Содержание
Мозги Инжектора — Электронный Блок Управления, Где Находятся Форсунки, Как Заводить Без ЭБУ, Расшифровка Кодов Ошибок, Устранение Неисправностей
Содержание
- 1 Получаемая ЭБУ информация и сигналы управления исходящие с него
- 2 Конструктивные особенности электронного блока управления
- 3 Неполадки, возникающие в модуле
- 4 Расшифровка кодов ошибок на примере ВАЗ 21074
- 5 Эксплуатация автомобиля без электронного блока управления
- 6 Устранение неисправностей связанных с мозгами инжектора
Карбюраторные автомобили шли с конвейера без мозгов, так как все управление в них реализовано механически. С приходом инжекторных систем питания машины начали наполняться всевозможной электроникой. Обработкой информации от датчиков и генерацией управляющих сигналов занимается ЭБУ. Выход его из строя способен полностью обездвижить железного коня, поэтому к модулю управления следует относится с повышенной внимательностью.
Внешний вид электронного блока управления
Получаемая ЭБУ информация и сигналы управления исходящие с него
Для правильного дозирования подаваемого топлива в электронный блок управления приходит информация:
- частота вращения коленвала, определяемая датчиком положения;
- возникновение детонации в процессе эксплуатации;
- массовый расход воздуха мотором;
- отклонение от номинального напряжения бортовой сети машины;
- скорость авто;
- температура в системе охлаждения двигателя;
- какое положение занимает дроссельная заслонка;
- процент кислорода в выхлопных газах;
- наличие дополнительных нагрузок на двигатель, например, включение кондиционера.
Количество датчиков и соответственно объем получаемой информации зависит от модели автомобиля. В бюджетных машинах ЭБУ обладает только основными данными. Наиболее развитые электронные блоки собирают и оперируют информацией о каждом узле машины, что сказывается на динамических характеристиках и экономичности авто.
После обработки данных блок управления инжектором подает сигналы для:
- открытия и закрытия форсунок;
- контроля искрообразования;
- выбора режима работы топливного насоса;
- поддержания стабильных оборотов холостого хода;
- включения и выключения вентилятора системы охлаждения;
- подключения или отключения кондиционера электромагнитной муфтой;
- улавливания паров бензина адсорбером;
- проведения самодиагностики агрегатов.
Работа электронного блока управления предполагает оперирование большим количеством информации в режиме реального времени. Неточность в любом из каналов приведет к нестабильной работе двигателя, увеличению расхода топлива и потере динамических характеристик, поэтому все возникающие поломки в электронике требуют незамедлительного устранения.
Конструктивные особенности электронного блока управления
Для работы с информацией, поступающей в модуль, ЭБУ имеет несколько видов памяти:
- Алгоритм управления двигателем в зависимости от режима эксплуатации находится в программируемом постоянном запоминающем устройстве. Здесь же хранится и основная таблица различных калибровок параметров. При отключении питания вся информация остается на месте. Для стирания или перезаписи данных используется специальное оборудование, предназначенное для чип-тюнинга;
- Энергозависимая память, хранящая временные данные и обрабатываемую электронным модулем информацию, называется оперативным запоминающим устройством. В ней происходит фиксация и выработка управляющих сигналов в зависимости от изменений параметров, поступающих с датчиков;
- Сохранение кодов и паролей происходит в электрически репрограммируемом запоминающем устройстве. Данный тип памяти является энергонезависимым, но в отличии от ППЗУ не требует специального оборудования для перезаписи.
Ввод информационных сигналов у качественных электронных модулей осуществляется через гальваническую развязку. Это предотвращает повреждение главных чипов блока управления в случае выхода какого-либо датчика из строя. От внутренних ошибок модуль защищен различными методами самодиагностики и коррекции сбоев, что помогает избегать ситуации, когда автомобиль остается без мозгов.
Неполадки, возникающие в модуле
Причины, почему автомобиль может остаться без мозгов, наиболее часто возникают по вине автовладельца. Так, например, попытка перезаписать программное обеспечение при проведении чип-тюнига может закончится неудачей, если автолюбитель выбрал не правильное ПО. Также причинами вызывающими поломку ЭБУ являются:
- Неудачное расположение модуля управления. Например, в автомобилях ВАЗ 2113 – 2115 ЭБУ установлен рядом с радиатором печки. Помимо теплового воздействия, блок может залить охлаждающей жидкостью, после чего машина останется без мозгов;
- Ухудшения контакта между клеммами и генератором или аккумулятором. Это вызывает скачки бортового напряжения автомобиля. ЭБУ защищен от перепадов напряжения, но продолжительное воздействие способно вывести блок из строя;
- Возникновение ЭДС в первичной обмотке катушки ведет к пробою транзисторов электронного блока управления. Электродвижущая сила обычно возникает при плохом контакте свечей зажигания или повышенном внутреннем сопротивлении высоковольтных проводов.
Для определения неисправности необходимо прочитать лог ошибок, сохраненный в мозгах инжектора. Для этих целей существует специальный диагностический разъем. Расположение его зависит от конкретной модели автомобиля. Например, в автомобилях ВАЗ с высокой панелью диагностический разъем находится внутри центральной консоли.
Расшифровка кодов ошибок на примере ВАЗ 21074
Если мозги инжектора обнаружили неисправность в работе двигателя, то об этом будет сигнализировать загоревшаяся лампочка «check engine». Понять какая именно неисправность произошла по данному оповещению невозможно. Для более точного определения поломки требуется подключить диагностический сканер к специальному разъему. При его помощи из памяти ЭБУ считывается лог ошибки, который можно расшифровать при помощи справочников по конкретному автомобилю. Так, например, для ВАЗ 21074 наиболее часто встречаемыми ошибками являются:
- Неисправность воздушного датчика;
- Неоптимальный режим сгорания бензовоздушной смеси. В результате выхлопные газы имеют повышенную токсичность. Лямбда-зонд может выдать эту ошибку, например, если в выхлопе находятся пары несгоревшего бензина;
- Требуется драйверная проверка модуля управления инжекторными двигателями;
- Проблемы с получением информации от датчика температуры;
- Состав горючей смеси не соответствует режиму работы двигателя. Причиной этого могут стать, например, загрязненные форсунки;
- Неправильное определение момента возникновения детонации в работе двигателя;
- Отсутствуют данные о положении дроссельной заслонки. Помимо повреждения самого считывающего элемента, возможен обрыв информационного шлейфа;
- Температура мотора находится выше рабочего диапазон;
- Медленный отклик сигнальной системы машины.
При выполнении считывания ошибок сканер указывает лишь на предположительное место неисправности, но не может указать причину вызвавшую поломку, поэтому после получения кода важно правильно его истолковать. При недостаточном понимании работы инжекторных двигателей и топливных систем может возникнуть ситуация, когда автовладелец, неправильно расшифровав лог ошибки, займется ремонтом исправного узла машины.
Эксплуатация автомобиля без электронного блока управления
В случае выхода из строя ЭБУ непопулярной модели найти новый модуль может стать большой проблемой. В таком случае автовладелец может пойти на радикальный шаг и сменить электронику на другую систему без мозгов. Инжектор в таком случае сменяется карбюратором, а зажиганием начинает управлять коммутатор.
Вносить столь серьезные изменения можно только в крайнем случае. Инжекторный двигатель спроектирован для работы под контролем электронного блока управления. При его отсутствии возможны провалы при разгоне, нестабильная работа и повышенный расход топлива. Убирать мозги можно только временно, например, для перегона авто.
Устранение неисправностей связанных с мозгами инжектора
При возникновении поломки ЭБУ автовладелец может захотеть поменять модуль на схожую модель. При этом важно учитывать, что каждые мозги изготавливаются под конкретную модель силовой установки, комбинацию датчиков, протяженность шлейфов. Прошивка также меняется от модели к модели, поэтому произвести просто перестановку блоков невозможно, даже если их разъемы идентичны.
При установке похожей модели без полного согласования параметров возможны негативные последствия:
- двигатель перестает заводится;
- автомобиль теряет былую резвость;
- значительно возрастает расход топлива;
- мотор нестабильно работает;
- ЭБУ постоянно сигнализирует об ошибке.
Производить устранение неисправности заменой на похожий электронный блок управления категорически запрещается. Правильными методами устранения неисправностей являются:
- Визуальный осмотр датчиков и проводов идущих к ним. Часто причина может скрываться в их механическом повреждении. Замена дефектного элемента на новый позволит избавится от поломки, которую выдает электронный блок управления;
- Сделать перепрошивку программного обеспечения. Повышение динамических характеристик автомобиля очень часто возможно только при помощи чип-тюнинга;
- Сделать перезагрузку мозгов инжектора путем снятия одной из клемм аккумулятора. Произошедший сбой в процессе эксплуатации можно сбросить отключив питание от ЭБУ. Данным методом рекомендуется пользоваться при однократном появлении ошибки. Если ситуация повторяется, то перезагружать модуль не имеет смысла.
При невозможности устранить поломку вышеуказанными способами, единственным верным решением является обращение в специализированный сервисный центр. После считывания лога ошибки сканером специалисты определят возможный круг неисправностей. После этого определяется оптимальный способ избавления дефекта.
Появление электронного блока управления значительно улучшило эксплуатационные свойства автомобиля. Произошло это благодаря возможности контроля режима работы силовой установки и корректировки параметров в режиме реального времени. В свою очередь, усложнение электроники машины привело к возникновению поломок, способных обездвижить железного коня.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Поделиться с друзьями:
Хочу всё знать: что такое компьютерная диагностика, и как её проводят
Многие из автомобилистов знают, что компьютерная диагностика позволяет узнать некоторые параметры работы двигателя, выяснить, что с ним не так, а иногда даже – подкорректировать работу мотора. В целом, всё так и есть. И всё же мы попытаемся рассказать о процессе подробнее: поверьте, это очень интересный процесс.
Что такое OBD?
Начнём с самого начала. Чтобы подключить к машине диагностическое оборудование, нужен специальный разъём, который сейчас есть у всех автомобилей, и который иногда называют просто OBD-II. На самом деле, OBD-II – это не разъём, а целая система бортовой диагностики. И несмотря на то, что прочно она вошла в нашу жизнь всего-то лет 20 назад, её история начинается ещё в 50-х годах прошлого века.
В середине ХХ века американское правительство внезапно пришло к мысли, что стремительно растущее количество автомобилей как-то не лучшим образом влияет на экологию. Правительство стало делать вид, что оно хочет на законодательном уровне эту ситуацию улучшить. Автопроизводители в свою очередь стали делать вид, что они выполняют придуманные законы.
Появлялись крайне разнообразные системы диагностики, задача которых была ограничена контролем за выбросами в атмосферу (а так как сложной техники не было, то максимум, за чем могли более менее адекватно наблюдать, это за расходом топлива). Никто (иногда даже сами производители) нормально пользоваться такими системами не мог. И когда к середине 70-х департамент по контролю за воздушной средой (Air Resources Board, ARB) и агентство по защите окружающей среды (Environment Protection Agency, EPA) стали понимать, что ничего хорошего добиться не получается, они стали усиленно рекомендовать внедрять новые системы.
Они не просто мигали бы лампочкой, «если что-то пошло не так», а позволяли бы быстро проверить автомобиль на выполнение им экологических норм. Первым откликнувшимся производителем стал General Motors, разработавший свой интерфейс ALDL. Разумеется, ни о каком мировом стандарте речь ещё не заходила, да и об американском тоже. В 1986 году ALDL был модернизирован, но до нужных масштабов дело никак не доходило. И только в 1991 году California Air Resources Board (калифорнийский департамент по контролю за воздушной средой) обязал всех американских автопроизводителей оборудовать свои автомобили диагностической системой OBD-I (On-Board Diagnostic), разработанной в 1989 году.
Что можно было проконтролировать с помощью OBD-I? Само собой, первоочередной задачей было следить за составом отработавших газов. Можно было проследить за работой электронной системы зажигания, кислородных датчиков и системы рециркуляции EGR. В случае появления неисправности загоралась лампа MIL (malfunction indicator lamp – лампа индикации неисправности). Никакой более точной информации получить было нельзя, хотя со временем лампочку научили мигать с определённой последовательностью, которая позволяла выявить хотя бы неисправную систему. Но и этого скоро стало мало.
В январе 1996 года наличие новой версии OBD-II стало обязательным для всех автомобилей, проданных в Америке. Основным отличием этой диагностической системы от OBD-I стала возможность контролировать систему питания, а также её можно было проверить на автомобиле с помощью подключаемого сканера. Этим занимались полицейские. Им было абсолютно плевать на всё, кроме токсичности – ведь вся эта система изначально и разрабатывалась для контроля за ОГ. Полагалось, что система диагностики на новом автомобиле должна была работать пять лет или сто тысяч километров пробега. Но на этом история OBD-II ещё не заканчивается.
В 2001 году все автомобили, проданные в Европе, должны были иметь систему EOBD (European Union On-Board Diagnostic), теперь уже – с CAN-шиной (о которой подробно как-нибудь в другой раз). В 2003 году японцы ввели обязательный JOBD (Japan On-Board Diagnostic), а в 2004 год наличие EOBD становится обязательным для всех дизельных автомобилей в Европе.
Это – очень (даже слишком) краткая история OBD-II. Я её специально не стал усложнять, вам же вряд ли интересно читать про рецессивные и доминантные биты спецификации Controller Area Network? Вот и я думаю, что для начала хватит. Давайте лучше посмотрим на разъём OBD-II «живьем».
Место встречи изменить нельзя
Я уже говорил, что через диагностический разъём калифорнийские копы при желании должны были легко подключиться к самой системе. Чтобы упростить задачу, разъём было решено ставить не далее 60 см от рулевого колеса (хотя, скажем, китайцы это требование часто игнорируют, а иногда этим же балуются инженеры Рено). И если раньше разъём можно было встретить даже под капотом, то сейчас он всегда в зоне досягаемости водителя. Что из себя представляет разъем?
Вообще, он называется DLC – Diagnostic Link Connector. Вполне очевидно, что сама колодка тоже стала соответствовать одному стандарту. Разъём имеет 16 контактов, по восемь в два ряда. Стандарт определяет и назначение выводов в колодке. Например, контакт №16 (самый правый в нижнем ряду) должен быть подключенным к «плюсу» АКБ, а четвёртый – быть заземлением. И всё же шесть контактов отданы в распоряжение производителю – там может располагаться что-то по его желанию.
Часто от диагностов можно услышать слово «протокол». В данном случае – это стандарт передачи данных между отдельными блоками системы диагностики. Тут мы уже опасно сближаемся с информатикой, но ничего не поделаешь: диагностика-то компьютерная. Придётся ещё немного потерпеть.
Разработчиками OBD-II предусмотрены пять разных протоколов. Если говорить очень-очень упрощённо, то это пять различных способов передачи данных. Например, протокол SAE J 1850 используется преимущественно американцами, скорость передачи данных по нему – 41,6 Кб/с. А вот ISO 9141-2 в США не распространён, скорость передачи тут – 10,4 Кб/с. Впрочем, нам всё это знать не обязательно.
Пока просто запомним:
диагностическая колодка OBD-II везде одинаковая, распиновка – тоже, а какие разъёмы будут использоваться для подключения сканера, зависит от протокола, применяемого производителем.
Ну а теперь попробуем продиагностировать автомобиль – в этом нам помогут специалисты из компании «Лаборатория Скорости». Попутно посмотрим, что такое настоящая диагностика.
Что может диагностика?
Начнём с того, что подключить дешёвый мультимарочный сканер и считать одну-две ошибки – это даже близко не диагностика. И было бы большой ошибкой полагать, что диагностику делает сканер, а не человек. На самом деле они работают в паре, и если один из них значительно глупее другого, ничего хорошего из этого не выходит. Терпеть не могу пронумерованные списки, но использую один, чтобы более наглядно показать, что должна в себя включать правильная компьютерная диагностика:
- Сбор анамнеза.
- Чтение имеющихся и сохранённых ошибок.
- Просмотр потока данных (Live Data).
- Логирование данных «в движении».
- Опрос и сопоставление.
- Тесты исполнительных механизмов.
- Использование инструментальных методов диагностики.
Много непонятного? Спокойно дойдем до каждого из пунктов.
Есть еще постдиагностические работы: адаптация, активация дополнительных функций… Но про это в одной из следующих публикаций. Пока что сосредоточимся на диагностике неисправностей и рассмотрим все этапы.
Сбор анамнеза
Хороший диагност перед началом работы обязательно спросит у владельца, что с автомобилем не так, как неисправность проявляется, при каких условиях, с какой периодичностью, что предшествовало появлению неисправности… Одним словом, будет вести себя как опытный врач, причём не из бесплатной поликлиники, а из хорошего медицинского центра.
Наш подопытный MINI абсолютно здоров, поэтому в данном случае спрашивать нечего. Впрочем, иногда диагностику есть смысл проводить в качестве превентивной меры, не дожидаясь, когда Check Engine начнёт светить постоянно или периодически подмигивать с панели приборов.
Чтение имеющихся и сохранённых ошибок
Итак, подключаем к нашему «Минику» сканер и ноутбук с программным обеспечением от BMW (о том, как связаны BMW и MINI, напоминать не будем, тут все грамотные). Разумеется, через диагностический разъём. Кстати, Мини не хочет нормально проходить диагностику на одном аккумуляторе, поэтому подключаем внешний источник питания. Но это – особенность автомобиля, исключение, а не правило. Теперь ждём установления связи с автомобилем. Смотрим на картинку на экране ноутбука.
Первым делом мы можем увидеть общую информацию об автомобиле – от текущего пробега до номера двигателя и КПП. Кстати, если покупаете автомобиль с пробегом, то зачастую диагностика поможет определить его истинный пробег, который в том числе будет виден, например, в АКПП.
Или ещё интереснее: если открыть ремонтную историю, там будет видно, при каком пробеге было осуществлено последнее вмешательство (может, кто-то скидывал ошибки, проводил адаптацию какого-то механизма или делал что-то ещё). И если там стоит пробег тысяч 100, а на одометре – всего 70, то кое-кто хочет вас обмануть. Далеко не всегда такая возможность есть на 100%, да и «скрутчики» пробегов часто бывают изобретательны и не ленивы – иногда подчищают пробеги везде, хотя это и редкость.
Но мы отвлеклись. Мы быстренько сканируем на предмет ошибок и в разделе «Накопитель ошибок» все-таки находим такие записи, говорящие об ошибках в электроусилителе рулевого управления!
Еще раз подчеркну: если на машине не горит «чек» и не проявляется каких-либо явных неисправностей, это не значит, что их нет. Электроника может работать некорректно, не оповещая об этом без подключения сканера.
Поэтому компьютерную диагностику, особенно если у вас дорогая машина со сложной электроникой, нужно проводить регулярно, чтобы многие поломки устранить превентивно, пока они не вылились во что-то серьезное.
Но вернемся к нашему MINI. Открываем запись об ошибке ЭУР и смотрим так называемый Freeze Frame (замороженный кадр) – тут описано, при каких условиях эта ошибка проявилась. В нашем случае это произошло один раз при пробеге 120 тысяч километров, при скорости 117,5 км/ч, напряжение аккумулятора составляло 16,86 В.
Данные во Freeze Frame помогают понять, отчего произошла ошибка. Не всегда, конечно, но важной может оказаться любая сопутствующая информация о скорости, пробеге, напряжении и т.п. Это все при условии, что специалист умеет думать.
Бывает ведь, что доморощенные «диагносты» просто видят, какая деталь в машине «глючит», и тут же предлагают ее поменять в сборе «методом тыка», потому что, дескать, причину ошибки знает только Святой Дух, разгадать ее невозможно. Это все от большой жадности и недостатка профессионализма. А мы движемся дальше…
Просмотр потока данных (Live Data)
Live Data – это те данные, которые можно получить в режиме реального времени. Есть простые данные – например, обороты двигателя или температура охлаждающей жидкости.
А есть такие, которые без сканера выяснить вообще невозможно. Например, напряжение датчиков положения педали (речь идёт об электронной педали газа). Их два, смотрим показания: 2,91 В на одном и 1,37 В на втором. Теперь нажимаем на педаль и смотрим на значения: 3,59 В и 1,58 В. Собственно, это и есть Live Data – то, что происходит с механизмом в реальном времени.
Поток данных можно смотреть в том числе и на ходу. Бывает очень полезно посмотреть, как реагирует бортовая электроника машины на различные манипуляции, и что при этом показывает Live Data.
Опрос и сопоставление
Это работа диагноста, а не оборудования. После того, как машина протестирована всеми доступными способами, снятые показания предстоит осмыслить и сопоставить. А было ли напряжение штатным? А сопротивление? А температура? Ну и так далее.
Тест исполнительных механизмов
Его проводят для проверки их работоспособности. Обычно – чтобы просто убедиться, что узел работает как положено. Заходим в раздел меню «Активация детали» (да, русификация тут несколько странная) и запускаем, например, электровентилятор системы охлаждения. Работает. Для чего это может быть полезно? А вот, скажем, перегрев мотора. Если бы вентилятор не включился принудительно, вскрылась бы причина перегрева.
Использование дополнительных измерительных приборов
Бывает, что диагностика не может показать, какой именно из элементов системы вышел из строя. Возьмём, к примеру, ту же «электронную педаль газа». Допустим, напряжение окажется нештатным. Сканер это покажет, мы в этом уже убедились. Но в чём причина падения напряжения?
Тут уже поможет только измерение сопротивления реостата омметром и визуальный осмотр дорожек на предмет выявления повреждений или истертых контактов. Или еще пример. Диагностика показывает ошибки по датчикам положения коленвала и распредвалов. Скорее всего, это говорит о смещении фаз ГРМ, то есть – о растяжении цепи. А насколько смещены фазы? С этим поможет только осциллограф. Все-таки замена цепи ГРМ – работа крайне дорогостоящая, особенно на каком-нибудь V8. Тут лучше знать наверняка.
Одним осциллографом тоже, бывает, не обойтись. Например, сюда же можно отнести и опрессовку впуска с дыммашиной, и тест производительности форсунок «с обраткой», и контроль тех же дизельных форсунок на специальном форсуночном стенде, и многое другое…
Ещё можно применить диагностические замеры на диностенде, хотя это мало кто применяет в виду отсутствия оборудования. Ведь замер на стенде позволяет не только видеть цифры мощности и момента, но и смотреть характер кривой того и другого и параллельно снимать данные по давлению наддува, AFR, температуре выхлопных газов, распределению момента по осям и колесам и многое другое. Но это в России – экзотика.
Поэтому этот пункт отмечаем отдельно: настоящий диагност не брезгует запачкать одежду, ибо на этапе инструментальной диагностики придется открыть капот, залезть в проводку, демонтировать проблемные датчики или узлы и проверить их состояние визуально и на предмет правильности функционирования, прозвонить проводку, подключить осциллограф, мультиметр и другие необходимые приборы. Компьютерная диагностика предполагает использование не только одного сканера (а в реальной жизни сканеров должно быть больше – об этом в отдельном материале), но и других средств диагностики.
Логирование
Оно применяется в случае, который меня бы точно поставил в тупик: если ошибка имеет плавающий характер. Как раз та ситуация, когда в сервисе обычно говорят: «ну, сейчас же всё работает, вот как только опять случится – приезжайте». Действительно, такую неисправность определить бывает сложно. Но выход есть.
К диагностическому разъёму подключают специальный сканер (как правило, мини-сканер, который просто вставляется в разъем OBDII и не висит, не болтается, работает автономно, не мешает водителю. В общем, не требует никакого участия обычного пользователя – клиента автосервиса) и отправляют клиента кататься по своим нуждам.
Сканер тем временем усиленно работает, записывая лог, а в момент проявления проблемы дополнительно регистрирует саму ошибку и условия её проявления. Метод удобный, а главное – практически незаменимый при наличии сложных «плавающих» ошибок. И ещё одно его преимущество заключается в том, что специалисту не приходится в режиме реального времени сидеть и отслеживать всё, что творится в автомобиле. Иногда это просто невозможно, да если и возможно – то очень сложно. Гораздо удобнее потом просто забрать все записи и вдумчиво посидеть над логами.
А напоследок я скажу…
Всё вышесказанное – лишь вершина айсберга. Всю глыбу мы будем постепенно приподнимать, но не сразу.
Например, мы ничего не сказали о кодах, хотя тема эта очень интересная. Многие, наверное, слышали что-нибудь вроде такого: «У меня ошибка P0123. Это что значит?». Да, можно посмотреть. Это – высокий уровень выходного сигнала датчика положения дроссельной заслонки «А». Если коротко, то все ошибки делятся на группы. P – двигатель и трансмиссия, В – кузов, С – шасси.
Внутри тоже есть деления. Перечислять все долго и не нужно, но хотя бы для примера: P01ХХ – контроль системы смесеобразования, P03ХХ – система зажигания и система контроля пропусков воспламенения, а вот с P07ХХ до P09ХХ – трансмиссия. Вместо ХХ указываются подсистемы. Например, P0112 – низкий уровень датчика температуры всасываемого воздуха, а P0749 – ошибка электромагнитного клапана регулировки давления. Кодов – сотни, но несведущий человек ничего толкового из этой информации не вынесет.
Вообще, конечно, вопрос важный: предположим, где-то сделал диагностику, а что делать дальше? В этом случае ещё раз можно проверить квалификацию специалистов. Разобраться в истоках появления той или иной ошибки почти всегда возможно. Так что если слышите совет менять детали одну за другой, пока машина не поедет нормально, уносите ноги из такого сервиса. Их-то понять можно: менять детали, проданные с наценкой – куда проще, чем учиться на диагноста и ковыряться в мелочах, которые не принесут больших денег.
Особенно циничны в этих вопросах официальные дилеры, которых хлебом не корми, дай поменять полмашины в сборе. И если работа выполняется по гарантии, то путь так и будет. Но если вам придётся менять заслонку за свой счёт, то это может быть ой, как дорого. Хотя у дилера всё же есть преимущество – доступ к базе знаний. Так называют накопленную статистику по поломкам конкретной модели определенного года (а может, и месяца, и даты выпуска), определённой комплектации и даже цвета (если речь идёт, например, о кузове) по всем дилерам, где эти машины реализуются. Иногда использование базы знаний может существенно помочь в выяснении неисправности.
В будущих публикациях мы подробно разберемся в кодах ошибок, проведем практические замеры и даже сравним дилерский сканер с мультимарочными нескольких ценовых категорий! Оставайтесь на связи.
За помощь в подготовке материала благодарим компанию «Лаборатория Скорости» (СПб, ул. Химиков, д. 2, (812)385-50-82
Опрос
Вы когда-нибудь делали компьютерную диагностику?
Ваш голос
Всего голосов:
Объяснение ECU – мозг под капотом
Что такое ECU автомобиля и как он работает?
ЭБУ вашего автомобиля — это микропроцессор, отвечающий за управление двигателем вашего автомобиля. Он работает, используя сотни, а может быть, и тысячи единиц информации, поступающей от датчиков, расположенных во многих компонентах вашего автомобиля, чтобы убедиться, что ваш двигатель работает с максимальной отдачей.
Что означает ЭБУ?
ECU расшифровывается как Блок управления двигателем . Значение ECU довольно простое и прямолинейное, и, как раньше говорили, он делает именно то, что написано на банке.
Контроль, который он обеспечивает, гарантирует, что вы получите максимальную экономичность при соответствующих выбросах, в то же время он постоянно контролирует количество топлива и воздуха в вашем двигателе для достижения максимальной производительности.
Когда что-то идет не так, как надо, ваш ЭБУ выдает всевозможные коды неисправностей, чтобы обеспечить невероятную техническую поддержку. Неисправность ЭБУ направляет механиков прямо к проблеме, без необходимости старомодного поиска и устранения неисправностей методом проб и ошибок.
Вы видите, насколько важна работа электронного блока управления для долговременной работоспособности и производительности вашего автомобиля.
Ваш ЭБУ выполняет больше, чем просто управление двигателем
Помимо управления системой клапанов двигателя, ЭБУ также:
- Управляет турбонагнетателями
- Управление трансмиссией в автоматических коробках передач
- Обеспечить контроль тяги
- Управление фарами и функциями освещения
- Развертывание подушки безопасности
- Управление функциями круиз-контроля
- Надзор за другими операциями с самостоятельным вождением
- Управление электронным контролем устойчивости
- Управление системами безопасности
- Позаботьтесь об операциях безопасности, включая связь между вашим автомобилем и его ключом
Автомобиль, как правило, имеет центральный ECU, однако некоторые автомобили могут иметь несколько различных электронных блоков управления (также обозначаемых как ECU) по всему автомобилю для управления различными компонентами и системами. Еще одна функция центрального ЭБУ — обеспечение связи различных блоков друг с другом и обмена ценной информацией.
Как узнать, что мой ЭБУ не работает, и каковы типичные неисправности?
Учитывая передовые технологии, используемые сегодня в наших автомобилях, неудивительно, что проблемы с автомобильным компьютером могут возникнуть так же легко, как и с механическими. Неисправный ECU часто является причиной проблем с двигателем, но, не обнаружив истинной неисправности, он может привести механика к всевозможным диагностическим путям.
Итак, каковы типичные признаки поломки электронного блока управления и как выполнить столь важный ремонт автомобильного компьютера?
Загорается индикатор проверки двигателя
Само собой разумеется, что из всех датчиков в вашем автомобиле датчики, определяющие работу двигателя, с наибольшей вероятностью срабатывают при возникновении проблемы с ЭБУ двигателя.
К сожалению, неисправный блок ECU может загораться индикатором проверки двигателя, когда он все еще работает правильно. Вот почему так важно провести полную диагностику компонентов.
Ваш автомобиль не заводится
Если блок управления двигателем вышел из строя, ваш автомобиль вряд ли вообще перевернется. Без «мозга», передающего информацию, необходимую двигателю для работы, запуск двигателя становится практически невозможным.
Это ответ на другой вопрос, который нам часто задают: может ли машина работать без ЭБУ? Всякий раз, когда у автомобиля возникают проблемы с блоком ECU, а не с самим двигателем, многие водители надеются обойти модуль, пока они ожидают ремонта или замены модуля управления двигателем. Боимся, что это не выход. Устранение проблемы — единственное действие, которое вы должны предпринять.
Двигатель глохнет и дает пропуски зажигания
Без ECU, управляющего работой вашего двигателя, предоставляющего информацию, необходимую для правильной работы двигателя, тогда, конечно, он, вероятно, не будет работать так, как должен.
Симптомы могут проявляться совершенно случайно, поскольку компьютер вашего автомобиля выполняет сотни настроек каждую секунду. Они тоже могут быть прерывистыми. При любой необычной работе двигателя проверка ЭБУ должна быть частью процедуры диагностики.
Проблемы с синхронизацией, расходом топлива и работой двигателя
Неисправность ЭБУ двигателя может привести к неправильной работе компонентов двигателя. Это приведет к проблемам с синхронизацией и снижению общей производительности двигателя.
Плохой расход топлива — еще один показатель того, что под капотом не все в порядке. Учитывая неуправляемый поток, неудивительно, что через вашу систему проходит больше топлива, чем обычно.
Ремонт блока управления ECU
Решение о ремонте или замене автомобильного компьютера ECU лучше оставить экспертам. С таким сложным электронным компонентом не так просто обнаружить перегоревшую лампочку, предохранитель или изношенные тормозные колодки.
Переназначение ЭБУ
Переназначение настроек компьютера вашего автомобиля изменит производительность вашего автомобиля. Это выбор водителей, которые предпочли бы для своего автомобиля модель с отличными характеристиками, чем та, которую предлагает производитель.
Предложения по ремонту и замене ЭБУ предоставлены Fixter
Цена электронного блока управления зависит от автомобиля. Чтобы получить предложение по ремонту или замене, Fixter всегда рад помочь . Мы отследим лучшие цены в вашем регионе, убедившись, что вы получите самое лучшее, а также профессиональный опыт, предоставленный нашими первоклассными партнерами.
История автомобильной части ЭБУ и компьютерных датчиков для автомобилей
Выкатка первого использования ЭБУ в 1970-х . На тот момент они контролировали только некоторые соленоиды в карбюраторах автомобиля, помогая им работать более эффективно. Несколько блоков также использовались для управления топливно-воздушной смесью, когда автомобиль работал на холостом ходу.
В 1980-х годах , с введением системы впрыска топлива, ECU стал играть гораздо более важную роль в управлении двигателем. В этот момент ЭБУ взял на себя полный контроль над воспламенением топлива. Вскоре после этого был представлен замкнутый лямбда-зонд.
Впервые появившись в дизельных двигателях, ECU 1990-х годов также обеспечивал безопасность наших автомобилей. Появление дизельного двигателя на рынке стало огромным поворотным моментом в отрасли, что привело к популярности турбодизельного двигателя на массовом рынке.
На рубеже десятилетий, , блок управления двигателем 2000-х годов был адаптирован для управления дроссельной заслонкой, турбонагнетателей и многих систем контроля выбросов.
Наконец, за последние 10 лет и в современном автомобиле ЭБУ нашего автомобиля играет роль почти во всем, о чем вы только можете подумать. Он отслеживает сотни входных и выходных данных со всех сторон вашего автомобиля: дроссельная заслонка, система охлаждения, выбросы, сгорание и многое другое — все это контролируется с соблюдением строгих мер. Современные гибридные системы зависят от ECU для правильной работы, и теперь, с увеличением продвинутых функций вождения, ваш ECU играет огромную роль в обмене данными, который им также требуется от вашего двигателя.
Мозг автомобильного двигателя: PCM (модуль управления силовым агрегатом)
Мозг автомобильного двигателя: PCM (модуль управления силовым агрегатом) — AUTOINTHEBOX
Модуль управления силовым агрегатом (PCM), также известный как блок управления двигателем (ECU) или модуль (ECM), представляет собой электронное устройство, которое регулирует многие важные функции автомобиля и оказывает непосредственное влияние на то, насколько хорошо работает автомобиль. Большинство производителей автомобилей начали включать PCM в 1980-х годах, и с годами компьютерная система стала стандартизированной.
Этот PCM состоит из электроники, которая спроектирована на многослойной печатной плате. Это мощный компьютер, который часто называют мозгом системы управления двигателем, поскольку он управляет многими различными системами автомобиля, такими как зажигание двигателя, впрыск топлива и системы выбросов, а также работа автоматической коробки передач. трансмиссия и антиблокировочная система. Существует два режима работы компьютера — разомкнутый цикл и замкнутый цикл. Открытый контур работает по заданной программе и используется, когда двигатель холодный, в то время как замкнутый контур работает с использованием различных датчиков и возникает, когда двигатель прогрет до рабочей температуры.
Модуль управления силовым агрегатом (PCM) выполняет множество функций в вашем автомобиле. Он принимает информацию от различных датчиков двигателя и на основе этой информации, которая запрограммирована в его памяти, PCM генерирует выходные сигналы для управления реле, исполнительными механизмами и соленоидами. С другой стороны, он отправляет команду топливным форсункам, которые дозируют соответствующее количество топлива. Одним словом, на протяжении всей поездки PCM автоматически определяет и компенсирует любые изменения высоты, чтобы следить за общим состоянием автомобиля.
Здесь мы возьмем одну из ее функций — управление опережением зажигания для конкретного пояснения. Момент зажигания — это схема искр, выдаваемых свечами зажигания для воспламенения топливно-воздушной смеси в каждом цилиндре двигателя. Этот шаблон можно настроить для ускорения или замедления цикла в зависимости от условий в двигателе, таких как число оборотов в минуту (RPM), то есть скорость работы двигателя. Модуль помогает синхронизировать угол опережения зажигания с числом оборотов.
Вы можете рассматривать PCM как небольшой компьютер, который следит за правильной работой двигателя для общего понимания. Однако у него есть некоторые факторы, которые отличают его от обычных ноутбуков или настольных компьютеров. Во-первых, PCM на самом деле является тем, что мы называем системой на кристалле. Все части вычислительной системы, такие как процессор, память и поддерживающие периферийные устройства, сделаны достаточно маленькими, чтобы их можно было смонтировать на одной крошечной печатной плате или микросхеме. Во-вторых, PCM выполняет работу, повторяя один и тот же набор функций, в то время как компьютеры общего назначения выполняют множество задач, направленных на разные функции. В-третьих, PCM работает в режиме реального времени, его сбой может привести к серьезным проблемам, поскольку он отвечает за управление несколькими критическими процессами в двигателе автомобиля, в то время как такие сбои в компьютерах общего назначения редко приводят к плохим последствиям.