Содержание
Читать онлайн «Трудный путь в космос. Сборник статей», Юрий Зайцев – ЛитРес
Редактор Мария Зайцева
© Юрий Зайцев, 2017
ISBN 978-5-4485-7260-9
Создано в интеллектуальной издательской системе Ridero
Об авторе
Юрий Иванович Зайцев (26.04.1937 – 05.03.2016) – известный советский и российский журналист, автор 13 книг и нескольких тысяч статей о космосе. Руководитель отдела научно-технической информации ИКИ РАН, действительный академический советник Академии инженерных наук РФ, член Союза журналистов России.
Юрий Зайцев родился в Москве 26 апреля 1937 г., в 1954 г. поступил в Североморское Военно-морское училище. В 1958 г. был направлен на службу в формируемые в те годы Ракетные войска стратегического назначения. Работал на Байконуре, принимал участие в строительстве космодрома Плесецк. С 1961 г. работал инженером в Государственном комитете по оборонной технике при Совете Министров СССР в космическом управлении.
В 1963 г. по запросу Мстислава Келдыша переведен в Межведомственный научно-технический совет по космическим исследованиям на должность старшего инженера, и с тех пор его жизнь была неразрывно связана с космической наукой. В 1968 г. Юрий Иванович начал работать в Институте космических исследований Академии наук в должности ведущего инженера в Отделе научно-технической информации и пропаганды. В 1980 году он стал руководителем отдела и возглавлял его до конца жизни.
Юрий Зайцев активно популяризировал достижения отечественных ученых: читал лекции от Всесоюзного общества «Знание», писал книги и научно-популярные статьи. Его перу принадлежат более 10 книг и 3500 статей по ракетно-космической и военной тематикам. Он часто выступал на радио и телевидение, с энтузиазмом принимал участие во всевозможных дебатах и дискуссиях, где всегда имел свою точку зрения и твердо её отстаивал.
Юрий Зайцев имел многочисленные награды, в том числе Федерацией космонавтики он был награжден дипломом Ю. А. Гагарина, золотой и серебряной медалями С. Королева, золотыми медалями В. Глушко и В. Макеева. Командующим Космическими войсками награжден памятным знаком «50 лет Космической эре».
В данный сборник вошли опубликованные статьи Юрия Зайцева разных лет, а также рукописи из личного архива.
Юрий Зайцев
ЛЕТИМ на МАРС
Марс… Планета мифов и научной фантастики, «войны миров» и «зеленых человечков». Марс – вправду покоренный? Такая возможность сегодня всерьез обсуждается и изучается учеными, инженерами, космонавтами, политическими деятелями.
От легенд к действительности
Пожалуй, ни с одной из планет Солнечной системы не связано столько гипотез – фантастических, дерзновенных и прекрасных – как с Марсом. Еще совсем недавно воображение землян будоражили увлекательные возможности найти мир себе подобных на расстоянии всего в несколько десятков миллионов километров – совсем незначительном в масштабах Вселенной. Сколь подкупающей была, например, гипотеза об искусственном происхождении марсианских «каналов», открытых итальянцем Д. Скиапарелли: разумные марсиане якобы воздвигли эти грандиозные инженерные сооружения для ирригации или как транспортные артерии.
А спутники Марса, доступные наблюдению лишь в самые большие телескопы? Американец А. Холл, обнаруживший их, дал им имена сыновей бога войны Марса – Фобос (Страх) и Деймос (Ужас). Всего 25 лет назад советский ученый И. Шкловский высказал гипотезу об их искусственном происхождении.
В серьезных научных работах описывался растительный мир Марса.
«Прежде всего, это должна быть растительность низкорослая, жмущаяся к почве, – считал советский ученый Г. Тихов. – В основном это должны быть травы и стелющиеся кустарники. В суровом климате растения могут иметь голубой, синий и даже фиолетовый цвет».
Не менее убедительно звучат слова американского биолога профессора физиологии растений Колорадского университета Ф. Солсбери: «Быстрое нагревание днем облегчилось бы определенной системой пигментации растений, приблизив их организм к абсолютно черному телу. Марсианские растения должны подставлять Солнцу днем широкую поверхность листа. Если бы с наступлением ночи такой лист мог сворачиваться в трубочку, это сократило бы потери тепла».
Проанализировав фотоснимки Земли, сделанные с больших высот, Солсбери пришел к выводу, что, собственно, зелеными участками выглядят лишь густые леса и сочные луга нашей планеты. «Поэтому, – писал он, – можно считать, что наблюдаемые с Земли изменения цвета и размеров отдельных участков поверхности Марса указывают на существование пышной растительности на планете…»
Центр дальней космической связи в районе г. Евпатория
Одновременно существовали и противоположные точки зрения. «В настоящее время, – писал академик В. Фисенков, – можно считать, что никакой высшей растительности и развитого живого мира на Марсе быть не может. Но существование на этой планете низших форм – каких-либо лишайников, примитивных водорослей, бактерий – нельзя считать исключенным».
Увы, к сожалению, все это не так! Сегодня уже известны многие факты из биографии Марса и его природы. Их достоверность вне сомнения – они переданы на Землю советскими и американскими космическими аппаратами, регулярные запуски которых к «красной планете» начались с 1962 года. Вслед за советским «Марсом-1» вплоть до 1975 года к четвертой планете стартовало полтора десятка советских и американских космических аппаратов. Земные посланцы внимательно рассмотрели ее с близкого расстояния, опустились на поверхность и рассказали о Марсе столько удивительного, что спор вокруг его тайн вспыхнул с новой силой. Развенчав одни гипотезы, они породили множество других.
Новые загадки
В середине шестидесятых годов казалось, что Марс скорее напоминает Луну: очень слабенькая атмосфера (давление на поверхности планеты соответствует земному давлению на высоте тридцати километров), незначительное магнитное поле, нет поясов радиации. Суровый ландшафт с множеством кратеров еще более усиливал это сходство. Такая точка зрения была наиболее распространенной и после полета первых советских «Марсов» и американских «Маринеров», хотя эти аппараты увеличили знания ученых о Марсе в сотни раз. И вот новые старты, новые уникальные сведения о планете и вывод, что Марс не похож на Луну. Он вообще ни на кого не похож. Марс похож на Марс…
Оказалось, что несмотря на свои скромные, по сравнению с Землей, размеры (диаметр Марса почти в два раза меньше земного, а его масса составляет лишь 11 процентов от массы Земли) рельеф Марса гораздо более пересечен. Съемки с близких расстояний позволили различить на его поверхности детали размером в километр, а в благоприятных случаях – в несколько десятков метров. При этом ни одного «марсианского канала», по поводу которых примерно столетие ломались научные копья, обнаружено не было. Зато имеется много сотен ветвящихся долин, ничем не отличающихся от земных рек. Есть следы, напоминающие движение ледников. Но нет воды!
Конечно, в условиях холода и разреженной марсианской атмосферы воды в жидком виде на Марсе быть не может. Но, очевидно, в истории планеты были и периоды более мягкого климата. В то время там, возможно, существовали не только реки, но и озера, и даже моря и океаны.
Многие специалисты полагают, что и сегодня в подповерхностных слоях Марса сохраняются реки и водоемы. Подозрения падают, в частности, на области Хеллас и Эллада. Последняя представляет собой впадину диаметром свыше полутора тысяч и глубиной до четырех километров, совершенно лишенную кратеров. Возможно, причина в толстом слое песка и пыли, покрывающем ее дно. А может быть, это замерзшее море?
Вывод о том, сколько всего на Марсе воды, пока не сделан. Еще недавно велись споры: из какого льда – обычного или сухого (замерзшей углекислоты) – состоят полярные шапки? Сейчас вроде бы достигнут компромисс: имеется и тот, и другой. Но проблема далеко не исчерпана.
Когда на Марс совершили посадку автоматические аппараты, они не обнаружили ни следов ног, ни остатков материальной культуры. Надо сказать, что о марсианских «братьях по разуму» к этому времени никто уже не мечтал. Но жизнь? Пусть самая примитивная! Ни микробов и даже никаких сложных органических молекул найти не удалось. Нет и растительности – деревьев, кустарников. Трудно в это поверить, принять еще труднее.
Но если сегодня на Марсе нет жизни, то представляется вероятным, что в прошлом, когда там текли реки, было гораздо больше шансов на ее существование. Если бы человек смог пройти по одной из марсианских речных долин и изучить геологические наслоения на берегах, то можно многое узнать – о климатических изменениях, о происхождении и эволюции жизни, сравнить развитие наших соседних миров.
Если на Марсе когда-то в изобилии имелась вода, то что же произошло потом? Каким образом этот мир стал таким холодным и иссушенным? Почему в его атмосфере почти не осталось воздуха? И не ожидает ли в будущем нечто подобное нашу Землю?
Юрий Зайцев
Экспедиции на Марс: фантазия или реальность?
Трудно предсказать сейчас с какими-либо подробностями, что понадобится для реализации полета человека на Марс. Специалистам придется увязать между собой и сбалансировать три критических фактора: общую длительность полета, время пребывания на Марсе и запасы топлива. При традиционном подходе, нацеленном на минимизацию расходов топлива, схема полета включает в себя девятимесячное путешествие к планете, более чем полуторагодичное пребывание там и обратный путь от шести до девяти месяцев. Но хотя такая схема и экономична с точки зрения затрат топлива, столь длительная экспедиция выглядит пугающе. Имеется, однако, и более быстрый вариант. Например, можно было бы запустить два космических корабля с интервалом 30 дней. Когда первый из них доберется до Марса, его экипаж опустится на поверхность планеты в малом челночном модуле. Тридцать дней спустя этот модуль взлетит, чтобы встретиться с другим кораблем, который затем продолжит движение по направлению к Земле. Преимущество подобной схемы в том, что не требуется затормаживать тяжелый корабль-носитель («матку») и переводить его на околомарсианскую орбиту, а затем вновь выводить на траекторию полета к Земле. Такая схема позволяет ограничиться значительно меньшими затратами топлива, сокращает время полета и вполне отвечает современному уровню техники.
Но даже в этом случае для пилотируемой экспедиции на Марс потребуются столь большие запасы топлива, что начальная масса корабля, монтируемого на околоземной орбите, составит несколько тысяч тонн.
Естественно применить для полета по межпланетным траекториям более эффективные источники энергии – ядерные. Ядерные реакторы послужат источником тепла, которое будет нагревать газ, заставляя его истекать из сопел двигателя и создавать реактивную тягу. При этом «рабочего тела», т. е. того самого газа потребуется существенно меньше по сравнению с топливом для жидкостных реактивных двигателей – в 2— 3 раза.
Еще более эффективной двигательной установкой стала бы ядерная электрореактивная. Важнейшей ее особенностью является очень высокая скорость истечения газа. Если у реактивного двигателя, работающего на жидком водороде и кислороде, она составляет около 2500 метров в секунду, то у электрореактивного – 20—50 тысяч. Рабочего тела при этом потребуется уже в 15—20 раз меньше по сравнению с жидкостными двигателями.
Можно передвигаться в космическом пространстве и используя давление солнечного света. Впервые эта идея была сформулирована и обоснована Ф. Цандером в 1920 году. При современном уровне развития техники и космической технологии создание космических аппаратов, оснащенных солнечными парусами – движителями площадью в тысячи квадратных метров, считается практически выполнимым, так как производство тончайших полимерных пленок, необходимых для изготовления такого паруса, возможно уже сегодня.
В целом можно сказать, что с точки зрения техники полет человека на Марс представляется на нынешнем этапе развития космонавтики не более сложным мероприятием, чем в свое время экспедиция на Луну по сравнению с пилотируемым полетом по околоземной орбите. Другое дело – способен ли сам человек к столь длительному – минимум полтора года – пребыванию в космосе.
«Я с большим оптимизмом и надеждой отношусь к идее полета человека на Марс, – говорит академик О. Газенко, – и надеюсь, что люди сумеют это сделать. Тем не менее, несмотря на серьезные успехи в освоении космоса, мы еще не все знаем о реакции человеческого организма на воздействие факторов космического пространства и космического полета. Объем наших знаний пока недостаточен для того, чтобы дать научно обоснованный ответ на вопрос, может ли человек полететь на Марс».
И все-таки на сегодня достигнут почти годичный рубеж пребывания человека в космосе. Складывается впечатление, что человек может удовлетворительно адаптироваться к длительному воздействию невесомости, а по окончании полета – к земной гравитации и успешно возвращаться к плодотворной жизни на Земле.
Неразрешимых проблем не видно. Учитывая, однако, что речь идет о человеке, его здоровье и безопасности, каждый новый шаг в космос должен быть скрупулезно взвешен, опираться на самое тщательное, детальное изучение и вновь получаемых данных, и всего предыдущего опыта. Ничто не должно выпасть из поля зрения, включая отдаленные последствия космических полетов. Наука, в том числе космическая биология и медицина, должна накопить еще немало фактов о Человеке и Космосе, понять механизмы их непростого взаимодействия, помочь достичь гармонии взаимоотношений. В итоге этих усилий станет возможной и пилотируемая экспедиция на Марс.
Первым пойдет робот
Полет человека на Марс несомненно был бы огромным успехом науки. Однако для решения всех марсианских загадок одного полета, даже с участием человека, недостаточно. Эта планета нуждается в детальных исследованиях, которые должны выполняться и с орбиты искусственных спутников, и на ее поверхности, и в ее недрах. Для проведения этих исследований присутствие человека необязательно. Лучше использовать умных роботов. Запуски к планете автоматических аппаратов позволили бы поэтапно отработать технику полетов и средств проведения исследований, выбрать наиболее интересные районы для последующих посадок, провести там необходимые изыскания. Словом, автоматам предстоит преодолеть громадную, назовем ее черновой, работу, прежде чем на поверхность Марса ступит человек.
Сроки запусков автоматических аппаратов будут определяться энергетическими возможностями выведения на траектории полета достаточно больших полезных нагрузок. Стартовать к Марсу нужно, когда он находится в «верхнем соединении с Землей», располагаясь с противоположной стороны от Солнца. До конца текущего столетия такие «астрономические окна» для марсианских стартов будут возникать примерно каждые два года. С учетом этих сроков советские ученые разработали поэтапную программу исследований Марса, конечной, целью которой станет доставка на Землю до 2000 года грунта четвертой планеты.
Испытания марсохода в районе г. Таруса
Миссия «Фобос»
Июль 1988 года. Два советских космических зонда, оснащенные сложным комплексом научной аппаратуры, стартовали к Марсу. Спустя примерно год они пройдут на высоте лишь нескольких десятков метров над поверхностью Фобоса. Луч бортового лазера раз за разом пронзит его «грунт». Испарившееся вещество, которое не в состоянии удержать слабенькое тяготение «мини-луны», будет выброшено в космос. Приборы-ловушки космического аппарата захватят его и выполнят подробный анализ.
Вслед за этим на Фобос десантируются два посадочных зонда. Один из них будет подвижным. Этот небольшой робот будет прыгать по поверхности, проводя первые в истории геологические исследования марсианского спутника. Другой зонд, наоборот, прочно утвердится с помощью специального ружья-гарпуна и примерно около года будет передавать на Землю ценные сведения. Эту информацию с нетерпением ждут советские ученые и сотрудничающие с ними специалисты из многих других стран.
Предусмотрен широкий комплекс исследований и самого Марса с борта космического аппарата, который будет двигаться по орбите искусственного спутника планеты.
Задуманная учеными программа исследований потребовала создания нового космического аппарата класса так называемых «высокоинтеллектуальных космических роботов». Аппарат был разработан в Научно-исследовательском центре имени Г. Н. Бабакина. Конструкция аппарата – одна из закономерных ступеней развития советских космических роботов. В ней просматриваются многие революционные линии технического прогресса, впервые в мире проложенные в советской космонавтике. Здесь кристаллизовался разнообразнейший опыт, в котором советское первородство бесспорно – первый облет Луны и мягкая посадка на ее поверхность; рейсы «Венер» и «Марсов» и многое другое.
Миссия «Фобос» может рассматриваться как первый важный шаг в реализации задуманной советскими учеными «марсианской программы». Следующий этап предполагается осуществить в середине 90-х годов. Это будут глобальные исследования поверхности и атмосферы Марса с помощью искусственных спутников планеты, аэростатных зондов, вводимых в ее атмосферу, марсоходов, метеорологических зондов и зондов-пенетраторов, доставляемых на поверхность, субспутника, отделяемого от основного аппарата.
Одна из главных технических проблем марсохода – это управление его движением. Марсоход должен, например, уметь самостоятельно обходить препятствия, которых двадцать – тридцать минут назад не было на его пути. Примерно столько времени понадобится радиосигналам, чтобы преодолеть расстояние от Марса до Земли и обратно. Решение проблемы видится в том, чтобы сделать марсоход «системой-экспертом», придав ему определенные «интеллектуальные способности». «Земля» будет определять стратегию работы, а сам робот – тактику ее проведения. Если для орбитального аппарата это означает автономию в решении ряда навигационных задач, то для марсохода – это наивысшее по сложности автономное адаптивное (то есть приспосабливающееся к условиям) управление движением.
Создание таких самоуправляемых роботов послужит не только космической науке. Оно принесет немало пользы и в земной практике. В частности, прототип марсохода использовался при очистке крыши Чернобыльской АЭС от радиоактивных обломков.
Программа научных исследований для марсоходов предполагается очень обширная. Она включает в себя вибропросвечивание глубинных недр планеты, что даст сведения о ее внутреннем строении; исследование состава грунта, анализ его микроструктуры и летучих компонентов. Марсоход позволит также получить большую серию панорамных снимков поверхности по трассе движения. С его помощью можно было бы осуществить и сбор образцов пород с большой площади и с глубины несколько метров, при этом увеличивается вероятность обнаружения каких-то форм жизни. Условия ее существования в подповерхностных слоях грунта более благоприятны – стабильная температура, защищенность от ионизирующих излучений достаточно высокая, по-видимому, влажность. Будет установлен на марсоходе и метеокомплекс.
Статья Юрия Зайцева в канадском журнале Space Flight News
Земля – Марс – Земля
Доставка образцов марсианского грунта на Землю представляется наиболее сложным элементом предложенной советскими учеными программы исследований Марса. Возможный вариант – запуск двух автономных аппаратов: один из них совершит посадку на поверхность Марса, другой станет его спутником. Посадочный аппарат опустится в заранее выбранном месте, где его уже будет ожидать доставленный на планету в предыдущей экспедиции марсоход с собранными им образцами пород. (Марсоход будет играть и роль радиомаяка для посадочного аппарата.) Образцы пород перегружаются манипулятором во взлетную ракету.
Кроме того, часть образцов будет собираться в районе посадки спускаемого аппарата небольшим марсоходом, размещенным на его борту. Он также оборудуется манипуляторами и грунтозаборным устройством, которое позволит взять образцы с достаточно большой глубины.
Взлетная ракета доставит грунт к орбитальному аппарату, состыкуется с ним, после чего образцы перегружаются в возвращаемый к Земле модуль. При подлете к нашей планете он перехватывается орбитальной станцией.
Было бы целесообразно выполнить на борту станции первичный анализ марсианского грунта. Это позволит разрешить одну из трудных задач экспедиции – обеспечение карантина, исключающего заражение нашей планеты внеземными организмами, которые могут оказаться в доставленных с Марса образцах грунта, как бы ни была мала такая вероятность. Само собой разумеется, необходима и стерилизация космического аппарата перед стартом с Земли, чтобы не занести на Марс земные микробы.
Доставка на Землю грунта с Марса позволит разрешить многие сложные вопросы природы этой планеты. Анализ минералогического состава образцов, содержания в них благородных газов и летучих веществ, а также распределения элементов поможет уяснить эволюцию Марса. Изучение изотопов даст возможность датировать породы и получить сведения о прежних геологических условиях на планете. Ученые надеются обнаружить углерод, воду и другие химические элементы, свидетельствующие о том, что на Марсе в свое время существовала жизнь. Не исключено, что будут найдены ископаемые остатки.
Проработки показали, в частности, что совместить возврат фотопленки с околомарсианской орбиты на Землю с выполнением всех других задач экспедиции будет трудно. Возможно, для проведения детальной фотографической съемки поверхности планеты с последующей доставкой пленки на Землю понадобится запуск специального аппарата. При этом облегчается и решение ряда специфических проблем, таких, например, как защита фотослоя от воздействия космической радиации.
Использование носителя типа ракеты «Энергия», способного доставить к Марсу значительно большую полезную нагрузку, открывает принципиально новые возможности в реализации марсианской программы. Одним стартом могут быть решены все основные задачи, включая возврат на Землю кассеты с материалами фотосъемки.
Может быть обеспечено одновременное исследование и значительно большего числа точек на Марсе при помощи марсоходов, аэростатных зондов и малых посадочных станций. Предварительные оценки показывают, что в одном запуске ракеты-носителя «Энергия» могут быть доставлены на планету сразу три марсохода – один тяжелый с возможностью глубокого бурения и два легких, несколько кассет с десятью метеомаяками каждая и большое количество пенетраторов.
Удастся снять и весовые ограничения в решении проблемы доставки грунта с Марса. В принципе можно было бы попытаться одновременно доставить грунт и с марсианского спутника Фобос.
Доставка на землю образцов марсианского грунта в варианте использования ракеты «Энергия», по сути, может стать решающим этапом отработки в натурных условиях элементов и основных технических средств будущей пилотируемой экспедиции – ядерной электрореактивной двигательной установки, марсианского посадочного корабля со взлетной ракетой на борту, корабля возвращения на Землю.
Космос — новости и статьи
Читать далее
Они превращают ПЭТ в нейлоновый мономер
Читать далее
Читать далее
В будущем спутниковая группировка будет состоять из более чем 600 аппаратов
Читать далее
Читать далее
10.2022″>
13 октября 2022
Инвестор Деннис Тито в 2001 году летал в космос на корабле «Союз ТМ-32»
Читать далее
Читать далее
Сотрудничество между странами ведется в штатном режиме
Читать далее
Читать далее
Подать заявку можно до 1 ноября 2022 года
Читать далее
Читать далее
Он собирается запустить на орбиту «космическую мастерскую»
Читать далее
Читать далее
09.2022″>
07 сентября 2022
Миссия переносится не в первый раз
Читать далее
Читать далее
Среди них особенно много страховых компаний
Читать далее
Читать далее
Главная цель программы — возвращение американских астронавтов на лунную поверхность
Читать далее
Читать далее
Роботизированные уборщики отправятся на орбиту на ракетах SpaceX
Читать далее
Показать еще
Архив всего содержимого | Декабрь 2022 г.
Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот как это работает.
Декабрь 2022
Фильтр
- Год
2022202120202019201820172016201520142013201220112010200920082007200620052004 - Месяц
ЯнварьФевральМартАпрельМайИюньИюльАвгустСентябрьОктябрьНоябрьДекабрь
Перейти
33 статьи
- 6 9 декабря0011
Самый большой телескоп на Земле будет охотиться за радиоволнами из ранней Вселенной
У женщины, которую спонтанно рвало до 30 раз в день, вероятно, были ложные антитела.
В Египте обнаружены портреты древней мумии и редкий идол Исиды-Афродиты
В вечной мерзлоте Сибири возродились вирусы-зомби. Могут ли они заразить людей?
Спустя 500 лет наконец-то расшифровали совершенно секретное письмо об убийстве короля-императора
Гипотиреоз (недостаточная активность щитовидной железы): причины, симптомы и лечение
Что такое углеводная загрузка?
Обзор RabbitAir MinusA2 spa-780N
Лучшие впечатления от виртуальной реальности 2022 года: исследуйте, учитесь и развлекайтесь в виртуальной реальности
Астрономы предупреждают, что крупнейший в мире спутник связи представляет угрозу фотобомбардировки
Наблюдайте затмение Марса «Холодной Луной» во время последнего полнолуния 2022 года
Мрамор Элгина может наконец вернуться в Грецию через 200 лет после того, как его вывезла британская знать.
- 5 декабря
Женское имя и крошечные наброски, спрятанные в рукописи 1200-летней давности
Поиски инопланетной жизни стали в 1000 раз масштабнее после того, как к охоте присоединился новый телескоп
У средневекового человека, похороненного в Польше, было два вида карликовости
Чудовищные «горгоны» пережили массовое вымирание, но они были «ходячей мертвой кладой».
Ученые раскрыли секреты тяжелого рычания летучих мышей
Где на Земле первым восходит солнце?
- 4 декабря
Какой материк самый большой? Наименьший?
- 3 декабря
Кому принадлежит луна?
20 исследований показывают, что каннабис снимает боль не лучше, чем плацебо.
- 2 декабря
FDA одобрило первое в своем роде средство, изготовленное из человеческих экскрементов. Что оно делает?
Древняя ящерица с зубами, похожими на ножи мясника, «перекалибровывает весь процесс» эволюции рептилий
Великий роман королевы Виктории и принца Альберта в All About History 124
Mpox (обезьянья оспа): симптомы, фото, лечение и вакцины
Колоссальный астероид-убийца планет вызвал мегацунами на Марсе, и теперь мы знаем, где он приземлился
В Солнечной системе обнаружено мощное извержение ледяной вулканической кометы
- 1 декабря
Мужчина обратился к врачу по поводу кашля. Оказывается, у него в груди была 6-дюймовая масса.
«Священные» изображения сов эпохи Медного века на самом деле могут быть детскими игрушками
Плавающий динозавр с лапшой мог быть ныряющим хищником, как пингвин
Инфекция опоясывающего лишая вызывает разрыв мочевого пузыря у мужчин в редких случаях
Червоточина, смоделированная на квантовом компьютере, может подтвердить теорию о голограмме Вселенной
Золотые языки найдены у 2000-летних мумий в Египте
как ученые подслушивают космос
Звуки звезд: как ученые подслушивают космос
Скачать PDF
- ОТ РЕДАКЦИИ
В астрономии использование звука вместо света разрушает барьеры на пути к участию и обеспечивает понимание Вселенной.
У вас есть полный доступ к этой статье через ваше учреждение.
Скачать PDF
Скачать PDF
Скопление Персея содержит тысячи галактик в облаке перегретого газа. Твит НАСА о звуке черной дыры в ее центре был воспроизведен миллионы раз. Фото: NASA/CXC/SAO/E. Бюльбюль и др.
Для зрячих астрономов Вселенная полна визуальных чудес. От мерцающих планет до сверкающих галактик космос невероятно красив. Но те, кто слепы или слабовидящие, не могут разделить этот опыт. Поэтому астрономы разрабатывают альтернативные способы передачи научной информации, такие как использование 3D-печати для представления взрывающихся звезд и звука для описания столкновения нейтронных звезд.
В пятницу журнал Nature Astronomy опубликует последнюю из серии статей об использовании сонификации в астрономии 1 – 3 . Сонификация описывает преобразование данных (включая данные исследований) в цифровые аудиофайлы, что позволяет их слышать, а также читать и видеть. Исследователи, представленные в Nature Astronomy , показывают, что звуковые представления могут помочь ученым лучше идентифицировать закономерности или сигналы в больших наборах астрономических данных 1 .
Работа показывает, что усилия по повышению инклюзивности и доступности могут иметь более широкие преимущества. Это верно не только в астрономии; сонификация также привела к открытиям в других областях, которые в противном случае могли бы не быть сделаны. Спонсоры исследований и издатели должны принять к сведению и поддержать междисциплинарные усилия, которые одновременно являются более инновационными и инклюзивными.
Озвучивание и звуковой дизайн для астрономических исследований, образования и взаимодействия с общественностью
В течение десятилетий астрономы делали фундаментальные открытия, слушая данные, а также просматривая их. В начале 1930-х Карл Янски, физик из Bell Telephone Laboratories в Нью-Джерси, проследил помехи в радиосвязи до центра Млечного Пути — открытие, которое привело к открытию сверхмассивной черной дыры в Галактике и рождению радиоастрономии. . Совсем недавно Ванда Диас-Мерсед, слепой астроном из Европейской гравитационной обсерватории в Кашине, Италия, использовала ультразвук во многих новаторских проектах, включая изучение плазменных структур в верхних слоях атмосферы Земли.0155 4 .
Около десяти лет назад число проектов по ультразвуковой обработке возросло, привлекая исследователей из самых разных областей. Возьмите Кимберли Арканд, эксперта по визуализации данных и научного коммуникатора в Центре астрофизики Гарвардского и Смитсоновского института в Кембридже, штат Массачусетс. Аркан начал с того, что писал и говорил об астрономии, особенно об открытиях, сделанных орбитальной рентгеновской обсерваторией НАСА «Чандра». Затем она перешла к работе, сосредоточенной на осязании; это включало создание 3D-печатных моделей «остатков» взорвавшихся звезд, которые передавали детали физики этих звездных взрывов. Когда в начале 2020 года из-за пандемии она не могла добраться до 3D-принтера, она переключилась на ультразвуковую обработку.
В августе НАСА написало в Твиттере о звуке черной дыры в центре скопления галактик Персей; с тех пор прикрепленный файл был воспроизведен более 17 миллионов раз. В том же месяце Аркан и другие преобразовали в звук некоторые из первых изображений, полученных с космического телескопа Джеймса Уэбба. Они работали под руководством слепых и слабовидящих людей, чтобы преобразовать интенсивность и цвета света в захватывающих заголовках изображениях в звук.
Ванда Диас-Мерсед использовала ультразвук во многих проектах. Фото: NG Images/Alamy
Эти карты основаны на технической точности. Например, при озвучивании изображения газа и пыли в далекой туманности используются громкие высокочастотные звуки для представления яркого света в верхней части изображения, а низкочастотные громкие звуки — для представления яркого света в центре изображения. Сонификация черной дыры переводит данные о звуковых волнах, распространяющихся в пространстве, созданных в результате воздействия черной дыры на окружающий ее горячий газ, в диапазон человеческого слуха.
Ученые в других областях также экспериментировали с озвучиванием данных. Биофизики использовали его, чтобы помочь студентам понять свертывание белков 5 . Аспекты белков сопоставляются со звуковыми параметрами, такими как громкость и высота тона, которые затем объединяются в звуковое представление сложного процесса складывания. Нейробиологи исследовали, может ли это помочь в диагностике болезни Альцгеймера с помощью сканирования мозга 6 . Звук даже использовался для описания экологических сдвигов, вызванных изменением климата в лесах Аляски, когда исследователи приписывали различные музыкальные инструменты разным видам деревьев.0155 7 .
Как один астроном слышит Вселенную
В долгосрочной перспективе такие подходы должны быть тщательно оценены, чтобы определить, что они могут предложить, чего не могут другие методы. При всей технической точности, продемонстрированной в отдельных проектах, серия Nature Astronomy указывает на отсутствие общепринятых стандартов для ультразвуковой обработки научных данных и мало опубликованных работ, в которых оценивается их эффективность.
Помогло бы дополнительное финансирование. Многие ученые, работающие над альтернативным представлением данных, собирают поддержку из различных источников, часто в сотрудничестве с музыкантами или звукорежиссерами, а междисциплинарный характер такой работы затрудняет поиск устойчивого финансирования.
17 ноября Управление Организации Объединенных Наций по вопросам космического пространства расскажет об использовании ультразвуковой обработки в космических науках на панельной дискуссии, в которой примут участие Диас-Мерсед и Аркан. Это направлено на повышение осведомленности о сонификации как об инструменте исследования, так и о способе снижения барьеров для участия в астрономии. Пришло время искренне поддержать эти усилия всеми возможными способами.
Природа 611 , 204 (2022)
doi: https://doi.org/10.1038/d41586-022-03597-5
Ссылки
- «>
Ноэль-Сторр, Дж. и Виллебрандс, М. Nature Astron . https://doi.org/10.1038/s41550-022-01691-2 (2022 г.).
Артикул
Google ученый
Мисдариис, Н. и др. Природа Астрон . https://doi.org/10.1038/10.1038/s41550-022-01821-w (2022 г.).
Артикул
Google ученый
Диас-Мерсед, В. Л. Звук для исследования данных космической физики . Кандидатская диссертация, Univ. Глазго (2013).
Scaletti, C. и др. J. Chem. Образовательный 99 , 12:20–12:30 (2022).
Артикул
Google ученый
«>Саве, Н., Чейф, К. и Тревиньо, Дж. Фронт. коммун. 5 , 46 (2020).
Артикул
Google ученый
Zanella, A. et al. Природа Астрон . https://doi.org/10.1038/s41550-022-01721-z (2022 г.).
Артикул
Google ученый
Гионфрида Л. и Рогинска А. Фронт. Нейрол. 8 , 647 (2017).
Артикул
пабмед
Google ученый
Скачать ссылки
Озвучивание и звуковой дизайн для астрономических исследований, образования и взаимодействия с общественностью
Как один астроном слышит Вселенную
Как наука должна поддерживать исследователей с нарушениями зрения
Использование звука для исследования событий во Вселенной
Звук звезд
Доступность астрономии для слабовидящих
Субъекты
- Карьера
- Астрономия и астрофизика
- Управление исследованиями
Последнее:
Работа
- 903:30
Ученый Масс-спектрометрия и характеристика терапевтических белков (всех полов) – (постоянно / полный рабочий день)
AbbVie Deutschland GmbH & Co.