Появление кислорода на земле: ПРОИСХОЖДЕНИЕ АТМОСФЕРНОГО КИСЛОРОДА | Наука и жизнь

Кислородная революция и Земля-снежок

Сергей Ястребов
«Химия и жизнь» №9, 2016

Продолжение. Предшествующая статья из цикла: «Семь порогов в истории жизни» (№8, 2016).

Обоюдоострый меч О

2

Биологические свойства молекулярного кислорода (O2) как минимум двуедины. Кислород — мощный окислитель, с помощью которого можно получить много полезной энергии, и в то же время сильный яд, свободно проходящий сквозь клеточные мембраны и разрушающий клетки, если с ним неаккуратно обращаться. Иногда говорят, что кислород — это обоюдоострый меч (Current Biology, 2009, 19, 14, R567–R574). У всех организмов, имеющих дело с кислородом, обязательно есть и специальные ферментные системы, гасящие его химическое воздействие. Те, у кого таких ферментных систем нет, обречены быть строгими анаэробами, выживающими только в бескислородной среде. На современной Земле это некоторые бактерии и археи.

Практически весь кислород на Земле имеет биогенное происхождение, то есть выделяется живыми существами (конечно, мы сейчас говорим о свободном кислороде, а не об атомах кислорода, входящих в состав других молекул). Главный источник O2 — это кислородный фотосинтез; других известных реакций, способных давать его в сравнимых количествах, просто нет. Из школьного курса биологии мы знаем, что фотосинтезом называется синтез глюкозы C6H12O6 из углекислоты CO2 и воды H2O, происходящий с помощью энергии света. Главным «действующим лицом» тут служит углекислый газ, который восстанавливается водой; кислород же в этой реакции — не что иное, как побочный продукт, отход. Менее широко известно, что фотосинтез может и не приводить к выделению кислорода, если вместо воды в нем используется в качестве восстановителя какое-нибудь другое вещество — например, сероводород H2S, свободный водород H2 или некоторые соединения железа; такой фотосинтез называется бескислородным, есть несколько разных его вариантов.

Практически наверняка бескислородный фотосинтез появился гораздо раньше кислородного. Поэтому в первый миллиард лет существования жизни (а скорее всего, дольше) фотосинтез хотя и шел, но никакого насыщения атмосферы Земли кислородом не вызывал. Содержание кислорода в атмосфере в те времена составляло не больше 0,001% от современного — попросту говоря, это значит, что его там толком не было.

Все изменилось, когда на сцену вышли синезеленые водоросли, или цианобактерии. Впоследствии эти существа стали предками пластид, фотосинтезирующих органелл клеток эукариот (напомним, что эукариотами называются организмы с клеточными ядрами, в отличие от прокариот — обладателей безъядерных клеток). Цианобактерии — очень древняя эволюционная ветвь. По меркам земной истории они удивительно неизменны. Например, широко распространенная в современных водоемах синезеленая водоросль осциллятория (Oscillatoria) имеет ископаемых родственников, живших 800 миллионов лет назад, причем они практически неотличимы от современных осцилляторий (Ecology of Cyanobacteria II. Their Diversity in Space and Time, Springer, 2012, 15–36). Таким образом, осциллятория — впечатляющий пример живого ископаемого. Но самые первые цианобактерии появились намного раньше нее — это подтверждается палеонтологическими данными.

Поначалу цианобактерии не были многочисленны, потому что освоенный ими кислородный фотосинтез не давал никаких серьезных преимуществ по сравнению с бескислородным, которым владели другие группы микробов. Но химическое окружение этих микробов постепенно менялось. Наступил момент, когда «сырья» для бескислородного фотосинтеза просто перестало хватать. И вот тогда пробил час цианобактерий.

Кислородный фотосинтез имеет одно большое преимущество — совершенно неограниченный запас исходного реагента-восстановителя (воды) и один большой недостаток — высокую токсичность побочного продукта (кислорода). Неудивительно, что поначалу этот тип обмена не был «популярен». Зато при малейшем дефиците других субстратов, кроме воды, обладатели кислородного фотосинтеза должны сразу получать конкурентное преимущество, что и произошло. После этого наступила эпоха длиной примерно в миллиард лет, в течение которой облик Земли определяли в первую очередь цианобактерии. Недавно ее даже предложили неофициально назвать в их честь «цианозоем» (M.  Barbieri, Code Biology. A New Science of Life, Springer, 2015, 75–91).

Именно из-за цианобактерий 2,4 миллиарда лет назад началась кислородная революция, она же кислородная катастрофа, или Великое окислительное событие (Great Oxidation Event, GOE). Строго говоря, это событие не было ни мгновенным, ни абсолютно уникальным (Nature, 2014, 506, 7488, 307–315). Короткие всплески концентрации кислорода, «кислородные дуновения», случались и раньше, это палеонтологически зафиксировано. И все же 2,4 миллиарда лет назад произошло нечто новое. За короткое по меркам земной истории время (считанные десятки миллионов лет) концентрация кислорода в атмосфере выросла примерно в тысячу раз и осталась на этом уровне; до прежних ничтожных величин она не опустилась больше никогда. Биосфера необратимо стала кислородной.

Для подавляющего большинства древних прокариот такой уровень кислорода был смертельно опасен. Неудивительно, что первым результатом кислородной революции стало массовое вымирание. Выжили в основном те, кто успел создать защищающие от кислорода ферменты, а иногда еще и толстые клеточные стенки в придачу (в том числе это пришлось сделать и самим цианобактериям). Есть основания полагать, что в первые 100–200 миллионов лет «нового кислородного мира» кислород был для живых организмов только ядом и ничем больше. А вот потом ситуация поменялась. Ответом биоты на кислородный вызов стало появление бактерий, которые включили кислород в цепочку реакций, разлагающих глюкозу, и таким образом начали использовать его для получения энергии.

Сразу оказалось, что кислородное окисление глюкозы (дыхание) в энергетическом плане намного эффективнее бескислородного (брожения). Оно дает в несколько раз больше свободной энергии на одну молекулу глюкозы, чем любой сколь угодно усложненный вариант бескислородного обмена. При этом начальные этапы распада глюкозы у пользователей дыхания и брожения остались общими: кислородное окисление послужило всего лишь надстройкой над уже имевшимся древним биохимическим механизмом, который сам по себе в кислороде не нуждался.

Группа микробов, которая освоила рискованное, но эффективное получение энергии с помощью кислорода, называется протеобактериями. Согласно общепринятой сейчас теории, именно от них произошли дыхательные органеллы эукариотных клеток — митохондрии.

По генетическим данным, ближайший современный родственник митохондрий — пурпурная спиральная альфа-протеобактерия Rhodospirillum rubrum (Molecular Biology and Evolution, 2004, 21, 9, 1643–1660). Родоспириллум обладает и дыханием, и брожением, и бескислородным фотосинтезом, в котором вместо воды используется сероводород, и может переключаться между этими тремя типами обмена в зависимости от внешних условий. Несомненно, такой симбионт — то есть в данном случае внутренний сожитель — был очень полезен предку эукариот.

Более того, многие современные ученые считают, что симбиоз древних архей с протеобактериями — предками митохондрий — был толчком к самому образованию эукариотной клетки (Евгений Кунин. Логика случая. М. : Центрполиграф, 2014). Эта гипотеза называется «раннемитохондриальной». Она предполагает, что разделение будущей эукариотной клетки на цитоплазму и ядро произошло только после внедрения в нее протеобактериального симбионта. Более старый «позднемитохондриальный» сценарий, согласно которому протеобактерия была попросту проглочена готовой эукариотной клеткой (самостоятельно возникшей из клетки археи), сейчас выглядит куда менее вероятным. На самом деле обе клетки — и архейная, и протеобактериальная — были в процессе объединения серьезно «пересобраны», породив своего рода химеру с новыми свойствами. Эта химера и стала эукариотной клеткой; молекулярные компоненты архейного и протеобактериального происхождения в ней сильно перемешались, разделив между собой функции («Палеонтологический журнал», 2005, 4, 3–18). Без протеобактерий эукариоты не возникли бы. А это означает, что их появление было прямым следствием кислородной революции.

В свете сказанного почти не выглядят преувеличением слова двух современных крупных ученых, палеонтолога и геолога: «Все согласны с тем, что эволюция синезеленых водорослей была самым значительным биологическим событием на нашей планете (даже более значительным, чем развитие эукариотических клеток и появление многоклеточных организмов)» (Питер Уорд, Джо Киршвинк. Новая история происхождения жизни на Земле. СПб: ИД «Питер», 2016). Действительно, знакомый нам мир животных и растений сейчас не существовал бы, если бы не цианобактерии и вызванный ими кризис.

Эпохи жизни

Вся история Земли делится на четыре огромных промежутка, именуемых эонами (это выше, чем эра). Названия эонов следующие: катархей, или гадей (4,6–4,0 млрд лет назад), архей (4,0–2,5 млрд лет назад), протерозой (2,5–0,54 млрд лет назад) и фанерозой (начался 0,54 млрд лет назад и продолжается сейчас). Это деление будет нам постоянно помогать, оно действительно удобно. Сделаем оговорку, что почти во всех подобных случаях запоминать стоит не временные границы, а последовательность эпох и относящихся к ним событий: это гораздо важнее. Исключение можно сделать разве что для двух-трех основополагающих дат вроде возраста Земли.

Катархей — это так называемая догеологическая эпоха, от которой не осталось никаких «нормальных» горных пород, расположенных послойно. Классические геологические и палеонтологические методы, основанные как раз на сравнении последовательных слоев, там не работают. Оставшиеся от катархея объекты — в основном маленькие зерна циркона, те самые, в которых недавно нашли предположительно биогенный углерод. О катархейской жизни (если она была) известно крайне мало.

В архее Земля принадлежит прокариотам — бактериям и археям (только не надо путаницы, совпадение корней в названии геологической эры «архей» и группы микробов «археи» на самом деле случайно). Граница архея и протерозоя приходится примерно на момент одного из сильных «кислородных дуновений», предшествующих кислородной революции. Сама кислородная революция произошла в начале протерозоя.

Протерозой — это эпоха кислорода и эукариот. С датировкой происхождения эукариот связан интересный парадокс. Дело в том, что более-менее надежно определимые многоклеточные эукариоты появляются в палеонтологической летописи заметно раньше, чем столь же надежно определимые одноклеточные. Нитчатая водоросль Grypania spiralis, которую обычно считают эукариотом, появилась 2,1 миллиарда лет назад (Australasian Journal of Palaeontology, 2016, doi: 10. 1080/ 03115518.2016.1127725). Справедливости ради нужно сказать, что главным доводом за эукариотную природу грипании служит ее крупный размер — все остальные признаки не дают уверенности, что это не гигантская цианобактерия (Palaeontology, 2015, 58, 1, 5–17). Но дело в том, что эта находка не единственная. Самым древним известным эукариотом сейчас считается грибообразный организм Diskagma buttonii возрастом 2,2 миллиарда лет (Precambrian Research, 2013, 235, 71–87). А еще есть загадочные крупные спиралевидные существа — скорее всего, водоросли, возраст остатков которых — не меньше 2,1 миллиарда лет, как и у грипании (Nature, 2010, 466, 7302, 100–104). Зато самые ранние одноклеточные, однозначно определяемые как эукариоты, имеют возраст всего 1,6 миллиарда лет (Philosophical Transactions of the Royal Society B, 2006, 361, 1470, 1023-1038). Это, разумеется, не значит, что многоклеточные эукариоты действительно появились раньше одноклеточных, — такое предположение противоречит всем имеющимся молекулярным данным. Одноклеточные просто хуже сохраняются, да и признаков, по которым можно определить организм, у них меньше.

Тем не менее из таких датировок следуют очень важные выводы. Вспомним, что дата кислородной революции — 2,4 миллиарда лет назад. Следовательно, мы знаем, что всего через 200 миллионов лет после нее в палеонтологической летописи появляются не просто эукариоты, а многоклеточные эукариоты. Это означает, что первые этапы эволюции эукариот были пройдены по меркам глобальной истории очень быстро. Безусловно, эукариотной клетке потребовалось время, чтобы оформить симбиоз с предками митохондрий, создать ядро, усложнить цитоскелет — внутриклеточную систему опорных структур. Но когда эти процессы закончились, создать первые многоклеточные организмы удалось почти сразу. Никаких дополнительных приспособлений на уровне клетки это не потребовало. Любая эукариотная клетка уже имеет в наличии полный набор молекулярных элементов, нужных, чтобы построить из таких клеток многоклеточное тело (хотя бы относительно простое). Разумеется, все эти элементы не менее полезны и для жизни одиночной клетки, иначе они бы просто не возникли. Общий предок эукариот, без сомнений, был одноклеточным, и очень многим его потомкам многоклеточность никогда не пригодилась. Примеры современных одноклеточных эукариот — амебы, эвглены, инфузории — мы знаем благодаря школьным учебникам, но на самом деле их гораздо больше.

Кислородная революция имела еще одно важное последствие, коснувшееся состава атмосферы. В архейской атмосфере было много азота (как и сейчас), а также углекислого газа и метана (гораздо больше, чем сейчас). Углекислый газ и метан очень хорошо поглощают инфракрасное излучение и тем самым удерживают в атмосфере Земли тепло, мешая ему уходить в космос. Это называется парниковым эффектом. Причем считается, что от метана парниковый эффект минимум раз в 20–30 сильнее, чем от углекислого газа. А в архейские времена метана в атмосфере Земли было примерно в 1000 раз больше, чем сейчас, и это обеспечивало довольно теплый климат.

Тут вмешивается еще и астрономия. Согласно общепринятой теории эволюции звезд, светимость Солнца медленно, но непрерывно растет. В архее она составляла всего 70–80% от современной — понятно, почему парниковый эффект был важен для поддержания планеты в тепле. Но после кислородной революции атмосфера стала окислительной и почти весь метан (CH4) превратился в углекислый газ (CO2), эффективность которого как парникового газа гораздо ниже. Это вызвало катастрофическое гуронское оледенение, длившееся около 100 миллионов лет и в некоторые моменты охватившее всю Землю: на участках суши, которые тогда находились всего в нескольких градусах широты от экватора, найдены следы ледников (Proceedings of the National Academy of Sciences USA, 2005, 102, 32, 11131–11136). Пик гуронского оледенения наступил 2,3 миллиарда лет назад. К счастью, оледенение не могло остановить тектоническую активность земной мантии; вулканы продолжали выбрасывать в атмосферу углекислый газ, и со временем его накопилось достаточно, чтобы восстановить парниковый эффект и растопить льды.

Однако главные климатические испытания были еще впереди.

Конец «скучного миллиарда»

За бурными событиями начала протерозоя последовал так называемый «скучный миллиард лет» (Boring Billion). В это время не происходило никаких оледенений, никаких резких перемен в составе атмосферы, никаких биосферных переворотов. Эукариотные водоросли жили в океанах, понемногу выделяя кислород. Их мир был по-своему разнообразным и сложным. Например, из эпохи «скучного миллиарда» известны многоклеточные красные и желтозеленые водоросли, удивительно похожие на своих современных родственников (Philosophical Transactions of the Royal Society B, 2006, 361, 1470, 1023–1038). Появляются в это время и грибы (Paleobiology, 2005, 31, 1, 165–182). А вот многоклеточные животные на просторах «скучного миллиарда лет» отсутствуют. Будем аккуратны: на нынешний момент никто не может с полной уверенностью утверждать, что многоклеточных животных тогда не было, но все данные на эту тему — в лучшем случае очень спорные (Precambrian Research, 2013, 235, 71–87).

В чем тут дело? Напрашивается мысль, что многоклеточность как таковая гораздо более совместима с образом жизни растения, чем животного. Любая клетка растения заключена в жесткую клеточную стенку, и нет сомнений, что это сильно облегчает регуляцию взаимного расположения клеток в сложном теле. Наоборот, клетки животных лишены клеточной стенки, их форма неустойчива, да еще и постоянно меняется при актах фагоцитоза, то есть поглощения пищевых частиц. Собрать из таких клеток целый организм — сложная задача. Если бы никаких многоклеточных животных не появилось вовсе, а биологами стали представители растений либо грибов, они, скорее всего, после изучения этой проблемы пришли бы к выводу, что сочетание многоклеточности с отсутствием клеточной стенки просто невозможно. Во всяком случае, это объясняет, почему многоклеточность много раз возникала в разных группах водорослей, но только один раз — у животных.

Есть и другая идея. В 1959 году канадский зоолог Джон Ральф Нерселл связал внезапное (как тогда считалось) появление животных в палеонтологической летописи с ростом концентрации кислорода в атмосфере (Nature, 1959, 183, 4669, 1170–1172). Животные, как правило, обладают активной подвижностью, которая требует столько энергии, что без кислородного дыхания им не обойтись. И кислорода нужно много. А в эпоху «скучного миллиарда» содержание О2 в атмосфере почти наверняка не достигало 10% от современного уровня — минимума, который часто считают необходимым для поддержания животной жизни. Правда, эта подозрительно круглая цифра, скорее всего, завышена (Proceedings of the National Academy of Sciences USA, 2014, 111, 11, 4168–4172). Подобные оговорки, однако, не мешают признать, что старая идея Нерселла как минимум не противоречит современным данным: предполагаемое начало эволюции многоклеточных животных весьма приближенно, но совпадает по времени с новым ростом концентрации атмосферного кислорода в конце протерозоя (Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 215–235). Это просто не могло не стать фактором, облегчившим появление животных: в конце-то концов, чем больше кислорода, тем лучше. Не надо только считать кислородный фактор строго единственным. Будем помнить, что и во времена, когда кислорода стало сколько угодно, никаких многократных попыток создания многоклеточности животного типа не отмечается. Этот эксперимент удался природе лишь один раз.

Уютная эпоха «скучного миллиарда лет» могла бы длиться еще долго, если бы в биологию не вмешалась география. Драматические события, героем которых стала сама планета, привлекали внимание ученых на протяжении полувека, но только лет 15 назад информацию о них удалось сложить в более-менее цельную картинку. Бросим на эту картинку беглый взгляд, начав, как и положено, с начала.

В 1964 году английский геолог Брайан Харленд опубликовал статью, в которой констатировал, что абсолютно на всех континентах есть следы древнего оледенения, относящегося к одному и тому же времени — позднему протерозою. Как раз в начале 60-х годов геологи научились определять прошлое положение континентов с помощью данных о намагниченности горных пород. Харленд собрал эти данные и увидел, что объяснить их можно только одним способом: предположив, что позднепротерозойское оледенение охватило сразу все широты Земли, то есть было всепланетным. Любые другие гипотезы выглядели еще менее правдоподобными (например, пришлось бы предполагать немыслимо быстрое перемещение полюсов, чтобы все земли по очереди накрывались полярной шапкой). Как сказал Шерлок Холмс во время поисков Джонатана Смолла, «отбросьте все невозможное, то, что останется, и будет ответом, каким бы невероятным он ни казался». Именно так Харленд и поступил. Написанная им с соавтором обстоятельная статья не претендует ни на какие сенсации — там просто честно изложены факты и выводы (Scientific American, 1964, 211, 2, 28–36). И все же гипотеза о всепланетном оледенении была для большинства ученых слишком смелой.

Буквально в те же годы теорией оледенений занялся известный геофизик, ленинградец Михаил Иванович Будыко. Он обратил внимание на то, что оледенение может саморазвиваться. Ледяной покров имеет высокую отражательную способность (альбедо), поэтому чем больше суммарная площадь ледников, тем большая доля солнечного излучения отражается обратно в космос, унося с собой тепло. А чем меньше Земля получает тепла, тем на ней становится холоднее, и площадь ледяного покрова в результате растет, повышая альбедо еще сильнее. Получается, что оледенение — это процесс с положительной обратной связью, то есть способный усиливать сам себя. А в таком случае должен существовать некоторый критический уровень оледенения, после которого оно будет нарастать, пока волны льда с Северного и Южного полюсов не схлопнутся на экваторе, полностью заключив планету в ледяной покров и понизив ее температуру на несколько десятков градусов. Будыко математически показал, что такое развитие событий возможно (Tellus, 1969, 21, 5, 611–619). Но он и понятия не имел, что в истории Земли оно несколько раз происходило! Потому что на тот момент Будыко и Харленд еще не читали друг друга.

Земля-снежок

Сейчас оледенение, которое открыл Харленд, принято называть эпохой «Земли-снежка» (Snowball Earth). Судя по всему, оно действительно было всепланетным. А главной его причиной считается резкое ослабление парникового эффекта из-за падения концентрации углекислого газа (который стал главным парниковым газом после того, как кислород «съел» почти весь метан). Фотосинтез и дыхание тут, скорее всего, ни при чем. Если кислородную революцию биота Земли устроила себе сама, то сейчас она оказалась жертвой внешнего фактора, совершенно небиологического по своей природе.

Дело в том, что оборот углекислого газа гораздо меньше зависит от живых существ, чем оборот кислорода. Основным источником атмосферного CO2 на Земле до сих пор служат извержения вулканов, а основным стоком — процесс, который называется химическим выветриванием. Углекислый газ взаимодействует с горными породами, разрушая их, а сам при этом превращается в карбонаты (ионы HCO3 или CO32−). Последние хорошо растворяются в воде, зато в состав атмосферы больше не входят. И получается предельно простая зависимость. Если интенсивность работы вулканов превосходит интенсивность химического выветривания, атмосферная концентрация CO2 растет. Если наоборот — падает.

На исходе «скучного миллиарда», 800 миллионов лет назад, почти вся земная суша входила в состав единственного суперконтинента под названием Родиния. По словам одного известного геолога, гигантские суперконтиненты, как и крупные империи в социальной истории Земли, всегда оказывались неустойчивыми (В. Е. Хаин, М. Г. Ломизе. Геотектоника с основами геодинамики. М: Изд-во МГУ, 1995). Поэтому неудивительно, что Родиния начала раскалываться. По краям разломов застывал извергнутый базальт, который сразу же становился объектом химического выветривания. Почвы тогда не было, и продукты выветривания легко сносились в океан. В конце концов Родиния распалась на семь или восемь небольших — размером примерно с Австралию — континентов, которые стали дрейфовать в стороны друг от друга. Расход CO2 на выветривание базальта привел к падению его уровня в атмосфере.

Вулканизм, которым распад суперконтинента неизбежно сопровождался, мог бы компенсировать это, если бы не одно случайное обстоятельство. В силу каких-то причуд дрейфа континентов и Родиния, и ее обломки находились у экватора, в теплом поясе, где химическое выветривание шло особенно быстро. Математические модели показывают, что именно по этой причине концентрация CO2 опустилась ниже порога, за которым начинается оледенение (Nature, 2004, 428, 6980, 303–306). А когда оно началось, тормозить выветривание было уже поздно.

Надо признать, что положение континентов в позднем протерозое оказалось настолько неудачным (с точки зрения обитателей планеты), насколько это вообще возможно. Дрейф континентов управляется потоками вещества земной мантии, динамика которых, по сути, неведома. Но мы знаем, что в данном случае эти потоки собрали всю земную сушу в единый континент, находящийся точно на экваторе и вытянутый по широте. Если бы он оказался на одном из полюсов или был вытянут с севера на юг, начавшееся оледенение закрыло бы часть пород от выветривания и тем самым приостановило уход углекислого газа из атмосферы — тогда процесс мог затормозиться. Как раз такую ситуацию мы наблюдаем сейчас, когда есть ледяные щиты Антарктиды и Гренландии (Scientific American, 1999, 9, 38). А в конце протерозоя почти все крупные участки суши находились близко к экватору — и были обнажены до того момента, когда северный и южный ледяные покровы сомкнулись. Земля стала ледяным шаром.

На самом деле эпизодов «Земли-снежка» было не меньше трех. Первый из них относился еще к гуронскому оледенению (которое, как мы помним, произошло не из-за углекислого газа, а из-за метана). Потом в течение более чем миллиарда лет никаких оледенений не было совсем. А затем последовали еще два разделенных небольшим перерывом всепланетных оледенения, одно из которых длилось примерно 60 миллионов лет, другое — примерно 15 миллионов лет. Именно их открыл Брайан Харленд. Геологический период, охватывающий эти оледенения, называют криогением (он является частью протерозоя).

О живой природе криогения известно мало. Климат тогда на всей Земле был, по нынешним меркам, антарктическим. Большую часть Мирового океана покрывал километровый слой льда, так что интенсивность фотосинтеза не могла быть высокой. Свет, неожиданно ставший ценнейшим ресурсом, попадал в океан только местами, сквозь трещины, полыньи или небольшие участки тонкого льда. Удивительно, что некоторые многоклеточные организмы сумели пережить криогений, совершенно не изменившись, — например, красные водоросли. Они и сейчас приспособлены к тому, чтобы использовать очень слабый свет, проникающий на такую глубину, где уже не живут никакие другие фотосинтезирующие существа (Ю. Т. Дьяков. Введение в альгологию и микологию. М.: Изд-во МГУ, 2000). Никуда не делся и одноклеточный планктон. Содержание кислорода в криогениевом океане сильно упало, поэтому жизнь на его дне, скорее всего, была в основном анаэробной, но подробности этого от нас пока скрыты.

Окончания эпизодов «Земли-снежка» тоже по-своему драматичны. Во время всепланетных оледенений все процессы, связанные с поглощением больших объемов углекислого газа, в буквальном смысле замораживались. А между тем вулканы (работу которых никто не останавливал) выбрасывали и выбрасывали CO2 в атмосферу, постепенно доводя его концентрацию до огромных величин. В какой-то момент ледяной щит уже не мог сопротивляться парниковому эффекту, и тогда начинался лавинообразный процесс разогрева планеты. Буквально за несколько тысяч лет — то есть геологически за мгновение — весь лед таял, освободившаяся вода заливала значительную часть суши мелкими окраинными морями, а температура земной поверхности, судя по расчетам, подскакивала до 50°С (Engineering and Science, 2005, 4, 10–20). И только после этого начинался постепенный возврат Земли к «нормальному» внеледниковому состоянию. За время криогения весь этот цикл был пройден минимум дважды.

Продолжение в следующем номере.

Раскрыта тайна земного кислорода — CNews

Наука

|

Поделиться

    Новая модель объяснила механизм аномально медленного наполнения кислородом первичной атмосферы ранней Земли – чтобы она стала пригодной для существования высших форм жизни, понадобилось 300 млн. лет.

    Существует большое количество гипотез, пытающихся объяснить появление а затем и прогрессивное увеличение количества кислорода в земной атмосфере 2,4 млрд. лет назад. Однако, поскольку до сих пор отсутствовало полное понимание механизмов этого процесса, подтвержденных эмпирическими данными, ни одна из гипотез не стала общепризнанной теорией. Новая модель, построенная учеными из университета штата Вашингтон, позволила написать наиболее достоверный на сегодняшний день сценарий насыщения атмосферы кислородом. Она дала также ответ на вопрос, почему для этого понадобилось более 300 млн. лет после появления первых микроорганизмов, жизнедеятельность которых основана на фотосинтезе.



    «Одна из причин медленного роста содержания кислорода в земной атмосфере — в повышенной вулканической активности молодой Земли, — объясняет соавтор исследования, аспирант университета Марк Клер (Mark Claire).  — Вулканические газы, извергаемые в то время в больших количествах, вступали во взаимодействие с кислородом, образуя новые соединения. Другим источником потребления кислорода было большое количество метеоритов, падавших тогда на Землю. Известно, что метеориты богаты железом. Окисление железа приводило к поглощению свободного кислорода, вырабатываемого бактериями».



    Оказалось, что построенная американскими учеными модель очень чувствительна к процентному содержанию железа на поверхности Земли. Так, пятикратное увеличение количества железа предсказывает задержку в насыщении атмосферы кислородом до известного нам сейчас уровня на целый миллиард лет. С другой стороны, если бы количества железа на поверхности было всего на 20% меньше, чем это было на самом деле, земная атмосфера насытилась бы кислородом на миллиард лет раньше. «Такой разброс оказался для нас совершенно неожиданным, — признается Клер. — Учитывая реальные условия, в которых формировалась молодая Земля, количество упавших на ее поверхность метеоритов определялось случайным стечением обстоятельств. Их могло быть как намного меньше, так и намного больше».



    Сценарий американских ученых выглядит следующим образом. Кислород появился в земной атмосфере благодаря сине-зеленым водорослям — крошечным бактериям, обитающим в океане и существующим за счет фотосинтеза, в процессе которого углекислый газ и вода превращаются в органический углерод и свободный кислород. На молодой Земле свободный кислород сразу же вступал в реакцию с элементами, которые в то время преобладали в атмосфере, — например, с водородом или углеродом, так как около 3 млрд. лет назад земная атмосфера состояла в основном из метана — соединения углерода и водорода. В условиях, когда Солнце обогревало Землю слабее, чем сейчас, увеличение количества метана приводило к повышению температуры планеты до уровня, благоприятного для жизнедеятельности примитивных организмов. Количество метана было настолько велико, что он присутствовал даже в верхней атмосфере, где под воздействием ультафиолетового излучения разлагался на составные части. Освобождавшийся при этом водород улетучивался в межпланетное пространство.



    Потеря водорода позволяла большему количеству кислорода вступать во взаимодействие с породами на поверхности Земли. Со временем это, в свою очередь, уменьшало количество водорода, который под воздействием температуры и давления выделялся из горных пород. Приблизительно 2,4 млн. лет назад наступил поворотный момент. Уменьшение содержания метана привело к ослаблению парникового эффекта. Средняя температура на Земле понизилась до 30 градусов по Цельсию. Кислород стал доминирующим элементом в земной атмосфере, прежде всего, потому, что из нее постепенно исчез водород, который был основным источником его поглощения.

    Александр Губинский, Самараавтожгут: Как мы получали грант на внедрение компьютерного зрения

    Поддержка ИТ-отрасли



    «Наша работа представляет не только исторический интерес. В самом ближайшем будущем у науки появится возможность изучать планеты за пределами Солнечной системы на разных стадиях эволюции, — говорит Клер.  — Понимание процессов в земной атмосфере, которые сопутствовали появлению и развитию жизни, будет иметь большое значение в поисках признаков жизни и на других планетах».

    • Какой дисплей для смартфона лучше: AMOLED или IPS?

    Как Земля получила кислород

    Живая наука поддерживается аудиторией. Когда вы покупаете по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот почему вы можете доверять нам.

    Земля из космоса.

    Первая половина истории Земли была лишена кислорода, но она была далеко не безжизненной. Продолжаются споры о том, кто был главным биологическим игроком в этом докислородном мире, но исследователи находят подсказки в некоторых из самых старых осадочных пород на планете.

    Большинство ученых считают, что количество атмосферного кислорода было незначительным примерно до 2,4 миллиарда лет назад, когда произошло Великое Событие Окисления (GOE). Этот, казалось бы, внезапный скачок уровня кислорода почти наверняка был вызван цианобактериями — фотосинтезирующими микробами, выдыхающими кислород.

    Когда и как появились выдыхатели кислорода, неизвестно из-за того, что GOE был сложным перекрестком глобального замерзания, минеральных потрясений и расцвета новых видов.

    «Мы не знаем, что является причиной, а что следствием», — говорит Доминик Папино из Института Карнеги в Вашингтоне. «Несколько событий произошло одновременно, поэтому история до сих пор не ясна».

    Чтобы разобраться в геологической сюжетной линии, Папино изучает формации полосчатого железа (BIFs), осадочные породы, образовавшиеся на дне древних морей.

    Исследование Папино, которое поддерживается Программой НАСА по экзобиологии и эволюционной биологии, сосредоточено на конкретных минералах в BIF, которые могут быть связаны с жизнью (и смертью) древних микробов.

    Горнодобывающие предприятия BIF

    Железосодержащие минералы в BIF составляют крупнейший в мире источник железной руды. Однако эти камни ценны не только для производства стали. Геологи добывают их из-за их богатой исторической записи, которая охватывает период от 3,8 до 0,8 миллиарда лет назад.

    Однако происхождение самых старых BIF остается загадкой. Текущий консенсус заключается в том, что для формирования им требовалась помощь организмов, но каких именно? Эти простые одноклеточные морские существа не оставили нам ни костей, ни раковин, но Папино считает, что в BIF все еще могут быть минеральные или геохимические окаменелости.

    Он и его коллеги обнаружили углеродистый материал в BIF, связанный с апатитом, фосфатным минералом, который иногда связывают с биологией. Подразумевается, что строители BIF были погребены в собственной работе.

    Чтобы убедиться в этом, команда Папино будет изучать углерод BIF и сравнивать его с другими углеродисто-минеральными ассоциациями небиологического происхождения, включая минералы, найденные в марсианском метеорите.

    «Эта работа может показать, что микробная биомасса была связана и откладывалась вместе с минералами железа», — говорит Андреас Капплер из Университета Тюбингена в Германии, который не участвовал в исследовании.

    Раннее появление выдыхателей кислорода

    Возможно, что этими микробными строителями BIF были цианобактерии, поскольку кислород этих микробов мог вызвать окисление железа в океане до GOE.

    Но если цианобактерии появились задолго до ГЭ, то почему потребовалось несколько сотен миллионов лет, чтобы их кислородные выделения накопились в атмосфере?

    Папино и его коллеги, возможно, нашли часть ответа в сложном взаимодействии биологии и геологии.

    Ранний кислород цианобактерий мог быть уничтожен преобладанием метана. Два газа реагируют друг с другом с образованием углекислого газа и воды.

    «Кислород не может накапливаться в среде, богатой метаном», — говорит Папино.

    Считается, что метан происходит от микробов, называемых метаногенами, которые выделяют метан в результате потребления углекислого газа и водорода.

    В этом сценарии метаногены и цианобактерии делили древний океан, но метаногены одержали верх — их выбросы метана сдерживали кислород, а также нагревали планету за счет парникового эффекта. Но затем, примерно во времена GOE, эти организмы пришли в упадок, и в результате обедненная метаном атмосфера начала наполняться кислородом из цианобактерий.

    Нет лишнего никеля

    Связь GOE со снижением содержания метаногена уже делалась ранее, но было мало доказательств в поддержку этой гипотезы. Однако недавно Папино и его сотрудники сообщили в журнале Nature , что уровень никеля в BIF значительно снизился 2,7 миллиарда лет назад.

    Подразумевается, что содержание никеля в океане упало на 50 процентов прямо перед ГЭ. Это важно, потому что метаногены зависят от никеля: он является центральным ингредиентом метаболических ферментов, участвующих в их производстве метана. Когда уровень никеля упал, метаногены предположительно голодали.

    Сценарий никелевого голода делает эволюцию цианобактерий до GOE более правдоподобной, но для подтверждения этого потребуются дополнительные доказательства.

    Капплер считает, что изучение происхождения древнейших BIF может рассказать нам, когда жизнь развила способность выдыхать кислород и тем самым навсегда изменить мир.

    • Ранняя Земля могла быть фиолетовой

    Майкл Ширбер начал писать для LiveScience в 2004 году, когда и он, и сайт только начинали свою работу. Он затронул широкий круг тем для LiveScience, от происхождения жизни до физики вождения Nascar, и написал длинную серию статей об экологических технологиях. На протяжении многих лет он также писал для Science, Physics World и New Scientist. Подробнее на его сайте.

    Больше кислорода благодаря многоклеточности — ScienceDaily

    Science News

    от исследовательских организаций


    Дата:
    17 января 2013 г.
    Источник:
    Цюрихский университет
    Резюме:
    Появление свободного кислорода в атмосфере Земли привело к Великому Событию Окисления. Это было вызвано цианобактериями, производящими кислород, которые развились в многоклеточные формы еще 2,3 миллиарда лет назад. Как показали биологи-эволюционисты, эта многоклеточность была связана с повышением уровня кислорода и, таким образом, сыграла важную роль в жизни на Земле, какой она является сегодня.
    Поделиться:

    ПОЛНАЯ ИСТОРИЯ


    Появление свободного кислорода в атмосфере Земли привело к Великому Событию Окисления. Это было вызвано цианобактериями, производящими кислород, который использовался многоклеточными формами еще 2,3 миллиарда лет назад. Как показали биологи-эволюционисты из университетов Цюриха и Гётеборга, эта многоклеточность была связана с повышением уровня кислорода и, таким образом, сыграла важную роль в жизни на Земле, какой она является сегодня.

    реклама


    Цианобактерии принадлежат к древнейшим организмам Земли. Они все еще присутствуют сегодня в океанах и водах и даже в горячих источниках. Вырабатывая кислород и эволюционируя в многоклеточные формы, они сыграли ключевую роль в появлении организмов, дышащих кислородом. Это было продемонстрировано группой ученых под наблюдением и под руководством биологов-эволюционистов из Цюрихского университета. Согласно их исследованиям, цианобактерии развили многоклеточность примерно на миллиард лет раньше, чем эукариоты — клетки с одним настоящим ядром. Почти одновременно с появлением многоклеточных цианобактерий в океанах и в атмосфере Земли начался процесс оксигенации.

    Многоклеточность уже 2,3 миллиарда лет назад

    Ученые проанализировали филогению живых цианобактерий и объединили свои выводы с данными о цианобактериях, полученными из летописи окаменелостей. Согласно результатам, зафиксированным Беттиной Ширмейстер и ее коллегами, многоклеточные цианобактерии возникли гораздо раньше, чем предполагалось ранее. «Многоклеточность развилась относительно рано в истории цианобактерий, более 2,3 миллиарда лет назад», — объясняет Ширрмейстер в своей докторской диссертации, написанной в Цюрихском университете.

    Связь между многоклеточностью и Великим событием окисления

    По мнению ученых, многоклеточность возникла незадолго до повышения уровня свободного кислорода в океанах и атмосфере. Это накопление свободного кислорода называется Великим событием окисления и считается самым значительным климатическим событием в истории Земли. Основываясь на своих данных, Ширмейстер и ее научный руководитель Хомаюн Багери считают, что существует связь между появлением многоклеточности и этим событием. Согласно Багери, многоклеточные формы жизни часто имеют более эффективный метаболизм, чем одноклеточные формы. Таким образом, исследователи предлагают теорию о том, что недавно развившаяся многоклеточность цианобактерий сыграла роль в запуске Великого события окисления.

    Цианобактерии заняли свободные ниши

    Повышенное производство кислорода вывело из равновесия первоначальную атмосферу Земли. Поскольку кислород был ядовит для большого количества анаэробных организмов, многие анаэробные типы бактерий были уничтожены, открывая экологические «ниши». Исследователи определили существование многих новых типов многоклеточных цианобактерий после фундаментального климатического события и пришли к выводу, что они заняли новые места обитания. «Морфологические изменения в микроорганизмах, таких как бактерии, могли коренным образом воздействовать на окружающую среду в такой степени, которую трудно себе представить», — заключает Ширрмайстер.

    изменить мир к лучшему: спонсируемая возможность


    История Источник:

    Материалы предоставлены Университет Цюриха . Примечание. Содержимое можно редактировать по стилю и длине.


    Ссылка на журнал :

    1. Б. Э. Ширмейстер, Дж. М. де Вос, А. Антонелли, Х. К. Багери. Эволюция многоклеточности совпала с увеличением разнообразия цианобактерий и Великим событием окисления . Труды Национальной академии наук , 2013; DOI: 10.1073/pnas.1209927110

    Цитировать эту страницу :

    • MLA
    • АПА
    • Чикаго

    Цюрихский университет. «Великое событие окисления: больше кислорода благодаря многоклеточности». ScienceDaily. ScienceDaily, 17 января 2013 г. .