, актуальные еще 15 лет назад, стали едва ли не невежеством Средневековья. Учитывая, что XXI век только начинается, человечество наверняка ожидает еще множество фантастических открытий!

e-w-e.ru

Безумные научные открытия 21 века

Мужик не тот пошел 

Открытие гравитационных волн

И все-такие они существуют. Ученые празднуют открытие гравитационных волнИ все-такие они существуют. Ученые празднуют открытие гравитационных волн

Почти сотню лет назад о них говорил Альберт Эйнштейн. Это открытие стало ярким подтверждением теории относительности. Любая материя, движущаяся с ускорением, испускает гравитационные волны. Этот исторический прорыв открывает перед человечеством грани Вселенной, неизвестные науке ранее.

Тайные комнаты в гробнице Тутанхамона

Тайные комнаты в гробнице ТутанхамонаТайные комнаты в гробнице Тутанхамона

Археологи при помощи специальной радиолокационной установки обнаружили в гробнице две тайные комнаты. По мнению специалистов, гробница, в которой ранее покоился правитель древнего Египта, была приготовлена для Нефертити. Но из-за внезапной ранней смерти Тутанхамона его положили именно здесь.

Возможность управления протезом

Массовый биопротез запускают в производствоМассовый биопротез запускают в производство

Не просто управление, а управление при помощи сигналов головного мозга. Раньше о таком можно было прочитать в научно-фантастических романах. Сегодня – стало реальностью.

Наличие воды на Марсе

Ученые нашли воду на МарсеУченые нашли воду на Марсе

Само исследование Марса при помощи марсоходов, стало глобальным успехом науки. Длительное время многие учёные были убеждены, что четвертая планета от Солнца – безжизненная пустыня, непригодная для жизни. Но обнаружение на планете водяного льда говорит за то, что раньше на Марсе были моря  и океаны, а, возможно, и жизнь, похожая на земную.

Открытие эликсира молодости

Переливание молодой кровиПереливание молодой крови

Средство Макропулоса оказалось точно таким, каким его представляли некоторые ученые-алхимики средневековья. Оказывается, переливание молодой крови в пожилой организм омолаживает последний. Ученые обнаружили в молодой крови фактор GDF11, который способен увеличивать мускульную силу, омолаживать сердце и вызывать в головном мозге рост нейронов.

Быстрое таяние ледников

Таяние ледниковТаяние ледников

Открытие важное, но не очень-то обнадеживающее. Вопреки прогнозам ученых, скорость таяния крупнейших ледников мира растет. Мало того, она ускоряется с каждым годом. Если дело и дальше пойдет так же, то многие страны просто-напросто уйдут под воду, как легендарная Атлантида.

Открытие экзопланет

ЭкзопланетыЭкзопланеты

За последние годы, благодаря сверхмощным телескопам, их отрыто несколько десятков. Экзопланеты – это такие, на которых, теоретически, могла бы процветать жизнь, как на Земле. Открытие говорит в пользу того, что мы все же не одиноки во Вселенной.

Стволовые клетки

Стволовые клетки помогут омолодиться без неприятных последствийСтволовые клетки помогут омолодиться без неприятных последствий

Исследователи сразу нескольких научных центров практически одновременно сумели получить из клеток кожи полноценные стволовые эмбриональные клетки. Открытие поистине эпохальное, которое поможет выращивать необходимые органы, которые не будут отторгаться после пересадки.

Новые методы борьбы с раком

Полынь траваПолынь трава

Огромный шаг вперед в деле борьбы с этой чумой современности сделали ученые Калифорнийского университета. Они обнаружили уникальные свойства полыни (артемизинина), которые можно использовать при борьбе с раком легких. Выяснилось, что это пахучее растение способно менее чем за сутки уничтожить почти все раковые клетки. Сейчас в лаборатории идет создание нового лекарства на основе артемизинина.

Подтверждение факта существования темной материи

Исследование темной материи - актуальная задача астрофизикиИсследование темной материи — актуальная задача астрофизики

Вселенная состоит не из звезд и галактик, а из темной материи. Звезды и галактики —  всего лишь пять процентов вещества Вселенной, остальное — темная материя. Раньше это была лишь догадка, теория, теперь — научный факт. Правда, что темная материя из себя представляет, пока непонятно. Обнаружение ее, утверждают ученые, перевернет наше представление о мире.

Доказана теорема Пуанкаре

Григорий ПерельманГригорий Перельман

Как известно, Нобелевскую премию по математике не присуждают. Существует версия, что математик Миттаг-Леффлер был любовником жены Нобеля, за что оскорбленный муж вычеркнул эту науку из завещания. Впрочем, это, скорее, исторический анекдот. Аналог Нобелевской премии в математике — «медаль Филдса», которую в 2002 году получил российский математик Григорий Перельман. Он доказал теорему Пуанкаре, одну из семи задач тысячелетия.

Квантовая телепортация

Осуществлена полная квантовая телепортацияОсуществлена полная квантовая телепортация

Это немножко не та телепортация, о которой говорят писатели-фантасты. Телепортируется не материя или энергия, а состояние. Кому интересно, более подробно о квантовой телепортации доступным языком, может прочитать здесь.

Открыт бозон Хиггса

Питер ХиггсПитер Хиггс

О существовании этой элементарной частицы, которая отвечает за массу всех прочих частиц, физик-теоретик Питер Хиггс говорил более полувека тому назад. Именно Хиггс предсказал её существование. В 2012 году, во время эксперимента на Большом адронном коллайдере, подтвердилось его пророчество. Награда (Нобелевская премия) нашла героя!

Обнаружены мягкие ткани динозавра

T. RexT. Rex

Прежде считалось, что любые белки разлагаются за несколько тысяч лет. Динозавры вымерли миллионы лет назад, поэтому никто мягкие ткани в их останках не искал. Оказалось, что ошибочка вышла. Молекулярный палеонтолог Мэри Швейцер (США) в окаменевшей конечности тираннозавра обнаружила мягкие ткани. Находке 65 миллионов лет. T. Rex – опять показал себя самым крутым.

Доказано существование кварк-глюонной плазмы

Кварк-глюонная плазмаКварк-глюонная плазма

Для обывателя – полная абракадабра. Объясним проще: кварк-глюонная плазма — это плазма с температурой четыре триллиона градуса по Цельсию. Палец туда советь не следует. Температура в двести пятьдесят тысяч раз выше, чем в недрах Солнца. Её получили физики из США, сталкивая ионы золота на ускорителе. Тут же их имена были золотыми буквами записаны в книгу рекордов Гиннесса.

Синтетическая бактериальная клетка

Синтетическая бактериальная клеткаСинтетическая бактериальная клетка

Первая полностью синтетическая хромосома с геномом была создана в 2010 году. Затем её встроили в бактериальную клетку, которая была лишена генетического материала. После чего клетка стала делиться по законам нового генома. Открытие, которое способно перевернуть всю нашу жизнь, настолько оно перспективное.

Записаны и перезаписаны воспоминания

Вспомнить всёВспомнить всё

Пока только у мышей. Им в мозг были внедрены ложные воспоминания и  стерты реальные. А неприятные воспоминания заменили приятными. Скоро эта технология доберется и до людей. Будет вам «Вспомнить всё» с Арнольдом Шварценеггером.

У людей обнаружены гены неандертальцев

Неандертальцы наследили в Х-хромосоме жителей Европы и АзииНеандертальцы наследили в Х-хромосоме жителей Европы и Азии

Учёные доказали, что все мы – наследники неандертальцев. Их гены обнаружены у современного человека. Если вспомнить, как вели себя наши предки, то неудивительно поведение многих наших современников. В конце концов, культура лишь недавнее наслоение на нашей психике.

Перейден петафлопсный барьер

TERA-100 самый мощный суперкомпьютер в ЕвропеTERA-100 самый мощный суперкомпьютер в Европе

Ожидается, что следующий эксафлопсный барьер будет перекрыт новым суперкомпьютером в Лос-Аламосе. Эксафлопсный барьер — квинтиллион операций в секунду. Я знаю только квадриллион (тысяча триллионов) операций в секунду. Но он уже, блин, считается медленным. Эх, где мой старый калькулятор?

Мужик не тот пошел

Древние воины и охотникиДревние воины и охотники

Древний воин и охотник был гораздо сильнее и выносливее современного человека. Такой вывод сделали ученые, которые отсканировали лазерным методом скелеты наших древних предков.

Когда женщины сетуют на то, что настоящих мужиков не осталось, они в общем и целом правы. Тысячи лет тому назад в обществе произошла революция: от охоты человечество перешло к земледелию, и это сказалось на физическом состоянии сапиенсов. Если бы сегодня на Олимпийских играх одним из участников оказался древний охотник, он легко победил бы всех тренированных, домпингованых участников. Переход к малоподвижному образу жизни негативно сказался в основном на мужчинах. Они утратили силу, ловкость, реакцию, зато приобрели одышку, остеопороз, гипертонию и ожирение.

Древний человек-охотникДревний человек-охотник

Анализы на кальций в костях

Такой вывод сделали ученые, которые отсканировали лазерным методом скелеты наших древних предков.Сравнив данные с результатами анализа костей современных спортсменов, исследователи констатировали: двуногие млекопитающие утратили первоначальные физические навыки тогда, когда от собирательства и охоты перешли к выращиванию скота, возделыванию земли и культивации зерновых культур.

Охота на мамонтаОхота на мамонта

В результате оседлого образа жизни понизилась двигательная активность, упала физическая выносливость и продолжала падать с каждым новым поколением.Мужики перестали таскать тяжелую добычу на плечах, спуртовать и бегать на супердлинные расстояния.

Древний человек-охотник

Выслеживая добычуВыслеживая добычу

Я представляю себе Олимпийские игры 2016 в Бразилии. На дистанции 100 метров чемпион мира Усэйт Болт и древний охотник, воин Нао, Сын леопарда из племени уламров. Побеждает Нао!Марафонская дистанция. На старте мировой рекордсмен Деннис Киметто и Сын леопарда. Первым к финишу с огромным отрывом приходит Сын леопарда.Штанга. На помосте звезда тяжелой атлетики Киануш Ростами. Тяжелоатлет в рывке фиксирует новый мировой рекорд. Лео не понимает, что марафонская дистанция уже завершена, подхватывает штангу и устремляется с ней по беговой дорожке.

Комментарий специалиста-эксперта

Мужики стали слабее? Я с учеными не согласен! Мой друг Вован выпил на дне рождения у Ники литр водки, запил двумя литрами пива. Вот это чел! Любой неандерталец от такой дозы впал бы в кому. Вован же только завелся. Мы пошли проветриться. Пока гуляли, он перевернул три легковых автомобиля. Вот где сила богатырская. А когда от буля убегали, точно все мировые рекорды побили! Никакой Сын леопарда не догнал бы.

ВИДЕО: 20 самых важных открытий 21 века

al-shell.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики