Искусственная гравитация в космосе: Искусственная гравитация: как ее создать

Содержание

Искусственная гравитация и способы ее создания

Даже человек, не интересующийся космосом, хоть раз видел фильм о космических путешествиях или читал о таких вещах в книгах. Практически во всех подобных произведениях люди ходят по кораблю, нормально спят, не испытывают проблем с приемом пищи. Это означает, что на этих – выдуманных – кораблях имеется искусственная гравитация. Большинство зрителей воспринимает это как нечто совершенно естественное, а ведь это совсем не так.

Искусственная гравитация

Так называют изменение (в любую сторону) привычной для нас гравитации путем применения различных способов. И делается это не только в фантастических произведениях, но и во вполне реальных земных ситуациях, чаще всего, для экспериментов.

В теории создание искусственной гравитации выглядит не так сложно. К примеру, воссоздать ее можно при помощи инерции, точнее, центробежной силы. Потребность в этой силе возникла не вчера – произошло это сразу, как только человек начал мечтать о длительных космических перелетах. Создание искусственной гравитации в космосе даст возможность избежать множества проблем, возникающих при продолжительном нахождении в невесомости. У космонавтов слабеют мускулы, кости становятся менее прочными. Путешествуя в таких условиях месяцы, можно получить атрофию некоторых мышц.

Таким образом, на сегодняшний день создание искусственной гравитации – задача первостепенной важности, освоение космоса без этого умения просто невозможно.

Матчасть

Даже те, кто знают физику лишь на уровне школьной программы, понимают, что гравитация – один из фундаментальных законов нашего мира: все тела взаимодействуют друг с другом, испытывая взаимное притяжение/отталкивание. Чем больше тело, тем выше его сила притяжения.

Земля для нашей реальности — объект очень массивный. Именно поэтому все без исключения тела вокруг к ней притягиваются.

Для нас это означает ускорение свободного падения, которое принято измерять в g, равное 9.8 метра за квадратную секунду. Это значит, что если бы под ногами у нас не было опоры, мы бы падали со скоростью, ежесекундно увеличивающейся на 9. 8 метра.

Таким образом, только благодаря гравитации мы способны стоять, падать, нормально есть и пить, понимать, где находится верх, где низ. Если притяжение исчезнет – мы окажемся в невесомости.

Особенно хорошо знакомы с этим феноменом космонавты, оказывающиеся в космосе в состоянии парения – свободного падения.

Теоретически ученые знают, как создать искусственную гравитацию. Существует несколько методик.

Большая масса

Самый логичный вариант – сделать космический корабль настолько большим, чтобы на нем возникала искусственная гравитация. На корабле можно будет чувствовать себя комфортно, поскольку не будет потеряна ориентация в пространстве.

К сожалению, этот способ при современном развитии технологий нереален. Чтобы соорудить такой объект, требуется слишком много ресурсов. Кроме того, для его подъема потребуется невероятное количество энергии.

Ускорение

Казалось бы, если требуется достичь g, равного земному, нужно всего лишь придать кораблю плоскую (платформообразную) форму, и заставить его двигаться по перпендикуляру к плоскости с нужным ускорением. Таким путем будет получена искусственная гравитация, причем – идеальная.

Однако в реальности все гораздо сложнее.

В первую очередь стоит учесть топливный вопрос. Для того чтобы станция постоянно ускорялась, необходимо иметь бесперебойный источник питания. Даже если внезапно появится двигатель, не выбрасывающий материю, закон сохранения энергии останется в силе.

Вторая проблема заключается в самой идее постоянного ускорения. Согласно нашим знаниям и физическим законам, невозможно ускоряться до бесконечности.

Кроме того, такой транспорт не подходит для исследовательских миссий, поскольку он должен постоянно ускоряться – лететь. Он не сможет остановиться для изучения планеты, он даже медленно пролететь вокруг нее не сможет – надо ускоряться.

Таким образом, становится ясно, что и такая искусственная гравитация нам пока недоступна.

Карусель

Каждый знает, как вращение карусели воздействует на тело. Поэтому устройство искусственной гравитации по этому принципу кажется наиболее реальным.

Все, что находится в диаметре карусели, стремится выпасть из нее со скоростью, примерно равной скорости вращения. Выходит, что на тела действует сила, направленная вдоль радиуса вращающегося объекта. Это очень похоже на гравитацию.

Итак, требуется корабль, имеющий цилиндрическую форму. При этом он должен вращаться вокруг своей оси. Между прочим, искусственная гравитация на космическом корабле, созданная по этому принципу, достаточно часто демонстрируется в научно-фантастических фильмах.

Бочкообразный корабль, вращаясь вокруг продольной оси, создает центробежную силу, направление которой соответствует радиусу объекта. Чтобы вычислить получаемое ускорение, требуется разделить силу на массу.

Знающим физику людям посчитать это будет совсем не сложно: a = ω²R.

В этой формуле результат расчетов – ускорение, первая переменная – узловая скорость (измеряется в количестве радиан в секунду), вторая – радиус.

Согласно этому, для получения привычной нам g, необходимо грамотно сочетать угловую скорость и радиус космического транспорта.

Подобная проблема освещена в таких фильмах, как «Интерсолах», «Вавилон 5», «2001 год: Космическая одиссея» и подобных им. Во всех этих случаях искусственная гравитация приближена к земному ускорению свободного падения.

Как бы ни была хороша идея, реализовать ее достаточно сложно.

Проблемы метода «карусель»

Самая очевидная проблема освещена в «Космической одиссее». Радиус «космического перевозчика» составляет порядка 8 метров. Для того чтобы получить ускорение в 9.8, вращение должно происходить со скоростью, примерно, 10.5 оборота ежеминутно.

При указанных величинах проявляется «эффект Кориолиса», который заключается в том, что на различном удалении от пола действует разная сила. Она напрямую зависит от угловой скорости.

Выходит, искусственная гравитация в космосе создана будет, однако слишком быстрое вращение корпуса приведет к проблемам с внутренним ухом. Это, в свою очередь, вызывает нарушения равновесия, проблемы с вестибулярным аппаратом и прочие – аналогичные – трудности.

Возникновение этой преграды говорит о том, что подобная модель крайне неудачная.

Можно попробовать пойти от обратного, как поступили в романе «Мир-Кольцо». Тут корабль выполнен в форме кольца, радиус которого приближен к радиусу нашей орбиты (порядка 150 млн км). При таком размере скорости его вращения вполне достаточно, чтобы игнорировать эффект Кориолиса.

Можно предположить, что проблема решена, однако это совсем не так. Дело в том, что полный оборот этой конструкции вокруг своей оси занимает 9 дней. Это дает возможность предположить, что нагрузки окажутся слишком велики. Для того чтобы конструкция их выдержала, необходим очень крепкий материал, которым на сегодняшний день мы не располагаем. Кроме того, проблемой является количество материала и непосредственно процесс постройки.

В играх подобной тематики, как и в фильме «Вавилон 5», эти проблемы каким-то образом решены: вполне достаточна скорость вращения, эффект Кориолиса не существенен, гипотетически создать такой корабль возможно.

Однако даже такие миры имеют недостаток. Зовут его – момент импульса.

Корабль, вращаясь вокруг оси, превращается в огромный гироскоп. Как известно, заставить гироскоп отклониться от оси крайне сложно благодаря моменту импульса. Важно, чтобы его количество не покидало систему. Это означает, что задать направление этому объекту будет очень сложно. Однако такую проблему решить можно.

Решение проблемы

Искусственная гравитация на космической станции становится доступной, когда на помощь приходит «цилиндр О’Нила». Для создания этой конструкции необходимы одинаковые цилиндрические корабли, которые соединяют вдоль оси. Вращаться они должны в разные стороны. Результатом такой сборки является нулевой момент импульса, поэтому не должно возникнуть трудностей с приданием кораблю необходимого направления.

Если возможно сделать корабль радиусом порядка 500 метров, то он будет работать именно так, как и должен. При этом искусственная гравитация в космосе будет вполне комфортной и пригодной для длительных перелетов на кораблях или исследовательских станциях.

Space Engineers

Как создать искусственную гравитацию, известно создателям игры. Впрочем, в этом фантастическом мире гравитация – это не взаимное притяжение тел, но линейная сила, призванная ускорить предметы в заданном направлении. Притяжение тут не абсолютно, оно изменяется при перенаправлении источника.

Искусственная гравитация на космической станции создается путем использования специального генератора. Она равномерна и равнонаправленна в зоне действия генератора. Так, в реальном мире, попав под корабль, в котором установлен генератор, вы бы были притянуты к корпусу. Однако в игре герой будет падать до тех пор, пока не покинет периметр действия устройства.

На сегодняшний день искусственная гравитация в космосе, созданная таким устройством, для человечества недоступна. Однако даже убеленные сединами разработчики не перестают мечтать о ней.

Сферический генератор

Это более реалистичный вариант оборудования. При его установке гравитация имеет направление к генератору. Это дает возможность создать станцию, гравитация которой будет равна планетарной.

Центрифуга

Сегодня искусственная гравитация на Земле встречается в различных устройствах. Основаны они, большей частью, на инерции, поскольку эта сила ощущается нами аналогично гравитационному воздействию – организм не различает, какая причина вызывает ускорение. Как пример: человек, поднимающийся в лифте, испытывает на себе воздействие инерции. Глазами физика: подъем лифта добавляет к ускорению свободного падения ускорение кабины. При возвращении кабины к размеренному движению «прибавка» в весе исчезает, возвращая привычные ощущения.

Ученых давно интересует искусственная гравитация. Центрифуга используется для этих целей чаще всего. Этот метод подходит не только для космических кораблей, но и для наземных станций, в которых требуется изучать воздействие гравитации на человеческий организм.

Изучить на Земле, применять в…

Хотя изучение гравитации началось из космоса, это очень земная наука. Даже на сегодняшний день достижения в этой сфере нашли свое применение, например, в медицине. Зная, возможно ли создать искусственную гравитацию на планете, можно использовать ее для лечения проблем с двигательным аппаратом или нервной системы. Более того, изучением этой силы занимаются прежде всего на Земле. Это дает возможность космонавтам проводить эксперименты, оставаясь под пристальным вниманием врачей. Другое дело искусственная гравитация в космосе, там нет людей, способных помочь космонавтам при возникновении непредвиденной ситуации.

Имея в виду полную невесомость, нельзя брать в расчет спутник, находящийся на околоземной орбите. На эти объекты, пусть и в малой степени, воздействует земное притяжение. Силу тяжести, образующуюся в таких случаях, называют микрогравитацией. Реальную гравитацию испытывают только в аппарате, летящем с постоянной скоростью в открытом космосе. Впрочем, человеческий организм эту разницу не ощущает.

Испытать на себе невесомость можно при затяжном прыжке (до того, как купол раскроется) или во время параболического снижения самолета. Такие эксперименты часто ставят в США, но в самолете это ощущение длится только 40 секунд – это слишком мало для полноценного изучения.

В СССР еще в 1973 году знали, можно ли создать искусственную гравитацию. И не просто создавали ее, но и в некотором роде изменяли. Яркий пример искусственного уменьшения силы тяжести – сухое погружение, иммерсия. Для достижения необходимого эффекта требуется положить плотную пленку на поверхность воды. Человек размещается поверх нее. Под тяжестью тела организм погружается под воду, наверху остается лишь голова. Эта модель демонстрирует безопорность с пониженной гравитацией, которая характерна для океана.

Нет необходимости отправляться в космос, чтобы ощутить на себе воздействие противоположной невесомости силы – гипергравитации. При взлете и посадке космического корабля, в центрифуге перегрузку можно не только ощутить, но и изучить.

Лечение гравитацией

Гравитационная физика изучает в том числе и воздействие невесомости на организм человека, стремясь минимизировать последствия. Однако большое количество достижений этой науки способно пригодиться и обычным жителям планеты.

Большие надежды медики возлагают на исследования поведения мышечных ферментов при миопатии. Это тяжелое заболевание, ведущее к ранней смерти.

При активных физических занятиях в кровь здорового человека поступает большой объем фермента креатинофосфокиназы. Причина этого явления неясна, возможно, нагрузка воздействует на мембрану клеток таким образом, что она «дырявится». Больные миопатией получают тот же эффект без нагрузок. Наблюдения за космонавтами показывают, что в невесомости поступление активного фермента в кровь значительно снижается. Такое открытие позволяет предположить, что применение иммерсии позволит снизить негативное воздействие приводящих к миопатии факторов. В данный момент проводятся опыты на животных.

Лечение некоторых болезней уже сегодня проводится с использованием данных, полученных при изучении гравитации, в том числе искусственной. К примеру, проводится лечение ДЦП, инсультов, Паркинсона путем применения нагрузочных костюмов. Практически закончены исследования положительного воздействия опоры – пневматического башмака.

Полетим ли на Марс

Последние достижения космонавтов дают надежду на реальность проекта. Имеется опыт медицинской поддержки человека при длительном нахождении вдали от Земли. Много пользы принесли и исследовательские полеты к Луне, сила гравитации на которой в 6 раз меньше нашей родной. Теперь космонавты и ученые ставят перед собой новую цель – Марс.

Прежде чем вставать в очередь за билетом на Красную планету, следует знать, что ожидает организм уже на первом этапе работы – в пути. В среднем дорога к пустынной планете займет полтора года – около 500 суток. Рассчитывать в пути придется только на свои собственные силы, помощи ждать просто неоткуда.

Подтачивать силы будут множество факторов: стресс, радиация, отсутствие магнитного поля. Самое главное же испытание для организма – изменение гравитации. В путешествии человек «ознакомится» с несколькими уровнями гравитации. В первую очередь это перегрузки при взлете. Затем – невесомость во время полета. После этого – гипогравитация в месте назначения, т. к. сила тяжести на Марсе менее 40% земной.

Как справляются с отрицательным воздействием невесомости в длительном перелете? Есть надежда, что разработки в области создания искусственной гравитации помогут решить этот вопрос в недалеком будущем. Опыты на крысах, путешествующих на «Космос-936» показывают, что этот прием не решает всех проблем.

Опыт ОС показал, что гораздо больше пользы для организма способно принести применение тренажерных комплексов, способных определить необходимую нагрузку для каждого космонавта индивидуально.

Пока считается, что на Марс полетят не только исследователи, но и туристы, желающие основать колонию на Красной планете. Для них, во всяком случае первое время, ощущения от нахождения в невесомости перевесят все доводы медиков о вреде длительного нахождения в таких условиях. Однако через несколько недель помощь потребуется и им, поэтому так важно суметь найти способ создать на космическом корабле искусственную гравитацию.

Итоги

Какие выводы можно сделать о создании искусственной гравитации в космосе?

Среди всех рассматриваемых в данный момент вариантов наиболее реалистично выглядит вращающаяся конструкция. Однако при нынешнем понимании физических законов это невозможно, поскольку корабль – это не полый цилиндр. Внутри него имеются перекрытия, мешающие воплощению идей.

Кроме того, радиус корабля должен быть настолько большим, чтобы эффект Кориолиса не оказывал существенного влияния.

Чтобы управлять чем-то подобным, требуется упомянутый выше цилиндр О’Нила, который даст возможность управлять кораблем. В этом случае повышаются шансы применения подобной конструкции для межпланетных перелетов с обеспечением команды комфортным уровнем гравитации.

До того как человечеству удастся претворить свои мечты в жизнь, хотелось бы видеть в фантастических произведениях чуточку большей реалистичности и еще большего знания законов физики.

как её добиться и зачем она нужна? Почему у нас нет искусственной гравитации в космосе? Возможно ли создать искусственную гравитацию.


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Цели и задачи исследования

Целью моей научно исследовательской работы является рассмотрение такого фундаментального взаимодействия как гравитация, его явлений и проблема космических поселений с искусственным притяжением, рассмотрение особенностей использования различного вида двигателей для создания искусственной гравитации, развитие представлений о жизни в космосе в условия искусственной гравитации и решение проблем, возникающих при создании этого проекта, интеграция патентов передовых технологий к решению проблем искусственной гравитации.

Актуальность исследования.

Космические поселения представляют собой вид космических станций, на которых человек смог бы проживать в течение длительного периода времени или даже всю жизнь. Для создания подобных поселений нужно продумать все необходимые условия для оптимальной жизнедеятельности — систему жизнеобеспечения, искусственную силу тяжести, защиту от космических воздействий и т. д. И хотя реализовать все условия довольно сложно, ряд писателей-фантастов и инженеров уже создали несколько проектов, по которым, возможно, в будущем будут созданы удивительные космические поселения.

Значимость и новизна исследования.

Искусственная гравитация является перспективным направлением для исследований, ведь она обеспечит долговременное пребывание в космосе и возможность дальних космических перелетов. Постройка космических поселений может дать средства для дальнейших исследований; если запустить программу космического туризма, что будет являться весьма дорогим удовольствием, космические корпорации получат дополнительный поток финансирования, и исследования можно будет проводить по всем направлениям, не ограничиваясь возможностями.

Гравитация. Гравитационные явления.
Гравитация.

Гравитация — один из четырех типов фундаментальных взаимодействий, или иными словами — такая сила притяжения, направленная к центру массы любого объекта и к центру масс скопления объектов; чем больше масса, тем выше гравитация. При удалении от объекта сила притяжения к нему стремится к нулю, но в идеальных условиях совсем не исчезает никогда. То есть, если представить себе абсолютный вакуум без единой лишней частицы любого происхождения, то в этом пространстве любые объекты, обладающие хоть бесконечно малой массой, при отсутствии любых других внешних сил будут притягиваться друг к другу на любом бесконечно далеком расстоянии.

При малых скоростях гравитация описывается механикой Ньютона. А при скоростях сопоставимых со скоростью света гравитационные явления описываются СТО

А. Эйнштейна.

В рамках механики Ньютона гравитация описывается законом всемирного тяготения, который гласит, что два точечных (или сферических) тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел, обратно пропорциональной квадрату расстояния между ними и действующей вдоль прямой соединяющей эти тела.

В приближении больших скоростей гравитация объясняется СТО, которая имеет два постулата:

    Принцип относительности Эйнштейна, говорящий о том, что природные явления одинаково протекают во всех инерциальных системах отсчета.

    Принцип постоянства скорости света, говорящий о том, что скорость света в вакууме постоянна (противоречит закону сложения скоростей).

Для описания гравитации разработано особое расширение теории относительности, в котором допускается кривизна пространства-времени. Тем не менее, динамика даже в рамках СТО может включать гравитационное взаимодействие, пока потенциал гравитационного поля намного меньше. Следует также заметить, что СТО перестаёт работать в масштабах всей Вселенной, требуя замены на ОТО.

Гравитационные явления.

Самым ярким гравитационным явлением считается притяжение. Также существует иное явление, связанное с гравитацией — невесомость.

Благодаря гравитационным силам мы ходим по земле, и наша планета существует, как и вся Вселенная. Но что случится если мы покинем планету? Мы будем испытывать одно из ярких гравитационных явлений — невесомость. Невесомость — такое состояние тела, при котором на него не действуют никакие силы кроме гравитационных, либо эти силы скомпенсированы.

Астронавты, пребывающие на МКС, находятся в состоянии невесомости, что негативно сказывается на их здоровье. При переходе из условий земной гравитации к условиям невесомости (в первую очередь, при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации. При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер. Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате ухудшаются все физические характеристики организма. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его. Также есть основания полагать, что ограничение подвижности нарушает фосфорный обмен в костях, что приводит к снижению их прочности.

Для того чтобы избавиться от негативных эффектов невесомости необходимо создать искусственное тяготение в космосе.

Искусственная гравитация и космические поселения. Ранние исследования XX в.

Циолковский предложил теорию эфирных поселений, которые представляли собой тор, который медленно вращается вокруг своей оси. Но в то время такие идеи были утопией и все его проекты остались на эскизах.

Первый проработанный проект был предложен австрийским ученым Германом Нордрунгом в 1928 году. Это также была станция в форме тора, включающая в себя жилые модули, электрогенератор и астрономический обсерваторный модуль.

Следующий проект был предложен Вернером фон Брауном, ведущим специалистом американской космической программы, он также представлял собой торообразную станцию, где люди бы жили и работали в помещениях, соединённых в один большой коридор. Проект Вернера был одним из приоритетных направлений НАСА до появления проекта Skylab в 60-х.

Skylab — первая и единственная национальная орбитальная станция США, предназначалась для технологических, астрофизических, медико-биологических исследований, а также для наблюдения Земли. Запущена 14 мая 1973 года, приняла три экспедиции на кораблях «Аполлон» с мая 1973 по февраль 1974 года, сошла с орбиты и разрушилась 11 июля 1979 года.

Далее в 1965 году Американским космическим обществом было выдвинуто предположение, что идеальной формой для космических поселений будет тор, так как все модули расположены вместе, то сила тяжести будет иметь максимальную величину. Проблема искусственной гравитации представлялась во многом решеной.

Следующим проект выдвинул Джерард О’Нилл, он предполагал создание колоний, для которых предлагается использовать два гигантских размеров цилиндра, заключённых в раму и вращающихся в разные стороны. Эти цилиндры вращаются вокруг собственной оси со скоростью около 0,53 оборота в минуту, за счёт чего в колонии создаётся привычная для человека сила тяжести.

В 1975 г. Паркер выдвинул проект создания колонии диаметром 100 м и длиной в 1 км, удалённой на расстояние около 400 000 км от Земли и Луны и рассчитанного на 10 000 человек. Вращение вокруг продольной оси со скоростью 1 оборота за 21 секунду создаст в нём близкую к земной гравитацию.

В 1977 г. научным сотрудником Исследовательского центра Эймса (НАСА) Ричардом Джонсоном и профессором Чарльзом Холброу из Университета Колгейта вышла работа «Космические поселения», в которой рассматривались перспективные исследования поселений в форме тора.

В 1994 году под руководством д-ра Родни Гэлловэя при участии научных сотрудников и лаборантов Лаборатории Филлипса и Лаборатории Сандия, а также других исследовательских центров ВВС США и Космического исследовательского центра Аризонского университета, было составлено объёмное руководство для проектирования космических поселений в форме тора.

Современные исследования.

Одним из современных проектов в области космических поселений является Стэндфордский тор, который является прямым потомком идей Вернера фон Брауна.

Стэнфордский тор был предложен НАСА в течение лета 1975 года студентами Стэнфордского университета с целью осмыслить проект будущих космических колоний. Позже Джерард О’Нил представил свой «Остров Один» или «Сферу Бернала», как альтернативу тору. «Стэнфордский тор», только в более детальной версии, представляющей собой концепцию кольцевидной вращающейся космической станции, был представлен Вернером фон Брауном, а также австрийским инженером словенского происхождения Германом Поточником.

Он представляет собой тор диаметром около 1,8 километра (для проживания 10 тысяч человек, как описывалось в работе 1975 года) и вращается вокруг своей оси (оборот в минуту), создавая на кольце искусственную гравитацию в 0,9 — 1 g за счёт центробежной силы.

Солнечный свет поступает внутрь через систему зеркал. Кольцо соединяется со ступицей через «спицы» -коридоры для движения людей и грузов до оси и обратно. Ступица — ось вращения станции — лучше всего подходит для стыковочного узла приёма космических кораблей, так как искусственная гравитация тут ничтожна: здесь находится неподвижный модуль, пристыкованный к оси станции.

Внутреннее пространство тора является жилым, оно достаточно большое для создания искусственной экосистемы, природного окружения и внутри подобно длинной узкой ледниковой долине, чьи концы, в конечном счете, изгибаются вверх, чтобы сформировать круг. Население живёт здесь в условиях, подобных густонаселенному пригороду, причем, внутри кольца имеются отделения для занятия сельским хозяйством, и жилая часть. (Приложение 1)

Космические поселения и искусственная гравитация в культуре.
Elysium

Миры-кольца, какими они представлены, например, в фантастическом боевике «Элизиум» или видеоигре «Halo», являются, пожалуй, одними из самых интересных идей для космических станций будущего. В «Элизиуме» станция находится близко к Земле и, если игнорировать ее размеры, обладает определенной долей реалистичности. Однако самая большая проблема здесь заключается в ее «открытости», что уже только по виду — чистая фантастика.

«Возможно, самым спорным вопросом по поводу станции «Элизиум» является ее открытость для космической среды».

«В фильме показано, как космический корабль просто садится на лужайку после того, как прилетает из открытого космоса. Здесь нет никаких стыковочных шлюзов и тому подобного. А ведь такая станция должна быть полностью изолирована от внешней среды. В противном случае атмосфера здесь долго не задержится. Возможно, открытые участки станции можно будет защитить каким-то невидимым полем, которое позволит солнечному свету проникать внутрь и поддерживать жизнь в высаженных здесь растениях и деревьях. Но пока это всего лишь фантастика. Таких технологий нет».

Самая идея станции в форме колец замечательная, но пока нереализуемая.

Star Wars

Практически каждый любитель научно-фантастических фильмов знает, что такое «Звезда смерти». Это такая большая серая и круглая космическая станция из киноэпопеи «Звездные войны», внешне очень напоминающая Луну. Это межгалактический уничтожитель планет, который по сути сам является искусственной планетой, состоящей из стали и населенной штурмовиками.

Можем ли мы в реальности построить такую искусственную планету и бороздить на ней просторы галактики? В теории — да. Только на это потребуется невероятное количество человеческих и финансовых ресурсов.

Вопрос строительства «Звезды смерти» поднимался даже американским Белым домом, после того как общество отправило соответствующую петицию для рассмотрения. Официальный ответ властей гласил, что только на сталь для строительства потребуется 852 000 000 000 000 000 долларов.

Но даже если вопрос финансов не был бы приоритетным, то у человечества нет технологий чтобы воссоздать «Звезду смерти», так как необходимо огромное количество энергии для ее движения.

(Приложение 2)

Проблемы в реализации проекта космических поселений.

Космические поселения являются перспективным направление в космической отросли будущего, но как всегда есть трудности, которые необходимо преодолеть для выполнения этой задачи.

    Начальные капитальные затраты;

    Внутренние системы жизнеобеспечения;

    Создание искусственной силы тяжести;

    Защиту от враждебных внешних условий:

    1. от радиации;

      обеспечение тепла;

      от инородных объектов;

Решение проблем искусственной гравитации и космических поселений.

    Начальные капитальные затраты — данную проблему можно решить сообща, если люди отложат свои личные амбиции и будут работать во благо великой цели. Ведь только от нас зависит будущее человечества.

    Внутренние системы жизнеобеспечения — уже сейчас на МКС присутствуют системы для повторного использования воды, но этого мало, при условии достаточности места на орбитальной станции можно найти место для оранжереи в которой будут произрастать растения, выделяющие максимум кислорода, также имеет место быть создание гидропонических лабораторий для выращивание ГМО, которые смогут снабжать продовольствием все население станции.

    Создание искусственной силы тяжести не такая уж сложная задача, как доставка огромного количество топлива необходимого для вращения станции.

      1. Есть несколько путей решения проблемы.

          1. Если нужно сравнить эффективность различных типов двигателей, инженеры обычно говорят об удельном импульсе. Удельный импульс определяется как изменение импульса на единицу массы израсходованного топлива. Таким образом, чем эффективнее двигатель, тем меньше топлива требуется для вывода ракеты в космос. Импульс, в свою очередь, есть результат действия силы в течение определенного времени. Химические ракеты, хотя и обладают очень большой тягой, работают всего несколько минут, а потому характеризуются очень низким удельным импульсом. Ионные двигатели, способные работать годами, могут иметь высокий удельный импульс при очень низкой тяге.

Использовать стандартный подход и применить к решению проблемы реактивные двигатели. Расчеты показывают, что при использовании любого известного реактивного двигателя потребуются огромные количества топлива, чтобы содержать станцию хотя бы год.

    Удельный импульс I (ЖРД) = 4,6

    Удельный импульс I (РДТТ) = 2,65

Таков расход топлива за 1 год, следовательно, использовать реактивные двигатели неразумно.

          1. Моя идея заключается в следующем.

Рассмотрим элементарный случай.

Пусть у нас есть карусель, которая неподвижна. Тогда, если мы закрепим n число однополярных электромагнитов по краю карусели так, чтобы сила их взаимодействия была максимальной, получим следующее: если мы включим электромагнит №1 так что он будет действовать на электромагнит №2 с силой в x раз больше чем, второй действует на первый, то согласно III закону Ньютона сила действия электромагнита №1 на №2 со стороны №2 будет компенсирована силой реакции опоры карусели, что выведет карусель из состояния покоя. Теперь выключим №1, поднимем силу №2 до №1 и включим №3 с силой равной №2 на предыдущим этапе и если продолжать данную процедуру, то добьемся вращения карусели. Применив данный способ к космической станции мы получим решение проблемы искусственной гравитации.

(Приложение 3).

    Защита от враждебных условий среды

    1. Защита от радиации патент № 2406661

патентообладатель Ребеко Алексей Геннадьевич

Изобретение относится к методам и средствам защиты экипажа и оборудования от ионизирующего излучения (заряженных частиц высокой энергии) при космических полетах. Согласно изобретению вокруг космического аппарата создают защитное статическое электрическое или магнитное поле, которое локализуют в пространстве между двумя вложенными друг в друга замкнутыми несоприкасающимися поверхностями. Защищаемое пространство космического аппарата ограничено внутренней поверхностью, а внешняя поверхность изолирует аппарат и защищаемое пространство от межпланетной плазмы. Форма поверхностей может быть произвольной. При использовании электрического защитного поля на указанных поверхностях создают заряды одной величины и противоположного знака. В таком конденсаторе электрическое поле сосредоточено в пространстве между поверхностями-обкладками. В случае магнитного поля по поверхностям пропускают токи противоположного направления, а соотношение силы токов подбирают так, чтобы минимизировать значение остаточного поля снаружи. Желательная форма поверхностей в этом случае — тороидальная, для обеспечения сплошной защиты. Под действием силы Лоренца заряженные частицы будут двигаться по отклоняющим криволинейным траекториям или замкнутым орбитам между поверхностями. Возможно одновременное применение электрического и магнитного поля между поверхностями. При этом в пространство между поверхностями может быть помещен подходящий материал для поглощения заряженных частиц: например, жидкий водород, вода или полиэтилен. Технический результат изобретения направлен на создание надежной, сплошной (геометрически непрерывной) защиты от космической радиации, на упрощение конструкции средств защиты и снижение энергозатрат на поддержание защитного поля.

    1. Обеспечение тепла патент №2148540

патентообладательОткрытое акционерное общество «Ракетно-космическая корпорация «Энергия» им. С.П. Королева»

Система терморегулирования космического аппарата и орбитальной станции, содержащая замкнутые контуры охлаждения и обогрева, связанные через, по крайней мере, один промежуточный жидкостно-жидкостный теплообменник, системы управления и измерения, клапанно-распределительную и дренажно-заправочную арматуру, при этом контур обогрева содержит побудитель циркуляции, газожидкостные и змеевиковые теплообменники и термоплаты, а в контуре охлаждения последовательно установлены, по крайней мере, один побудитель циркуляции, регулятор расхода жидкости, один выход которого подключен через первый обратный клапан ко входу смесителя потоков теплоносителя, а другой через второй обратный клапан — ко входу радиационного теплообменника, выход которого подключен ко второму входу смесителя потоков, выход смесителя потоков связан соединительным трубопроводом с теплоприёмной полостью промежуточного жидкостно-жидкостного теплообменника, выход из которой подключен к побудителю циркуляции, на соединительном трубопроводе установлены датчики температуры, электрически связанные через систему управления с регулятором расхода жидкости, отличающаяся тем, что в контур охлаждения дополнительно введены два электронасосных агрегата, причем вход первого электронасосного агрегата через фильтр подключен к выходу теплоносителя из теплоприемной полости промежуточного жидкостно-жидкостного теплообменника, а его выход подключен ко второму обратному клапану и параллельно, через фильтр ко входу второго электронасосного агрегата, выход которого подключен к первому обратному клапану, при этом каждый электронасосный агрегат снабжен датчиком перепада давления, а на трубопроводе, соединяющем выход смесителя потоков с теплоприемной полостью жидкостно-жидкостного теплообменника, установлен дополнительный датчик температуры, электрически связанный через систему управления с первым электронасосным агрегатом.

    1. Защита от инородных объектов

Существует множество способов защиты от инородных тел.

    Использовать нестандартные двигатели, такие как электромагнитный ускоритель с изменяемым удельным импульсом;

    Обернуть астероид отражающим пластиковымсолнечным парусом
    , используя покрытую алюминием пленку типа PET;

    «Покрасить» или посыпать объект диоксидом титана (белый цвет) или сажей (черный), с тем, чтобы вызвать эффект Ярковского
    и изменить его траекторию;

    Ученый-планетолог Юджин Шумейкер в 1996 году предложил выпускать облако пара на пути объекта
    для его осторожного замедления. Ник Забо в 1990 году нарисовал похожий замысел, «аэродинамическое торможение кометы»
    : комета или ледовая конструкция нацеливается на астероид, после чего ядерные взрывы испаряют лед и формируется временная атмосфера на пути астероида;

    Прикрепить к астероиду тяжелый балласт, чтобы с помощью смещения центра тяжести изменить его траекторию;

    Использовать лазерную абляцию
    ;

    Использовать ударно-волновой излучатель
    ;

    Ещё один «бесконтактный» метод был недавно предложен учеными Ц. Бомбардели и Дж. Пелез из Технического университета Мадрида. В нём предлагается использовать ионную пушку
    с низкой дивергенцией, направленную на астероид с находящегося рядом корабля. Кинетическая энергия, передающаяся через доходящие до поверхности астероида ионы, как и в случае с гравитационным буксиром создаст слабую, но постоянную силу, способную отклонить астероид, и при этом будет использоваться более легкий корабль.

    Подрыв ядерного устройства
    над, на или под поверхностью астероида является потенциальным вариантом отражения угрозы. Оптимальная высота взрыва зависит от состава и размера объекта. В случае угрозы со стороны груды обломков, чтобы избежать их рассеивания, предлагается произвести радиационную имплозию, то есть подрыв над поверхностью. При взрыве высвободившаяся энергия в виде нейтронов и мягких рентгеновских излучений (которые не проникают сквозь вещество) превращается в тепло при достижении поверхности объекта. Тепло превращает вещество объекта в выброс, и он сойдет с траектории, следуя третьему закону Ньютона, выброс направится в одну сторону, а объект — в противоположную.

    Электромагнитная катапульта
    — это автоматическая система, располагающаяся на астероиде, выпускающая вещество, из которого он состоит, в космос. Тем самым он медленно сдвигается и теряет массу. Электромагнитная катапульта должна работать в качестве системы с низким удельным импульсом: использовать много топлива, но мало энергии.

Смысл заключается в том, что если использовать вещество астероида в качестве топлива, то количество топлива не так важно, как количество энергии, которая, вероятнее всего, будет ограничена.

Ещё один возможный способ — расположить электромагнитную катапульту на Луне, нацелив её на околоземный объект, с тем, чтобы воспользоваться орбитальной скоростью естественного спутника и его неограниченным запасом «каменных пуль».

Вывод.

Проанализировав представленную информацию становится понятно, что искусственная гравитация — это вполне реальное явление, которое будет иметь широкое применение в космической отросли, как только мы преодолеем все трудности, связанные с этим проектом.

Космические поселения я вижу в том виде, который предложил фон Браун: торообразные миры с оптимальным использованием пространства и с применением передовых технологий для обеспечения продолжительной жизнедеятельности, а именно:

    Использование передовых технологий для обеспечения нужд станции:

    • Гидропоника

      • Растения не нужно поливать много. Воды израсходуется намного меньше, чем при выращивании на грунте в огороде. Несмотря на это, при правильном подборе минеральных веществ и компонентов растения не будут пересыхать или гнить. Это происходит за счет получения достаточного количества кислорода.

        Большим плюсом является то, что такой метод позволяет оградить растения от множеств болезней и вредителей. Сами растения не будут впитывать в себя вредные вещества из грунта.

        Следовательно, будет максимальная урожайность, что полностью покроет нужды обитателей станции.

    • Регенерация воды

      • Конденсация влаги из воздуха.

        Очистка использованной воды.

        Переработка урины и твердых отходов.

    За энергообеспечение будет отвечать кластер ядерных реакторов, которые будут экранированы согласно патенту № 2406661
    адаптированному на вытеснение радиоактивных частиц за пределы станции.

Задача по созданию космических поселений трудна, но выполнима. Я надеюсь, что в ближайшем будущем, ввиду быстрого развития науки и техники, все необходимы предпосылки для создания и развития космических поселений на основе искусственной гравитации будут выполнены. Мой посильный вклад в это нужное дело будет оценен. Будущее человечества лежит в освоении космоса и перехода на новый, более перспективный, экологически чистый виток спирали развития человечества.

Приложения

Приложение 1. Стэнфордский тор

Приложение 2. Звезда смерти, Эллизиум.

Приложение 3. Схема вращательного движения.

Равнодействующая сил в первом приближении (только взаимодействие магнитов). В итоге станция совершает вращательное движение. Что нам и требуется.

Список литературы

АЛЯКРИНСКИЙ. Человек живёт в космосе. Невесомость: плюс или минус?

Баррер, М. Ракетные двигатели.

Добровольский, М. Жидкостные ракетные двигатели. Основы проектирования.

Дорофеев, А. Основы теории тепловых ракетных двигателей.

Матвеев. Механика и теория относительности: Учебник для студентов вузов.

Мякишев. Молекулярная физика и термодинамика.

Мякишев. Физика. Механика.

Мякишев. Физика. Электродинамика.

Рассел, Д. Гидропоника.

Санько. Астрономический словарь.

Сивухин. Общий курс физики.

Фейнман. Фейнмановские лекции по гравитации.

Циолковский. Труды по ракетной технике.

Шилейко. В океане энергии.

Голубев И.Р. и Новиков Ю.В. Окружающая среда и ее охрана

Захлебный А.Н. Книга для чтения по охране природы

Зверев И. Охрана природы и экологическое воспитание школьников.

Иванов А.Ф. Физический эксперимент с экологическим содержанием.

Киселев С.В. Демонстрация парникового эффекта.

Интернет-ресурсы:

https://ru.wikipedia.org/wiki/Заглавная_страница

http://www.roscosmos.ru

http://allpatents.ru

Гравитация — одна из фундаментальных сил Вселенной. Он определяет мир, как мы его знаем, связывая космос вместе. Без гравитации все будет постоянно отходить от всего остального. Это такой основной строительный блок физики, что мы часто воспринимаем это как должное. Страшно думать о том, что произойдет, если кто-то просто повернет метафорическую гравитацию Земли. Мы были бы выброшены с поверхности Земли в космос из-за инерции вращательного движения Земли. Если бы мы отключили гравитацию Солнца, ничего не получилось бы, если бы солнечная система была вместе. Мы стали свидетелями хаоса в невероятных масштабах, когда планеты сталкивались друг с другом, и метеоры наваливались на нас, как буря разрушений.

Однако, так же важно, как и гравитация, есть некоторые сценарии, в которых определенная степень контроля над ним была бы чрезвычайно полезной. Представьте себе, что вы без самолетов летаете или перевозите тяжелые предметы почти без усилий. В настоящее время астронавты испытывают множество физиологических изменений во время невесомых космических путешествий, и большинство этих изменений отрицательно сказываются на них. Они страдают от мышечной дистрофии, потери костной массы, дезориентации и других нулевых эффектов. Поэтому межзвездное путешествие было бы намного легче, если бы гравитация могла быть синтезирована искусственно. Что происходит, должно спуститься, не так ли? Это факт? Чем больше вы, тем сложнее вы падаете? Правда или вымысел?

Теперь давайте посмотрим, насколько мы близки к фактическому использованию силы тяжести.

Определение силы тяжести

Как имитировать гравитацию?

Вращение приводило бы в движение любой объект внутри космического корабля к основанию и от центра вращения. Резистивная сила от основания корпуса будет действовать как нормальная сила, действующая на нас земной поверхностью при стоянии. Центробежная сила, подталкивающая нас к основанию корпуса, будет действовать как гравитационная сила, которую Земля оказывает на нас.

Однако есть одно предостережение. В этой системе искусственные уровни сильно различаются в зависимости от расстояния от центра вращения. Следовательно, искусственная гравитация, испытываемая на ногах, была бы больше, чем у головы. Это может сделать движение и изменение положения тела неудобным. Однако этот эффект можно было бы уменьшить, если радиус судна был намного больше высоты среднего человека.

Линейное ускорение: путешествие в космическом роликовом каботаже

Увеличение скорости, т.е. ускорение, происходит из-за силы тяжести. Это основная причина, почему, когда мы свободно падаем, наша скорость увеличивается. Это ускорение можно моделировать в виде ускоряющего космического корабля. Космический аппарат с постоянным ускорением по прямой привел бы к появлению гравитационного притяжения в противоположном направлении. Это приведет к тому, что объект будет ускорен, чтобы испытать силу, тянущую его назад. Если вам интересно, насколько комфортно это будет в постоянном ускорении, не беспокойтесь, потому что это то, что вы испытываете все время из-за гравитационной тяги Земли, роликовых подставок и спортивных автомобилей. Кроме того, тело не будет знать, что оно движется, если нет ускорения. Думаю об этом

,

Земля вращается около 1700 километров в час на экваторе, но мы этого не чувствуем, потому что эта скорость постоянна и ускорения нет.

Линейное ускорение в космических полетах потребует огромного количества ракетного топлива, тогда как стратегия вращения не требует постоянного применения силы. Тем не менее, требуется постоянное линейное ускорение, поскольку в дополнение к искусственной гравитации оно теоретически может обеспечить относительно короткое время полета вокруг солнечной системы.

Магнетизм
:

Существует метод, с помощью которого эффекты гравитации могут быть созданы с использованием диамагнетизма, но для этого требуются чрезвычайно сильные магнитные поля. С такими сильными магнитными полями сомнительно, что он когда-нибудь будет безопасен для использования людьми. Экспериментально, лягушки и даже крысы были левитированы против гравитации Земли, но это очень малый масштаб. Машины, использующие диамагнитизм для имитации силы тяжести, могут быть использованы для безопасного обеспечения условий низкой тяжести, а прочность подобна той, что может иметь место при лунной или марсианской гравитации.

Живая лягушка, левитирующая внутри магнитного поля

Пара-гравитация:

Предполагалось, что искусственно смоделированная гравитация в космическом аппарате, который не является ни вращающимся, ни ускоряющимся, также известный как «парагравитация», не существует, но в настоящее время нет подтвержденной техники, которая может имитировать гравитацию, отличную от механического или магнитного ускорения. Тем не менее, Мерфи из Interstellar разобрался в этом, так как это было тяжело?

Помимо вышеупомянутых методов существуют более простые методы, позволяющие свести на нет эффекты гравитации и получить почти нулевые условия. Эти огромные человеческие центрифуги с длинной вращающейся рукой, которые мы видим в мультфильмах и фильмах, на самом деле очень полезны при подготовке астронавтов к высоким условиям во время запуска.

Нейтральная плавучесть — еще одна техника, в которой люди обучаются решать проблемы низкого уровня, выполняя простые задачи в моделируемой среде плавательного бассейна.

Нейтральная плавучесть не является невесомостью, поскольку мы все еще можем ощущать направление тяжести под водой, но это очень близко приближается к условиям космического полета.

Экология познания. Длительное пребывание в космосе имеет серьезные последствия. Медицинские исследования о влиянии микрогравитации на астронавтов

Длительное пребывание в космосе имеет серьезные последствия. Медицинские исследования о влиянии микрогравитации на астронавтов после многомесячного пребывания на низкой околоземной орбите (НОО) пришли к горьким выводам: люди не могут жить без гравитации полноценно. Таким образом, искусственная гравитация все больше обсуждается как важнейший компонент продолжительной миссии в космосе как рядом с Землей, так и дальше от нее.

Искусственная гравитация будет особенно важна для многолетних коммерческих миссий, где телеробототехника будет управляться экипажем, размещенным в непосредственной близости от астероида, на котором добываются полезные ископаемые и проводятся другие работы. Такая гравитация также будет полезна для многолетних исследований на телах с низкой гравитацией вроде Луны, Марса или даже спутников внешних планет.

Уильям Кемп из Вашингтона считает, что вместе со своим деловым партнером Тедом Мазейкой нашел жизнеспособное решение этих вопросов. Это 30-метровая в диаметре цилиндрическая космическая станция, способная создавать переменную искусственную гравитацию с вращением цилиндра вокруг ее продольной оси.

«Если мы хотим оставаться в космосе дольше года, нам нужно сделать систему искусственной гравитации или мы будем жертвовать людьми в этом процессе», — говорил Кемп, основатель и CEO United Space Structures.

На протяжении более трех десятилетий Кемп работал над совершенствованием своих идей. В настоящее время компания имеет в проекте запатентованный процесс и ищет финансирование и других партнеров, которые могут вложиться по-крупному.

Идея заключается в том, чтобы достичь искусственной гравитации за счет центробежной силы, которая потребует вращения, создающего понижательное давление. Небольшая 10-метровая структура, в теории, может вращаться достаточно быстро, чтобы люди ощущали притяжение, но Кемп говорит, что астронавты с такой структурой будут иметь ужасные проблемы внутреннего уха.

«Если скорость вращения будет слишком большой, ваше чувство равновесия выйдет из строя и скоро вы будете ощущать жуткую боль в руках и коленях», — говорит Кемп.

Тем не менее небольшая цилиндрическая станция диаметром в 30 метров, предлагаемая Кемпом, сможет поддерживать гравитацию в 0,6 земной; это минимум, который позволит людям безопасно жить на станции в течение по меньшей мере двух лет. Астронавты будут жить как внутри цилиндра, так и во внешнем полушарии структуры.

Кемп говорит, что 30-метровой цилиндрической станции потребуется скорость вращения в 5,98 оборота в минуту и минимальный полезный размер для создания искусственной гравитации. Быстрая скорость вращения была бы неудобна астронавтам.

«Направление вращения цилиндра не имеет значения, — говорит Кемп. — Скорость зависит от радиуса вращающегося объекта и гравитации, которая вам нужна; чем больше радиус, тем ниже скорость вращения».

Первым шагом в испытаниях United Space Structures станет тест 30-метрового прототипа на НОО, говорит Кемп. Хотя такая 30-метровая станция может уместить как минимум 30 человек, она будет хорошо работать и в глубоком космосе, и в околоземных условиях добычи ресурсов на астероидах.

Какие партнеры займутся строительством этих станций?

«Мы ведем переговоры с компаниями вроде
Deep Space Industries, которые хотят добывать ресурсы на астероидах, и с другими компаниями, которые хотят добывать ресурсы на Луне, — говорит Кемп. — Мы хотели бы использовать платформы запуска SpaceX, но это существенно увеличит затраты, поэтому первоначально мы будем использовать композитные материалы для строительства, а не металлы».

Несмотря на прогнозируемые скачки в области космической медицины в течение ближайших двух десятилетий, Кемп абсолютно убежден, что искусственная гравитация будет нужна всегда. Со временем, в условиях микрогравитации уменьшается мышечная и костная масса, сжимается зрительный нерв, отходит сетчатка, понижается иммунитет, возможно, даже нарушается критическое мышление.

Конечно, это не означает, что искусственная гравитация будет панацеей.

В условиях с искусственной гравитации астронавты все равно будут знать, что они на вращающейся станции, говорит Кемп. Прогулки на такой станции будут напоминать спуск по склону, потому что пол будет уходить из-под ног. Прогулка в противоположном направлении вращения будет напоминать подъем в гору, поскольку пол будет подниматься. А если ходить перпендикулярно вращению в любом направлении, будет ощущение, что ты заваливаешься в сторону. опубликовано

Проблемы с вестибулярным аппаратом — не единственное последствие длительного пребывания в условиях микрогравитации. Астронавты, которые проводят на МКС больше месяца, часто страдают от нарушения сна, замедления работы сердечно-сосудистой системы и метеоризма.

Недавно НАСА завершило эксперимент, в ходе которого ученые геном братьев-близнецов: один из них провел на МКС почти год, другой совершал лишь кратковременные полеты и большую часть времени находился на Земле. Долговременное пребывание в космосе привело к тому, что 7% ДНК первого астронавта изменились навсегда — речь идет о генах, связанных с иммунной системой, формированием костной ткани, кислородным голоданием и избыточным количеством углекислого газа в организме.

НАСА сравнила астронавтов-близнецов, чтобы увидеть, как тело человека меняется в космосе

В условиях микрогравитации человек будет вынужден бездействовать: речь идет не о пребывании астронавтов на МКС, а о полетах в глубокий космос. Чтобы выяснить, как такой режим повлияет на здоровье астронавтов, Европейское космическое агентство (ESA) на 21 день 14 добровольцев в наклоненную в сторону головы кровать. Эксперимент, который позволит на практике проверить новейшие методы борьбы с невесомостью — такие как улучшенные режимы физических упражнений и питания — намерены совместно провести НАСА и Роскосмос.

Но в случае, если люди решат отправить корабли к Марсу или Венере, понадобятся более экстремальные решения — искусственная гравитация.

Как гравитация может существовать в космосе

Прежде всего стоит понять, что гравитация существует везде — в некоторых местах она слабее, в других сильнее. И космическое пространство не является исключением.

МКС и спутники находятся под постоянным влиянием гравитации: если объект находится на орбите, он, говоря упрощенно, падает вокруг Земли. Подобный эффект возникает, если бросить мяч вперед — прежде чем упасть на землю, он немного пролетит в направлении броска. Если бросить мяч сильнее, он пролетит дальше. Если вы супермен, а мяч — ракетный двигатель, он не упадет на землю, а облетит вокруг нее и продолжит вращаться, постепенно выходя на орбиту.

Микрогравитация предполагает, что люди внутри корабля не находятся в воздухе — они падают с корабля, а тот, в свою очередь, падает вокруг Земли.

Благодаря тому, что гравитация является силой притяжения между двумя массами, мы остаемся на поверхности Земли, когда идем по ней, а не уплываем в небо. В этом случае вся масса Земли притягивает массу наших тел к своему центру.

Когда корабли выходят на орбиту, они свободно плавают в космическом пространстве. Они по-прежнему подвержены гравитационному притяжению Земли, но корабль и находящиеся в нем предметы или пассажиры подвержены гравитации одинаково. Существующие аппараты недостаточно массивны, чтобы создать заметное притяжение, поэтому люди и предметы в нем не стоят на полу, а «плавают» в воздухе.

Как создать искусственную гравитацию

Искусственной гравитации как таковой не существует, чтобы ее создать, человеку необходимо узнать всё об естественной гравитации. В научной фантастике существует концепция имитации гравитации: она позволяет экипажу космических кораблей ходить по палубе, а предметам стоять на ней.

В теории существует два способа создать имитацию гравитации, и ни один из них пока не был использован в реальной жизни. Первый — это использование центростремительной силы для моделирования силы тяжести. Корабль или станция при этом должны представлять собой колесоподобную конструкцию, состоящую из нескольких постоянно вращающихся сегментов.

Согласно этой концепции, центростремительное ускорение аппарата, толкающее модули к центру, создаст подобие гравитации или условия, аналогичные земным. Эта концепция была продемонстрирована в «Космической одиссее 2001 года» Стенли Кубрика и в фильме «Интерстеллар» Кристофера Нолана.

Концепция аппарата, создающего центростремительное ускорение для имитации гравитации

Автором этого проекта считается немецкий ученый-ракетчик и инженер Вернер фон Браун, который руководил разработкой ракеты «Сатурн-5», доставившей на Луну экипаж «Аполлон-11» и еще несколько пилотируемых аппаратов.

Будучи директором Центра космических полетов имени Маршалла НАСА, фон Браун популяризировал идею российского ученого Константина Циолковского о создании тороидальной космической станции на основе конструкции со ступицами, напоминающей велосипедное колесо. Если колесо вращается в пространстве, то инерция и центробежная сила могут создать своего рода искусственную гравитацию, которая тянет предметы к внешней окружности колеса. Это позволит людям и роботам ходить по полу, как на Земле, а не плавать в воздухе, как на МКС.

Однако у этого метода есть существенные недостатки: чем меньше космический корабль, тем быстрее он должен вращаться — это приведет к возникновению так называемой силы Корнолиса, при которой на точки, расположенные дальше от центра, сила тяжести будет влиять сильнее, чем на более близкие к нему. Другими словами, сила тяжести будет действовать на голову астронавтов сильнее, чем на ноги, что вряд ли им понравится.

Чтобы избежать этого эффекта, размер корабля должен в несколько раз превышать размер футбольного поля — вывод такого аппарата на орбиту будет стоить крайне дорого, учитывая, что стоимость одного килограмма груза при коммерческих запусках варьируется от $1,5 тыс. до $3 тыс.

Другой метод создания имитации гравитации более практичен, но также крайне дорог — речь идет о методе ускорения. Если корабль на определенном отрезке пути сначала будет разгоняться, а затем развернется и начнет тормозить, то возникнет эффект искусственной гравитации.

Для реализации этого метода потребуются колоссальные запасы топлива — дело в том, что двигатели должны работать почти непрерывно за исключением короткого перерыва в середине пути — во время разворота корабля.

Реальные примеры

Несмотря на высокую стоимость запуска аппаратов с имитацией гравитации, компании по всему миру пытаются построить такие корабли и станции.

Реализовать концепцию Фон Брауна пытается компания Gateway foundation — исследовательский фонд, который планирует построить вращающуюся станцию на орбите Земли. Предполагается, что по окружности колеса будут располагаться капсулы, которые смогут покупать государственные и частные аэрокосмические компании для проведения исследований. Некоторые капсулы будут проданы в качестве вилл самым богатым жителям Земли, а другие будут использоваться как отели для космических туристов. представило концепцию вращающегося космического корабля с надувными модулями Nautilus-X, который должен был снизить влияние микрогравитации на ученых, находящихся на его борту.

Предполагалось, что проект будет стоить всего $3,7 млрд — очень мало для подобных аппаратов, — а на его строительство потребуется 64 месяца. Однако Nautilus-X так и не вышел за рамки первоначальных чертежей и предложений.

Вывод

Пока самый вероятный способ получить имитацию гравитации, которая защитит корабль от последствий ускорения и даст постоянное притяжение без необходимости постоянно использовать двигатели — это обнаружить частицу с отрицательной массой. Все частицы и античастицы, которые ученые когда-либо обнаружили, имеют положительную массу. Известно, что отричательная масса и гравитационная масса равны друг другу, однако пока исследователям не удавалось продемонстрировать это знание на практике.

Исследователи из эксперимента ALPHA в ЦЕРНе уже создали антиводород — стабильную форму нейтрального антивещества — и работает над его изоляцией от всех других частиц на очень низких скоростях. Если ученым удастся это сделать, вероятно, в ближайшее время искусственная гравитация станет реальнее, чем сейчас.

Б.В. Раушенбах, соратник Королева, рассказал о том, как у того возникла идея создания искусственной тяжести на космическом корабле: в конце зимы 1963 года главного конструктора, расчищавшего дорожку от снега у своего домика на Останкинской улице, можно сказать, осенило. Не дождавшись понедельника, он позвонил по телефону Раушенбаху, который жил неподалеку, и вскоре они вместе стали «расчищать дорогу» в космос для длительных полетов.
Идея, как чаще всего бывает, оказалась простой; она и должна быть простой, иначе на практике может ничего не получиться.

Для полноты картины. Март 1966, американцы на «Джемини-11»:

В 11:29 «Джемини-11» был отстыкован от «Аджены». Началось самое интересное: как поведут себя два объекта, связанные тросом? Сначала Конрад пытался ввести связку в гравитационную стабилизацию – чтобы ракета висела внизу, корабль вверху и трос был натянут.
Однако отойти на 30 м, не возбудив сильных колебаний, не удалось. В 11:55 перешли ко второй части эксперимента – «искусственная тяжесть». Конрад ввел связку во вращение; трос сначала натянулся по кривой линии, но через 20 мин выпрямился и вращение стало вполне правильным. Конрад довел его скорость до 38 °/мин, а после ужина до 55 °/мин, создав тяжесть на уровне 0,00078g. «На ощупь» это не чувствовалось, но вещи потихоньку осели на дно капсулы. В 14:42 после трех часов вращения штырь был отстрелен, и «Джемини» ушел от ракеты.

ИСКУССТВЕННАЯ ГРАВИТАЦИЯ И КОСМИЧЕСКИЕ ПОСЕЛЕНИЯ.

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Чуйко Н.А. 1


1МБОУ СОШ №2 им. Ю.К. Шхачемукова

Шевченко А.П. 1


1МБОУ СОШ №2 а. Хатукай

Автор работы награжден дипломом победителя III степени

Диплом школьникаСвидетельство руководителя


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF


Цели и задачи исследования


Целью моей научно исследовательской работы является рассмотрение такого фундаментального взаимодействия как гравитация, его явлений и проблема космических поселений с искусственным притяжением, рассмотрение особенностей использования различного вида двигателей для создания искусственной гравитации, развитие представлений о жизни в космосе в условия искусственной гравитации и решение проблем, возникающих при создании этого проекта, интеграция патентов передовых технологий к решению проблем искусственной гравитации.


Актуальность исследования.


Космические поселения представляют собой вид космических станций, на которых человек смог бы проживать в течение длительного периода времени или даже всю жизнь. Для создания подобных поселений нужно продумать все необходимые условия для оптимальной жизнедеятельности — систему жизнеобеспечения, искусственную силу тяжести, защиту от космических воздействий и т. д. И хотя реализовать все условия довольно сложно, ряд писателей-фантастов и инженеров уже создали несколько проектов, по которым, возможно, в будущем будут созданы удивительные космические поселения.



Значимость и новизна исследования.


Искусственная гравитация является перспективным направлением для исследований, ведь она обеспечит долговременное пребывание в космосе и возможность дальних космических перелетов. Постройка космических поселений может дать средства для дальнейших исследований; если запустить программу космического туризма, что будет являться весьма дорогим удовольствием, космические корпорации получат дополнительный поток финансирования, и исследования можно будет проводить по всем направлениям, не ограничиваясь возможностями.



Гравитация. Гравитационные явления.
Гравитация.


Гравитация – один из четырех типов фундаментальных взаимодействий, или иными словами — такая сила притяжения, направленная к центру массы любого объекта и к центру масс скопления объектов; чем больше масса, тем выше гравитация. При удалении от объекта сила притяжения к нему стремится к нулю, но в идеальных условиях совсем не исчезает никогда. То есть, если представить себе абсолютный вакуум без единой лишней частицы любого происхождения, то в этом пространстве любые объекты, обладающие хоть бесконечно малой массой, при отсутствии любых других внешних сил будут притягиваться друг к другу на любом бесконечно далеком расстоянии.



При малых скоростях гравитация описывается механикой Ньютона. А при скоростях сопоставимых со скоростью света гравитационные явления описываются СТО



А. Эйнштейна.



В рамках механики Ньютона гравитация описывается законом всемирного тяготения, который гласит, что два точечных (или сферических) тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел, обратно пропорциональной квадрату расстояния между ними и действующей вдоль прямой соединяющей эти тела.



В приближении больших скоростей гравитация объясняется СТО, которая имеет два постулата:



  1. Принцип относительности Эйнштейна, говорящий о том, что природные явления одинаково протекают во всех инерциальных системах отсчета.


  2. Принцип постоянства скорости света, говорящий о том, что скорость света в вакууме постоянна (противоречит закону сложения скоростей).


Для описания гравитации разработано особое расширение теории относительности, в котором допускается кривизна пространства-времени. Тем не менее, динамика даже в рамках СТО может включать гравитационное взаимодействие, пока потенциал гравитационного поля намного меньше. Следует также заметить, что СТО перестаёт работать в масштабах всей Вселенной, требуя замены на ОТО.



Далее мы будем рассматривать взаимодействия, описываемые в ОТО.



Гравитационные явления.


Самым ярким гравитационным явлением считается притяжение. Также существует иное явление, связанное с гравитацией – невесомость.



Благодаря гравитационным силам мы ходим по земле, и наша планета существует, как и вся Вселенная. Но что случится если мы покинем планету? Мы будем испытывать одно из ярких гравитационных явлений – невесомость. Невесомость – такое состояние тела, при котором на него не действуют никакие силы кроме гравитационных, либо эти силы скомпенсированы.



Астронавты, пребывающие на МКС, находятся в состоянии невесомости, что негативно сказывается на их здоровье. При переходе из условий земной гравитации к условиям невесомости (в первую очередь, при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации. При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер. Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате ухудшаются все физические характеристики организма. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его. Также есть основания полагать, что ограничение подвижности нарушает фосфорный обмен в костях, что приводит к снижению их прочности.



Для того чтобы избавиться от негативных эффектов невесомости необходимо создать искусственное тяготение в космосе.



Искусственная гравитация и космические поселения. Ранние исследования XX в.


Циолковский предложил теорию эфирных поселений, которые представляли собой тор, который медленно вращается вокруг своей оси. Но в то время такие идеи были утопией и все его проекты остались на эскизах.



Первый проработанный проект был предложен австрийским ученым Германом Нордрунгом в 1928 году. Это также была станция в форме тора, включающая в себя жилые модули, электрогенератор и астрономический обсерваторный модуль.



Следующий проект был предложен Вернером фон Брауном, ведущим специалистом американской космической программы, он также представлял собой торообразную станцию, где люди бы жили и работали в помещениях, соединённых в один большой коридор. Проект Вернера был одним из приоритетных направлений НАСА до появления проекта Skylab в 60-х.



Skylab – первая и единственная национальная орбитальная станция США, предназначалась для технологических, астрофизических, медико-биологических исследований, а также для наблюдения Земли. Запущена 14 мая 1973 года, приняла три экспедиции на кораблях «Аполлон» с мая 1973 по февраль 1974 года, сошла с орбиты и разрушилась 11 июля 1979 года.



Далее в 1965 году Американским космическим обществом было выдвинуто предположение, что идеальной формой для космических поселений будет тор, так как все модули расположены вместе, то сила тяжести будет иметь максимальную величину. Проблема искусственной гравитации представлялась во многом решеной.



Следующим проект выдвинул Джерард О’Нилл, он предполагал создание колоний, для которых предлагается использовать два гигантских размеров цилиндра, заключённых в раму и вращающихся в разные стороны. Эти цилиндры вращаются вокруг собственной оси со скоростью около 0,53 оборота в минуту, за счёт чего в колонии создаётся привычная для человека сила тяжести.



В 1975 г. Паркер выдвинул проект создания колонии диаметром 100 м и длиной в 1 км, удалённой на расстояние около 400 000 км от Земли и Луны и рассчитанного на 10 000 человек. Вращение вокруг продольной оси со скоростью 1 оборота за 21 секунду создаст в нём близкую к земной гравитацию.



В 1977 г. научным сотрудником Исследовательского центра Эймса (НАСА) Ричардом Джонсоном и профессором Чарльзом Холброу из Университета Колгейта вышла работа «Космические поселения», в которой рассматривались перспективные исследования поселений в форме тора.



В 1994 году под руководством д-ра Родни Гэлловэя при участии научных сотрудников и лаборантов Лаборатории Филлипса и Лаборатории Сандия, а также других исследовательских центров ВВС США и Космического исследовательского центра Аризонского университета, было составлено объёмное руководство для проектирования космических поселений в форме тора.



Современные исследования.


Одним из современных проектов в области космических поселений является Стэндфордский тор, который является прямым потомком идей Вернера фон Брауна.



Стэнфордский тор был предложен НАСА в течение лета 1975 года студентами Стэнфордского университета с целью осмыслить проект будущих космических колоний. Позже Джерард О’Нил представил свой «Остров Один» или «Сферу Бернала», как альтернативу тору. «Стэнфордский тор», только в более детальной версии, представляющей собой концепцию кольцевидной вращающейся космической станции, был представлен Вернером фон Брауном, а также австрийским инженером словенского происхождения Германом Поточником.



Он представляет собой тор диаметром около 1,8 километра (для проживания 10 тысяч человек, как описывалось в работе 1975 года) и вращается вокруг своей оси (оборот в минуту), создавая на кольце искусственную гравитацию в 0,9 — 1 g за счёт центробежной силы.



Солнечный свет поступает внутрь через систему зеркал. Кольцо соединяется со ступицей через «спицы» -коридоры для движения людей и грузов до оси и обратно. Ступица — ось вращения станции — лучше всего подходит для стыковочного узла приёма космических кораблей, так как искусственная гравитация тут ничтожна: здесь находится неподвижный модуль, пристыкованный к оси станции.



Внутреннее пространство тора является жилым, оно достаточно большое для создания искусственной экосистемы, природного окружения и внутри подобно длинной узкой ледниковой долине, чьи концы, в конечном счете, изгибаются вверх, чтобы сформировать круг. Население живёт здесь в условиях, подобных густонаселенному пригороду, причем, внутри кольца имеются отделения для занятия сельским хозяйством, и жилая часть. (Приложение 1)



Космические поселения и искусственная гравитация в культуре.
Elysium


Миры-кольца, какими они представлены, например, в фантастическом боевике «Элизиум» или видеоигре «Halo», являются, пожалуй, одними из самых интересных идей для космических станций будущего. В «Элизиуме» станция находится близко к Земле и, если игнорировать ее размеры, обладает определенной долей реалистичности. Однако самая большая проблема здесь заключается в ее «открытости», что уже только по виду — чистая фантастика.



«Возможно, самым спорным вопросом по поводу станции «Элизиум» является ее открытость для космической среды».



«В фильме показано, как космический корабль просто садится на лужайку после того, как прилетает из открытого космоса. Здесь нет никаких стыковочных шлюзов и тому подобного. А ведь такая станция должна быть полностью изолирована от внешней среды. В противном случае атмосфера здесь долго не задержится. Возможно, открытые участки станции можно будет защитить каким-то невидимым полем, которое позволит солнечному свету проникать внутрь и поддерживать жизнь в высаженных здесь растениях и деревьях. Но пока это всего лишь фантастика. Таких технологий нет».



Самая идея станции в форме колец замечательная, но пока нереализуемая.


Star Wars


Практически каждый любитель научно-фантастических фильмов знает, что такое «Звезда смерти». Это такая большая серая и круглая космическая станция из киноэпопеи «Звездные войны», внешне очень напоминающая Луну. Это межгалактический уничтожитель планет, который по сути сам является искусственной планетой, состоящей из стали и населенной штурмовиками.



Можем ли мы в реальности построить такую искусственную планету и бороздить на ней просторы галактики? В теории — да. Только на это потребуется невероятное количество человеческих и финансовых ресурсов.



Вопрос строительства «Звезды смерти» поднимался даже американским Белым домом, после того как общество отправило соответствующую петицию для рассмотрения. Официальный ответ властей гласил, что только на сталь для строительства потребуется 852 000 000 000 000 000 долларов.



Но даже если вопрос финансов не был бы приоритетным, то у человечества нет технологий чтобы воссоздать «Звезду смерти», так как необходимо огромное количество энергии для ее движения.



(Приложение 2)



Проблемы в реализации проекта космических поселений.


Космические поселения являются перспективным направление в космической отросли будущего, но как всегда есть трудности, которые необходимо преодолеть для выполнения этой задачи.



  1. Начальные капитальные затраты;


  2. Внутренние системы жизнеобеспечения;


  3. Создание искусственной силы тяжести;


  4. Защиту от враждебных внешних условий:



    1. от радиации;


    2. обеспечение тепла;


    3. от инородных объектов;



Решение проблем искусственной гравитации и космических поселений.


  1. Начальные капитальные затраты – данную проблему можно решить сообща, если люди отложат свои личные амбиции и будут работать во благо великой цели. Ведь только от нас зависит будущее человечества.


  2. Внутренние системы жизнеобеспечения – уже сейчас на МКС присутствуют системы для повторного использования воды, но этого мало, при условии достаточности места на орбитальной станции можно найти место для оранжереи в которой будут произрастать растения, выделяющие максимум кислорода, также имеет место быть создание гидропонических лабораторий для выращивание ГМО, которые смогут снабжать продовольствием все население станции.


  3. Создание искусственной силы тяжести не такая уж сложная задача, как доставка огромного количество топлива необходимого для вращения станции.


    1.  

      1. Есть несколько путей решения проблемы.


        1.  

          1. Если нужно сравнить эффективность различных типов двигателей, инженеры обычно говорят об удельном импульсе. Удельный импульс определяется как изменение импульса на единицу массы израсходованного топлива. Таким образом, чем эффективнее двигатель, тем меньше топлива требуется для вывода ракеты в космос. Импульс, в свою очередь, есть результат действия силы в течение определенного времени. Химические ракеты, хотя и обладают очень большой тягой, работают всего несколько минут, а потому характеризуются очень низким удельным импульсом. Ионные двигатели, способные работать годами, могут иметь высокий удельный импульс при очень низкой тяге.


Использовать стандартный подход и применить к решению проблемы реактивные двигатели. Расчеты показывают, что при использовании любого известного реактивного двигателя потребуются огромные количества топлива, чтобы содержать станцию хотя бы год.



Таков расход топлива за 1 год, следовательно, использовать реактивные двигатели неразумно.


  1.  
    1.  
      1.  
        1.  

          1. Моя идея заключается в следующем.


Рассмотрим элементарный случай.



Пусть у нас есть карусель, которая неподвижна. Тогда, если мы закрепим n число однополярных электромагнитов по краю карусели так, чтобы сила их взаимодействия была максимальной, получим следующее: если мы включим электромагнит №1 так что он будет действовать на электромагнит №2 с силой в x раз больше чем, второй действует на первый, то согласно III закону Ньютона сила действия электромагнита №1 на №2 со стороны №2 будет компенсирована силой реакции опоры карусели, что выведет карусель из состояния покоя. Теперь выключим №1, поднимем силу №2 до №1 и включим №3 с силой равной №2 на предыдущим этапе и если продолжать данную процедуру, то добьемся вращения карусели. Применив данный способ к космической станции мы получим решение проблемы искусственной гравитации.



(Приложение 3).



  1. Защита от враждебных условий среды

  1.  

    1. Защита от радиации патент № 2406661


патентообладатель Ребеко Алексей Геннадьевич



Изобретение относится к методам и средствам защиты экипажа и оборудования от ионизирующего излучения (заряженных частиц высокой энергии) при космических полетах. Согласно изобретению вокруг космического аппарата создают защитное статическое электрическое или магнитное поле, которое локализуют в пространстве между двумя вложенными друг в друга замкнутыми несоприкасающимися поверхностями. Защищаемое пространство космического аппарата ограничено внутренней поверхностью, а внешняя поверхность изолирует аппарат и защищаемое пространство от межпланетной плазмы. Форма поверхностей может быть произвольной. При использовании электрического защитного поля на указанных поверхностях создают заряды одной величины и противоположного знака. В таком конденсаторе электрическое поле сосредоточено в пространстве между поверхностями-обкладками. В случае магнитного поля по поверхностям пропускают токи противоположного направления, а соотношение силы токов подбирают так, чтобы минимизировать значение остаточного поля снаружи. Желательная форма поверхностей в этом случае — тороидальная, для обеспечения сплошной защиты. Под действием силы Лоренца заряженные частицы будут двигаться по отклоняющим криволинейным траекториям или замкнутым орбитам между поверхностями. Возможно одновременное применение электрического и магнитного поля между поверхностями. При этом в пространство между поверхностями может быть помещен подходящий материал для поглощения заряженных частиц: например, жидкий водород, вода или полиэтилен. Технический результат изобретения направлен на создание надежной, сплошной (геометрически непрерывной) защиты от космической радиации, на упрощение конструкции средств защиты и снижение энергозатрат на поддержание защитного поля.


  1.  

    1. Обеспечение тепла патент №2148540


патентообладательОткрытое акционерное общество «Ракетно-космическая корпорация «Энергия» им. С.П. Королева»



Система терморегулирования космического аппарата и орбитальной станции, содержащая замкнутые контуры охлаждения и обогрева, связанные через, по крайней мере, один промежуточный жидкостно-жидкостный теплообменник, системы управления и измерения, клапанно-распределительную и дренажно-заправочную арматуру, при этом контур обогрева содержит побудитель циркуляции, газожидкостные и змеевиковые теплообменники и термоплаты, а в контуре охлаждения последовательно установлены, по крайней мере, один побудитель циркуляции, регулятор расхода жидкости, один выход которого подключен через первый обратный клапан ко входу смесителя потоков теплоносителя, а другой через второй обратный клапан — ко входу радиационного теплообменника, выход которого подключен ко второму входу смесителя потоков, выход смесителя потоков связан соединительным трубопроводом с теплоприёмной полостью промежуточного жидкостно-жидкостного теплообменника, выход из которой подключен к побудителю циркуляции, на соединительном трубопроводе установлены датчики температуры, электрически связанные через систему управления с регулятором расхода жидкости, отличающаяся тем, что в контур охлаждения дополнительно введены два электронасосных агрегата, причем вход первого электронасосного агрегата через фильтр подключен к выходу теплоносителя из теплоприемной полости промежуточного жидкостно-жидкостного теплообменника, а его выход подключен ко второму обратному клапану и параллельно, через фильтр ко входу второго электронасосного агрегата, выход которого подключен к первому обратному клапану, при этом каждый электронасосный агрегат снабжен датчиком перепада давления, а на трубопроводе, соединяющем выход смесителя потоков с теплоприемной полостью жидкостно-жидкостного теплообменника, установлен дополнительный датчик температуры, электрически связанный через систему управления с первым электронасосным агрегатом.


  1.  

    1. Защита от инородных объектов


Существует множество способов защиты от инородных тел.



  • Использовать нестандартные двигатели, такие как электромагнитный ускоритель с изменяемым удельным импульсом;


  • Обернуть астероид отражающим пластиковымсолнечным парусом, используя покрытую алюминием пленку типа PET;


  • «Покрасить» или посыпать объект диоксидом титана (белый цвет) или сажей (черный), с тем, чтобы вызвать эффект Ярковского и изменить его траекторию;


  • Ученый-планетолог Юджин Шумейкер в 1996 году предложил выпускать облако пара на пути объекта для его осторожного замедления. Ник Забо в 1990 году нарисовал похожий замысел, «аэродинамическое торможение кометы»: комета или ледовая конструкция нацеливается на астероид, после чего ядерные взрывы испаряют лед и формируется временная атмосфера на пути астероида;


  • Прикрепить к астероиду тяжелый балласт, чтобы с помощью смещения центра тяжести изменить его траекторию;


  • Использовать лазерную абляцию;


  • Использовать ударно-волновой излучатель;


  • Ещё один «бесконтактный» метод был недавно предложен учеными Ц. Бомбардели и Дж. Пелез из Технического университета Мадрида. В нём предлагается использовать ионную пушку с низкой дивергенцией, направленную на астероид с находящегося рядом корабля. Кинетическая энергия, передающаяся через доходящие до поверхности астероида ионы, как и в случае с гравитационным буксиром создаст слабую, но постоянную силу, способную отклонить астероид, и при этом будет использоваться более легкий корабль.


  • Подрыв ядерного устройства над, на или под поверхностью астероида является потенциальным вариантом отражения угрозы. Оптимальная высота взрыва зависит от состава и размера объекта. В случае угрозы со стороны груды обломков, чтобы избежать их рассеивания, предлагается произвести радиационную имплозию, то есть подрыв над поверхностью. При взрыве высвободившаяся энергия в виде нейтронов и мягких рентгеновских излучений (которые не проникают сквозь вещество) превращается в тепло при достижении поверхности объекта. Тепло превращает вещество объекта в выброс, и он сойдет с траектории, следуя третьему закону Ньютона, выброс направится в одну сторону, а объект — в противоположную.


  • Электромагнитная катапульта — это автоматическая система, располагающаяся на астероиде, выпускающая вещество, из которого он состоит, в космос. Тем самым он медленно сдвигается и теряет массу. Электромагнитная катапульта должна работать в качестве системы с низким удельным импульсом: использовать много топлива, но мало энергии.


Смысл заключается в том, что если использовать вещество астероида в качестве топлива, то количество топлива не так важно, как количество энергии, которая, вероятнее всего, будет ограничена.



Ещё один возможный способ — расположить электромагнитную катапульту на Луне, нацелив её на околоземный объект, с тем, чтобы воспользоваться орбитальной скоростью естественного спутника и его неограниченным запасом «каменных пуль».



Вывод.


Проанализировав представленную информацию становится понятно, что искусственная гравитация — это вполне реальное явление, которое будет иметь широкое применение в космической отросли, как только мы преодолеем все трудности, связанные с этим проектом.



Космические поселения я вижу в том виде, который предложил фон Браун: торообразные миры с оптимальным использованием пространства и с применением передовых технологий для обеспечения продолжительной жизнедеятельности, а именно:



Задача по созданию космических поселений трудна, но выполнима. Я надеюсь, что в ближайшем будущем, ввиду быстрого развития науки и техники, все необходимы предпосылки для создания и развития космических поселений на основе искусственной гравитации будут выполнены. Мой посильный вклад в это нужное дело будет оценен. Будущее человечества лежит в освоении космоса и перехода на новый, более перспективный, экологически чистый виток спирали развития человечества.



Приложения


Приложение 1. Стэнфордский тор



Приложение 2. Звезда смерти, Эллизиум.



Приложение 3. Схема вращательного движения.



Магниты



Равнодействующая сил в первом приближении (только взаимодействие магнитов). В итоге станция совершает вращательное движение. Что нам и требуется.



Список литературы


АЛЯКРИНСКИЙ. Человек живёт в космосе. Невесомость: плюс или минус?



Баррер, М. Ракетные двигатели.



Добровольский, М. Жидкостные ракетные двигатели. Основы проектирования.



Дорофеев, А. Основы теории тепловых ракетных двигателей.



Матвеев. Механика и теория относительности: Учебник для студентов вузов.



Мякишев. Молекулярная физика и термодинамика.



Мякишев. Физика. Механика.



Мякишев. Физика. Электродинамика.



Рассел, Д. Гидропоника.



Санько. Астрономический словарь.



Сивухин. Общий курс физики.



Фейнман. Фейнмановские лекции по гравитации.



Циолковский. Труды по ракетной технике.



Шилейко. В океане энергии.



Голубев И.Р. и Новиков Ю.В. Окружающая среда и ее охрана



Захлебный А.Н. Книга для чтения по охране природы



Зверев И. Охрана природы и экологическое воспитание школьников.



Иванов А.Ф. Физический эксперимент с экологическим содержанием.



Киселев С.В. Демонстрация парникового эффекта.



Интернет-ресурсы:



http://festival.1september.ru/physics



https://ru. wikipedia.org/wiki/Заглавная_страница



http://www.roscosmos.ru



http://allpatents.ru



http://www.freepatent.ru


Просмотров работы: 914

Искусственная гравитация: объяснение технологии будущего

(Изображение предоставлено: Getty Images)

Искусственная гравитация — это создание силы инерции в космическом корабле для имитации силы гравитации. Эта концепция часто встречается в научно-фантастических шоу, таких как «Звездный путь», но не ограничивается ими, и исследователи в настоящее время работают над методами создания искусственной гравитации в космосе.

Создание искусственной гравитации не только упростило бы следующую эру освоения космоса, сделав задачи более простыми, но также имело бы решающее значение для потенциального космического туризма.

Влияние микрогравитации в космосе на самом деле может быть вредным для людей, поэтому, когда мы рассматриваем более длительные миссии с экипажем, включая путешествия на Марс, искусственная гравитация может иметь важное значение для здоровья наших астронавтов.

Родственный: Является ли происхождение самой гравитации темной материи?

Создание искусственной гравитации

В своей специальной теории относительности 1905 года Альберт Эйнштейн писал, что гравитация и ускорение на самом деле неразличимы. Это означает, что в ракете, летящей в 31.19футов в секунду (9,81 метра в секунду ) в квадрате —  нисходящее ускорение силы тяжести здесь, на Земле —  космонавт почувствует, что его тело приковано к полу, как на его родной планете.

Проблема в том, что вы не можете постоянно ускоряться с такой скоростью в космосе, особенно на орбитальной космической станции. К счастью, существует более одной формы ускорения, и, используя центробежную силу, мы можем создать нечто, эквивалентное гравитации на Земле.

Одним из возможных способов создания искусственной гравитации в космосе является использование технологии, называемой цилиндром О’Нила. Названный в честь физика, предложившего их, Джерарда О’Нила, он состоит из пары массивных цилиндров, которые вращаются в противоположных направлениях, что позволяет им постоянно быть направленными к солнцу, имитируя гравитацию.

Джефф Безос, владелец компании по исследованию космоса Blue Origin, предложил цилиндры О’Нила в качестве основы плавучих космических колоний, позволяющих триллионам людей жить на орбите.

Помимо того, что они далеки от любого практического применения, 20 миль (32,2 км) в длину и 4 мили (6,4 км) в диаметре — рассчитаны на размещение нескольких миллионов человек — цилиндры О’Нила слишком велики для большинства приложений меньше, чем колонии в космосе.

Исследователи из Университета Боулдера в Колорадо предложили меньший масштаб — вращающиеся системы, которые могли бы поместиться в отсеках космического корабля.

Испытание центрифуги, позволяющей астронавтам ненадолго вернуться к земной гравитации. (Изображение предоставлено Университетом Колорадо в Боулдере)

(открывается в новой вкладке)

Хотя это не обеспечит искусственную гравитацию для всего корабля или станции, это позволит космическим путешественникам отступить в определенную область и провести некоторое время, испытывая гравитационное поле больше похоже на земное.

Система также использует центробежное ускорение, воспроизводя гравитационное поле силой 1G  — такое же, как на Земле — с астронавтами, лежащими на центрифуге с коротким радиусом для быстрого вращения.

Истории по теме

Однако вращающиеся астронавты могут быть не идеальным решением. Любой, кто слишком много раз катался на чайных чашках, может сказать вам, что этот метод имеет свои последствия для здоровья.

Еще одна потенциальная конструкция для создания искусственной гравитации — это длинное вращающееся палкообразное транспортное средство диаметром около 100 метров с ядерным реактором на одном конце и отсеком для экипажа на другом для путешествий на Марс. Однако у них были технические проблемы, препятствующие их применению.

Влияние микрогравитации на здоровье

Астронавт НАСА Карен Найберг использует устройство для проверки здоровья глаз, на которое может повлиять микрогравитация. (Изображение предоставлено НАСА)

Создание искусственной гравитации может стать ключом к защите здоровья астронавтов в долгосрочных космических миссиях. В течение пяти десятилетий Программа исследований человека НАСА (HRP) изучала влияние микрогравитации на организм человека.

Они обнаружили, что лишенные гравитации Земли несущие кости теряют в среднем от 1 до 1,5% минеральной плотности каждый месяц космического полета. Мышечная масса теряется быстрее в условиях микрогравитации, чем на Земле.

В дополнение к этим факторам, во время космического полета жидкости в организме человека могут перемещаться вверх, оказывая давление на глаза, что может привести к проблемам со зрением.

Космический отель «Вояджер»

Визуализация вращающейся станции «Вояджер», которая будет поддерживать научные эксперименты, а также функционировать как «космический отель» для туристов. (Изображение предоставлено Orbital Assembly Corporation)

Космическая станция «Вояджер» — это запланированная космическая станция с вращающимся колесом, строительство которой должно начаться в 2025 году. Созданная корпорацией Orbital Assembly Corporation (OAC) «Вояджер» будет отличаться от Международной космической станции. двумя ключевыми способами; он будет открыт для публики и будет иметь искусственную гравитацию.

Выведенный на низкую околоземную орбиту космический отель будет вращаться достаточно быстро, чтобы создать искусственную гравитацию для 400 пассажиров. Если станция будет построена так, как сейчас планируется, она станет самым большим рукотворным сооружением, когда-либо выводившимся на орбиту.

Первые шаги проекта будут включать создание прототипа гравитационного кольца, чтобы улучшить жизнеспособность искусственной гравитации в космосе. Кольцо диаметром 200 футов (61 метр) будет генерировать гравитацию, эквивалентную примерно 40% от земной, или примерно такую ​​же, как гравитация Марса.

Дополнительные ресурсы

Для получения дополнительной информации об искусственной гравитации см. «Искусственная гравитация (откроется в новой вкладке)» Жиля Клемана и Энжи Бакли. Ознакомьтесь с другими проектами искусственной гравитации в Orbital Assembly Corporation (OAC) (откроется в новой вкладке).

Библиография

  • НАСА, «Искусственная гравитация (открывается в новой вкладке)», март 2021 г. 
  • НАСА, «Человеческое тело в космосе (открывается в новой вкладке)», февраль 2021 г. Искусственная гравитация в теории и на практике (открывается в новой вкладке)», 46-я Международная конференция по экологическим системам, июль 2016 г. 
  • Национальное космическое общество, «Космическое поселение цилиндров О’Нила (открывается в новой вкладке)», по состоянию на май 2022 г.
  • Национальное космическое общество, «Космическое поселение Стэнфорд Тор (открывается в новой вкладке)», по состоянию на май 2022 г. Орбитальная сборка, «Опыт космической гравитации здесь (открывается в новой вкладке)», по состоянию на май 2022 г. 
  • Николас Мартеларо, «Приведение в действие Стэнфордского тора (открывается в новой вкладке)», Стэнфордский университет, май 2017 г. 

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: community@space. com.

Роберт Ли – научный журналист из Великобритании, чьи статьи были опубликованы в журналах Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek и ZME Science. Он также пишет о научной коммуникации для Elsevier и European Journal of Physics. Роб имеет степень бакалавра наук в области физики и астрономии Открытого университета Великобритании. Подпишитесь на него в Твиттере @sciencef1rst.

Чтобы оставаться на земле в космосе, требуется искусственная гравитация

Во многих книгах, фильмах и сериалах люди на космических кораблях ходят так же, как на Земле. Однако в реальной жизни астронавты летают в космосе. Разница не только в том, что книги, фильмы и телевидение — это вымысел. Дело в том, что в этих вымышленных мирах существует искусственная гравитация. В нашем мире — пока нет. Но может быть придет.

Гравитация — фундаментальная сила. Он притягивает объекты с массой друг к другу. Объекты с большой массой, такие как Земля, притягивают другие объекты к своим центрам. Вот почему мы твердо стоим на земле, где бы мы ни находились. Однако гравитация уменьшается с расстоянием. Поэтому, когда люди путешествуют на Луну или Марс, их тяга к Земле быстро ослабевает, что оставляет их в плавании.

Это может показаться забавным. Но жизнь без гравитации не прекрасна. В долгосрочной перспективе наши кости и мышцы не работают так усердно в условиях отсутствия гравитации. Это ослабляет их. Без гравитации кровь и другие телесные жидкости не могут течь нормально и могут скапливаться в верхней части тела. Это может отключить слух.

Кроме того, плавание в невесомости вызывает рвоту.

На самом деле, отмечает Мика Маккиннон, «нам известно множество способов получить тот же эффект, что и гравитация, используя другие силы». Она работает физиком в Институте поиска внеземного разума (SETI). Это в Маунтин-Вью, штат Калифорния. И, по крайней мере, некоторые из более простых тактик могут быть не так уж и далеки.

Педагоги и родители, подпишитесь на шпаргалку

Еженедельные обновления, которые помогут вам использовать Science News Explores в учебной среде

Спасибо за регистрацию!

При регистрации возникла проблема.

Массовое притяжение

Одним из подходов может быть «использование электричества и магнетизма в качестве замены гравитации», объясняет Маккиннон. «Вы можете создать это магнитное поле, запуская электричество по кругу», — говорит она. Поток электрического тока производит магнетизм. Все, что нужно космонавту, это носить металлические сапоги. Притяжение между металлом и магнитом помогло бы кому-то ходить по полу.

Работа, необходимая для ходьбы против магнита, также может ограничивать потерю костной и мышечной массы в космосе. Но прилипнуть к полу — это не то же самое, что гравитация. Жидкости по-прежнему смогут собираться в верхней части тела. И ваш желудок все равно был бы ужасно смущен.

Ученые могут попытаться обуздать реальную гравитацию, говорит Маккиннон. Она указывает, что все, что имеет массу, имеет гравитацию. Поэтому одной простой идеей было бы иметь большую массу. «Постройте себе планету, и тогда у вас будет достаточно гравитации», — отмечает она. С другой стороны, добавляет она, не очень удобно строить планету или носить ее с собой». Вместо этого, объясняет она, ключ может заключаться в том, чтобы получить большую массу на очень маленьком участке.

Нейтронные звезды, например, очень плотные. По ее словам, чайной ложки материала нейтронной звезды может быть достаточно, чтобы создать гравитацию. Или «крошечный карандашный укол» черной дыры. Оба они обладают огромной гравитацией для своего размера.

Но как удержать черную дыру, пусть даже маленькую, в середине космического корабля? «Это инженерная проблема, — говорит Маккиннон. «И мы понятия не имеем, какой будет инженерия».

Кольцо вокруг космического корабля

Если вы когда-нибудь были на карнавальном аттракционе, похожем на вращающиеся чайные чашки, вы чувствовали искусственную гравитацию. Когда вы находитесь внутри большого вращающегося объекта, вы почувствуете притяжение к внешней стене. Это из-за инерции. Ваше тело сопротивляется изменению движения объекта, вращающегося вокруг вас.

Мы ощущаем инерцию как нечто несуществующее — центробежную силу. Эта сила, кажется, притягивает нас к внешнему краю вращающейся чашки.

Центробежная сила на самом деле инерция. Но если все, что вам нужно, это искусственная гравитация, то такая воображаемая сила прекрасно работает. Все, что вам нужно, это либо маленький корабль, вращающийся очень быстро, либо очень большой корабль, вращающийся медленно. В любом случае, вращение притянет кого-то ногами вперед к внешней стене.

Это улучшение по сравнению с магнитами, потому что эффект ощущается всем телом. Кровь и жидкости будут двигаться по телу так же, как и на Земле. Кости и мышцы чувствовали бы натяжение, когда кто-то шел или бежал.

Большая версия такой системы называется цилиндром О’Нила. Он назван в честь физика Джерарда О’Нила, который придумал эту идею. Пара этих огромных вращающихся цилиндров будет направлена ​​к солнцу и вращаться в противоположных направлениях. Эти противоположные вращения помогут удержать их на месте.

«Единственная причина, по которой у нас их не будет, это то, что они огромные», — объясняет Джоалда Моранси, которая использует местоимения они/они. На первом курсе Чикагского университета в Иллинойсе они изучают физику и астрономию. Моранси также является стажером в Лаборатории реактивного движения НАСА в Пасадене, Калифорния.0003

И Моранси не шутит, когда говорят, что цилиндры О’Нила огромны. Первоначальная идея О’Нила заключалась в том, чтобы создать космическую среду обитания восемь километров (пять миль) в поперечнике и 32 км в длину. «Там могло бы жить около миллиона человек, — говорит Моранси. «Я действительно хотел бы увидеть одного из них».

Джефф Безос, основатель Amazon и космической компании Blue Origin, заинтересован в создании цилиндров О’Нила. Но это далеко.

Есть еще проблема, где их строить. Такое сооружение, вероятно, можно было бы построить на Земле. Но как отправить в космос что-то длиной 32 км? «Это будет стоить очень дорого и потребует много ракет», — говорит Моранси.

Более простым и дешевым вариантом было бы собрать эти гигантские жилища в космосе. Но «мы ближе к технологиям, которые помогут нам добраться до Марса, чем к созданию вещей в космосе», — отмечает Моранси.

На Международной космической станции астронавты должны делать все, находясь в свободном полете. Вращающаяся комната может создать для них искусственную гравитацию — если они смогут вращаться. NASA

Вращайте своего астронавта по кругу

Вращающиеся объекты меньшего размера могут давать тот же эффект, что и цилиндры О’Нила. Однако чем меньше объект, тем быстрее он должен вращаться, чтобы дать вам ощущение гравитации. И у этого вращения есть свои проблемы. Проведите достаточно времени в маленькой кружащейся чашке, и ваш желудок вскоре может возразить.

Более того, люди внутри или на вращающихся объектах страдают от эффекта Кориолиса. Это отклонение, которое возникает, когда объекты, не прикрепленные к земле, движутся с высокой скоростью или на большие расстояния относительно вращающейся планеты. Когда объект летел по воздуху, земля под ним вращалась. Таким образом, объект, казалось бы, немного отклоняется, приземляясь в сторону, куда он направляется. В большинстве случаев эта разница настолько мала, что вы ее даже не заметите. Если бы вы бросили бейсбольный мяч из Нью-Йорка на экватор, вы бы точно это сделали.

Эффект Кориолиса — еще одна фальшивая сила. Как и центробежная сила, это на самом деле инерция (да, опять же). И подобно центробежной силе эффект Кориолиса заметен. В быстро вращающемся космическом корабле ваши руки были бы вынуждены отклоняться в сторону, когда вы их поднимали.

Но эффект на руки ничто по сравнению с эффектом на мозг. Люди в быстро вращающемся цилиндре страдают от так называемой иллюзии перекрестной связи, отмечает Кэтрин Бретл. Она аэрокосмический инженер в Колорадском университете в Боулдере. Когда кто-то находится внутри вращающегося аттракциона или вращающейся космической станции, он часто чувствует себя прекрасно, глядя вперед. Иллюзия перекрестной связи — это «ощущение кувырканья, которое возникает, когда вы поворачиваете голову».

К счастью, Бретл нашел способ решить эту проблему. Она и ее коллеги сажали людей на вращающееся кресло и заставляли их повернуть голову в сторону науки. В одном исследовании каждый новобранец сидел на вращающемся стуле по 25 минут каждый день в течение 10 дней. Кресло начало медленно вращаться — всего раз в минуту. Со временем Бретл медленно увеличивал скорость. Примерно через 10 дней добровольцы могли терпеть более 11 вращений в минуту. После 50 дней тренировок они могут вращаться в среднем более 25 раз в минуту. И на сегодняшний день, добавляет Бретл, «у нас никого не тошнило».

В 2019 году ее команда описала 10-дневную процедуру в Journal of Vestibular Research . 50-дневные результаты появились в прошлом году в журнале npj Microgravity .

Комната на космической станции может вращаться достаточно быстро, чтобы астронавты почувствовали гравитационную силу около 1 г — такую ​​же, как на Земле. Комната не должна быть большой, всего около 2,6 метра (8,5 футов) в поперечнике. Этого достаточно, чтобы прикрепить его к МКС. «Возможно, пара модулей, расположенных друг напротив друга, вращается», — говорит Бретли. «Астронавты будут стоять на беговой дорожке, пока эта система вращается». Астронавты могли тренироваться во вращающихся тренажерных залах, чтобы убедиться, что их мышцы, кости и кровообращение остаются здоровыми. Остальное время они будут летать по другим частям космической станции.

«Я думаю, что многие люди смотрят на [искусственную гравитацию] и думают, что это очень далеко», — говорит Бретл. — Но я не думаю, что это должно быть. Эти огромные цилиндры О’Нила, вероятно, далеко. Но «искусственная гравитация не требует такой большой, сверхдорогой, массивной системы, чтобы приносить пользу астронавтам».

Силовые слова

Подробнее о сильных словах

aerospace : Область исследований, посвященная изучению атмосферы Земли и космоса за ее пределами или самолетам, которые летают в атмосфере и космосе.

астронавт : человек, обученный путешествовать в космос для исследований и исследований.

астрономия : Область науки, изучающая небесные объекты, космос и физическую вселенную. Людей, работающих в этой области, называют астрономами.

среднее : (в науке) термин для среднего арифметического, который представляет собой сумму группы чисел, которая затем делится на размер группы.

черная дыра : Область пространства с настолько интенсивным гравитационным полем, что никакое вещество или излучение (включая свет) не может выйти наружу.

центробежная сила : Сила, которая, как кажется, тянет вращающееся тело или что-либо на вращающемся объекте (например, наездника в парке развлечений) от центра вращения.

коллега : Тот, кто работает с другим; коллега или член команды.

электрический ток : Поток электрического заряда — электричества — обычно возникающий в результате движения отрицательно заряженных частиц, называемых электронами.

электричество : Поток заряда, обычно возникающий в результате движения отрицательно заряженных частиц, называемых электронами.

инженер : Человек, который использует науку для решения проблем. Глагол «спроектировать» означает разработать устройство, материал или процесс, который решит какую-то проблему или неудовлетворенную потребность. (v.) Для выполнения этих задач или имя лица, которое выполняет такие задачи.

экватор : Воображаемая линия вокруг Земли, которая делит Землю на Северное и Южное полушария.

поле : (в физике) Область пространства, в которой действуют определенные физические явления, такие как магнетизм (созданный магнитным полем), гравитация (гравитационное поле), масса (поле Хиггса) или электричество (поле Хиггса). электрическое поле).

сила : Некоторое внешнее воздействие, которое может изменить движение тела, удерживать тела близко друг к другу или вызывать движение или напряжение в неподвижном теле.

местообитание : Район или природная среда, в которой обычно обитает животное или растение, например, пустыня, коралловый риф или пресноводное озеро. Среда обитания может быть домом для тысяч различных видов.

иллюзия : Вещь, которая неправильно воспринимается или интерпретируется органами чувств.

Международная космическая станция : искусственный спутник, вращающийся вокруг Земли. Эта станция, управляемая Соединенными Штатами и Россией, представляет собой исследовательскую лабораторию, в которой ученые могут проводить эксперименты в области биологии, физики и астрономии, а также наблюдать за Землей. результаты своих исследований с экспертами (а иногда и с общественностью). Некоторые журналы публикуют статьи из всех областей науки, техники, техники и математики, в то время как другие посвящены какой-то одной теме. Лучшие журналы рецензируются: они отправляют все представленные статьи сторонним экспертам для прочтения и критики.

магнит : Материал, который обычно содержит железо и атомы которого расположены так, что притягивают определенные металлы.

магнитное поле : Область влияния, создаваемая определенными материалами, называемыми магнитами, или движением электрических зарядов.

магнетизм : Притягательное влияние или сила, создаваемая определенными материалами, называемыми магнитами, или движением электрических зарядов.

производство : Изготовление вещей, обычно в больших масштабах.

Марс : Четвертая планета от Солнца, всего одна планета от Земли. Как и на Земле, на ней есть времена года и влажность. Но его диаметр лишь примерно в два раза меньше диаметра Земли.

масса : Число, показывающее, насколько объект сопротивляется ускорению и замедлению — в основном мера того, из какого количества материи состоит этот объект.

материя : Что-то, что занимает пространство и имеет массу. Все на Земле, имеющее материю, будет иметь свойство, описываемое как «вес».

микрогравитация : Гравитация, составляющая часть силы, действующей на Земле на уровне моря.

модуль : Набор стандартизированных деталей или самостоятельных узлов, используемых для сборки более сложной конструкции. Модуль можно использовать для создания «сборного» дома или мебели — или даже космического корабля.

луна : Естественный спутник любой планеты.

мышца : Тип ткани, используемой для движения путем сокращения ее клеток, известных как мышечные волокна. Мышцы богаты белком, поэтому хищные виды ищут добычу, содержащую много этой ткани.

нейтронная звезда : Очень плотный труп того, что когда-то было массивной звездой. Когда звезда погибла в результате взрыва сверхновой, ее внешние слои вылетели в космос. Затем ее ядро ​​разрушилось под действием сильной гравитации, в результате чего протоны и электроны в ее атомах слились в нейтроны (отсюда и название звезды). Одна чайная ложка нейтронной звезды на Земле будет весить более миллиарда тонн.

Физика : Научное изучение природы и свойств материи и энергии. Классическая физика — это объяснение природы и свойств материи и энергии, основанное на таких описаниях, как законы движения Ньютона. Квантовая физика, область исследований, возникшая позже, является более точным способом объяснения движения и поведения материи. Ученый, который работает в таких областях, известен как физик .

планета : Большой небесный объект, который вращается вокруг звезды, но в отличие от звезды не излучает видимого света.

движение вперед : Действие или процесс движения чего-либо вперед с использованием силы. Например, реактивные двигатели являются одним из источников движения, используемых для поддержания самолетов в воздухе.

робот : Машина, которая может ощущать окружающую среду, обрабатывать информацию и реагировать определенными действиями. Некоторые роботы могут действовать без участия человека, в то время как другие управляются человеком.

ракета : Что-то запущенное в воздух или через космос, иногда как оружие войны. Ракета обычно поднимается за счет выпуска выхлопных газов при сгорании некоторого количества топлива. (v.) Что-то, что бросается в космос на высокой скорости, как будто подпитывается горением.

SETI : Аббревиатура поиска внеземного разума, что означает жизнь в других мирах.

звезда : основной строительный блок, из которого состоят галактики. Звезды развиваются, когда гравитация сжимает облака газа. Когда они станут достаточно горячими, звезды будут излучать свет, а иногда и другие формы электромагнитного излучения. Солнце — наша ближайшая звезда.

Цитаты

Журнал:​ К.Н. Бретл и Т.К. Кларк. Улучшенная осуществимость искусственной гравитации астронавтов с коротким радиусом действия благодаря 50-дневному поэтапному индивидуальному протоколу вестибулярной акклиматизации. нпдж Микрогравитация. Том. 6, опубликовано в сети 26 августа 2020 г. doi: 10.1038/s41526-020-00112-w.

Журнал:​ К.Н. Бретл и др. Стандартизированный пошаговый протокол для повышения устойчивости человека к перекрестно-связанной иллюзии. Журнал вестибулярных исследований . Том. 29, опубликовано в сети 29 ноября 2019 г., с. 229. doi: 10.3233/ВЭС-190673.

Бетани Брукшир долгое время работала штатным корреспондентом в Science News Explores . У нее есть докторская степень. по физиологии и фармакологии и любит писать о неврологии, биологии, климате и многом другом. Она считает поргов инвазивным видом.

Искусственная гравитация в космическом корабле Рона Куртуса

SfC Home > Physics > Gravity >

Рон Куртус

Искусственная гравитация — это сила, которая имитирует эффект гравитации в космическом корабле. Это вызвано не притяжением к Земле, а ускорением или центробежной силой. На космических кораблях необходима искусственная гравитация, чтобы противодействовать влиянию невесомости на космонавтов.

Вращающаяся круглая космическая станция может создавать искусственную гравитацию для своих пассажиров. Скорость вращения, необходимая для дублирования земного притяжения, зависит от радиуса круга.

Основное требование к астронавту, чтобы испытать искусственную гравитацию, заключается в том, что он находится в контакте с вращающимся полом космического корабля.

У вас могут возникнуть следующие вопросы:

  • Зачем нужна искусственная гравитация?
  • Как создать искусственную гравитацию?
  • Какие особые требования предъявляются к искусственной гравитации?

Этот урок ответит на эти вопросы. Полезный инструмент: Преобразование единиц



Искусственная гравитация необходима в космических кораблях

Искусственная гравитация необходима в космических кораблях, которые находятся на орбите вокруг Земли, а также в тех, которые находятся так далеко, что влияние гравитации или гравитации можно пренебречь.

Международная космическая станция находится на орбите вокруг Земли на высоте около 350 км. Поскольку центробежная сила, удерживающая космическую станцию ​​на орбите, противодействует силе тяжести на этой высоте, астронавты на станции не ощущают действия гравитации. Все, что не привязано, будет плавать внутри космической станции.

Астронавты на любом космическом корабле, который находится достаточно далеко от Земли, чтобы можно было пренебречь влиянием гравитации или гравитации, также почувствуют эффект невесомости. Гравитация космического корабля, находящегося на расстоянии около 15 000 км от Земли, составляет примерно 1/10 силы тяжести на земле.

Таким образом, искусственная гравитация нужна для того, чтобы облегчить задачи, которые должны выполнять космонавты, сделать их более комфортными и избежать негативных последствий для здоровья от длительного пребывания в невесомости.

Способы создания искусственной гравитации

Постоянное линейное ускорение и центробежная сила — два способа создания искусственной гравитации.

Использование линейного ускорения

Одним из способов имитации гравитационной силы является ускорение ракеты или космического корабля. Это похоже на эффект, который вы чувствуете, когда находитесь в ускоряющемся лифте, где вы можете чувствовать себя тяжелее, когда лифт движется вверх.

Разрабатывая свою общую теорию относительности, Альберт Эйнштейн заметил, что нельзя отличить гравитацию от постоянного ускорения. Он использовал этот пример, чтобы сформулировать свою теорию о том, что гравитация или тяготение — это не сила, а действие, связанное с инерцией движущихся объектов.

Если бы ракета разгонялась до 9,8 м/с 2 (32 фута/с 2 ), инерция вашего тела имитировала бы действие гравитации на вас. Единственная проблема в том, что эффект недолговечен, так как ракета может разгоняться только до тех пор, пока не приблизится к скорости света.

Таким образом, создание искусственной гравитации за счет линейного ускорения нецелесообразно, поскольку существует предел скорости космического корабля.

Использование центробежной силы

Лучшим способом создания искусственной гравитации является использование эффекта центробежной силы, которая представляет собой направленную наружу силу, вызванную перемещением объекта по кривой траектории вместо прямой.

Если бы космический корабль имел форму большого круга или пончика, который вращался с определенной скоростью, экипаж внутри мог бы ощущать центробежную силу как искусственную гравитацию. Уравнение скорости вращения:

Ом = 9,55 √(г/об)

где

  • Ом скорость вращения в оборотах в минуту (об/мин)
  • г ускорение свободного падения ( 9,8 м/с 2 или 32 фут/с 2 )
  • r — радиус бублика космического корабля в метрах или футах

(Дополнительную информацию см. в разделе Уравнения искусственной гравитации.)

В фильме 1968 года 2001: Космическая одиссея вращающаяся центрифуга в космическом корабле создавала искусственную гравитацию для астронавтов. Человек мог ходить внутри круга ногами наружу, а головой к центру, пол и потолок изгибались бы вверх.

В Соединенных Штатах Национальное управление по аэронавтике и исследованию космического пространства (НАСА) рассмотрело аналогичные концепции для достижения искусственной гравитации на своих космических кораблях.

Предлагаемый НАСА космический корабль с искусственной гравитацией

Особые условия и проблемы

Основное требование к астронавту, чтобы испытать искусственную гравитацию на вращающемся космическом корабле, заключается в том, что он должен быть закреплен на полу. Это означает, что он будет двигаться по круговой траектории вместе с вращением космического корабля. На космонавта будет действовать центробежная сила, создающая эффект искусственной гравитации.

Астронавт должен быть закреплен на полу во вращающемся космическом корабле

Однако, если бы он подпрыгнул с пола, то имел бы только линейную скорость в направлении вращения и упал бы на пол не обязательно в вертикальном положении. (См. ниже «Уронить что-то ».)

Если астронавт изначально не соприкасался с полом или стенами, он будет парить в этом районе.

Обувь или коньки

Может потребоваться специальная обувь, чтобы космонавт не касался пола. Обувь с липучками или обувь на магнитах — вот несколько рассматриваемых идей.

Интересная идея для космонавта — использовать магнитные роликовые коньки для передвижения по железному полу.

Направление ходьбы или катания на коньках

Ходьба или катание на коньках в направлении вращения может немного усилить ощущение гравитации, а движение в противоположном направлении может уменьшить это ощущение. Однако эффект будет незначительным, так как скорость будет мала.

Уронить что-то

Если предмет не касался пола, он бы парил. Если бы он имел начальную скорость, то двигался бы прямолинейно.

Предположим, что астронавт уронил или отпустил карандаш, который держал в руках. Поскольку его больше не заставляли двигаться по криволинейной траектории, карандаш просто двигался вперед по прямой в соответствии с его начальной скоростью, когда его отпускали.

Упавший объект будет двигаться по прямой линии, но будет казаться, что он падает

Однако, поскольку пол космического корабля изогнут, карандаш будет двигаться вперед, пока не коснется изогнутого пола. Хотя он не был притянут к полу искусственной гравитацией, космонавту могло показаться, что это так.

Резюме

Искусственная гравитация — это сила, которая имитирует земную гравитацию . На космических кораблях необходима искусственная гравитация, чтобы противодействовать влиянию невесомости на космонавтов.

Ускорение и центробежная сила могут дублировать действие гравитации. Вращающаяся круглая космическая станция может создавать искусственную гравитацию для своих пассажиров при условии, что они соприкасаются с вращающимся полом. Скорость или вращение, необходимые для дублирования земного притяжения, зависят от радиуса круга.


Подумайте о способах улучшения природы


Ресурсы и ссылки

Рон Куртус. класс

Искусственная гравитация и архитектура орбитальных сред обитания — Теодор В. Холл — Космическое будущее; подробный технический документ

Искусственная гравитация  — Технические ресурсы Теодора У. Холла –

Физика искусственной гравитации  – журнал Popular Science

Моделирование гравитации с центростремительной силой  – Центр подготовки к экзаменам школьного округа города Освего, Нью-Йорк

: Космическая одиссея фильм

Искусственная гравитация во вращающемся Discovery One — Wired Magazine

Физика вращающегося космического корабля в Interstellar — Wired Magazine

Gravity Resources

Книги

(Обратите внимание: Школа для чемпионов May May Gormissions от Books Booksase)

Top -Rated Books On Simple Gravity Nate Nceection)

Top -Rated Книги на простой Gravity Nceection Nceection)

Книги с рейтингом Advanced Gravity Physics


Вопросы и комментарии

У вас есть вопросы, комментарии или мнения по этому вопросу? Если это так, отправьте электронное письмо с вашим отзывом.