Что стало причиной большого взрыва? Из за чего произошел большой взрыв


Что стало причиной большого взрыва?

В начале был знак вопроса. А потом и все остальное. Конец. Все мы слышали о теории большого взрыва (я сейчас про космологическую модель, а не про сериал), но важно понимать, чем эта теория является, а чем нет. Позвольте разъяснить одну точную, понятную и до смешного простую вещь: теория большого взрыва - это не теория создания вселенной. Зафиксируйте это для протокола. Поправляйте людей, когда они ошибаются.Дело в том, что существует большая путаница со всех сторон, и лучше было бы держать все в простоте. Теория большого взрыва - это научная модель, как и любая другая научная модель. Мы считаем, что она правильная, поскольку - внимание - ее поддерживает широкий спектр доказательств.С момента появления этой идеи, теория большого взрыва пережила десятилетия борьбы среди ученых, которые царапались, дрались, били в спину, критиковали, подрывали, пререкались, спорили и даже обзывались, пытаясь раздавить своих соперников и доказать, что их альтернатива лучше. Почему? Потому что тот, кто предложит лучшую научную парадигму, получит бесплатную путевку в Стокгольм.И, в конце концов, никто не отменял доказательства. Вы знаете эту вселенную, которую мы пытаемся понять. Любое новое наблюдение - это гром средь бела дня в научном мире; две теории могут войти, но останется только одна. И что осталось спустя десятилетия наблюдений? Подсказка: большой.Доказательства начались с момента, когда Эдвин хаббл заметил, что каждая галактика, в среднем, улетает от каждой другой галактики. Вселенная расширяется. Этот факт сам по себе уже довольно сильный. На протяжении тысячелетий основным допущением (и винить - то некого) было то, что хотя здесь, на земле, вещи меняются, далеко в небесах все относительно неизменно. Звезды взрываются, галактики сталкиваются, но в целом вселенная две недели назад похожа на вселенную сегодня. Проверьте через месяц - то же самое. Так думали люди.И ошибались. Вселенная сегодня совсем не похожа на вселенную вчера, и завтра она будет уже другой. И не , внимание, только в локальных масштабах.И если вы заметили, что каждый день вселенная становится больше, можно приложить логическое усилие и додуматься, что давным-давно вселенная была … меньше? Да? Я угадал? И если ученый внутри вас еще не погиб, как только вы дойдете до этой нелепой и смешной концепции, вы задумаетесь о последствиях и о том, как проверить эту сомнительную, на первый взгляд, теорию.История последних 14 с лишним миллиардов лет - это история плотности. Вселенная состоит из кучи всякой всячины: водород, гелий, еноты, темная материя, хрящиков, фотонов, чертовых колес, нейтрино и так далее. Все это проявляет себя по-разному при различной плотности, поэтому когда вселенная была меньше, один тип вещей мог преобладать над другим, и физическое поведение этих вещей могло управлять ходом событий.К примеру, в наши дни вселенная представлена по большей части темной энергией (чем бы она ни была), и ее поведение управляет вселенной - в нашем случае это период ускоренного расширения. Но несколько миллиардов лет назад вселенная была меньше, и вся материя была упакована плотнее. В силу этой плотности, правителем насеста была материя, подавляющая темную энергию, которая была скорее фоновым занавесом, нежели двигателем современности.(Заметка на полях: перехват инициативы темной энергией произошел почти в то же время, когда наша солнечная система собирала себя по частям, и в то же время вселенная была примерно в два раза меньше.Рождение эпохи темной материи может показаться не особенно драматичным, но чем дальше во времени - и чем меньше вселенная - тем более странными становятся вещи. Вернитесь на больше чем 13 миллиардов лет, когда вселенная была в тысячу раз меньше своего текущего размера, и вещество, которое однажды будет составлять целые галактики, окажется так плотно стиснутым воедино, что даже атомы не смогут образоваться. Она настолько плотная, что каждый раз, когда ядро притягивает электрон, в него врезается ветреный высокоэнергетический фотон, выбивая электрон прочь. Это плазма, и когда-то вся вселенная была именно в таком состоянии.Перемотайте в сегодняшний день, и оставшийся свет той эпохи, когда вселенная остыла и расширилась достаточно, чтобы дать образоваться первым атомам, продолжает просвечивать нас даже сейчас. Но вселенная старше и холоднее, и эти высокоэнергетические гамма-лучи представляют собой слабенькие микроволны, создающие фон, пронизывающий космос - космический микроволновый фон, реликтовое излучение, CMB.CMB не только один из главных признаков большого взрыва (этакий снимок юной вселенной), но и окошко в более ранние времена. Пусть мы и не можем воспринимать вселенную до образования реликтового излучения, но физика того времени оставила отпечаток на самом радиационном фоне. Это важно.Чем дальше мы возвращаемся во времени, тем меньше мы узнаем вселенную - она еще страннее плазменной. Вернитесь назад во времени - и обнаружите, что не могут образовываться стабильные ядра. Еще дальше - протоны и нейтроны не могут выдержать давление и вырождаются в свои компоненты: кварки и глюоны. А дальше все сложно.Теорию большого взрыва можно резюмировать так: однажды вся вселенная - все, что вы знаете и любите, на земле и на небе - была сжата в шар с температурой в триллион градусов размером с яблоко или персик. Или небольшой грейпфрут. Неважно.Это заявление звучит просто смешно, а если бы вы еще и сказали о таком пару сотен лет назад … вас бы сожгли на костре, причем не церковь, а сами ученые. Но каким бы безумием эта теория ни была, мы можем изучать эту эпоху, опираясь на свои знания физики высоких энергий. Мы можем смоделировать физику вселенной этой ранней эпохи и проследить ее последствия в более поздних временах. Можем делать прогнозы и заниматься наукой.В "Эпоху Персика" возраст вселенной был какую-то долю секунды. Даже меньше доли - 10? - 36 секунды или около того. С того момента мы имеем примерную картинку того, как функционирует вселенная. Некоторые вопросы, конечно, остаются открытыми, но в целом у нас есть хотя бы смутное понимание.Чем старше становится вселенная, тем четче становится наша картинка, но страшно даже осознавать, что наши бедные обезьяньи мозги постигли настолько юную эпоху вселенной.Что касается еще более ранних времен, наше понимание вселенной становится … размытым. Силы, энергии, плотности, температуры становятся слишком высокими, и понимание физики, которое мы накапливали столетиями, не справляется с задачей. В очень ранней вселенной гравитация приобретает особую важность на малых масштабах, а это уже покои квантовой гравитации, система которой пока ускользает от современных физиков. У нас просто нет никакого понятия о том, что происходит с сильной гравитацией на малых масштабах.Просто. Нет.До этих 10? - 36 секунд мы просто не понимаем природу вселенной. Теория большого взрыва фантастически точно описывает все, что было после этого, но до - непонятно. На достаточно малых масштабах мы даже не знаем, имело ли смысл слово "до". На невероятно крошечных масштабах (еще меньше тех, что вы можете представить в теории), квантовая природа реальности поднимает свою уродливую голову в полную силу, превращая наше дружелюбное пространство - время в джунгли, полные капканов, ловушек и острых шипов. Понятия пространства и времени попросту не работают в таких масштабах. Никто не знает, что происходит.Конечно, есть некоторые идеи - модели, описывающие, что могло "Зажечь" или "посеять" большой взрыв, но на данном этапе они сугубо спекулятивны. Только в том случае, если эти идеи получать поддержку в виде наблюдений - к примеру, особенный отпечаток на реликтовом фоне - тогда да, мы сможем их прорабатывать.В случае если же нет, то они останутся сказками на ночь. Как, впрочем, и все, что мы можем сказать на тему того, что было до большого взрыва. По материалам:

science.ru-land.com

Что такое Большой взрыв?

Далеко не каждый способен осознать, но то, что мы называем «небо» — это лишь малая часть бесконечности, окружающей нас. Кроме того, наш мозг устроен таким образом, что мы не можем себе представить бесконечность. Разве что на считанные секунды он покажет нам суть этого понятия, а дальше оно снова превращается в пустой звук. И поэтому мы уверенны, что физиками не становятся, ими рождаются, ибо нужно иметь совершенно особенный склад ума, чтобы не только представлять себе все что угодно, но и просчитывать, находить логическое научное объяснение тому, как все происходит в этом мире. Сегодня мы поговорим об одной из самых популярных и загадочных версий появления нашей Вселенной. Теория большого взрыва была неоднократно подтверждена результатами астрономических исследований. Большой взрыв — общепринятая космологическая версия, которая описывает зарождение и развитие Вселенной на ранних этапах существования.

Что такое большой взрыв?Изначально существовало иное название: «динамическая эволюционирующая модель». «Big Bang» (в переводе с английского-Большой взрыв) первым употребил Фрейд Хойл, когда в 1949 году проводил лекцию о возникновении Вселенной. Именно после этого случая термин широко начал распространяться в прессе.Теория Большого взрыва гласит о том, что изначально Вселенная находилась в состоянии сингулярности. Проще говоря — это состояние, в котором она существовала в виде единственной точки с бесконечной температурой и плотностью. Далее произошел «взрыв» или «толчок», после которого Вселенная начала расширяться с невероятной скоростью. Процесс расширения происходит и сейчас. Вселенная постепенно охлаждается, а её плотность уменьшается.Знаковые описания этой теории сделал Альберт Эйнштейн. В 1916 году на свет появилась его работа «Основы общей теории относительности», где он сконцентрировался на создании теории о релятивистской гравитации. Уже в следующем году он излил свои предположения о модели Вселенной с присутствующей в ней неизменной во времени-пространстве кривизной. Принято считать, что именно на этом этапе и возникла космология.

Однако существует множество альтернативных теорий, которые возникали и раньше.Есть версия о том, что «Большой взрыв» впервые описал католический священник Georges Lemaître (по совместительству оказавшийся астрономом-физиком). В его трудах были обнаружены первые попытки описания теории расширяющейся вселенной. Когда Эйнштейн столкнулся с этой теорией, он подверг её резкой критике из-за неграмотности священника в области физики. Георг уверенно отстаивал свою точку зрения и в 1933 году Эйнштейн согласился с тем, что эта теория одна из наиболее убедительных и правильных.

В 1848 году выдающийся американский писатель Эдгар Аллан По закончил свое произведение под названием «Эврика», где содержится намек и предпосылки к открытию черных дыр и есть мысли о «единственной первобытной и уникальной частице». Однако поэму признали неудачной в художественном плане. Остается только один вопрос: как писатель мог с такой уверенностью и точностью в своих предположениях опередить науку.

Что было до Большого взрыва?Приблизительный возраст нашей Вселенной составляет около 13 миллиардов лет. Практически до нашей современности было принято считать, что из-за отсутствия времени до взрыва не существовало ровным счетом ничего. Знаменитый физик Стивен Хокинг, например, утверждает, что «ничего» — это не просто предположение, а результат серьезных математических расчетов. Ничто — это и есть отсутствие времени и пространства. Ученые пытались проводить исследования, создав отдельные пространства с пониженной температурой и отсутствием частиц веществ, однако и в этом случае «Ничто» превращается в «что-то», над которым можно проводить эксперименты.

Существуют и другие версии. Зачастую они гласят о том, что до зарождения нашей Вселенной существовала её предшественница. Эти вселенные сменяют друг друга, отправной точкой каждой из них и является «хлопок», он же Большой взрыв. Другие убеждены в том, что вселенная существовала всегда и называют её Мультивселенной. Взрывы, происходящие время от времени, порождают многочисленные «капсулы», которые начинают расширяться и преобразуются в новые вселенные.Таинственный космос всегда оставляет за нами право выбирать, сомневаться и соглашаться. Не исключено, что в скором времени ученые придут к консенсусу и мы будем знать абсолютно все о том, с чего начиналась жизнь.

hsl.guru

Почему произошел Большой Взрыв? : bagrat12

В начале был знак вопроса. А потом - и все остальное. Конец. Все мы слышали о теории Большого Взрыва (я сейчас про космологическую модель, а не про сериал), но важно понимать, чем эта теория является, а чем - нет. Позвольте разъяснить одну точную, понятную и до смешного простую вещь: теория Большого Взрыва — это не теория создания Вселенной. Зафиксируйте это для протокола. Поправляйте людей, когда они ошибаются.Дело в том, что существует большая путаница со всех сторон, и лучше было бы держать все в простоте. Теория Большого Взрыва — это научная модель, как и любая другая научная модель. Мы считаем, что она правильная, поскольку — внимание — ее поддерживает широкий спектр доказательств.

С момента появления этой идеи, теория Большого Взрыва пережила десятилетия борьбы среди ученых, которые царапались, дрались, били в спину, критиковали, подрывали, пререкались, спорили и даже обзывались, пытаясь раздавить своих соперников и доказать, что их альтернатива лучше. Почему? Потому что тот, кто предложит лучшую научную парадигму, получит бесплатную путевку в Стокгольм.

И, в конце концов, никто не отменял доказательства. Вы знаете эту вселенную, которую мы пытаемся понять. Любое новое наблюдение — это гром средь бела дня в научном мире; две теории могут войти, но останется только одна. И что осталось спустя десятилетия наблюдений? Подсказка: большой.

Доказательства начались с момента, когда Эдвин Хаббл заметил, что каждая галактика, в среднем, улетает от каждой другой галактики. Вселенная расширяется. Этот факт сам по себе уже довольно сильный. На протяжении тысячелетий основным допущением (и винить-то некого) было то, что хотя здесь, на Земле, вещи меняются, далеко в небесах все относительно неизменно. Звезды взрываются, галактики сталкиваются, но в целом Вселенная две недели назад похожа на Вселенную сегодня. Проверьте через месяц — то же самое. Так думали люди.

И ошибались. Вселенная сегодня совсем не похожа на Вселенную вчера, и завтра она будет уже другой. И не только в локальных масштабах.

И если вы заметили, что каждый день Вселенная становится больше, можно приложить логическое усилие и додуматься, что давным-давно Вселенная была… меньше? Да? Я угадал? И если ученый внутри вас еще не погиб, как только вы дойдете до этой нелепой и смешной концепции, вы задумаетесь о последствиях и о том, как проверить эту сомнительную, на первый взгляд, теорию.

История последних 14 с лишним миллиардов лет — это история плотности. Вселенная состоит из кучи всякой всячины: водород, гелий, еноты, темная материя, хрящиков, фотонов, чертовых колес, нейтрино и так далее. Все это проявляет себя по-разному при различной плотности, поэтому, когда Вселенная была меньше, один тип вещей мог преобладать над другим, и физическое поведение этих вещей могло управлять ходом событий.

К примеру, в наши дни Вселенная представлена по большей части темной энергией (чем бы она ни была), и ее поведение управляет Вселенной — в нашем случае это период ускоренного расширения. Но несколько миллиардов лет назад Вселенная была меньше, и вся материя была упакована плотнее. В силу этой плотности, правителем насеста была материя, подавляющая темную энергию, которая была скорее фоновым занавесом, нежели двигателем современности.

(Заметка на полях: перехват инициативы темной энергией произошел почти в то же время, когда наша Солнечная система собирала себя по частям, и в то же время Вселенная была примерно в два раза меньше).

Рождение эпохи темной материи может показаться не особенно драматичным, но чем дальше во времени — и чем меньше Вселенная — тем более странными становятся вещи. Вернитесь на больше чем 13 миллиардов лет, когда Вселенная была в тысячу раз меньше своего текущего размера, и вещество, которое однажды будет составлять целые галактики, окажется так плотно стиснутым воедино, что даже атомы не смогут образоваться. Она настолько плотная, что каждый раз, когда ядро притягивает электрон, в него врезается ветреный высокоэнергетический фотон, выбивая электрон прочь. Это плазма, и когда-то вся вселенная была именно в таком состоянии.

Перемотайте в сегодняшний день, и оставшийся свет той эпохи, когда Вселенная остыла и расширилась достаточно, чтобы дать образоваться первым атомам, продолжает просвечивать нас даже сейчас. Но Вселенная старше и холоднее, и эти высокоэнергетические гамма-лучи представляют собой слабенькие микроволны, создающие фон, пронизывающий космос — космический микроволновый фон, реликтовое излучение, CMB.

CMB не только один из главных признаков Большого Взрыва (этакий снимок юной Вселенной), но и окошко в более ранние времена. Пусть мы и не можем воспринимать Вселенную до образования реликтового излучения, но физика того времени оставила отпечаток на самом радиационном фоне. Это важно.

Чем дальше мы возвращаемся во времени, тем меньше мы узнаем вселенную — она еще страннее плазменной. Вернитесь назад во времени — и обнаружите, что не могут образовываться стабильные ядра. Еще дальше — протоны и нейтроны не могут выдержать давление и вырождаются в свои компоненты: кварки и глюоны. А дальше все сложно.

Теорию Большого Взрыва можно резюмировать так: однажды вся Вселенная — все, что вы знаете и любите, на Земле и на небе — была сжата в шар с температурой в триллион градусов размером с яблоко. Или персик. Или небольшой грейпфрут. Неважно.

Это заявление звучит просто смешно, а если бы вы еще и сказали о таком пару сотен лет назад… Вас бы сожгли на костре, причем не церковь, а сами ученые. Но каким бы безумием эта теория ни была, мы можем изучать эту эпоху, опираясь на свои знания физики высоких энергий. Мы можем смоделировать физику вселенной этой ранней эпохи и проследить ее последствия в более поздних временах. Можем делать прогнозы и заниматься наукой.

В «эпоху персика» возраст Вселенной был какую-то долю секунды. Даже меньше доли — 10^-36 секунды или около того. С того момента мы имеем примерную картинку того, как функционирует Вселенная. Некоторые вопросы, конечно, остаются открытыми, но, в целом, у нас есть хотя бы смутное понимание.

Чем старше становится Вселенная, тем четче становится наша картинка, но страшно даже осознавать, что наши бедные обезьяньи мозги постигли настолько юную эпоху Вселенной.

Что касается еще более ранних времен, наше понимание Вселенной становится… размытым. Силы, энергии, плотности, температуры становятся слишком высокими, и понимание физики, которое мы накапливали столетиями, не справляется с задачей. В очень ранней Вселенной гравитация приобретает особую важность на малых масштабах, а это уже покои квантовой гравитации, система которой пока ускользает от современных физиков. У нас просто нет никакого понятия о том, что происходит с сильной гравитацией на малых масштабах.

Просто. Нет.

До этих 10^-36 секунд мы просто не понимаем природу Вселенной. Теория Большого Взрыва фантастически точно описывает все, что было после этого, но до — непонятно. На достаточно малых масштабах мы даже не знаем, имело ли смысл слово «до». На невероятно крошечных масштабах (еще меньше тех, что вы можете представить в теории), квантовая природа реальности поднимает свою уродливую голову в полную силу, превращая наше дружелюбное пространство-время в джунгли, полные капканов, ловушек и острых шипов. Понятия пространства и времени попросту не работают в таких масштабах. Никто не знает, что происходит.

Конечно, есть некоторые идеи — модели, описывающие, что могло «зажечь» или «посеять» Большой Взрыв, но на данном этапе они сугубо спекулятивны. Если эти идеи получать поддержку в виде наблюдений — к примеру, особенный отпечаток на реликтовом фоне — тогда да, мы сможем их прорабатывать.

Если же нет, то они останутся сказками на ночь. Как, впрочем, и все, что мы можем сказать на тему того, что было до Большого Взрыва.

bagrat12.livejournal.com

Из Чего Произошел "Большой Взрыв"? Из Каких Структур?

Теория Большого взрыва по своей сути ничем не отличается от Библейской версии происхождения Вселенной. Разница только во времени. Взрыв, как и подобает хорошему взрыву, произошел мгновенно, а потом долго распространялся вширь, а по библии Бог сам организовывал все в течение шести дней, а на седьмой отдыхал. Теория Большого взрыва основана по сути на двух постулатах. Главный это эффект красного смещения всех видимых объектов Вселенной, который было открыт еще в прошлом веке астрономом Хабблом. Тогда решили, что это обусловлено другим эффектом Доплера, когда объект удаляется от наблюдателя, его частота излучения уменьшается, а длина волны увеличивается, то есть сдвигается в красную область света. Отсюда вывод, что Вселенная расширяется. А раз так, то когда то она была сжата до точки. Дальше уже сами теоретики упражняются в степени собственного невежества приблизительно на таком же уровне, что и написано в Библии потому как подобную степень "сжатости" вещества, времени и пространства никто себе представить не может ни теоретически, ни тем более, в опытах. Ну и второй эффект, который вроде бы подтверждает Большой взрыв, это излучение возбужденных ядер водорода в радиодиапазоне, которое можно поймать любым радиотелескопом. Его называют "эхом" взрыва". Реально все это можно объяснить и другими причинами и написать несколько теорий не связанных с Большим взрывом. Но наука вещь весьма консервативная. У руля стоят люди, которые защитили горы диссертаций, посвященных Взрыву, написали кучи научных работ и статей. Признать то, что взрыва не было или то, что это событие не столь уж и достоверно, они не могут. Им придется уйти в отставку, а нужно жить дальше и получать академическую зарплату а потом и пенсию. Отсюда главный вывод. Никто не знает и не может даже отдаленно предположить из каких структур произошел Большой взрыв. Не исключено, что открытия следующих 50 лет приведут к тому, что от теории Большого взрыва и вовсе откажутся. Уже открыто явление, что Вселенная расширяется с ускорением, что при взрывах в нашем понимании невозможно. Кроме того известна огромная область Вселенной, которую мы не можем наблюдать. Она для нас закрыта. Пишут о "черной материи", хотя никто не знает, что это такое. У ученых любой новое явление порождает кучу новых диссертаций, а что там в реалии не столь уж важно... Это , как говорят, потом разберемся.

otvet.expert

Большой взрыв - это... Что такое Большой взрыв?

Большо́й взрыв (англ. Big Bang) — космологическая модель, описывающая раннее развитие Вселенной[1], а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва.

Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Современные представления теории Большого взрыва и теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[2][3][4] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Проблема начальной сингулярности

В этом и следующем разделах не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 26 декабря 2010.

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

История развития представлений о Большом Взрыве

  • 1916 — вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности», в которой он завершил создание релятивистской теории гравитации[5].
  • 1917 — Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».
  • 1922 — советский математик и геофизик А. А. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.
  • 1923 — немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.
  • 1924 — К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.[6]
  • 1925 — К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.
  • 1927 — опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.
  • 1929 — 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.
  • 1948 — выходит работа Г. А. Гамова о «горячей вселенной», построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.
  • 1955 — Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ-излучение с температурой около 3K[7].
  • 1964 — американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру. Oна оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.
  • 2003 — спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE, Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя — 4 %, тёмная материя — 23 %, тёмная энергия — 73 %).[8]
  • 2009 — запущен спутник Планк, который в настоящее время измеряет анизотропию реликтового излучения с ещё более высокой точностью.

История термина

Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» (Big Bang) применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

На русский язык Big Bang можно было бы перевести как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который хотел вложить в него Хойл. После того, как его лекции были опубликованы, термин стал широко употребляться.

Критика теории

Кроме теории расширяющейся Вселенной имелась также теория, что Вселенная стационарна, то есть не эволюционирует и не имеет ни начала, ни конца во времени. Часть сторонников такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них.[9][10][11] Другой вариант, не отрицающий расширения Вселенной, представлен теорией стационарной Вселенной Ф. Хойла. Она также плохо согласуется с наблюдениями.[11]

В некоторых теориях инфляции (например, вечной инфляции) наша наблюдаемая картина Большого взрыва соответствует положению лишь в наблюдаемой нами части Вселенной (Метагалактике), но не исчерпывает всю Вселенную.

Кроме того, в теории Большого взрыва не рассматривается вопрос о причинах возникновения сингулярности, или материи и энергии для её возникновения, обычно просто постулируется её безначальность. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Есть также некоторое число наблюдательных фактов, плохо согласующихся с изотропностью и однородностью наблюдаемой Вселенной: наличие преимущественного направления вращения галактик[12][13], неоднородности в распределении галактик на наибольших доступных масштабах, ось зла.

Теория и религия

22 ноября 1951 года Папа Римский Пий XII объявил, что теория Большого взрыва не противоречит католическим представлениям о создании мира[14][15]. В православии также существует положительное отношение к этой теории.[16] Консервативные протестантские христианские конфессии также приветствовали теорию Большого Взрыва, как поддерживающую историческую интерпретацию учения о творении[17]. Некоторые мусульмане стали указывать на то, что в Коране есть упоминания Большого взрыва[18][19]. Согласно индуистскому учению, у мира нет начала и конца, он развивается циклично[20][21], однако в «Энциклопедии индуизма» говорится, что теория напоминает, что всё произошло от Брахмана, который «меньше атома, но больше самого громадного»[22].

В Писаниях бахаи утверждается, что Вселенная не имеет начала, однако все элементы произошли из некоторой единой субстанции — то есть, был предсказан какой-то аналог теории Стивена Хокинга о «конечной, но бескрайней» Вселенной[23]: «Знайте, что одна из самых сложных для постижения духовных истин есть та, что существующий мир — сия бесконечная Вселенная — не имеет начала… Очевидно, что вначале материя была едина, и что единая материя проявлялась по-разному в каждом элементе. Так было создано многообразие форм, и различные виды проявления материи, единожды возникнув, остались в качестве постоянных, так что каждый элемент обрёл свою индивидуальность. Но это постоянство было не окончательным, и полностью и в совершенстве осуществилось лишь по прошествии очень долгого периода времени».[24]

См. также

Примечания

  1. ↑ Wollack, Edward J. Cosmology: The Study of the Universe. Universe 101: Big Bang Theory. NASA (10 December 2010). Архивировано из первоисточника 30 мая 2012. Проверено 27 апреля 2011.
  2. ↑ How Old is the Universe?  (англ.). НАСА (19 июля 2010 года). Архивировано из первоисточника 23 августа 2011. Проверено 28 октября 2010.
  3. ↑ Komatsu, E.; et al. (2009). «Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation». Astrophysical Journal Supplement 180 (2): 330. DOI:10.1088/0067-0049/180/2/330. Bibcode: 2009ApJS..180..330K.
  4. ↑ Menegoni, E.; et al. (2009). «New constraints on variations of the fine structure constant from CMB anisotropies». Physical Review D 80 (8): 087302. DOI:10.1103/PhysRevD.80.087302. Bibcode: 2009PhRvD..80h7302M.
  5. ↑ Einstein, Albert Die Grundlage der allgemeinen Relativittstheorie (нем.) // Annalen der Physik. — 1916. — № 7. — P. 769—822. — ISSN 1521-3889.
  6. ↑ Wirtz, C. De Sitters Kosmologie und die Radialbewegungen der Spiralnebel // Astronomische Nachrichten, Bd. 222, S. 21 (1924)
  7. ↑ Cosmic Microwave Background Timeline Национальная лаборатория им. Лоуренса в Беркли
  8. ↑ Seven-Year Wilson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (PDF). nasa.gov. Архивировано из первоисточника 30 мая 2012. Проверено 9 марта 2012. (см. таблицу наилучших оценок космологических параметров на с. 39)
  9. ↑ Wright E.L. Errors in Tired Light Cosmology.
  10. ↑ Overduin J.M., Wesson P.S. The light/dark universe: light from galaxies, dark matter and dark energy. — World Scientific Publishing Co., 2008. — ISBN 9812834419
  11. ↑ 1 2 P. J. E. Peebles The Standard Cosmological Model in Rencontres de Physique de la Vallee d’Aosta (1998) ed. M. Greco, p. 7
  12. ↑ Учёные нашли след вращения Вселенной при рождении
  13. ↑ ScienceDirect — Physics Letters B : Detection of a dipole in the handedness of spiral galaxies with redshifts
  14. ↑ Ferris T. Coming of age in the Milky Way. — Morrow, 1988. — P. 274, 438. — ISBN 978-0-688-05889-0, citing Berger A. The Big bang and Georges Lemaître: proceedings of a symposium in honour of G. Lemaître fifty years after his initiation of big-bang cosmology, Louvainla-Neuve, Belgium, 10–13 October 1983. — D. Reidel, 1984. — P. 387. — ISBN 978-90-277-1848-8
  15. ↑ Pope Pius XII Ai soci della Pontificia Accademia delle Scienze, 22 novembre 1951 - Pio XII, Discorsi (Italian). Tipografia Poliglotta Vaticana (2 ноября 1951). Архивировано из первоисточника 30 мая 2012. Проверено 23 февраля 2012.
  16. ↑ Константин Пархоменко Первый день Творения. Сотворение мира и человека.. Архивировано из первоисточника 23 ноября 2010. Проверено 22 июня 2012.
  17. ↑ Russell R.J. Cosmology: From Alpha to Omega. — Fortress Press, 2008. — ISBN 9780800662738
  18. ↑ Diane Morgan Essential Islam: a comprehensive guide to belief and practice. — ABC-CLIO, 2010.
  19. ↑ Helaine Selin Encyclopædia of the history of science, technology, and medicine in non-western cultures. — Springer Press, 1997.
  20. ↑ Sushil Mittal, G. R. Thursby The Hindu World. — Psychology Press, 2004.
  21. ↑ John R. Hinnells The Routledge companion to the study of religion. — Taylor & Francis, 2010.
  22. ↑ Sunil Sehgal Encyclopædia of Hinduism: T-Z, Volume 5. — Sarup & Sons, 1999.
  23. ↑ «Finite but unbounded universe… with no edge in space, no beginning or end in time.» Carl Sagan, Introduction to Hawking, Brief History of Time, p. x.
  24. ↑ Абдул-Баха. «Ответы на некоторые вопросы», гл. 47. Эта книга была впервые опубликована в 1908 г.

Литература

Ссылки

dal.academic.ru

Большой взрыв - это... Что такое Большой взрыв?

Большо́й взрыв (англ. Big Bang) — космологическая модель, описывающая раннее развитие Вселенной[1], а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва.

Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Современные представления теории Большого взрыва и теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[2][3][4] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Проблема начальной сингулярности

В этом и следующем разделах не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 26 декабря 2010.

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

История развития представлений о Большом Взрыве

  • 1916 — вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности», в которой он завершил создание релятивистской теории гравитации[5].
  • 1917 — Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».
  • 1922 — советский математик и геофизик А. А. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.
  • 1923 — немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.
  • 1924 — К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.[6]
  • 1925 — К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.
  • 1927 — опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.
  • 1929 — 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.
  • 1948 — выходит работа Г. А. Гамова о «горячей вселенной», построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.
  • 1955 — Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ-излучение с температурой около 3K[7].
  • 1964 — американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру. Oна оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.
  • 2003 — спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE, Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя — 4 %, тёмная материя — 23 %, тёмная энергия — 73 %).[8]
  • 2009 — запущен спутник Планк, который в настоящее время измеряет анизотропию реликтового излучения с ещё более высокой точностью.

История термина

Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» (Big Bang) применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

На русский язык Big Bang можно было бы перевести как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который хотел вложить в него Хойл. После того, как его лекции были опубликованы, термин стал широко употребляться.

Критика теории

Кроме теории расширяющейся Вселенной имелась также теория, что Вселенная стационарна, то есть не эволюционирует и не имеет ни начала, ни конца во времени. Часть сторонников такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них.[9][10][11] Другой вариант, не отрицающий расширения Вселенной, представлен теорией стационарной Вселенной Ф. Хойла. Она также плохо согласуется с наблюдениями.[11]

В некоторых теориях инфляции (например, вечной инфляции) наша наблюдаемая картина Большого взрыва соответствует положению лишь в наблюдаемой нами части Вселенной (Метагалактике), но не исчерпывает всю Вселенную.

Кроме того, в теории Большого взрыва не рассматривается вопрос о причинах возникновения сингулярности, или материи и энергии для её возникновения, обычно просто постулируется её безначальность. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Есть также некоторое число наблюдательных фактов, плохо согласующихся с изотропностью и однородностью наблюдаемой Вселенной: наличие преимущественного направления вращения галактик[12][13], неоднородности в распределении галактик на наибольших доступных масштабах, ось зла.

Теория и религия

22 ноября 1951 года Папа Римский Пий XII объявил, что теория Большого взрыва не противоречит католическим представлениям о создании мира[14][15]. В православии также существует положительное отношение к этой теории.[16] Консервативные протестантские христианские конфессии также приветствовали теорию Большого Взрыва, как поддерживающую историческую интерпретацию учения о творении[17]. Некоторые мусульмане стали указывать на то, что в Коране есть упоминания Большого взрыва[18][19]. Согласно индуистскому учению, у мира нет начала и конца, он развивается циклично[20][21], однако в «Энциклопедии индуизма» говорится, что теория напоминает, что всё произошло от Брахмана, который «меньше атома, но больше самого громадного»[22].

В Писаниях бахаи утверждается, что Вселенная не имеет начала, однако все элементы произошли из некоторой единой субстанции — то есть, был предсказан какой-то аналог теории Стивена Хокинга о «конечной, но бескрайней» Вселенной[23]: «Знайте, что одна из самых сложных для постижения духовных истин есть та, что существующий мир — сия бесконечная Вселенная — не имеет начала… Очевидно, что вначале материя была едина, и что единая материя проявлялась по-разному в каждом элементе. Так было создано многообразие форм, и различные виды проявления материи, единожды возникнув, остались в качестве постоянных, так что каждый элемент обрёл свою индивидуальность. Но это постоянство было не окончательным, и полностью и в совершенстве осуществилось лишь по прошествии очень долгого периода времени».[24]

См. также

Примечания

  1. ↑ Wollack, Edward J. Cosmology: The Study of the Universe. Universe 101: Big Bang Theory. NASA (10 December 2010). Архивировано из первоисточника 30 мая 2012. Проверено 27 апреля 2011.
  2. ↑ How Old is the Universe?  (англ.). НАСА (19 июля 2010 года). Архивировано из первоисточника 23 августа 2011. Проверено 28 октября 2010.
  3. ↑ Komatsu, E.; et al. (2009). «Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation». Astrophysical Journal Supplement 180 (2): 330. DOI:10.1088/0067-0049/180/2/330. Bibcode: 2009ApJS..180..330K.
  4. ↑ Menegoni, E.; et al. (2009). «New constraints on variations of the fine structure constant from CMB anisotropies». Physical Review D 80 (8): 087302. DOI:10.1103/PhysRevD.80.087302. Bibcode: 2009PhRvD..80h7302M.
  5. ↑ Einstein, Albert Die Grundlage der allgemeinen Relativittstheorie (нем.) // Annalen der Physik. — 1916. — № 7. — P. 769—822. — ISSN 1521-3889.
  6. ↑ Wirtz, C. De Sitters Kosmologie und die Radialbewegungen der Spiralnebel // Astronomische Nachrichten, Bd. 222, S. 21 (1924)
  7. ↑ Cosmic Microwave Background Timeline Национальная лаборатория им. Лоуренса в Беркли
  8. ↑ Seven-Year Wilson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (PDF). nasa.gov. Архивировано из первоисточника 30 мая 2012. Проверено 9 марта 2012. (см. таблицу наилучших оценок космологических параметров на с. 39)
  9. ↑ Wright E.L. Errors in Tired Light Cosmology.
  10. ↑ Overduin J.M., Wesson P.S. The light/dark universe: light from galaxies, dark matter and dark energy. — World Scientific Publishing Co., 2008. — ISBN 9812834419
  11. ↑ 1 2 P. J. E. Peebles The Standard Cosmological Model in Rencontres de Physique de la Vallee d’Aosta (1998) ed. M. Greco, p. 7
  12. ↑ Учёные нашли след вращения Вселенной при рождении
  13. ↑ ScienceDirect — Physics Letters B : Detection of a dipole in the handedness of spiral galaxies with redshifts
  14. ↑ Ferris T. Coming of age in the Milky Way. — Morrow, 1988. — P. 274, 438. — ISBN 978-0-688-05889-0, citing Berger A. The Big bang and Georges Lemaître: proceedings of a symposium in honour of G. Lemaître fifty years after his initiation of big-bang cosmology, Louvainla-Neuve, Belgium, 10–13 October 1983. — D. Reidel, 1984. — P. 387. — ISBN 978-90-277-1848-8
  15. ↑ Pope Pius XII Ai soci della Pontificia Accademia delle Scienze, 22 novembre 1951 - Pio XII, Discorsi (Italian). Tipografia Poliglotta Vaticana (2 ноября 1951). Архивировано из первоисточника 30 мая 2012. Проверено 23 февраля 2012.
  16. ↑ Константин Пархоменко Первый день Творения. Сотворение мира и человека.. Архивировано из первоисточника 23 ноября 2010. Проверено 22 июня 2012.
  17. ↑ Russell R.J. Cosmology: From Alpha to Omega. — Fortress Press, 2008. — ISBN 9780800662738
  18. ↑ Diane Morgan Essential Islam: a comprehensive guide to belief and practice. — ABC-CLIO, 2010.
  19. ↑ Helaine Selin Encyclopædia of the history of science, technology, and medicine in non-western cultures. — Springer Press, 1997.
  20. ↑ Sushil Mittal, G. R. Thursby The Hindu World. — Psychology Press, 2004.
  21. ↑ John R. Hinnells The Routledge companion to the study of religion. — Taylor & Francis, 2010.
  22. ↑ Sunil Sehgal Encyclopædia of Hinduism: T-Z, Volume 5. — Sarup & Sons, 1999.
  23. ↑ «Finite but unbounded universe… with no edge in space, no beginning or end in time.» Carl Sagan, Introduction to Hawking, Brief History of Time, p. x.
  24. ↑ Абдул-Баха. «Ответы на некоторые вопросы», гл. 47. Эта книга была впервые опубликована в 1908 г.

Литература

Ссылки

dikc.academic.ru

Большой взрыв - это... Что такое Большой взрыв?

Большо́й взрыв (англ. Big Bang) — космологическая модель, описывающая раннее развитие Вселенной[1], а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва.

Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Современные представления теории Большого взрыва и теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[2][3][4] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Проблема начальной сингулярности

В этом и следующем разделах не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 26 декабря 2010.

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

История развития представлений о Большом Взрыве

  • 1916 — вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности», в которой он завершил создание релятивистской теории гравитации[5].
  • 1917 — Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».
  • 1922 — советский математик и геофизик А. А. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.
  • 1923 — немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.
  • 1924 — К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.[6]
  • 1925 — К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.
  • 1927 — опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.
  • 1929 — 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.
  • 1948 — выходит работа Г. А. Гамова о «горячей вселенной», построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.
  • 1955 — Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ-излучение с температурой около 3K[7].
  • 1964 — американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру. Oна оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.
  • 2003 — спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE, Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя — 4 %, тёмная материя — 23 %, тёмная энергия — 73 %).[8]
  • 2009 — запущен спутник Планк, который в настоящее время измеряет анизотропию реликтового излучения с ещё более высокой точностью.

История термина

Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» (Big Bang) применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

На русский язык Big Bang можно было бы перевести как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который хотел вложить в него Хойл. После того, как его лекции были опубликованы, термин стал широко употребляться.

Критика теории

Кроме теории расширяющейся Вселенной имелась также теория, что Вселенная стационарна, то есть не эволюционирует и не имеет ни начала, ни конца во времени. Часть сторонников такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них.[9][10][11] Другой вариант, не отрицающий расширения Вселенной, представлен теорией стационарной Вселенной Ф. Хойла. Она также плохо согласуется с наблюдениями.[11]

В некоторых теориях инфляции (например, вечной инфляции) наша наблюдаемая картина Большого взрыва соответствует положению лишь в наблюдаемой нами части Вселенной (Метагалактике), но не исчерпывает всю Вселенную.

Кроме того, в теории Большого взрыва не рассматривается вопрос о причинах возникновения сингулярности, или материи и энергии для её возникновения, обычно просто постулируется её безначальность. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Есть также некоторое число наблюдательных фактов, плохо согласующихся с изотропностью и однородностью наблюдаемой Вселенной: наличие преимущественного направления вращения галактик[12][13], неоднородности в распределении галактик на наибольших доступных масштабах, ось зла.

Теория и религия

22 ноября 1951 года Папа Римский Пий XII объявил, что теория Большого взрыва не противоречит католическим представлениям о создании мира[14][15]. В православии также существует положительное отношение к этой теории.[16] Консервативные протестантские христианские конфессии также приветствовали теорию Большого Взрыва, как поддерживающую историческую интерпретацию учения о творении[17]. Некоторые мусульмане стали указывать на то, что в Коране есть упоминания Большого взрыва[18][19]. Согласно индуистскому учению, у мира нет начала и конца, он развивается циклично[20][21], однако в «Энциклопедии индуизма» говорится, что теория напоминает, что всё произошло от Брахмана, который «меньше атома, но больше самого громадного»[22].

В Писаниях бахаи утверждается, что Вселенная не имеет начала, однако все элементы произошли из некоторой единой субстанции — то есть, был предсказан какой-то аналог теории Стивена Хокинга о «конечной, но бескрайней» Вселенной[23]: «Знайте, что одна из самых сложных для постижения духовных истин есть та, что существующий мир — сия бесконечная Вселенная — не имеет начала… Очевидно, что вначале материя была едина, и что единая материя проявлялась по-разному в каждом элементе. Так было создано многообразие форм, и различные виды проявления материи, единожды возникнув, остались в качестве постоянных, так что каждый элемент обрёл свою индивидуальность. Но это постоянство было не окончательным, и полностью и в совершенстве осуществилось лишь по прошествии очень долгого периода времени».[24]

См. также

Примечания

  1. ↑ Wollack, Edward J. Cosmology: The Study of the Universe. Universe 101: Big Bang Theory. NASA (10 December 2010). Архивировано из первоисточника 30 мая 2012. Проверено 27 апреля 2011.
  2. ↑ How Old is the Universe?  (англ.). НАСА (19 июля 2010 года). Архивировано из первоисточника 23 августа 2011. Проверено 28 октября 2010.
  3. ↑ Komatsu, E.; et al. (2009). «Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation». Astrophysical Journal Supplement 180 (2): 330. DOI:10.1088/0067-0049/180/2/330. Bibcode: 2009ApJS..180..330K.
  4. ↑ Menegoni, E.; et al. (2009). «New constraints on variations of the fine structure constant from CMB anisotropies». Physical Review D 80 (8): 087302. DOI:10.1103/PhysRevD.80.087302. Bibcode: 2009PhRvD..80h7302M.
  5. ↑ Einstein, Albert Die Grundlage der allgemeinen Relativittstheorie (нем.) // Annalen der Physik. — 1916. — № 7. — P. 769—822. — ISSN 1521-3889.
  6. ↑ Wirtz, C. De Sitters Kosmologie und die Radialbewegungen der Spiralnebel // Astronomische Nachrichten, Bd. 222, S. 21 (1924)
  7. ↑ Cosmic Microwave Background Timeline Национальная лаборатория им. Лоуренса в Беркли
  8. ↑ Seven-Year Wilson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (PDF). nasa.gov. Архивировано из первоисточника 30 мая 2012. Проверено 9 марта 2012. (см. таблицу наилучших оценок космологических параметров на с. 39)
  9. ↑ Wright E.L. Errors in Tired Light Cosmology.
  10. ↑ Overduin J.M., Wesson P.S. The light/dark universe: light from galaxies, dark matter and dark energy. — World Scientific Publishing Co., 2008. — ISBN 9812834419
  11. ↑ 1 2 P. J. E. Peebles The Standard Cosmological Model in Rencontres de Physique de la Vallee d’Aosta (1998) ed. M. Greco, p. 7
  12. ↑ Учёные нашли след вращения Вселенной при рождении
  13. ↑ ScienceDirect — Physics Letters B : Detection of a dipole in the handedness of spiral galaxies with redshifts
  14. ↑ Ferris T. Coming of age in the Milky Way. — Morrow, 1988. — P. 274, 438. — ISBN 978-0-688-05889-0, citing Berger A. The Big bang and Georges Lemaître: proceedings of a symposium in honour of G. Lemaître fifty years after his initiation of big-bang cosmology, Louvainla-Neuve, Belgium, 10–13 October 1983. — D. Reidel, 1984. — P. 387. — ISBN 978-90-277-1848-8
  15. ↑ Pope Pius XII Ai soci della Pontificia Accademia delle Scienze, 22 novembre 1951 - Pio XII, Discorsi (Italian). Tipografia Poliglotta Vaticana (2 ноября 1951). Архивировано из первоисточника 30 мая 2012. Проверено 23 февраля 2012.
  16. ↑ Константин Пархоменко Первый день Творения. Сотворение мира и человека.. Архивировано из первоисточника 23 ноября 2010. Проверено 22 июня 2012.
  17. ↑ Russell R.J. Cosmology: From Alpha to Omega. — Fortress Press, 2008. — ISBN 9780800662738
  18. ↑ Diane Morgan Essential Islam: a comprehensive guide to belief and practice. — ABC-CLIO, 2010.
  19. ↑ Helaine Selin Encyclopædia of the history of science, technology, and medicine in non-western cultures. — Springer Press, 1997.
  20. ↑ Sushil Mittal, G. R. Thursby The Hindu World. — Psychology Press, 2004.
  21. ↑ John R. Hinnells The Routledge companion to the study of religion. — Taylor & Francis, 2010.
  22. ↑ Sunil Sehgal Encyclopædia of Hinduism: T-Z, Volume 5. — Sarup & Sons, 1999.
  23. ↑ «Finite but unbounded universe… with no edge in space, no beginning or end in time.» Carl Sagan, Introduction to Hawking, Brief History of Time, p. x.
  24. ↑ Абдул-Баха. «Ответы на некоторые вопросы», гл. 47. Эта книга была впервые опубликована в 1908 г.

Литература

Ссылки

dik.academic.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики