Кто и когда изобрел первый микропроцессор в мире. Процессор первый в мире
История создания процессоров | Brain Fart
Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.
intel vs amdКак началось создание процессора
Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.
Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.
В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.
В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.
процессор Intel 4004Самый первый персональный компьютер
Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.
История развития процессоров Intel
Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.
В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.
Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.
Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.
В то же самое время в СССР
В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.
В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.
Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.
Эволюция процессоров
В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.
В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.
По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.
В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.
Процессоры в фильме «Терминатор»
Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.
Эволюция процессоров Intel, Zilog, Motorola
В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.
Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.
Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.
В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.
Процессоры нового поколения от компании Intel
В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.
Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.
Недорогие разработки Intel
Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.
Эволюция процессоров AMD
Компания AMD впервые запустила в производство процессоры в 1974 году. Ее первым процессором стала модель AMD 9080. Он полностью копировал все технические параметры Intel 8080. Однако в это же самое время компания создала уникальные микросхемы, которые можно было применять на цифровом оборудовании. Они получили название AM 2900. В девяностых годах их перестали производить.
Те годы славятся тем, что разработчики компьютерной техники стали использовать x86 процессоры. Компании AMD пришлось подстраиваться под новые требования, и она начала работу над созданием новых моделей процессоров. Первой ее моделью процессора такого плана стала разработка AMD K5. Данный процессор обладал большим уровнем производительности, чем Intel Pentium.
Через некоторое время компания AMD выкупила фирму NexGen, которая помогла ей запустить в производство чип модели K6. Для его производства было использовано огромное количество самых современных технологий. По своему уровню данная разработка вполне могла конкурировать со вторым поколением процессора Intel Pentium 2.
Главные конкуренты
Следует отметить, что среди всех компаний на рынке процессоров осталось всего два лидера, которые были представлены Intel и AMD. Они обе могут занимать лидирующее положение на рынке, потому что они дали большой толчок для развития новых технологий для производства качественных процессоров.
Видео: Как делают процессоры?
Твитнуть
Поделиться
Плюсануть
Поделиться
Класснуть
Сегодня имеется на рынке большой ассортимент процессоров для самых разных моделей компьютеров. Однако не многие пользователи знают о том, что ранее они имели на такие миниатюрные габариты. Благодаря некоторым компаниям они стали такими, какими мы их сейчас видим. Комплектующие 4.81 14 Идёт загрузка...brainfart.ru
Создан первый в мире 1000-ядерный процессор
Первый в мире центральный процессор, насчитывающий 1000 независимых программируемых ядер, был спроектирован командой исследователей из Калифорнийского университета. Проект получил название KiloCore. Процессор способен выполнять 1,78 триллиона инструкций в секунду и содержит 621 миллион транзисторов. Публике новый чип был представлен 16 июня на выставке, посвящённой процессорным технологиям, прошедшей в Гонолулу.
«Насколько нам известно, это первый в мире процессор с 1000 ядер и самый быстрый процессор из тех, что были созданы в стенах университетов», — поделился своей радостью Биван Баас, профессор электрики и компьютерного проектирования в Калифорнийском университете.
Действительно, согласно команде Бааса, на сегодняшний день максимальным количеством ядер в процессорах считалось число 300. Большинство таких чипов не были доступны простым смертным и чаще всего использовались в научных областях. Процессор KiloCore был воплощён в жизнь благодаря помощи корпорации IBM. Она предоставила исследователям свои производственные мощности, что позволило выпустить чип по 32-нанометровой CMOS-технологии.
Каждое ядро KiloCore способно выполнять небольшую программу независимо от остальных ядер. Это делает процессор куда более гибким, нежели подход Single-Instruction-Multiple-Data, используемый в современных GPU. Основной идеей исследователей было разбить приложение на множество мелких кусочков, каждый из которых сможет выполняться параллельно с помощью отдельных ядер. Это позволит значительно увеличить производительность, при этом уменьшив потребление электроэнергии.
Так как каждое ядро совершенно независимо, оно может самостоятельно отключить себя в то время, когда не используется для вычислений. Чтобы вы смогли представить себе, насколько этот процессор энергоэффективен, разработчики привели простой пример: ядра могут выполнять 115 миллиардов инструкций в секунду, при этом чип может быть запитан от обычной пальчиковой АА-батарейки. KiloCore более чем в 100 раз эффективнее, нежели современные процессоры, используемые, например, в ноутбуках.
В настоящий момент для нового процессора уже разработан ряд приложений. Например, для шифрования и дешифрования данных, обработки видео и так далее. Другими словами, чип будет востребован в тех областях, где необходимо параллельно обрабатывать огромные массивы данных. Пока неизвестно, планирует ли команда учёных сделать свой процессор доступным для широкой публики или оставить его достоянием научного мира.
hi-news.ru
Кто и когда изобрел первый микропроцессор в мире
О том, кто изобрел микропроцессор, знает каждый сотрудник компании Intel. В 1969 году в этой, тогда еще не известную, фирму пришли работать японские разработчики, которые раньше занимались проектированием калькуляторов. Инженеры использовали двенадцать интегральных схем, чтобы создать обычный настольный вычислитель. Главную роль в данном проекте играл Масатоши Шима. В то время Тед Хофсор управлял одним из отделов Intel. Он, как будущий создатель микропроцессора, понял вместо калькулятора с возможностью программирования лучше сделать компьютер, который будет программировать работу калькулятора.
Создание первого процессора в мире началось с разработки его архитектуры. В 1969 году один из сотрудников Интел предложил назвать первую серию микропроцессоров как семейство 4000. Каждая модель семейства имело шестнадцать выходных микросхем. Это помогает понять, какой был первый микропроцессор. Модель 4001 имело память на 2 Кб. В модели 4003 был десятибитовый расширитель со связью для клавиатуры и различными индикаторам. А версия 4004 уже было четырехбитовым процессорным устройством. Многие считают, что и был самый первый микропроцессор. В модели 4004 работало две тысячи триста транзисторов. Устройство работало на частоте 108 кГц.
Сегодня можно встретить разные мнения касательно того, когда был создан первый процессора Однако большинство считает, что 15 ноября 1971 года это дата и год создания первого микропроцессора в мире. Первоначально эту разработку выкупила японская фирма Busicom за шестьдесят тысяч долларов, но Интел позже вернула деньги, чтобы оставаться единственными правообладателями изобретения.
Первый процессор использовали в системах управления дорожными движением, в частности в светофорах. Кроме того, устройство применялось в анализаторах крови. Чуть позже 4004 нашел место в космическом зонде Пионер-10, который запустили в 1972 году.
Первый отечественный микропроцессор был создан в начале семидесятых годах в Специальном Вычислительном Центре под руководством Д.И. Юдицкого.
Таким образом, в 70-е года микропроцессоры стали постепенно проникать в самые разные области деятельности человека. Все процессоры позже разделились на непосредственно микропроцессоры и микроконтроллеры. Первые используются в персональных компьютерах, а микроконтроллеры нашли применение в управлении разными системами. В них более слабое вычислительное ядро, но имеется множество дополнительных узлов. Микроконтроллеры иногда называют микро-ЭВМ, поскольку все узлы и модули у них расположены прямо на кристалле.
24smi.org
История разработки первого в мире микропроцессора.
Помните, у нас была с вами такая спорная тема, как Советские корни процессора Intel Pentium. Давайте вернемся к истории возникновения процессоров.
В 60-х годах никто и не предполагал, что информационная революция скоро начнется. Более того, даже сами энтузиасты компьютерного дела, уверенные, что за компьютерами будущее, довольно туманно представляли себе это самое красочное будущее. Многие открытия, которые практически перевернули мир и представление общественности о современном мироустройстве, появились как бы сами собой, по мановению волшебной палочки, без какого-либо предварительного планирования. Характерна в этой связи история разработки первого в мире микропроцессора.
Покинув Fairchild Semiconductor, Роберт Нойс (Robert Noyce) и автор небезызвестного закона Гордон Мур (Gordon Moore) решили основать собственную компанию (подробнее о Fairchild Semiconductor см. статью "Белокурое дитя" в Upgrade #39 (129) за 2003 год). Нойс сел за печатную машинку и напечатал бизнес-план будущего кита IT-промышленности, которому суждено изменить мир. Вот полный текст этого бизнес-плана.
"Компания будет участвовать в исследованиях, разработке, изготовлении и продаже интегрированных электронных структур, чтобы удовлетворять потребность промышленности в электронных системах. Они будут включать в себя полупроводниковые устройства в тонкой и толстой оболочке и другие компоненты твердого тела, используемые в гибридных и монолитных интегрированных структурах.
Разнообразие процессов будет установлено на лабораторном и производственном уровнях. Они включают: выращивание кристаллов, разрезание, напуск, полировку, диффузию твердого тела, фотолитографическое маскирование и гравирование, вакуумное напыление, покрытие оболочкой, сборку, упаковку, тестирование. А также разработку и изготовление специальных технологий и испытание оборудования, требующегося для выполнения указанных процессов.
Изделия могут включать диоды, транзисторы, устройства с полевым эффектом, фоточувствительные элементы, лучеиспускающие устройства, интегральные схемы и подсистемы, обычно характеризующиеся фразой "масштабируемая интеграция с запаздыванием". Основными пользователями этих продуктов, как ожидается, будут производители передовых электронных систем для коммуникации, радаров, контроля и обработки данных. Ожидается, что большинство этих клиентов будут расположены за пределами Калифорнии".
По всему видно, что Нойс и Мур были оптимистами, раз предполагали, что хоть кто-то на основе этого текста сможет понять, чем, собственно, будет заниматься компания. Из текста бизнес-плана, однако, видно, что производством микропроцессоров заниматься не предполагалось. Впрочем, никто другой в то время ни о каких микропроцессорах не помышлял. Да и самого слова-то тогда не было, ибо центральный процессор любой ЭВМ того периода представлял собой довольно сложный агрегат немалого размера, состоящий из нескольких узлов.
На момент составления этого прожекта никто не мог, конечно, предсказать, какие он принесет доходы. Как бы там ни было, а в поисках кредита Нойс и Мур обратились к Артуру Року (Arthur Rock) — финансисту, который ранее помог создать Fairchild Semiconductor. И через два дня, как в сказке, компаньоны получили два с половиной миллиона долларов. Это даже по сегодняшним меркам немалые деньги, а в 60-х годах прошлого века это было прямо-таки целое состояние. Если бы не высокая репутация Нойса и Мура, то вряд ли они так легко получили бы требуемую сумму. Но что хорошо в США — там всегда имеются в наличии рисковые капиталисты, готовые вложить доллар-другой в перспективный бизнес, связанный с новыми технологиями. Собственно, на этом и покоится могущество этой страны. В современной России, которая, как почему-то считается, идет по пути США, таких капиталистов — днем с огнем…
Итак, дело, можно сказать, было в шляпе. Настала очередь самого приятного момента — выбора для будущего флагмана IT-индустрии. Первое пришедшее в голову название было название, составлено из имен отцов — основателей компании — Moore Noyce. Однако товарищи подняли их на смех. На взгляд "экспертов", такое название произносилось бы всеми не иначе как more noise ("много шума"), что для компании, продукция которой должна была использоваться в радиопромышленности, было хуже некуда. Составили список, в котором попадались такие слова, как COMPTEK, CALCOMP, ESTEK, DISTEK и т. п. В результате Мур и Нойс выбрали название, являющееся сокращением от "интегрированная электроника", — Intel.
Их ждало разочарование — это название уже кто-то зарегистрировал ранее для сети мотелей. Но, имея два с половиной миллиона долларов, несложно выкупить понравившееся название. Так компаньоны и поступили.
В конце 60-х годов большинство ЭВМ были оборудованы памятью на магнитных сердечниках, и своей миссией такие компании, как Intel, считали повсеместное внедрение "кремниевой памяти". Поэтому самым первым изделием, которое запустила в производство компания, была "микросхема 3101" — 64-разрядная биполярная статическая оперативная память, основанная на барьерном диоде Шоттки (см. врезку "Вальтер Шоттки").
Вальтер Шоттки
Бинарные диоды Шоттки названы в честь немецкого физика швейцарского происхождения Вальтера Шоттки (Walter Shottky, 1886-1976). Шоттки долго и плодотворно работал на ниве электропроводимости. В 1914 году он открыл явление возрастания тока насыщения под действием внешнего ускоряющего электрического поля ("эффект Шоттки") и разработал теорию этого эффекта. В 1915 году он изобрел электронную лампу с экранной сеткой. В 1918 году Шоттки предложил супергетеродинный принцип усиления. В 1939 году он исследовал свойства потенциального барьера, который возникает на границе полупроводник-металл. В результате этих исследований Шоттки разработал теорию полупроводниковых диодов с таким барьером, которые получили название диодов Шоттки. Вальтер Шоттки внес большой вклад в изучение процессов, протекающих в электролампах и полупроводниках. Исследования Вальтера Шоттки относятся к физике твердого тела, термодинамике, статистике, электронике, физике полупроводников.
В первый год после своего создания (1969) Intel принесла своим владельцам ни много ни мало 2672 доллара прибыли. До полного погашения кредита оставалось совсем чуть-чуть.
4 вместо 12
Сегодня Intel (как, впрочем, и AMD) производит чипы в расчете на рыночные продажи, но в первые годы своего становления компания нередко делала микросхемы на заказ. В апреле 1969 года в Intel обратились представители японской фирмы Busicom, занимающейся выпуском калькуляторов. Японцы прослышали, что у Intel самая передовая технология производства микросхем. Для своего нового настольного калькулятора Busicom хотела заказать 12 микросхем различного назначения. Проблема, однако, заключалась в том, что ресурсы Intel в тот момент не позволяли выполнить такой заказ. Методика разработки микросхем сегодня не сильно отличается от той, что была в конце 60-х годов XX века, правда, инструментарий отличается весьма заметно.
В те давние-давние годы такие весьма трудоемкие операции, как проектирование и тестирование, выполнялись вручную. Проектировщики вычерчивали черновые варианты на миллиметровке, а чертежники переносили их на специальную вощеную бумагу (восковку). Прототип маски изготовляли путем ручного нанесения линий на огромные листы лавсановой пленки. Никаких компьютерных систем обсчета схемы и ее узлов еще не существовало. Проверка правильности производилась путем "прохода" по всем линиям зеленым или желтым фломастером. Сама маска изготавливалась путем переноса чертежа с лавсановой пленки на так называемый рубилит — огромные двухслойные листы рубинового цвета. Гравировка на рубилите также осуществлялась вручную. Затем несколько дней приходилось перепроверять точность гравировки. В том случае, если необходимо было убрать или добавить какие-то транзисторы, это делалось опять-таки вручную, с использованием скальпеля. Только после тщательной проверки лист рубилита передавался изготовителю маски. Малейшая ошибка на любом этапе — и все приходилось начинать сначала. Например, первый тестовый экземпляр "изделия 3101" получился 63-разрядным.
Словом, 12 новых микросхем Intel физически не могла потянуть. Но Мур и Нойс были не только замечательными инженерами, но и предпринимателями, в связи с чем им сильно не хотелось терять выгодный заказ. И тут одному из сотрудников Intel, Теду Хоффу (Ted Hoff), пришло в голову, что, раз компания не имеет возможности спроектировать 12 микросхем, нужно сделать всего одну универсальную микросхему, которая по своим функциональным возможностям заменит их все. Иначе говоря, Тед Хофф сформулировал идею микропроцессора — первого в мире. В июле 1969 года была создана группа по разработке, и работа началась. В сентябре к группе присоединился также перешедший из Fairchild Стэн Мазор (Stan Mazor). Контролером от заказчика в группу вошел японец Масатоси Сима (Masatoshi Shima). Чтобы полностью обеспечить работу калькулятора, необходимо было изготовить не одну, а четыре микросхемы. Таким образом, вместо 12 чипов требовалось разработать только четыре, но один из них — универсальный. Изготовлением микросхем такой сложности до этого никто не занимался.
Итальяно-японское содружество
В апреле 1970 года к группе по выполнению заказа Busicom присоединился новый сотрудник. Он пришел из кузницы кадров для Intel — компании Fairchild Semiconductor. Звали нового сотрудника Федерико Фэджин (Federico Faggin). Ему было 28 лет, но уже почти десять лет он занимался созданием компьютеров. В девятнадцать лет Фэджин участвовал в построении мини-ЭВМ итальянской компании Olivetti. Затем он попал в итальянское представительство Fairchild, где занимался разработкой нескольких микросхем. В 1968 году Фэджин покинул Италию и перебрался в США, в лабораторию Fairchild Semiconductor в Пало-Альто. Стэн Мазор показал новому члену группы общую спецификацию проектируемого набора микросхем и сказал, что на следующий день прилетает представитель заказчика.
Federico Faggin
Утром Мазор и Фэджин поехали в аэропорт Сан-Франциско встречать Масатоси Симу. Японцу не терпелось увидеть, что именно сделали люди из Intel за несколько месяцев его отсутствия. Приехав в офис, Мазор оставил итальянца и японца с глазу на глаз, а сам благоразумно испарился. Когда Сима посмотрел документы, которые ему протянул Фэджин, то его чуть Кондратий не хватил: за четыре месяца "интеловцы" не сделали ровным счетом ничего. Сима ожидал, что за это время уже закончится прорисовка схемы чипов, а увидел только концепцию в том виде, которая была на момент его отъезда в декабре 1969 года. Дух самурая вскипел, и Масатоси Сима дал выход своему возмущению. Не менее темпераментный Фэджин объяснил Симе, что если тот не успокоится и не поймет, что они в одной лодке, — проекту полный капут. На японца произвели впечатления доводы Фэджина и то, что он, собственно, работает в компании всего несколько дней и не несет ответственность за срыв графика. Таким образом, Федерико Фэджин и Масатоси Сима стали вместе работать над проектированием схем чипов.
К этому времени, однако, руководство компании Intel, которое смотрело на этот заказ Busicom как на очень интересный и в чем-то авантюрный, но все-таки не самый важный эксперимент, переключило группу Хоффа и Мазора на изготовление "изделия 1103" — микросхемы DRAM емкостью 1 кбит.
Intel 1103 DRAM chip, c. 1970
На тот момент именно с изготовлением чипов памяти руководство Intel связывало будущее благополучие компании. Оказалось, что Федерико Фэджин был руководителем проекта, в котором, кроме него, никого не было (Сима, как представитель заказчика, участвовал лишь эпизодически). Фэджин в течение недели создал новый, более реалистичный проектный график и показал его Симе. Тот улетел в Японию в штаб-квартиру Busicom. Японцы, узнав все детали, хотели было отказаться от сотрудничества с Intel, но все-таки передумали и отослали Масатоси Симу обратно в США с целью максимально помочь и ускорить создание набора микросхем.
В конечном итоге группа кроме Фэджина пополнилась одним электротехником и тремя чертежниками. Но основная тяжесть работы все равно легла на руководителя. Первоначально группа Фэджина взялась за разработку чипа 4001 — микросхемы ROM. Обстановка была весьма нервозной, поскольку никто до них не делал изделий такой сложности. Все приходилось проектировать вручную с нуля. Помимо проектирования чипа параллельно нужно было изготавливать тестовое оборудование и разрабатывать программы тестирования.
Порой Фэджин пропадал в лаборатории по 70-80 часов в неделю, не уходя домой даже на ночь. Как он позднее вспоминал, ему весьма повезло, что в марте 1970 года у него родилась дочка и его жена на несколько месяцев уехала в Италию. В противном случае не миновать бы ему семейного скандала.
В октябре 1970 года работы по изготовлению чипа 4001 были закончены. Микросхема работала безупречно. Это повысило уровень доверия к Intel со стороны Busicom. В ноябре был готов и чип 4003 — микросхема интерфейса с периферией, самая простая из всего набора. Еще чуть позже был готов 320-битный модуль динамической памяти 4002. И вот, наконец, в конце декабря 1970 года с завода для тестирования были получены "вафли" (так американские специалисты называют кремниевые пластины, на которых "вырастили" микросхемы, но еще не разрезали). Дело было поздним вечером, и никто не видел, как у Фэджина тряслись руки, когда он загружал первые две "вафли" в пробер (специальное устройство для испытания и тестирования). Он сел перед осциллографом, включил кнопку напряжения и… ничего, линия на экране даже не дернулась. Фэджин загрузил следующую "вафлю" — тот же самый результат. Он был в полном недоумении.
Нет, конечно, никто не ожидал, что первый опытный образец устройства, которого никто в мире ранее не делал, сразу же покажет расчетные результаты. Но чтобы на выходе вообще не было сигнала — это был просто удар. После двадцати минут учащенного сердцебиения Фэджин решил рассмотреть пластины под микроскопом. И тут сразу же все выяснилось: нарушения в технологическом процессе, приведшие к тому, что некоторых межслойных перемычек на схемах не было! Это было очень плохо, график слетал, но зато Фэджин знал: ошибка произошла не по его вине. Следующая партия "вафель" поступила в январе 1971 года. Фэджин снова заперся в лаборатории и просидел в ней до четырех утра. На этот раз все работало безупречно. В течение усиленного тестирования в последующие несколько дней все же обнаружились несколько незначительных ошибок, но они были быстро исправлены. Подобно художнику, подписывающему полотно, Фэджин поставил на чип 4004 свои инициалы — FF.
Микропроцессор как товар
В марте 1971 года Intel отправила в Японию комплект для калькулятора, который состоял из одного микропроцессора (4004), двух 320-битных модулей динамической памяти (4002), трех микросхем интерфейса (4003) и четырех микросхем ROM. В апреле из компании Busicom поступило сообщение, что калькулятор работает идеально. Можно было запускать производство. Однако Федерико Фэджин начал горячо убеждать руководство Intel, что глупо ограничиваться только калькуляторами. По его мнению, микропроцессор можно было бы использовать во многих областях современного производства. Он был уверен, что набор микросхем 400x представляет самостоятельную ценность и может продаваться сам по себе. Его уверенность передалась руководству. Однако была одна загвоздочка — первый в мире микропроцессор не принадлежал Intel, он принадлежал японской фирме Busicom! Ну что тут было делать? Оставалось ехать в Японию и начинать переговоры о покупке прав на собственную разработку. Так "интеловцы" и поступили. В результате компания Busicom продала права на микропроцессор 4004 и сопутствующие микросхемы за шестьдесят тысяч долларов.
Обе стороны остались довольны. Busicom до сих пор продает калькуляторы, а Intel… Руководство компании Intel поначалу смотрело на микропроцессоры как на побочный продукт, который лишь способствует продажам главного товара — модулей оперативной памяти. Компания Intel выбросила на рынок свою разработку в ноябре 1971 года под названием MCS-4 (Micro Computer Set).
Несколько позднее Гордон Мур, оглядываясь назад, скажет по этому поводу: "Если бы автомобилестроение эволюционировало со скоростью полупроводниковой промышленности, то сегодня "Роллс-ройс" стоил бы три доллара, мог бы проехать полмиллиона миль на одном галлоне бензина и было бы дешевле его выбросить, чем платить за парковку". Конечно, если сравнивать с нынешними требованиями, у MCS-4 были далеко не сногсшибательные показатели. Да и в начале 70-х никто особо сильно не взволновался в результате появления этой продукции. В целом вычислительная система на основе набора MCS-4 не уступала самым первым ЭВМ 1950-х годов, но на дворе-то уже были другие времена, и в вычислительных центрах стояли машины, вычислительная мощь которых ушла далеко вперед.
Intel развернула специальную пропагандистскую кампанию, адресованную инженерам и разработчикам. В своих рекламных объявлениях Intel доказывала, что микропроцессоры, конечно, не являются чем-то очень серьезным, но зато их можно использовать в разных специфических областях, типа автоматизации производства. Помимо калькуляторов набор MCS-4 нашел себе применение в качестве контроллеров для таких устройств, как газовые насосы, автоматические анализаторы крови, устройства контроля уличного движения...Что касается отца первого в мире микропроцессора, то он был сильно огорчен тем обстоятельством, что Intel никак не хочет взглянуть на новое устройство как на основной продукт. Фэджин совершил несколько туров по США и Европе, выступая в научных центрах и передовых заводах, пропагандируя микропроцессоры. Подчас его и компанию Intel поднимали на смех.
Действительно, уж больно несерьезным тогда выглядела вся эта микропроцессорная затея. Фэджин поучаствовал и в проекте 8008 — создании восьмибитного микропроцессора, который во многом повторял архитектуру 4004. Однако постепенно в нем нарастало чувство обиды за то, что в компании к нему относятся как просто к хорошему инженеру, справившемуся со сложной, но не очень важной работой. Но он-то знал, что фактически совершил мировую революцию.
В октябре 1974 года Федерико Фэджин покинул Intel и основал свою собственную компанию Zilog, Inc. В апреле следующего года в Zilog из Busicom перешел Масатоси Сима. И друзья приступили к проектированию нового процессора, который должен был стать самым лучшим в мире. В мае 1976 года на рынке появился микропроцессор Z80 компании Zilog.
Процессор Z80 был очень успешным проектом и серьезно потеснил на рынке процессоры Intel 8008 и 8080. В середине 70-х — начале 80-х годов компания Zilog была для Intel приблизительно тем же, чем сегодня компания AMD — серьезным конкурентом, способным выпускать более дешевые и эффективные модели той же архитектуры. Как бы там ни было, а большинство обозревателей сходятся в том, что Z80 был самым надежным и успешным микропроцессором за всю историю микропроцессорной техники. Однако не стоит забывать, что история эта еще только начиналась…
MCS-4 — прообраз будущего
Статья о создании первого в мире микропроцессора будет неполной, если не сказать хотя бы пару слов о технических особенностях набора MCS-4. На введении цифры 4 в систему кодирования Intel настоял Федерико Фэджин. Маркетинговому отделу Intel эта идея понравилась — четверка указывала и на разрядность процессора, и на общее количество микросхем. Набор состоял из четырех следующих чипов: 4001 — микросхема маскируемой ROM емкостью 2048 бит; 4002 — микросхема RAM емкостью 320 бит; 4003 — микросхема интерфейса, представляющая собой 10-битный сдвиговый регистр; 4004 — четырехбитный ЦПУ с набором из 45 команд. Фактически это был прообраз персонального компьютера ближайшего будущего. Рассмотрим немного подробнее функционирование этих микросхем, поскольку основные принципы их работы можно обнаружить даже в современных микропроцессорах.
В оперативной памяти (RAM) современного компьютера одновременно хранятся и выполняющиеся программы, и данные, которые они обрабатывают. В связи с этим процессор всякий раз должен знать, что именно он сейчас выбирает из памяти — команду или данные. Первому микропроцессору 4004 было проще — команды хранились только в ROM (чип 4001), а данные — в RAM (чип 4002).
Поскольку инструкции для процессора 4004 были восьмибитными, микросхема 4001 была организована в виде массива из 256 восьмибитных слов (термин "байт" тогда еще не использовался). Иначе говоря, в одной такой микросхеме могло уместиться максимум 256 инструкций центрального процессора. Микропроцессор 4004 мог работать максимум с четырьмя микросхемами 4001, следовательно, максимальное количество инструкций, которые можно было записать, не превышало 1024. Тем более что "Ассемблер" 4004 был очень простым — всего 45 команд, причем не было таких сложных команд, как умножение или деление. Вся математика зиждилась на командах ADD (прибавить) и SUB (отнять). Кто знаком с алгоритмом двоичного деления, легко поймет сложность работы программистов с процессором 4004.
Адрес и данные передавались по мультиплексируемой четырехбитной шине. Поскольку микросхема 4001 представляла собой EPROM, ее можно было перепрошивать, записывая те или иные программы. Тем самым MCS-4 настраивалась на выполнение конкретных задач.Роль оперативной памяти отводилась чипу 4002. Обмен данными с 4002-й также осуществлялось по четырехразрядной шине. В системе на базе MCS-4 можно было использовать максимум четыре микросхемы 4002, то есть максимальный объем ОП в такой системе равнялся 1 кбайт (4 x 320 бит). Память была организована в виде четырех регистров, в каждом из которых могло размещаться двадцать четырехбитных символов (4 x 20 x 4). Поскольку при использовании четырехбитного кода можно закодировать максимум 16 символов (24), MCS-4 было бы затруднительно использовать для работы с текстовым процессором. Если говорить о калькуляторе, то кодировались десять символов от 0 до 9, четыре знака арифметических действий, десятичная точка и один символ оставался резервным. Получение данных из памяти осуществлялось процессором по инструкции SRC.
Процессор посылал две четырехбитовые последовательности X2 (D3D2D1D0) и X3 (D3D2D1D0). В последовательности X2 биты D3D2 указывали номер банка памяти (номер чипа 4002), а биты D1D0 — номер запрашиваемого регистра в этом банке (современные процессоры, кстати, при работе с памятью также указывают номер банка памяти). Вся последовательность X3 указывала номер символа в регистре. Чипы и регистры нумеровались: 00 — 1; 01 — 2; 10 — 3; 11 — 4. Например, инструкция SRC 01010000 сообщала процессору, что во втором чипе, втором регистре следует выбрать первый символ.
Весь обмен данными с внешними устройствами, такими, как клавиатура, дисплеи, принтеры, телетайпы, разного рода переключатели, счетчики, — словом, с периферией, осуществлялся через микросхему интерфейса 4003. В ней были объединены параллельный выходной порт, а также последовательный входной / выходной порт. В принципе, такой механизм обмена данными с периферией просуществовал вплоть до появления портов USB и т. п.
Основа набора — микросхема 4004 — была самым настоящим микропроцессором. Процессор содержал четырехбитный сумматор, регистр-аккумулятор, 16 индексных регистров (четырехбитных, естественно), 12 счетчиков программ и стека (четырехбитных) и восьмибитный командный регистр и декодер. Командный регистр подразделялся на два четырехбитных регистра — OPR и OPA.
Рабочий цикл происходил следующим образом. Процессор вырабатывал сигнал синхронизации SYNC. Затем посылалось 12 бит адреса для выборки из ROM (4001), которые проходили за три рабочих цикла: A1, A2, A3. В соответствии с поступившим запросом обратно в процессор посылалась восьмибитная команда за два цикла: M1 и M2. Инструкция размещалась в регистрах OPR и OPA, интерпретировалась и выполнялась за следующие три цикла: X1, X2, X3. На рисунке показан рабочий цикл процессора Intel 4004. Частота процессора 4004 первого выпуска была 0,75 МГц, так что все это происходило не очень быстро по нынешним понятиям. Весь цикл занимал порядка 10,8 секунды. Суммирование двух восьмизнаковых десятичных чисел занимало 850 секунд. За секунду Intel 4004 выполнял 60 000 операций.
Даже из краткого технического описания видно, что это был совсем слабенький процессор. Поэтому нет ничего удивительного, что мало кого в начале семидесятых годов прошлого века всполошило появление на рынке набора MCS-4. Продажи по-прежнему оставались не очень высокими. Зато пропаганда Intel откликнулась в сердцах молодых энтузиастов вроде Билла Гейтса (Bill Gates) и его друга Пола Аллена (Paul Allen), которые сразу поняли, что появление микропроцессоров открывает лично для них двери в новый мир.
Схема кодирования от Intel
(Писали в UPgrade и на NNM)Схему цифрового кодирования изделий Intel изобрели Энди Гроув (Andy Grove) и Гордон Мур. В своем исходном виде она была весьма простой, для кодирования использовались только цифры 0, 1, 2 и 3. После того как Федерико Фэджин создал микропроцессор, он предложил ввести цифру 4, чтобы в коде отразить четырехбитную структуру его регистров. С появлением восьмибитных процессоров была добавлена цифра 8. В этой системе любое изделие получало код, состоящий из четырех цифр. Первая цифра кода (крайняя левая) обозначала категорию: 0 — контрольные чипы; 1 — микросхемы PMOS; 2 — микросхемы NMOS; 3 — биполярные микросхемы; 4 — четырехбитные процессоры; 5 — микросхемы CMOS; 7 — память на магнитных доменах; 8 — восьмибитные процессоры и микроконтроллеры. Цифры 6 и 9 не использовались.
Вторая цифра в коде обозначала тип: 0 — процессоры; 1 — микросхемы статической и динамической RAM; 2 — контроллеры; 3 — микросхемы ROM; 4 — сдвиговые регистры; 5 — микросхемы EPLD; 6 — микросхемы PROM; 7 — микросхемы EPROM; 8 — схемы синхронизации для тактовых генераторов; 9 — чипы для телекоммуникаций (появилась позднее). Две последние цифры обозначали порядковый номер данного вида изделия. Таким образом, первая микросхема, которую изготовила Intel, имевшая код 3101, расшифровывалась как "биполярная микросхема статической или динамической RAM первого выпуска".
Читайте далее эту историю по ссылкам:История архитектуры процессора x86 Часть 2. Восемь битИстория архитектуры процессора x86 Часть 3. Далекий пращур[источники]источникиhttp://upweek.ru/istoriya-arxitektury-processora-x86-chast-1.-samyj-pervyj-mikroprocessor.htmlhttp://upweek.ru/istoriya-arxitektury-processora-x86-chast-2.-vosem-bit.htmlhttp://upweek.ru/istoriya-arxitektury-processora-x86-chast-3.-dalekij-prashhur.html
Узнайте подробнее про 8-ядерный микропроцессор Эльбрус-8С и про Советскую историю тетриса. Вот вам еще 38 клавиатурных сокращений и краткая история одного из самых популярных в мире приложений. Вот еще Как защититься от Windows 10 и что это был за Секретный предок компьютеров
masterok.livejournal.com
История появления и развития процессоров для компьютеров | Компьютер дома
История появления и развития первых процессоров для компьютеров берет своё начало в середине двадцатого века. Сейчас уже невозможно себе представить, что как-то можно обойтись без персональных компьютеров, но не так давно, всего каких-то сорок лет назад, слова «компьютер» и «процессор» были известны лишь узкому кругу специалистов. И лишь в 1971 году произошло знаковое событие — никому тогда ещё неизвестная фирма Intel из американского города Санта-Клара дала жизнь первому микропроцессору, благодаря чему в дальнейшем персональные компьютеры различных типов, конфигураций и назначения, прочно вошли в нашу жизнь, и ими пользуются все и везде, от учащихся школ до инженеров и ученых.
Процессоры с применением электромеханических реле, вакуумных ламп, ферритовых сердечников (то есть специальных устройств памяти)
Данный этап эволюции процессоров затронул период с сороковых по самый конец пятидесятых годов. Такие процессоры устанавливали в специальные разъёмы на отдельных модулях, которые были собраны в стойки. Огромное количество подобных стоек, соединённых проводниками, в совокупности представляли собой процессор. Отличительной чертой являлась их низкая надёжность, небольшое быстродействие, а также огромное выделение теплоты.
Процессоры на транзисторах
Это был второй этап эволюции процессоров, который длился, начиная с середины пятидесятых годов до середины шестидесятых. Транзисторы монтировали уже на платы весьма близкие к нынешним платам по облику, которые устанавливались в стойки. Как и раньше, процессор в среднем состоял из нескольких подобных стоек. Выросло быстродействие, повысился уровень надёжности, уменьшился уровень энергопотребления.
Процессоры на микросхемах
Это был третий этап эволюции процессоров, который наступил в середине шестидесятых годов. Первоначально применялись микросхемы с низкой степенью интеграции, которые содержали простейшие транзисторные, а также резисторные схемы. Потом по мере развития технологий, стали применять микросхемы, которые реализовывали отдельные части цифровой схемотехники. По началу элементарные ключи, а также различные логические элементы, потом более элементы посложнее — элементарные регистры, сумматоры, счётчики, позднее возникли микросхемы, которые содержали функциональные блоки самого процессора — арифметическо-логическое устройство, микропрограммное устройство, регистры, а также устройства для работы с шинами данных и различных команд.
Микропроцессоры
Четвёртым этапом, в самом начале семидесятых годов, было создание микропроцессора, то есть специальной микросхемы, на кристалле у которой физически были расположены все главные элементы, а также блоки процессора. Корпорация Intel в 1971 году смогла создать первый во всем мире четырехразрядный микропроцессор 4004, который состоял из 2300 транзисторов, имел рабочую частоту 108 кГц — это 0,108 МГц или 0,000108 ГГц (где-то в 20000 раз меньше частоты современных компьютерных процессоров). Производился этот 4-битный процессор по 10-микронной технологии и был предназначен для применения в микрокалькуляторах. В последствии Intel 4004 стали использовать в анализаторах крови, в схемах управления светофоров и даже на межпланетных космических станциях.
Со временем почти все процессоры стали выпускать в формате таких микропроцессоров. Исключением длительное время были только лишь малосерийные процессоры, которые аппаратно оптимизировались для решения различных специальных задач. К примеру, суперкомпьютеры или процессоры для осуществления решения целого ряда военных задач, или же какие-нибудь процессоры, к которым, как правило, предъявлялись некие особые требования по уровню надёжности, своему быстродействию, либо же защите от воздействия электромагнитных импульсов, а также воздействия ионизирующей радиации. С удешевлением, а также распространением самых современных технологий, данные процессоры тоже начинают делать в формате микропроцессора.
Развитие микропроцессоров
Процесс перехода к микропроцессорам дал возможность создавать персональные компьютеры, проникшие сейчас практически в каждый дом. Самым первым общедоступным микропроцессором явился четырехразрядный Intel 4004, который весной 1972 года сменил восьмибитный Intel 8008, состоявший из 3500 транзисторов и работавший на частоте 200 кГц, имел 8-разрядную шину данных, хотя и производился также по 10-микронной технологии. Сфера его применения ограничивалась терминалами и программируемыми калькуляторами.
Следующим шагом в развитии микропроцессоров стало создание в 1974 году Intel 8080. Новый 8-битный процессор содержал уже 6000 транзисторов и мог адресовать 64 Кбайт памяти. Кроме всего прочего, это был первый микропроцессор, который уже мог делить числа. Именно он стал основой для создания первого персонального компьютера Altair 8800, в котором использовалась операционная система СР/М. Простота общения с компьютером Altair 8800 и легкость написания для него программ — заслуга будущих основателей фирмы Мicrosoft Пола Аллена и Билла Гейтса, которые в конце 1975 года создали для него интерпретатор языка Ваsic (Бэйсик), что немало поспособствовало популяризации персональных компьютеров в то время.
Но история Intel 8080 на этом не закончилась. Кучка бывших инженеров Intel, которые занимались разработкой процессора 8080, объединившись, в конце 1975 года создали компанию Zilog Corporation, которая выпустила микропроцессор Z80, представляющий собой значительно улучшенную версию 8080. Изначально Z80 содержал 8500 транзисторов, работал на частоте 2,5 МГц и мог адресовать 64 Кбайт памяти. Позднее он стал работать уже на частоте 10 МГц. Самым, пожалуй, ярким представителем компьютеров на базе Z80 был «Sinclair ZX Spectrum» английской компании Sinclair Research Ltd.
В 1978 году Intel выпускает новый шестнадцатиразрядный микропроцессор Intel 8086, содержащий набор команд х86, который заложил основы архитектуры всех нынешних настольных процессоров. 8086 работал на частоте 5 МГц и содержал 29000 транзисторов. Он мог адресовать 1 Мбайт памяти благодаря 20-разрядной адресной шине. По причине большой распространённости восьмиразрядных модулей памяти выпущен был весьма дешевый Intel 8088, являющийся упрощенной версией 8086 со всеми теми же характеристиками, но с восьмиразрядной шиной данных. Это дало возможность программной и аппаратной совместимости как с процессором 8086, так и с предыдущими 8-разрядными процессорами 8085 и 8080.
Использование Intel 8088
позволило в значительной мере увеличить потенциал и возможности персональных компьютеров, так как он позволил работать с 1 Мб памяти, тогда, как все имевшиеся на тот момент компьютеры были ограничены 64 Кб. Программное обеспечение для компьютеров на Intel 8088 разрабатывала фирма Microsoft. И в 1981 году для компьютера IBM РС была представлена первая версия операционной системы MS DOS 1.0. Дальше по мере прогресса анонсировались и новые версии DOS, которые предоставляли пользователям дополнительные удобства с учётом новых возможностей компьютеров. Тем самым через пару лет, вытеснив с рынка 8-битовые модели компьютеров, IВМ РС занял ведущее место.
В 1982 году Intel выпускает новый 16-разрядный микропроцессор Intel 80286, разработанный по 1,5 микронной технологии. Он имел 134000 транзисторов, виртуальную память размером до 1 Гб, а также защищённый режим с 24-битной адресацией, который позволял использовать 16 мегабайт памяти на частоте: 8, 12 и 16 МГц.
Процессор типа Intel 80386 возник в 1985 году и смог привнести улучшенный защищённый режим, 32-битную адресацию, которая позволила применять до 4 гигабайт оперативной памяти, а также еще и поддержку механизма применения виртуальной памяти. Intel 80386 изготавливался по 1,5 мкм технологии, имел уже 275000 транзисторов и работал на частотах: 16, 20-40 МГц. Данная линейка процессоров была построена на вычислительной регистровой модели. Параллельно шло развитие микропроцессоров, которые взяли за основу вычислительную стековую модель.
В 1989 году увидел свет новый микропроцессор Intel 80486, в котором на одном, изготовленном по 1 мкм технологии, кристалле 1200000 транзисторов, первичный кэш и встроенный математический сопроцессор 80487. 486 работал на частотах: 25, 33, 50 и 66 МГц и, как его предшественник, мог использовать до 4 Гб оперативной памяти.
Первые 32-разрядные процессоры Pentium
появились в 1993 году. Они уже имели 3 миллиона транзисторов, были изготовлены по 0,8 мкм технологии, имели частоту 60 и 66 МГц и 64-битную шину данных. В следующем 1994 году вышло второе поколение процессоров Pentium с частотой 75, 90 и 100 МГц, изготовленных по 0,6 мкм технологии, что снизило потребляемую ими мощность.
И вот, последние 20 лет, начиная с 1993 года, с момента появления первого процессора Intel Pentium, прогресс в развитии компьютерных процессоров продвигался так быстро, что сейчас в наших домашних персональных компьютерах уже стоят четырех- , шести- , восьми-ядерные процессоры тактовой частотой более 3 ГГц, созданные по 22 нм технологии, со встроенным видеоядром, но использующие всё ту же х86 архитектуру. И хотя, за время существования микропроцессоров разработано было большое множество разных архитектур, часть из них (в усовершенствованном и дополненном виде) применяется и поныне. К примеру, Intel x86, который развился сначала в 32-битную IA-32, а позднее в 64-битную x86-64 (у Intel получила название EM64T). Процессоры с архитектурой x86 использовались вначале только в компьютерах корпорации IBM (IBM PC), однако, ныне они всё более активно применяются во всех сферах компьютерной индустрии, от огромных суперкомпьютеров до небольших встраиваемых процессоров.
И это далеко не предел. В планах корпорации Intel в ближайшие годы перейти на производство микропроцессоров по 14 нм технологии, далее 10 нм и 8 нм, и соответственно увеличение их производительности с одновременным снижением энергопотребления.
Источник: domcomputer.ru
Похожие записи:domcomputer.ru
Создан первый в мире 1000-ядерный процессор
Первый в мире центральный процессор, насчитывающий 1000 независимых программируемых ядер, был спроектирован командой исследователей из Калифорнийского университета. Проект получил название KiloCore. Процессор способен выполнять 1,78 триллиона инструкций в секунду и содержит 621 миллион транзисторов. Публике новый чип был представлен 16 июня на выставке, посвящённой процессорным технологиям, прошедшей в Гонолулу.
«Насколько нам известно, это первый в мире процессор с 1000 ядер и самый быстрый процессор из тех, что были созданы в стенах университетов», — поделился своей радостью Биван Баас, профессор электрики и компьютерного проектирования в Калифорнийском университете.
Действительно, согласно команде Бааса, на сегодняшний день максимальным количеством ядер в процессорах считалось число 300. Большинство таких чипов не были доступны простым смертным и чаще всего использовались в научных областях. Процессор KiloCore был воплощён в жизнь благодаря помощи корпорации IBM. Она предоставила исследователям свои производственные мощности, что позволило выпустить чип по 32-нанометровой CMOS-технологии.
Каждое ядро KiloCore способно выполнять небольшую программу независимо от остальных ядер. Это делает процессор куда более гибким, нежели подход Single-Instruction-Multiple-Data, используемый в современных GPU. Основной идеей исследователей было разбить приложение на множество мелких кусочков, каждый из которых сможет выполняться параллельно с помощью отдельных ядер. Это позволит значительно увеличить производительность, при этом уменьшив потребление электроэнергии.
Так как каждое ядро совершенно независимо, оно может самостоятельно отключить себя в то время, когда не используется для вычислений. Чтобы вы смогли представить себе, насколько этот процессор энергоэффективен, разработчики привели простой пример: ядра могут выполнять 115 миллиардов инструкций в секунду, при этом чип может быть запитан от обычной пальчиковой АА-батарейки. KiloCore более чем в 100 раз эффективнее, нежели современные процессоры, используемые, например, в ноутбуках.
В настоящий момент для нового процессора уже разработан ряд приложений. Например, для шифрования и дешифрования данных, обработки видео и так далее. Другими словами, чип будет востребован в тех областях, где необходимо параллельно обрабатывать огромные массивы данных. Пока неизвестно, планирует ли команда учёных сделать свой процессор доступным для широкой публики или оставить его достоянием научного мира.
Другие статьи:
nlo-mir.ru
Создан первый в мире квантовый «процессор» размером с один атом
Ученые из Университета Нового Южного Уэльса создали первый в мире квантовый процессор на базе атома фосфора. Об этом сообщает интернет-портал CNews.
Как отмечается, процессором данную разработку можно назвать лишь условно, потому что принципы работы данного устройства и современных компьютерных процессоров различаются кардинально. Однако новинка позволит создавать квантовые компьютеры с производительностью, на порядки превосходящей любые «классические» вычислительные машины.
В отличие от обычных битов, кубиты (квантовые биты) способны не только принимать значения «1» или «0», но и находится в промежуточных состояниях. При этом изменение одного кубита всегда влияет на состояние связанных с ним «соседей». Это явление носит название квантовой запутанности и позволяет построить логический кубит – группу физических кубитов, связанных друг с другом. На протяжении долго времени считалось, что квантовые биты способны взаимодействовать друг с другом лишь на расстоянии 20 нанометров, однако австралийским ученым далось добиться этого лишь разместив атомы фосфора в кремнии на расстоянии 16 нанометров друг от друга, сформировав таким образом логический кубит.
По словам руководителя группы разработчиков профессора Мишель Симмонс, квантовый компьютер, состоящий из 30 таких кубитов превзойдет любые существующие в настоящий момент традиционные вычислительные машины. Если же представить экземпляр из 300 кубитов, то он и вовсе окажется мощнее всех существующих в мире компьютеров вместе взятых.
На данный момент ученые планируют разработать действующую модель из 10 связанных кубитов. На выполнение этой задачи он собираются потратить пять лет.
Автор: Константин Липавский
Источник фото: wikipedia.org/D-Wave Systems
politros.com