Содержание
Стандартная модель • Физика элементарных частиц • LHC на «Элементах»
Стандартная модель — это современная теория строения и взаимодействий элементарных частиц, многократно проверенная экспериментально. Эта теория базируется на очень небольшом количестве постулатов и позволяет теоретически предсказывать свойства тысяч различных процессов в мире элементарных частиц. В подавляющем большинстве случаев эти предсказания подтверждаются экспериментом, иногда с исключительно высокой точностью, а те редкие случаи, когда предсказания Стандартной модели расходятся с опытом, становятся предметом жарких споров.
Стандартная модель — это та граница, которая отделяет достоверно известное от гипотетического в мире элементарных частиц. Несмотря на впечатляющий успех в описании экспериментов, Стандартная модель не может считаться окончательной теорией элементарных частиц. Физики уверены, что она должна быть частью некоторой более глубокой теории строения микромира. Что это за теория — достоверно пока неизвестно. Теоретики разработали большое число кандидатов на такую теорию, но только эксперимент должен показать, что из них отвечает реальной ситуации, сложившейся в нашей Вселенной. Именно поэтому физики настойчиво ищут любые отклонения от Стандартной модели, любые частицы, силы или эффекты, которые Стандартной моделью не предсказываются. Все эти явления ученые обобщенно называют «Новая физика»; именно поиск Новой физики и составляет главную задачу Большого адронного коллайдера.
(Подробнее про физику за пределами Стандартной модели)
Основные компоненты Стандартной модели
Рабочим инструментом Стандартной модели является квантовая теория поля — теория, приходящая на смену квантовой механике при скоростях, близких к скорости света. Ключевые объекты в ней не частицы, как в классической механике, и не «частицы-волны», как в квантовой механике, а квантовые поля: электронное, мюонное, электромагнитное, кварковое и т. д. — по одному для каждого сорта «сущностей микромира».
И вакуум, и то, что мы воспринимаем как отдельные частицы, и более сложные образования, которые нельзя свести к отдельным частицам, — всё это описывается как разные состояния полей. Когда физики употребляют слово «частица», они на самом деле имеют в виду именно эти состояния полей, а не отдельные точечные объекты.
Стандартная модель включает в себя следующие основные ингредиенты:
- Набор фундаментальных «кирпичиков» материи — шесть сортов лептонов и шесть сортов кварков. Все эти частицы являются фермионами со спином 1/2 и очень естественным образом организуются в три поколения. Многочисленные адроны — составные частицы, участвующие в сильном взаимодействии, — составлены из кварков в разных комбинациях.
- Три типа сил, действующих между фундаментальными фермионами, — электромагнитные, слабые и сильные. Слабое и электромагнитное взаимодействия являются двумя сторонами единого электрослабого взаимодействия. Сильное взаимодействие стоит отдельно, и именно оно связывает кварки в адроны.
- Все эти силы описываются на основе калибровочного принципа — они не вводятся в теорию «насильно», а словно возникают сами собой в результате требования симметричности теории относительно определенных преобразований. Отдельные виды симметричности порождают сильное и электрослабое взаимодействия.
- Несмотря на то что в самой теории имеется электрослабая симметрия, в нашем мире она самопроизвольно нарушается. Спонтанное нарушение электрослабой симметрии — необходимый элемент теории, и в рамках Стандартной модели нарушение происходит за счет хиггсовского механизма.
- Численные значения для примерно двух десятков констант: это массы фундаментальных фермионов, численные значения констант связи взаимодействий, которые характеризуют их силу, и некоторые другие величины. Все они раз и навсегда извлекаются из сравнения с опытом и при дальнейших вычислениях уже не подгоняются.
Кроме того, Стандартная модель — перенормируемая теория, то есть все эти элементы вводятся в нее таким самосогласованным способом, который, в принципе, позволяет проводить вычисления с нужной степенью точности. Впрочем, зачастую вычисления с желаемой степенью точностью оказываются неподъемно сложными, но это проблема не самой теории, а, скорее, наших вычислительных способностей.
Что может и чего не может Стандартная модель
Стандартная модель — это, во многом, описательная теория. Она не дает ответы на многие вопросы, начинающиеся с «почему»: почему частиц именно столько и именно таких? откуда взялись именно эти взаимодействия и именно с такими свойствами? зачем природе понадобилось создавать три поколения фермионов? почему численные значения параметров именно такие? Кроме того, Стандартная модель не способна описать некоторые явления, наблюдаемые в природе. В частности, в ней нет места массам нейтрино и частицам темной материи. Стандартная модель не учитывает гравитацию и неизвестно, что с этой теорией происходит на планковском масштабе энергий, когда гравитация становится чрезвычайно важной.
(Подробнее про трудности Стандартной модели)
Если же использовать Стандартную модель по своему назначению, для предсказания результатов столкновений элементарных частиц, то она позволяет, в зависимости от конкретного процесса, выполнять вычисления с разной степенью точности.
- Для электромагнитных явлений (рассеяние электронов, энергетические уровни) точность может достигать миллионных долей и даже лучше. Рекорд тут держит аномальный магнитный момент электрона, который вычислен с точностью лучше одной миллиардной.
- Многие высокоэнергетические процессы, которые протекают за счет электрослабых взаимодействий, вычисляются с точностью лучше процента.
- Хуже всего поддается расчету сильное взаимодействие при не слишком высоких энергиях. Точность расчета таких процессов сильно варьируется: в одних случаях она может достигать процентов, в других случаях разные теоретические подходы могут давать ответы, различающиеся в несколько раз.
Стоит подчеркнуть, что тот факт, что некоторые процессы тяжело рассчитать с нужной точностью, не означает, что «теория плохая». Просто она очень сложная, и нынешних математических приемов пока не хватает, чтоб проследить все ее следствия. В частности, одна из знаменитых математических Задач тысячелетия касается проблемы конфайнмента в квантовой теории с неабелевым калибровочным взаимодействием.
Дополнительная литература:
- Базовые сведения о хиггсовском механизме можно найти в книге Л. Б. Окуня «Физика элементарных частиц» (на уровне слов и картинок) и «Лептоны и кварки» (на серьезном, но доступном уровне).
Стандартная модель • Джеймс Трефил, энциклопедия «Двести законов мироздания»
Стандартной моделью сегодня принято называть теорию, наилучшим образом отражающую наши представления об исходном материале, из которого изначально построена Вселенная. Она же описывает, как именно материя образуется из этих базовых компонентов, и силы и механизмы взаимодействия между ними (см. также Кварки и восьмеричный путь, Универсальные теории и Элементарные частицы).
Со структурной точки зрения элементарные частицы, из которых состоят атомные ядра (нуклоны), и вообще все тяжелые частицы — адроны (барионы и мезоны) — состоят из еще более простых частиц, которые принято называть фундаментальными. В этой роли по-настоящему фундаментальных первичных элементов материи выступают кварки, электрический заряд которых равен 2/3 или –1/3 единичного положительного заряда протона. Самые распространенные и легкие кварки называют верхним и нижним и обозначают, соответственно, u (от английского up) и d (down). Иногда их же называют протонным и нейтронным кварком по причине того, что протон состоит из комбинации uud, а нейтрон — udd. Верхний кварк имеет заряд 2/3; нижний — отрицательный заряд –1/3. Поскольку протон состоит из двух верхних и одного нижнего, а нейтрон — из одного верхнего и двух нижних кварков, вы можете самостоятельно убедиться, что суммарный заряд протона и нейтрона получается строго равным 1 и 0, и удостовериться, что в этом Стандартная модель адекватно описывает реальность. Две другие пары кварков входят в состав более экзотических частиц. Кварки из второй пары называют очарованным — c (от charmed) и странным — s (от strange). Третью пару составляют истинный — t (от truth, или в англ. традиции top) и красивый — b (от beauty, или в англ. традиции bottom) кварки. Практически все частицы, предсказываемые Стандартной моделью и состоящие из различных комбинаций кварков, уже открыты экспериментально.
Другой строительный набор состоит из кирпичиков, называемых лептонами. Самый распространенный из лептонов — давно нам знакомый электрон, входящий в структуру атомов, но не участвующий в ядерных взаимодействиях, ограничиваясь межатомными. Помимо него (и парной ему античастицы под названием позитрон) к лептонам относятся более тяжелые частицы — мюон и тау-лептон с их античастицами. Кроме того, каждому лептону сопоставлена своя незаряженная частица с нулевой (или практически нулевой) массой покоя; такие частицы называются, соответственно, электронное, мюонное или таонное нейтрино.
Итак, лептоны, подобно кваркам, также образуют три «семейных пары». Такая симметрия не ускользнула от наблюдательных глаз теоретиков, однако убедительного объяснения ей до сих пор не предложено. Как бы то ни было, кварки и лептоны представляют собой основной строительный материал Вселенной.
Чтобы понять оборотную сторону медали — характер сил взаимодействия между кварками и лептонами, — нужно понять, как современные физики-теоретики интерпретируют само понятие силы. В этом нам поможет аналогия. Представьте себе двух лодочников, гребущих на встречных курсах по реке Кэм в Кэмбридже. Один гребец от щедрости душевной решил угостить коллегу шампанским и, когда они проплывали друг мимо друга, кинул ему полную бутылку шампанского. В результате действия закона сохранения импульса, когда первый гребец кинул бутылку, курс его лодки отклонился от прямолинейного в противоположную сторону, а когда второй гребец поймал бутылку, ее импульс передался ему, и вторая лодка также отклонилась от прямолинейного курса, но уже в противоположную сторону. Таким образом, в результате обмена шампанским обе лодки изменили направление. Согласно законам механики Ньютона это означает, что между лодками произошло силовое взаимодействие. Но ведь лодки не вступали между собой в прямое соприкосновение? Здесь мы и видим наглядно, и понимаем интуитивно, что сила взаимодействия между лодками была передана носителем импульса — бутылкой шампанского. Физики назвали бы ее переносчиком взаимодействия.
В точности так же и силовые взаимодействия между частицами происходят посредством обмена частицами-переносчиками этих взаимодействий. Фактически, различие между фундаментальными силами взаимодействия между частицами мы и проводим лишь постольку, поскольку в роли переносчиков этих взаимодействий выступают разные частицы. Таких взаимодействий четыре: сильное (именно оно удерживает кварки внутри частиц), электромагнитное, слабое (именно оно приводит к некоторым формам радиоактивного распада) и гравитационное. Переносчиками сильного цветового взаимодействия являются глюоны, не обладающие ни массой, ни электрическим зарядом. Этот тип взаимодействия описывается квантовой хромодинамикой. Электромагнитное взаимодействие происходит посредством обмена квантами электромагнитного излучения, которые называются фотонами и также лишены массы. Слабое взаимодействие, напротив, передается массивными векторными или калибровочными бозонами, которые «весят» в 80-90 раз больше протона, — в лабораторных условиях их впервые удалось обнаружить лишь в начале 1980-х годов. Наконец, гравитационное взаимодействие передается посредством обмена не обладающими собственной массой гравитонами — этих посредников пока что экспериментально обнаружить не удалось.
В рамках Стандартной модели первые три типа фундаментальных взаимодействий удалось объединить, и они более не рассматриваются по отдельности, а считаются тремя различными проявлениями силы единой природы. Возвращаясь к аналогии, предположим, что другая пара гребцов, проплывая друг мимо друга по реке Кэм, обменялась не бутылкой шампанского, а всего лишь стаканчиком мороженого. От этого лодки также отклонятся от курса в противоположные стороны, но значительно слабее. Стороннему наблюдателю может показаться, что в этих двух случаях между лодками действовали разные силы: в первом случае произошел обмен жидкостью (бутылку я предлагаю во внимание не принимать, поскольку большинству из нас интересно ее содержимое), а во втором — твердым телом (мороженым). А теперь представьте, что в Кембридже в тот день стояла редкостная для северных мест летняя жара, и мороженое в полете растаяло. То есть, достаточно некоторого повышения температуры, чтобы понять, что, фактически, взаимодействие не зависит от того, жидкое или твердое тело выступает в роли его переносчика. Единственная причина, по которой нам представлялось, что между лодками действуют различные силы, состояла во внешнем отличии переносчика-мороженого, вызванном недостаточной для его плавления температурой. Поднимите температуру — и силы взаимодействия предстанут наглядно едиными.
Силы, действующие во Вселенной, также сплавляются воедино при высоких энергиях (температурах) взаимодействия, после чего различить их невозможно. Первыми объединяются (именно так это принято называть) слабое ядерное и электромагнитное взаимодействия. В результате мы получаем так называемое электрослабое взаимодействие, наблюдаемое даже лабораторно при энергиях, развиваемых современными ускорителями элементарных частиц. В ранней Вселенной энергии были столь высоки, что в первые 10–10 секунды после Большого взрыва не было грани между слабыми ядерными и электромагнитными силами. Лишь после того, как средняя температура Вселенной понизилась до 1014 K, все четыре наблюдаемые сегодня силовые взаимодействия разделились и приняли современный вид. Пока температура была выше этой отметки, действовали лишь три фундаментальные силы: сильного, объединенного электрослабого и гравитационного взаимодействий.
Объединение электрослабого и сильного ядерного взаимодействия происходит при температурах порядка 1027К. В лабораторных условиях такие энергии сегодня недостижимы. Самый мощный современный ускоритель — строящийся в настоящее время на границе Франции и Швейцарии Большой адронный коллайдер (Large Hadron Collider) — сможет разгонять частицы до энергий, которые составляют всего 0,000000001% от необходимой для объединения электрослабого и сильного ядерного взаимодействий. Так что, вероятно, экспериментального подтверждения этого объединения ждать нам придется долго. Таких энергий нет и в современной Вселенной, однако в первые 10–35 с ее существования температура Вселенной была выше 1027 К, и во Вселенной действовало всего две силы — электросильного и гравитационного взаимодействия. Теории, описывающие эти процессы, называют «теориями Великого объединения» (ТВО). Напрямую проверить ТВО нельзя, но они дают определенные прогнозы и относительно процессов, протекающих при более низких энергиях. На сегодняшний день все предсказания ТВО для относительно низких температур и энергий подтверждаются экспериментально.
Итак, Стандартная модель, в обобщенном виде, представляет собой теорию строения Вселенной, в которой материя состоит из кварков и лептонов, а сильные, электромагнитные и слабые взаимодействия между ними описываются теориями великого объединения. Такая модель, очевидно, не полна, поскольку не включает гравитацию. Предположительно, более полная теория со временем все-таки будет разработана (см. Универсальные теории), а на сегодня Стандартная модель — это лучшее из того, что мы имеем.
DOE объясняет… Стандартную модель физики элементарных частиц
Управление
Наука
Стандартная модель включает в себя материальные частицы (кварки и лептоны), переносящие взаимодействие частицы (бозоны) и бозон Хиггса.
Изображение предоставлено журналом Symmetry, совместным изданием Fermilab/SLAC. Работа Sandbox Studio, Чикаго.
Стандартная модель физики элементарных частиц — это лучшая на сегодняшний день теория ученых, описывающая самые основные строительные блоки Вселенной. Это объясняет, как частицы, называемые кварков (составляющих протоны и нейтроны) и лептонов (составляющих электроны) составляют всю известную материю. Это также объясняет, как переносящие силы частицы, принадлежащие к более широкой группе бозонов , влияют на кварки и лептоны.
Стандартная модель объясняет три из четырех фундаментальных сил, управляющих Вселенной: электромагнетизм, сильное взаимодействие и слабое взаимодействие. Электромагнетизм переносится фотонами и включает взаимодействие электрических полей и магнитных полей. Сильное взаимодействие, переносимое глюонами, связывает атомные ядра, делая их стабильными. Слабое взаимодействие, переносимое бозонами W и Z, вызывает ядерные реакции, питающие наше Солнце и другие звезды на протяжении миллиардов лет. Четвертой фундаментальной силой является гравитация, которая не может быть адекватно объяснена Стандартной моделью.
Несмотря на успех в объяснении Вселенной, Стандартная модель имеет ограничения. Например, бозон Хиггса придает массу кваркам, заряженным лептонам (например, электронам) и бозонам W и Z. Однако мы пока не знаем, дает ли бозон Хиггса массу также нейтрино — частиц-призраков, которые очень редко взаимодействуют с другим веществом во Вселенной. Кроме того, физики понимают, что около 95 процентов Вселенной состоит не из обычной материи, какой мы ее знаем. Вместо этого большая часть Вселенной состоит из темная материя и темная энергия , которые не вписываются в Стандартную модель.
Департамент науки Министерства энергетики: вклад в Стандартную модель физики элементарных частиц
Министерство энергетики имеет долгую историю поддержки исследований фундаментальных частиц. Пять из шести типов кварков, один тип лептона и все три нейтрино были обнаружены в нынешних национальных лабораториях Министерства энергетики США. Исследователи, поддерживаемые Управлением науки Министерства энергетики США, часто в сотрудничестве с учеными со всего мира, внесли свой вклад в открытия и измерения, получившие Нобелевскую премию, которые усовершенствовали Стандартную модель. Эти усилия продолжаются и сегодня, с экспериментами, которые проверяют точность Стандартной модели и еще больше улучшают измерения свойств частиц и их взаимодействий. Теоретики работают с учеными-экспериментаторами, чтобы разработать новые возможности для изучения Стандартной модели. Это исследование может также дать представление о том, какие виды неизвестных частиц и сил могут объяснить темную материю и темную энергию, а также объяснить, что произошло с антиматерией после Большого взрыва.
Стандартная модель физики элементарных частиц Факты
- Вся обычная материя, включая каждый атом в периодической таблице элементов, состоит только из трех типов частиц материи: верхних и нижних кварков, которые составляют протоны и нейтроны в ядре, и электроны, окружающие ядро.
- На создание полной стандартной модели ушло много времени. Физик Дж.Дж. Томсон открыл электрон в 1897 году, а в 2012 году ученые на Большом адронном коллайдере нашли последний кусочек головоломки — бозон Хиггса.0042
Ресурсы и связанные термины
- Управление физики высоких энергий
- Кафедра ядерной физики
- Магазин «Симметрия»
- Большие вопросы: Салли Доусон о бозоне Хиггса
- Физика элементарных частиц США
- Научное достижение: околопороговый резонанс помогает объяснить неоднозначное измерение экзотического распада бериллия-11
Благодарности
Авторы: Хитоши Мураяма (Калифорнийский университет в Беркли и LBNL) и Курт Риссельманн (Fermilab)
Научные термины могут сбивать с толку. Объяснения DOE предлагают простые объяснения ключевых слов и понятий в фундаментальной науке. В нем также описывается, как эти концепции применяются к работе, которую проводит Управление науки Министерства энергетики, помогая Соединенным Штатам преуспеть в исследованиях по всему научному спектру.
Что такое Стандартная модель физики элементарных частиц? : ScienceAlert
(Анжела Котселл/iStock)
Стандартная модель представляет собой набор математических формул и измерений, описывающих элементарные частицы и их взаимодействия. Это похоже на то, как Периодическая таблица элементов описывает атомы, классифицируя их на основе их характеристик, но вместо этого Стандартная модель классифицирует элементарные частицы — фермионы и бозоны.
Разработанная поэтапно, начиная с начала 1970-х годов, модель объединила все, что было известно о частицах и силах в то время, чтобы разработать полностью непротиворечивую квантовую теорию материи.
Он не только хорошо описал и нанес на карту то, что было известно, но и выявил пробелы, которые предсказывали существование еще не открытых частиц, таких как бозон Хиггса.
Стандартная модель в настоящее время является наиболее точной теорией, описывающей основы физики элементарных частиц. Но он далек от совершенства, пытаясь включить описание гравитации из общей теории относительности, объяснить нам, почему Вселенная расширяется все быстрее, или объяснить, почему материи больше, чем антиматерии.
Семейства частиц
Стандартная модель разделяет элементарные частицы на родственные группы, как показано в таблице ниже.
Фермионы
Думайте об этом как о блоках материи Lego, соединяющихся вместе, чтобы составить Вселенную. Основное правило таких вещей — «не садись там, где сижу я». Особенностью их квантовых свойств является то, что никакие два фермиона не могут занимать одно и то же место одновременно, что позволяет им строить все, от атомов до планет.
Фермионы можно разделить на кварки и лептоны. Фермионные кварки объединяются в более знакомые протоны и нейтроны. Протон, например, состоит из одного нижнего и двух верхних кварков, склеенных вместе под действием так называемого сильного ядерного взаимодействия. Но эта сила не влияет на второй класс фермионов, лептонов.