Содержание
Что такое малые модульные реакторы (ММР)?
Что есть что в ядерной сфере
03.12.2021
Джоанн Лю, Бюро общественной информации и коммуникации МАГАТЭ
Малые модульные реакторы (ММР) имеют мощность до 300 МВт (эл.) на энергоблок. Многие ММР, которые могут быть собраны на заводе и доставлены на площадку для установки, предназначены для промышленных применений или для работы в удаленных районах, где мощность энергосети ограничена. (Изображение: А. Варгас/МАГАТЭ)
Малые модульные реакторы (ММР) — это современные ядерные реакторы мощностью до 300 МВт (эл.) на энергоблок, что составляет примерно одну треть от генерирующей мощности традиционных ядерных энергетических реакторов. ММР, которые могут производить большое количество низкоуглеродной электроэнергии, являются:
- малыми — они в несколько раз меньше традиционных ядерных энергетических реакторов;
- модульными — это позволяет собирать системы и компоненты на заводе и перевозить их единым блоком на место установки;
- реакторами — в них используется ядерное деление для выделения тепла с целью получения энергии.
Узнайте больше о ядерном делении и ядерной энергии.
Преимущества ММР
Многие из преимуществ ММР связаны с их конструкцией: они небольшие и модульные. Учитывая их малую площадь, ММР можно размещать в местах, не подходящих для более крупных атомных электростанций. Сборные блоки ММР можно изготовить заранее, а затем привезти и установить на площадке, что делает их строительство более доступным по сравнению с реакторами большой мощности, которые часто проектируются специально для конкретного места, что иногда приводит к задержкам в строительстве. ММР позволяют сэкономить затраты и время строительства, и их можно развертывать постепенно, чтобы соответствовать растущему спросу на энергию.
Одним из препятствий для расширения доступа к энергии является инфраструктура — ограниченный охват сельских районов энергосетями — и стоимость подключения к сетям для электрификации этих районов. На одну электростанцию должно приходиться не более 10% от общей установленной мощности энергосети. В районах, где нет достаточного количества линий электропередач и сетевых мощностей, ММР могут быть подключены к существующей энергосети или работать автономно (вне ее) благодаря их меньшей мощности, генерируя низкоуглеродную энергию для промышленности и населения. Это особенно актуально для микрореакторов, являющихся разновидностью ММР, предназначенных для выработки электроэнергии мощностью, как правило, до 10 МВт (эл.). Микрореакторы занимают меньшую площадь, чем другие ММР, и лучше подходят для районов, в которых экологически чистая, надежная и недорогая энергия недоступна. Кроме того, микрореакторы могут служить в качестве резервного источника питания в чрезвычайных ситуациях или использоваться вместо электрогенераторов, которые часто работают на дизельном топливе, например в сельских населенных пунктах или на удаленных предприятиях.
По сравнению с действующими реакторами предлагаемые конструкции ММР являются в целом более простыми, а концепция безопасности для ММР часто в большей степени опирается на пассивные системы и такие присущие этим реакторам внутренние характеристики безопасности, как малая мощность и низкое рабочее давление. Это означает, что для отключения систем не требуется вмешательства человека или внешней энергии или силы, поскольку пассивные системы полагаются на физические явления, такие как естественная циркуляция, конвекция, гравитация и создание повышенного давления. Благодаря этому в некоторых случаях устраняется или значительно снижается вероятность опасных радиоактивных выбросов в окружающую среду и контакта с ними населения в случае аварии.
ММР имеют сниженные требования к топливу. На электростанциях на основе ММР можно реже осуществлять перегрузку топлива: каждые 3–7 лет, в то время как на традиционных станциях она требуется каждые 1–2 года. Некоторые ММР спроектированы таким образом, что могут работать без перегрузки до 30 лет.
Каково положение дел с ММР?
В деятельности, направленной на внедрение технологии ММР до конца этого десятилетия, активно участвуют как государственные, так и частные организации. На российской АЭС «Академик Ломоносов», первой в мире плавучей атомной электростанции, промышленная эксплуатация которой началась в мае 2020 года, энергия генерируется на двух ММР мощностью 35 МВт (эл). Другие ММР находятся на этапе строительства или лицензирования в Аргентине, Канаде, Китае, России, Соединенных Штатах Америки и Южной Корее.
Проекты более 70 коммерческих ММР, разрабатываемых по всему миру, рассчитаны на различную производительность и разные области применения, такие как электроэнергетика, гибридные энергетические системы, отопление, опреснение воды и парогенерация для промышленных применений. ММР имеют меньшие капитальные затраты на единицу продукции, однако их экономическую конкурентоспособность еще предстоит доказать на практике, когда будет начата их эксплуатация.
Ознакомьтесь с тем, как международное сотрудничество будет способствовать созданию ММР, включая микрореакторы.
ММР и устойчивое развитие
ММР и атомные электростанции обладают уникальными характеристиками с точки зрения эффективности, экономичности и гибкости. В то время как ядерные реакторы представляют собой поддающиеся диспетчерскому управлению источники энергии (они могут регулировать выработку электроэнергии в зависимости от спроса на нее), некоторые возобновляемые источники энергии, такие как ветер и солнце, являются источниками энергии переменной мощности, которые зависят от погоды и времени суток. ММР могут быть использованы в паре с возобновляемыми источниками энергии и повышать их эффективность в рамках гибридной энергетической системы. Благодаря этим характеристикам ММР играют ключевую роль в переходе к экологически чистой энергетике, а также помогают странам в достижении целей в области устойчивого развития (ЦУР).
Благодаря усилиям по достижению цели всеобщего доступа к энергии, ЦУР 7, удалось добиться заметного прогресса, однако проблемы все еще сохраняются, в основном в отдаленных и сельских районах. Поскольку глобальные усилия направлены на внедрение экологически чистых и инновационных решений, более активное использование возобновляемых источников энергии в сочетании с ММР может помочь решить эти проблемы.
Узнайте, как ядерная энергетика может заменить уголь в рамках перехода к экологически чистой энергии.
Какую роль играет МАГАТЭ?
- МАГАТЭ создало Платформу по ММР и их применению — предназначенный для стран единый центр координации помощи по всем аспектам разработки, развертывания, мониторинга и применения ММР в электрической и неэлектрической сфере, например в системах централизованного теплоснабжения и опреснения воды.
- МАГАТЭ оценивает степень, в которой существующие нормы безопасности МАГАТЭ могут быть применены к инновационным технологиям. В 2022 году МАГАТЭ планирует опубликовать доклад по безопасности, посвященный применимости норм безопасности МАГАТЭ к технологиям ММР.
- Техническая рабочая группа по реакторам малой и средней мощности и модульным реакторам (ТРГ-РМСМ/ММР) МАГАТЭ и Форум регулирующих органов по ММР служат площадкой, на которой эксперты могут вместе обсудить трудности и поделиться опытом, имеющим отношение к разработке и будущему развертыванию ММР.
- МАГАТЭ содействует устойчивому развитию ядерной энергетики. МАГАТЭ проводит технические совещания, выпускает научно-технические публикации и содействует реализации проектов координированных исследований.
Ресурсы по теме
03.12.2021
плюсы, минусы и реалистичность технологии / Хабр
Дата-центров становится больше с каждым годом. С 2012 по 2020 год их количество выросло с 500 000 до более чем 8 млн. Энергии все эти объекты потребляют очень много — многие дата-центры являются главными потребителями энергии в своем регионе. Потребность в ЦОД продолжает расти, но многие «теплые» места уже заняты — ведь такой объект не построишь где-то на отшибе, где нет ни сетевой инфраструктуры, ни надежного энергоснабжения, не говоря уже о воде.
Во многих случаях именно отсутствие необходимой инфраструктуры является ограничивающим фактором для создания сети ЦОД где-нибудь на севере. Но, возможно, выход есть, и он довольно необычный. Это миниатюрные ядерные реакторы, которые способны дать необходимое количество энергии не только дата-центру, но и небольшому городку неподалеку. Такая технология — не фантастика, а вполне себе реальность, о которой и поговорим.
Варианты малых ядерных реакторов разных производителей
Несмотря на то, что технология кажется почти что фантастикой, ее разрабатывает сразу несколько компаний. У некоторых есть работающие прототипы, так что внедрение разработок подобного типа — лишь вопрос времени.
Реакторы от Rolls-Royce
Концерн продает не только шикарные автомобили, но и занимается высокотехнологичными проектами. Один из них — создание малых ядерных реакторов для облачных операторов. Цель компании — сделать так, чтобы дата-центр мог работать вообще без подвода энергокабелей, обходясь собственными ресурсами.
Разработчики получили от правительства Великобритании треть миллиарда долларов США в 2020 году, оперативно разработав проекты мини-АЭС в модульном формате. Мощность этих объектов составит до 470 МВт, чего должно с головой хватить дата-центру любого масштаба. Приблизительно такие же параметры, например, у стационарных реакторов ВВЭР-440.
Сейчас работы еще ведутся, затем нужно будет получить разрешение на использование технологии от ряда регуляторов. Все же атом хоть и мирный, но его использование может быть потенциально опасным. Ну а начать внедрять свою технологию компания обещает уже в 2030 году. Выпускаться модульные реакторы будут на заводах Rolls-Royce и доставляться затем к месту использования в разобранном виде. Ну а на площадке уже их будут собирать.
NuScale Power
Об этом реакторе мы уже писали — еще в прошлом году его разработчики получили от регуляторов США разрешение на использование технологии.
Реактор NuScale Power представляет собой стальной цилиндр высотой 23 метра и диаметром 5 метров. Внутри находятся урановые топливные стержни, которые с помощью цепной ядерной реакции нагревают воду во внутреннем контуре. Через теплообменник нагретая вода передает температуру во внешний паровой контур. Пар приводит в движение турбину, генерирующую электроэнергию. В процессе работы пар охлаждается и капли воды вновь попадают обратно во внутренний контур.
В конструкции малого реактора предусмотрена система пассивного охлаждения. Горячая вода поднимается через теплообменные змеевики, охлаждается и опускается обратно к топливным стержням. Такой подход избавил конструкцию реактора от насосов и дополнительных движущихся элементов, которые могли бы выйти из строя.
В случае нештатной ситуации реактор сам заглушит ядерную реакцию при помощи управляющих стержней. Прекращается обмен нейтронами и останавливается цепная ядерная реакция. Если внезапно прекратится подача электричества, то управляющие стержни под действием гравитации срабатывают автоматически.
Уже пущен в работу проект по созданию АЭС с такими реакторами. Она будет готова тоже где-то к 2030 году. Мощность одного реактора — 45 МВт.
CAREM-25 (CNEA, Аргентина)
Как оказалось, в Аргентине, солнечной южноамериканской стране, уже в 2020 году был готов прототип миниатюрного ядерного реактора. Это 25-МВт система, которую, насколько можно понять по обрывочным новостям, почти достроили.
Реактор модульный, так что на его основе можно создавать большие или не очень АЭС. Его разработка ведется аргентинскими и международными учеными в рамках программы по запуску малых ядерных реакторов с середины 2020-х годов. Собственно, почти все примеры из этой статьи — разработка в рамках указанной программы. Она реализуется силами известных и не очень компаний, включая AREVA, Bechtel, BWXT, Dominion, Duke Energy, Energy Northwest, Fluor, Holtec International, NuScale Power, Ontario Power Generation, PSEG, TVA и Utah Associated Municipal Power Systems.
АЭС Hyperion
Еще один малый ядерный реактор с мощностью в 25 МВт. Объекты такого типа могут работать по отдельности, без необходимости создания АЭС. Разработчики утверждают, что АЭС Hyperion может обеспечить энергией населенный пункт на 20 тысяч частных домов. Ну или один очень мощный дата-центр.
Срок службы такого реактора — до 10 лет, после чего его нужно извлечь и отправить на завод производителя для перезаправки. Здесь используется уран-гидридное топливо. Достоинство проекта — в отсутствии необходимости держать на станции штат специалистов-ядерщиков. Его нужно лишь регулярно посещать для проверки систем и технического обслуживания — а с этим справляется парочка специалистов.
Мини-реакторы от HolosGen
Это, вероятно, самые маломощные модульные реакторы из подборки — их параметры от 3 МВт до 13 МВТ. Но они при этом и умещаются в контейнер. Последний устанавливается на транспортной платформе, которую перевозит в нужное место грузовой автомобиль.
Отдельные реакторы-модули могут быть соединены в единую систему, выдавая уже около 80 МВт. Такие системы относительно безопасны, мобильны и универсальны — использовать их можно не только для дата-центров, но и применять на других объектах.
Ядерная энергетика — весьма интересная тема, но у нас есть и другие статьи, оцените — мы рассказываем о:
→ Маленькие «малинки» в крупном дата-центре
→ Динамические ИБП в дата-центрах: как мы устанавливали Piller CPM300 с двойным преобразованием
→ Разбираем редкого зверя от Nvidia — DGX A100
Плюсы и минусы технологии
Плюсов довольно много:
- Мобильность и возможность масштабирования систем.
- Относительно недорогое обслуживание — большинство модульных ректоров частично автономны.
- Отсутствие необходимости занимать десятки и сотни гектар полезной площади под АЭС и всю инфраструктуру.
- Универсальность — использовать малые реакторы можно во многих отраслях и во многих регионах.
- Наличие достаточного количества пассивных систем безопасности.
Минусы тоже есть:
- Отсутствие реально работающих в «полевых условиях» реакторов. Пока только прототипы.
- Соответственно, нет базы проблемных ситуаций, которых нужно избегать.
- Необходимость получения разрешения регуляторов, и этих разрешений нужно много.
Насколько все это реально?
Вероятность практической реализации одного или нескольких проектов модульных ядерных реакторов довольно высока. Дело в том, что кроме уже названных компаний, разработкой мини-АЭС занялось правительство США. Оно выделило $3,2 млрд на разработку мини-ядерных реакторов. Они будут обслуживать критически важные объекты инфраструктуры, включая дата-центры.
Кроме того, использовать ядерную энергию собираются коммунальные предприятия и компании США. Стоимость энергии, вырабатываемой при помощи мини-АЭС, составит около 55-70 долларов за МВт-час. Стоимость же получения энергии при помощи ветра и солнца — около 44-55 Мвт-час. Вполне сравнимые цены, при условии, конечно, что в цену ядерных реакторов заложен полный цикл обслуживания с утилизацией отслужившего свой срок оборудования.
Есть у мини-АЭС и противники, которые, впрочем, сомневаются не в работоспособности подобных систем. Основная претензия — это стоимость постройки и эксплуатации малых ядерных ректоров. Согласно ряду подсчетов, цена будет сравнима с обслуживанием обычной полноразмерной АЭС.
Тем не менее, критики погоды не делают — если какой-то из этих проектов начнет работать уже «в поле», то за первопроходцами подтянутся и остальные участники рынка. Ну а это может привести к увеличению количества дата-центров, их проникновению в удаленные регионы, которые раньше казались бесперспективными для индустрии.
Усовершенствованные малые модульные реакторы (SMR)
Здание энергетического реактора NuScale
Энергетические реакторы NuScale. © NuScale Power, LLC, Все права защищены
Эти усовершенствованные реакторы, мощность которых, как предполагается, варьируется от десятков мегаватт до сотен мегаватт, могут использоваться для производства электроэнергии, технологического тепла, опреснения или других промышленных целей.
Усовершенствованные малые модульные реакторы (SMR) являются ключевой частью цели Департамента по разработке безопасных, экологически чистых и доступных вариантов ядерной энергетики. Усовершенствованные МСМ, разрабатываемые в настоящее время в Соединенных Штатах, представляют различные размеры, технологические варианты, возможности и сценарии развертывания. Эти усовершенствованные реакторы, мощность которых, как предполагается, варьируется от десятков мегаватт до сотен мегаватт, могут использоваться для производства электроэнергии, технологического тепла, опреснения воды или других промышленных целей. В конструкциях SMR может использоваться легкая вода в качестве хладагента или другие нелегкие хладагенты, такие как газ, жидкий металл или расплавленная соль.
Усовершенствованные ММР предлагают множество преимуществ, таких как относительно небольшие физические размеры, снижение капитальных вложений, возможность размещения в местах, недоступных для более крупных атомных электростанций, и возможность поэтапного увеличения мощности. ММР также предлагают определенные преимущества в плане защиты, безопасности и нераспространения.
Департамент уже давно осознал трансформационную ценность, которую передовые ММР могут обеспечить для экономики, энергетической безопасности и экологии страны. Соответственно, Департамент оказал существенную поддержку разработке легких ММР с водяным охлаждением, которые находятся на рассмотрении лицензии Комиссии по ядерному регулированию (NRC) и, вероятно, будут развернуты в конце 2020-х – начале 2030-х годов. Департамент также заинтересован в разработке ММР, в которых используются нетрадиционные хладагенты, такие как жидкие металлы, соли и газы, из-за потенциальной безопасности, эксплуатационных и экономических преимуществ, которые они предлагают.
Расширенная программа исследований и разработок SMR
Основываясь на успехах программы технической поддержки лицензирования SMR (LTS), в 2019 финансовом году была запущена программа Advanced SMR R&D, которая поддерживает исследования, разработки и развертывание для ускорения доступности SMR в США. технологии на внутреннем и международном рынках. При выводе на рынок передовых конструкций ММР сохраняются значительные риски, связанные с развитием технологий и лицензированием, и требуется государственная поддержка для развертывания ММР внутри страны к концу 2020-х или началу 2030-х годов. В рамках этой программы Департамент сотрудничает с NuScale Power и Utah Associated Municipal Power Systems (UAMPS), чтобы продемонстрировать первую в своем роде реакторную технологию в Национальной лаборатории Айдахо в этом десятилетии. Благодаря этим усилиям Департамент предоставит широкие преимущества другим отечественным разработчикам реакторов, решив многие технические и лицензионные вопросы, характерные для технологий ММР, в то же время продвигая энергетическую независимость США, энергетическое превосходство и устойчивость электросетей, а также гарантируя будущее. поставка чистого, надежного питания базовой нагрузки.
Возможности промышленности США для развития передовых ядерных технологий
В 2018 году Министерство выдало многолетнюю возможность совместного финансирования ( Возможности промышленности США для развития передовых ядерных технологий , DE-FOA-0001817) для поддержки инновационных отечественных ядерных технологий. отраслевые концепции, обладающие высоким потенциалом для улучшения общих экономических перспектив ядерной энергетики в Соединенных Штатах. Эта возможность финансирования позволит разработать конструкции существующих, новых и реакторов следующего поколения, включая технологии ММР.
Возможности финансирования очень широки и предполагают деятельность, связанную с доработкой наиболее зрелых проектов ММР; разработка производственных мощностей и методов для повышения стоимости и эффективности ядерных конструкций; разработка заводских структур, систем, компонентов и систем управления; решение нормативных вопросов; и другие технические потребности, определенные отраслью. Возможность финансирования предоставит размер грантов, предназначенных для решения ряда технических и нормативных проблем, препятствующих прогрессу в разработке усовершенствованных реакторов. Подробнее читайте в FOA. Также смотрите награды, которые были выбраны на сегодняшний день.
Отчеты, связанные с SMR
Отчет
: Изучение федеральной финансовой помощи на рынке возобновляемых источников энергии
Узнать больше
Малые модульные реакторы: повышение устойчивости на федеральных объектах
Узнать больше
Покупательная способность малых модульных реакторов: варианты Федерального агентства
Узнать больше
Новости, связанные с SMR
DOE утверждает награду за проект безуглеродной энергетики
Узнать больше
NRC утверждает первый в США проект малого модульного реактора
Узнать больше
Первый в США малый модульный реактор с кипящей водой в стадии разработки
Узнать больше
NRC утверждает первый в США проект малого модульного реактора
Управление
Атомная энергия
2 сентября 2020 г.
Художественное исполнение атомной электростанции NuScale Power.
NuScale Power
Комиссия по ядерному регулированию США (NRC) недавно выпустила свой окончательный отчет об оценке безопасности конструкции малого модульного реактора (SMR) NuScale Power. Это достижение является первым в своем роде для SMR и позволяет NuScale получить полную сертификацию конструкции от регулирующего органа к августу 2021 года. (DOE) с 2014 года для ускорения разработки и внедрения ММР.
Исторический процесс проверки
В марте 2017 года NRC приняла заявку NuScale на сертификацию конструкции SMR. На рассмотрение заявки, состоящей из 12 000 страниц, ушло менее 42 месяцев, и она включала более 2 миллионов страниц дополнительных документов для аудита регулирующих органов.
Окончательный отчет об оценке безопасности, выпущенный NRC, является первым в своем роде отчетом для SMR и представляет собой технический обзор и одобрение персоналом NRC конструкции NuScale SMR.
Энергетический модуль NuScale представляет собой усовершенствованный малогабаритный модульный реактор на легкой воде, способный генерировать 60 мегаватт электроэнергии. Каждая электростанция может вместить до 12 модулей, которые будут построены на заводе и примерно в три раза меньше размера крупномасштабного реактора. Его уникальная конструкция позволяет реактору пассивно охлаждаться без дополнительной воды, электроэнергии или даже действий оператора.
Эта ключевая функция безопасности может привести к сокращению зоны аварийного планирования до границы площадки, что значительно уменьшит площадь электростанции.
После получения полного сертификата коммунальные предприятия смогут ссылаться на проект при подаче заявки на комбинированную лицензию на строительство и эксплуатацию новых реакторов в США.
Министерство энергетики поддерживает размещение первой в стране электростанции с 12 модулями в Национальной лаборатории Айдахо. Ожидается, что эксплуатация начнется в 2029 году. .
«Вот как выглядит успешное частно-государственное партнерство, — сказала д-р Рита Баранвал, помощник госсекретаря по ядерной энергии. «DOE гордится тем, что поддерживает лицензирование и разработку силового модуля NuScale и других технологий SMR, которые могут обеспечить чистую и надежную электроэнергию в областях, которые никогда не считались возможными для ядерных реакторов в США, а вскоре и во всем мире».
Поддержка разработки SMR
Поддержка DOE модуля NuScale Power восходит к началу его разработки в Университете штата Орегон в 2000 году.
С тех пор Министерство энергетики выделило более 400 миллионов долларов на поддержку проектирования, лицензирования и размещения силового модуля NuScale, а также на первоначальные усилия по проектированию других отечественных ММР.
В рамках проекта безуглеродной энергетики Министерство энергетики работает с компанией Utah Associated Municipal Power Systems (UAMPS) и ее членами, чтобы продемонстрировать эту первую в своем роде технологию.