Каким образом применяют суперконденсаторы в гибридных автомобилях. Суперконденсатор для автомобиля
Применение суперконденсаторов в гибридных автомобилях
Содержание:
Суперконденсаторы можно назвать ярчайшей разработкой последних лет. В сравнении с конденсаторами обычными они, при тех же габаритах, отличаются на три порядка большей емкостью. За это конденсаторы и получили свою приставку – «супер». За малый промежуток времени они могут отдавать огромное количество энергии.
Какие бывают суперконденсаторы
Ученые разработали бумагу-конденсатор
Выпускаются они различных размеров и форм: от совсем маленьких, крепятся которые на поверхности приборов, не больше монетки по размерам, до очень крупных цилиндрических и призматических. Основным их назначением является дублирование источника основного (батареи) в случае падения напряжения.
Энергоемкие современные электронные и электрические системы к источникам питания выдвигают высокие требования. Появившееся оборудование (от цифровых камер до электронных портативных устройств и электрических трансмиссий транспортных средств) нуждается в аккумулировании и подаче необходимой энергии.
Решается эта задача современными разработчиками двумя путями:
- Использованием аккумулятора, способного обеспечивать высокий импульс тока
- Присоединением параллельно батарее в качестве страховки суперконденсаторов, т.е. «гибридное» решение.
В последнем случае суперконденсатор выполняет функцию источника питания при падении напряжения на аккумуляторе. Обусловлено это тем, что батареи обладают высокой плотностью энергии и малой плотностью мощности, в то время как суперконденсаторы, наоборот, характеризуются малой плотностью энергии, но высокой плотностью мощности, т.е. они обеспечивают ток разрядки на нагрузку. Включив суперконденсатор параллельно батарее, можно ее использовать более эффективно, следовательно, продлить срок службы.
Где используют суперконденсаторы
Видео: Тест суперконденсатора 116,6F 15V (6* 700F 2,5В), вместо стартерного аккумулятора в автомобиле
В автомобильных электронных системах их используют для запуска моторов, тем самым сокращая нагрузку на аккумулятор. Также они позволяют уменьшить массу, сократив монтажные схемы. Широкое применение они находят в гибридных авто, где генератором управляет ДВС, а электрический мотор (или моторы) приводят автомобиль в движение, т.е. суперконденсатор (энергетический кэш) используется в качестве источника тока при ускорении и начале движения, а во время торможения происходит его «подзарядка». Перспективно применение их не только в легковом, но и в городском транспорте, поскольку новый вид конденсаторов позволяет на 50% сократить потребление топлива и на 90% сократить выброс вредных газов в окружающее пространство.
Заменить полностью батарею суперконденсаторы пока не могу, но это только вопрос времени. Использовать суперконденсатор вместо аккумулятора – вовсе не фантастика. Если ученые - нанотехнологи из университета QUT идут по правильному пути, то в скором будущее это станет реальностью. Выступать в качестве аккумуляторов смогут панели кузова, внутри которых стоят суперконденсаторы последнего поколения. Сотрудникам этого университета удалось объединить в новом устройстве преимущества батарей литий-ионных и суперконденсаторов. Состоит новый тонкий, легкий и мощный суперконденсатор из карбоновых электродов, находящегося между ними электролита. Новинку, как утверждают ученые, устанавливать можно в любом месте кузова.
Улучшить же благодаря большому крутящему моменту (пусковому) стартовые характеристики при низких температурах и расширить возможности системы питания, им под силу уже сейчас. Целесообразность их использования в системе питания объясняется тем, что время их зарядки/разрядки равно 5-60 секунд. Помимо этого использовать их можно системе распределительной некоторых приборов машины: соленоидов, систем регулировки дверных замков и положения оконных стекол.
Суперконденсатор своими руками
Можно изготовить суперконденсатор своими руками. Поскольку конструкция его состоит из электролита и электродов, нужно определиться с материалом для них. Для электродов вполне подойдет медь, нержавейка или латунь. Можно взять, к примеру, пятикопеечные старые монеты. Нужен будет еще угольный порошок (в аптеке можно купить активированный уголь и измельчить его). В качестве электролита «сгодится» обычная вода, в которой растворить нужно поваренную соль (100:25). Раствор смешивается с угольным порошком, чтобы получилась консистенция замазки. Теперь ее слоем в несколько миллиметров необходимо нанести на оба электрода.
Осталось подобрать прокладку, разделяющую электроды, сквозь поры которой свободно будет проходить электролит, но задерживаться будет угольный порошок. Подойдет для этих целей стеклоткань или поролон.
Электроды – 1,5; обмазка угольно-электролитная – 2,4; прокладка – 3.
В качестве кожуха использовать можно пластмассовую коробочку, просверлив в ней предварительно отверстия для проводов, припаянных к электродам. Подсоединив провода к батарейке, ожидаем, пока зарядится конструкция «ионикс», названная так потому, что на электродах образоваться должна разная концентрация ионов. Проверить заряд проще с помощью вольтметра.
Есть и другие способы. Например, используя оловянную бумагу (станиолевую фольгу – обертку от шоколадки), куски жести и парафинированную бумагу, изготовить которую можно самостоятельно, нарезав и погрузив на пару минут в расплавленный, но не кипящий, парафин полоски папиросной бумаги. Ширина полосок должна быть пятьдесят миллиметров, а длина от двухсот до трехсот миллиметров. Вынув полоски из парафина, необходимо соскоблить тупой стороной ножа парафин.
Пропитанную парафином бумагу складывают в виде гармошки (как на рисунке). С обеих стороны в промежутки вкладываются листы станиолевые, которые соответствуют размеру 45х30 миллиметров. Подготовив, таким образом, заготовку, ее складывают, затем, проглаживают теплым утюгом. Оставшиеся станиолевые концы снаружи соединяют между собой. Можно использовать для этого картонные пластинки и латунные с жестяными обоймами, к которым позже припаиваются проводники для того, чтобы при монтаже можно было припаять конденсатор.
Емкость конденсатора зависит от количества станиолевых листочков. Она равна, например, тысяче пикофарад при использовании десяти таких листков, и двум тысячам, если их количество увеличить вдвое. Такая технология пригодна для изготовления конденсаторов емкостью до пяти тысяч пикофарад.
Если же необходима большая емкость, то необходимо иметь старый микрофарадный бумажный конденсатор, представляет собой который, рулон из ленты, состоящей из полос парафинированной бумаги, между которыми проложена полоса фольги станиолевой.
Для определения длины полос, пользуются формулой:
l = 0,014 С/а , где емкость необходимого конденсатора в пФ - С; ширина полос в см – а: длина в см – 1.
Отмотав от старого конденсатора полоски нужной длины, обрезают со всех сторон на 10 мм фольгу, чтобы между собой не дать соединиться обкладкам конденсатора.
Вновь ленту нужно свернуть, но сначала припаяв многожильные провода к каждой полоске фольги. Сверху конструкцию обклеивают плотной бумагой, а на края бумаги, которые выступают, заделывают два монтажных провода (жестких), к которым припаиваются с внутренней стороны гильзы бумажной выводы от конденсатора (см. рисунок). Последний шаг – заливка конструкции парафином.
Преимущества карбоновых суперконденсаторов
Поскольку шествие электротранспорта по планете сегодня нельзя не замечать, ученые работают над вопросом, связанным с его быстрейшей зарядкой. Идей возникает множество, но претворяются в жизнь единицы. В Китае, например, в городе Нинбо запущен необычный маршрут городского транспорта. Автобус, курсирующий по нему, работает от электромотора, но на зарядку ему требуется всего десять секунд. На ней он преодолевает пять километров и вновь, во время высадки/посадки пассажиров, успевает подзарядиться.
Возможным стало это благодаря использованию нового типа конденсаторов – карбоновых.
Карбоновые конденсаторы выдерживают около миллиона циклов перезарядки, отлично работают в диапазоне температур от минус сорока до плюс шестидесяти пяти градусов. До 80% энергии они возвращают при рекуперации.
Они открыли новую эру в управлении питанием, сократив до наносекунд время разрядки и зарядки, снизив вес автомобиля. К этим достоинствам можно добавить невысокую стоимость, поскольку в изготовлении не применяются редкоземельные металлы и экологичность.
Интересные материалы:
Бортовой компьютер в машине - для чего он нужен, виды и назначение Обзор рюкзака SolarBag S53 с солнечной батареейATOM 1750. Запуск автомобиля от суперконденсаторов
Группа компаний AURORA с гордостью представляет конденсаторное пусковое устройство нового поколения AURORA ATOM 1750.
Небольшая историческая справка:
Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу.
Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока.
С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров.
Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи.
Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.
Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750.
Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000 : (365х2))= 1млн. : 730= 1369 лет.
Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару.
Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки – АКБ, рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем, что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года.
Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ. Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от 0 до +25С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.
Плюс номер четыре. Возможность зарядки ионисторов прибора от разряженной АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего» АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.
Более подробно про особенности АТОМ 1750:
Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до 5л и для работы с дизельными моторами до 2л.
МОЩЬ
Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства.
Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.
МОБИЛЬНОСТЬ
Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900), а разница в габаритах впечатляет ещё больше.
На боковых гранях АТОМ 1750 расположены:
-
Яркий LED–фонарь, способный работать в трёх режимах. Для того, чтобы включить освещение и менять режимы работы следует нажать на кнопку на фронтальной панели;
-
USB вход (5В, 2А), для зарядки от сети, Power Bank или другого источника;
-
Встроенные крокодилы.
На передней панели расположен:
Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).
ЗАЩИТА
В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2, длинной 300 мм.
Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.
АТОМ 1750 - подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.
Если при подключении к аккумулятору машины на экране появляется надпись JUMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.
Надпись «REVERSED» сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.
ЗАРЯДКА
Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.
Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.
Первый способ запуска машины с помощью АТОМ 1750 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.
Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.
Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин.
Ну и последний вариант зарядки, если под рукой нет иных источников, - придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А) – конденсаторы можно зарядить и от сети.
Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ, но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» - операция зарядки ионисторов АТОМ 1750 - абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.
ПУСК АВТОМОБИЛЯ
Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении - следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.
После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.
После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.
ATOM 1750 поставляется в картонной коробке.
В комплекте с аппаратом:
Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.
Смотрите данную статью в видео-ролике:
evrotek.spb.ru
Суперконденсаторы или Ионисторы вместо аккумулятора. Новая технология Ё-мобиль.
Большинство современных конденсаторов имеют емкость в микрофарадах или пикофарадах. Емкость Ионисторов исчисляется Фарадами. Что бы понять насколько это много, можно вспомнить формулу по которой можно рассчитать необходимую емкость в зависимости от нагрузки.
C=I·t/U , где С - емкость, Ф; I - постоянный ток разрядки, А; U - номинальное напряжение ионистора, В; t - время разрядки от Uном до нуля, с;
Сейчас на рынке уже есть ионисторы емкостью в десятки Фарад. К примеру есть ионистор на 5,5 Вольта емкостью 22 Фарада. Мы зарядим его полностью и подключим лампочку на 1 Ватт (5,5 Вольт 0,18 Ампера).
Итого: 22 Фарада = 0,18 Ампера t / 5,5 Вольта t = 672 секунды
Исходя из формулы выше наша лампочка будет гореть 672 секунды или 12 минут. Кажется что это не такая большая величина, но на самом деле мы можем использовать несколько ионисторов сразу. Для примера существуют суперконденсаторы намного большей емкости.
Модуль суперконденсаторов Maxwell на 500 фарад. Рабочее напряжение 12Вольт - 48 Вольт
К примеру на новом российском авто Ё-мобиль используются конденсаторы фирмы http://www.elton-cap.com/. Ионисторы этой фирмы достигают емкости в 10 000 Фарад при напряжении 1,5 Вольта. Так же они производят ячейки (модули) с несколькими ионисторами емкостью в 1000 Фарад и рабочим напряжением 15 Вольт.
К сожалению у Суперконденсаторов есть достоинства и недостатки.
- Суперконденсаторы достаточно дорогие поэтому не составляют конкуренции батареям (аккумуляторам), так как конденсаторы емкостью равной емкости одного аккумулятора обойдутся вам в тысячи долларов. Темнеменее использование суперконденсаторов в электронике более чем оправдано. - к сожалению на контантах суперконденсаторов во время всего цикла разрядки падает напряжение, поэтому для устройств которые требуют постоянного напряжение это не применимо. Возможен вариант использования стабилизатора, но при этом устройство будет потреблять больше энергии. - к сожалению суперконденсатор нельзя полноценно использовать вместе с аккумулятором. Если их подключить параллельно из-за внутреннего сопротивления, аккумуляторная батарея всегда будет отдавать больше тока чем конденсатор. При этом если потребитель использует импульсный источник питания, в те моменты когда батарея и конденсатор будут отключены - батарея будет заряжать конденсатор, при этом с большими токами и щадящего режима для батареи просто не получится. Единственный выход использовать Ионисторы как дополнительный источник питания, тоесть заряжать их во время когда сеть не нагружена и полностью отдавать их энергию в нужные моменты, после чего подключать батарею, когда энергия уже исчерпана. Это значительно усложняет систему а значит и цену таких устройств. Однако все так же еффективно эти конденсаторы можно использовать в системах рекуперации энергии.
+ очень большое колличество циклов заряда и разряда + большие токи отдачи + Суперконденсаторы достаточно быстро заряжаются (практически моментально зависит от того какой ток может обеспечить зарядное устройство) + Суперконденсаторы намного меньше обычных конденсаторов и в тоже время имеют намного большую емкость. + широкий рабочий диаппазон температур (от -50 до + 50 градусов цельсия)
Возможно за суперконденсаторами будущее, но к сожалению на данный момент они вряд ли смогут полностью заменить аккумуляторы.
Суперконденсаторы BOOSTCAP большой емкости для увеличение потенциала электромобиля. Соединены параллельно с аккумуляторной батарей
Сборка из 200 суперконденсаторов BOOSTCAP установленных в багажник электромобиля для уменьшения нагрузки на аккумуляторы и ускорения зарядки
Хотя на некоторых автомобилях уже сейчас заменяются пусковые батареи на суперконденсаторы, которые куда более эффективно выполняют свои функции. В часности они отдают моментально очень большие токи которые необходимы для удачного пуска двигателя особенно в холодную погоду.
www.insidecarelectronics.com
Суперконденсатор (ионистор) заменяет резервный акумулятор
Среди последних новинок науки и техники необходимо отметить появление конденсатора нового типа – ионистор, который также называют суперконденсатор. Что же это за зверь, и можно ли его использовать в автомобильном видеорегистраторе и других электронных приборах в качестве резервного источника питания?
Может ли ионистор заменить аккумулятор?
Из школьного курса физики известно, что конденсатор может запасать энергию, накапливая заряд электричества. Вот только величина этого заряда очень мала, поэтому его хватает только на хорошую искру при коротком замыкании. Также школьники используют металлобумажные конденсаторы переменного тока на 400…1000 Вольт для того, чтобы лупить друг друга электротоком, предварительно зарядив его в розетке 220 В. А в основном конденсаторы используют как радиокомпонент в электронных приборах.
Форм-фактор ионисторов, которые используются в качестве резервных аккумуляторов
Но в конце прошлого века в секретных лабораториях был придуман новый тип конденсатора, в котором вместо металлической ленты используется электролит и другие хитрые химические вещества. Благодаря такой конструкции новый тип конденсатора при малых размерах имеет громадную емкость, которую уже можно использовать для накопления заряда, достаточного для кратковременной работы электронных устройств с малым потреблением тока. Он получил название ионистор из-за того, что функционирует благодаря ионному переносу в химической среде между электродами.
Вот такой мощный ионистор на 3000 Фарад может завести автомобиль
В наше время ионисторы используются как резервный источник питания. Например, на Алиэкспресс за 5…10 баксов можно купить 5-вольтовый ионистор, который получает полную зарядку всего за 10…100 секунд. Однако он может питать средний светодиодный фонарик в течение 20…30 минут.
Обзор китайского ионистора
Теперь разберемся, сможет ли суперконденсатор заменить аккумулятор в автомобильном видеорегистраторе? В регике нет компонентов, которые бы потребляют большой ток – сервоприводы, электродвигатели, мощные лампы освещения. Поэтому расход тока достаточно мал – 50…100 мА. Средней паршивости ионистор сможет обеспечить работу видеорегистратора в течение 3…10 минут. Это более чем достаточно, чтобы дописать до конца видеоролик и корректно завершить работу.
В этом видеорегистраторе установлен суперконденсатор на 7,5 Фарад вместо аккумулятора
Так что, если вы колеблетесь — покупать ли видеорегистратор с суперконденсатором вместо встроенного аккумулятора, то все сомнения напрасны. Этот прибор выполнит все необходимые функции в вашем автомобиле, даже если в случае ДТП будет отключена бортовая сеть. Однако регистратор такого типа нельзя будет использовать как обычную переносную видеокамеру вне салона автомобиля – для уличной видеосъемки потребуется внешний источник питания.
Интересные статьи об автомобильных видеорегистраторах
avto-blackbox.ru
Конденсатор вместо аккумулятора / Статьи и обзоры / Элек.ру
18 февраля 2014 г. в 15:22, 42718
Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?
Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.
Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.
При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.
Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.
Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.
Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.
Использование двойного электрического слоя
На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.
Сравнение конструкций разных типов конденстаторов (Источник: Википедия)
Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.
Суперконденсаторы различной емкости производства Maxwell
Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».
Техническая реализация
Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.
Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.
Параметры суперконденсаторов
Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.
Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.
Принципиальная схема источника бесперебойного питания напряжением на суперконденсаторах, основные узлы реализованы на одной микосхеме производства LinearTechnology
Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.
Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.
Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.
Накапливаемая энергия
Количество энергии, запасенной в конденсаторе, выраженное в джоулях:
E = CU2/2,где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.
Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:
W = CU2/7200000
Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.
Применение суперконденсаторов
Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.
Грунтовый светодиодный светильник с питанием от солнечных батарей, накопление энергии в котором осуществляется в суперконденсаторе
Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.
Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.
Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.
Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.
Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.
Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.
В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.
Алексей Васильев
www.elec.ru
Суперконденсаторы. Устройство и применение. Виды и работа
Суперконденсаторы — это электрохимические конденсаторы, которые существенно отличаются от обычных практически неограниченной долговечностью, более низкими потерями тока и большими значениями удельной мощности. При этом они имеют на порядок меньшие габариты. То есть это батарея нового поколения, которая сможет открыть многочисленные перспективы в энергетике. В первую очередь большой интерес к суперконденсаторам вызван возможностью замены ими батарей, а также создания гибких источников питания большой мощности.
Стратегической задачей для ученых является создание батарей высокой емкости, которые можно было бы использовать в разных областях, к примеру, для электромобилей. Это позволит обеспечить поездки на длительные дистанции и быструю зарядку батарей. Также это гарантирует более экономичную работу возобновляемых источников энергии путем аккумулирования избытков энергии: ветроэнергетические установки, солнечные батареи и так далее.
Что это
Суперконденсатор – это тот же аккумулятор, но на порядок с лучшими свойствами. В первую очередь это относится к существенно более быстрому заряду и разряду. Суперконденсатор представляет элемент с двумя электродами, между ними располагается электролит. Электроды выполнены в виде пластины из определенного материала. Для улучшения электрических параметров суперконденсатора, пластины могут дополнительно покрываться пористым материалом, к примеру, активированным углем. В качестве электролита может применяться неорганическое или органическое вещество.
В целом суперконденсатор – это гибрид химической аккумуляторной батареи и обычного конденсатора:
- Главное отличие суперконденсатора от привычного конденсатора — в наличии у первого не просто диэлектрика между электродами, а двойного электрического слоя. В результате между электродами образуется очень маленькое расстояние, а его возможность накапливать электрическую энергию (электрическая емкость) получается намного выше.
- Кроме этого суперконденсатор от аккумуляторной батареи отличается скоростью накапливания, а также степенью отдачи электрического заряда. Благодаря применению двойного электрического слоя повышается площадь поверхности электродов при тех же общих габаритах. То есть в устройстве сочетаются лучшие электрические характеристики – существенная емкость аккумулятора и скорость конденсатора.
Впервые о суперконденсаторе заговорили в 1962 году. Именно тогда химик американской компании Standard Oil Company Роберт Райтмаер подал заявку на патент, где подробно расписывался механизм сохранения электрической энергии в конденсаторе, который обладал «двойным электрическим слоем». В предлагаемом варианте акцент делался на материал обкладок. У электродов должна быть различная проводимость: один электрод должен иметь электронную проводимость, а другой – ионную. В результате при заряде конденсатора происходило разделение положительных центров и электронов в электронном проводнике, а также разделение анионов и катионов в ионном проводнике.
В 1971 году лицензия досталась японской компании NEC, которая к этому времени занималась всеми направлениями электронной коммуникации. NEC удалось успешно продвинуть технологию под названием «Суперконденсатор». Затем суперконденсаторами стали заниматься и другие компании. С 2000-х годов активное развитие технологии началось во многих странах мира.
Виды
Суперконденсаторы сегодня подразделяются на:
- Двойнослойные конденсаторы (ДСК).
- Псевдоконденсаторы.
- Гибридные конденсаторы.
Двойнослойный суперконденсатор предполагает наличие двух пористых электродов, выполненных из электропроводящих материалов, а также разделенных заполненным электролитом сепаратором. Здесь процесс запасания энергии идет за счет разделения заряда на электродах с весьма большой разностью потенциалов между ними. Электрический заряд двойнослойных конденсаторов определяется непосредственно емкостью двойного электрического слоя, то есть отдельного конденсатора на поверхности каждого электрода. Между собой они соединяются последовательно посредством электролита, который является проводником с ионной проводимостью.
Псевдоконденсаторы уже ближе к перезаряжаемым аккумуляторам. В них имеются два твердых электрода. Принцип действия сочетает два механизма сохранения энергии: фарадеевские процессы, которые схожи с процессами, происходящими в батареях и аккумуляторах, а также электростатическое взаимодействие, свойственное конденсаторам с двойным электрическим слоем. Приставка «псевдо» появилась вследствие того, что емкость ДЭС зависит не только от электростатических процессов, но и быстрых фарадеевских реакций с переносом заряда.
Гибридные конденсаторы – это переходный вариант между конденсатором и аккумулятором. Слово «гибридные» обусловлено тем, что электроды в гибридных конденсаторах производятся из различных материалов, а накопление заряда осуществляется по разным механизмам. В большинстве случаев в гибридных конденсаторах катодом является материал с псевдоемкостью. В результате аккумулирование заряда на катоде осуществляется вследствие окислительно-восстановительных реакций, что увеличивает удельную емкость конденсатора, а также расширяет область рабочих напряжений.
В гибридных конденсаторах часто применяют комбинацию электродов из допированных проводящих полимеров и смешанных оксидов. Весьма перспективными могут стать композиционные материалы, которые состоят из оксидов металлов, осажденных на проводящие полимеры или углеродные носители.
Принцип действия
Суперконденсаторы, как высокоемкие конденсаторы, производят накопление энергии электростатическим способом, поляризуя раствор электролита. При накоплении энергии в суперконденсаторе химические реакции не задействуются, хотя суперконденсатор является электрохимическим устройством. В силу высокой обратимости механизма накопления энергии конденсаторы способны тысячи раз заряжаться и разряжаться.
Суперконденсатор – электрохимический конденсатор, который имеет способность накапливать чрезвычайно большое количество энергии по отношению к его размеру, а также в сравнении с традиционным конденсатором. Данное свойство суперконденсатора особенно интересно в создании гибридных транспортных средств в автомобильной промышленности, в том числе в производстве машин на аккумуляторной электротяге, в которых суперконденсатор применяется в виде дополнительного накопителя энергии.
В большинстве случаев, в суперконденсаторе действуют два активных электрода, которые разделены пористым непроводящим материалом, размещенных между металлическими токовыми коллекторами. Органический или водный электролит пропитывает пористые электроды, обеспечивая появление носителей заряда в устройстве с последующим его накоплением.
Применения и особенности
Области применения суперконденсаторов могут быть поделены на следующие направления:
- Накопительные устройства для источников возобновляемой энергии, к примеру, топливных элементов, океанской волны, ветра и солнца.
- Транспортные средства, к примеру, устройства запуска двигателя машин, гибридные электрические транспортные средства, автомобили на водородном топливе, локомотивы поездов.
- Как накопители энергии в жилищном секторе, к примеру, в зданиях с солнечными фотоэлектрическими системами, в которых имеется необходимость в аккумуляторах с повышенными характеристиками.
- Благодаря высокой плотности энергии и удельной емкости, суперконденсаторы применяются в электронных устройствах в виде источника кратковременного электропитания.
- В системах бесперебойного электропитания. Достоинством является то, что они в критических областях применения обеспечивают мгновенную мощность.
- Среди развивающихся областей суперконденсаторы находят применение в системах бесперебойного электропитания с топливными элементами.
- В устройствах демпфирования пиковой нагрузки, а также запуска двигателя.
- Электроэнергетика с критическими нагрузками, коммуникации аэропортов, вышки беспроводной связи, банковские центры, больницы.
- Источник резервного питания для материнских плат, микропроцессоров и запоминающих устройств.
- Мобильные телефоны.
Достоинства и недостатки
Среди достоинств суперконденсаторов можно отметить;
- низкая стоимость устройства накопления энергии в расчете на 1 фарад;
- высочайшая плотность емкости;
- высокий кпд цикла, который достигает 95% и выше;
- длительный срок службы;
- надежность устройства;
- экологическая безопасность;
- бесперебойная эксплуатация;
- весьма высокая удельная энергия и удельная мощность;
- широкий диапазон рабочих температур;
- большое количество циклов практически с неизменными параметрами;
- высокая скорость заряда и разряда;
- сниженная токсичность применяемых материалов;
- отличная обратимость механизма накопления энергии;
- допустимость разряда до нуля;
- малый вес в сравнении с электролитическими конденсаторами.
Среди недостатков суперконденсаторов можно отметить;
- относительно малая энергетическая плотность;
- не способность обеспечить достаточное накопление энергии;
- весьма низкое напряжение на одну единицу элемента;
- высокая степень саморазряда;
- недостаточное развитие технологий.
Конденсаторы в перспективе
В ближайшем будущем суперконденсаторы станут применять повсеместно. Многообещающими областями для суперконденсаторов могут стать медицинская и авиакосмическая промышленность, военная техника.
• При разработке суперконденсаторов все больше повышается их удельная емкость. В результате во многих технических сферах произойдет полная замена аккумуляторов на конденсаторы.• Произойдет интегрирование суперконденсаторов в самые разные структуры: от электроники до всевозможных настроек. Появится умная одежда с использованием этих устройств. Конденсаторы обеспечивают экологически чистый метод экономии энергии, поэтому они имеют больше возможностей для передачи и хранения энергии в сравнении с иными энергосберегающими технологиями.• Повсеместное использование суперконденсаторов: автомобили, трамваи, автобусы, электроника, в особенности смартфоны и другая мобильная техника. Зарядка будет занимать секунды, а запасаемой энергии будет хватать надолго.
Похожие темы:
electrosam.ru
Суперконденсаторы для электротранспорта | Сайт об электромобилях
Первые работы по разработке электрохимических конденсаторов проводились в середине 19 века Гемгольцем. Тогда же им было тереоретически описано строение двойного электрического слоя на поверхности электродов и предсказание использования данного явления в устройствах для запасания энергии.
Первые практические результаты научных работ, связанных с применением суперконденсаторов относятся к середине 20 века, когда появился широкий круг материалов, позволяющих практически реализовать идею суперконденсатора. С другой стороны, разработку новых типов конденсаторов подстегивала потребность промышленности в мощных, быстро заряжаемых источниках тока с большим ресурсом.
Работы по улучшению свойств электрохимических конденсаторов привели к появлению в конце 20 века суперконденсаторов с емкостью до 10Вт*ч/кг, что позволило использовать суперконденсаторы для нужд гибридного и электротранспорта.
В настоящий момент можно выделить несколько типов суперконденсаторных батарей по области применения для автомобилестроения:
- пусковые - подключаются параллельно стартерной аккумуляторной батареи для улучшения пусковых качеств и длительности жизни последней
- для поддержки питания мощных автомобильных акустических систем
- буфферные - для использования в гибридных автомобилях, отличаются относительно низкой емкостью и большой выходной мощностью
- тяговые - для применения в качестве основного источника питания электромобиля.
На момент описания статьи лучшие характеристики из представленных промышленных образцов суперконденсаторов были заявлены российскими компаниями ЭСМА и ИНКАР-М. Также производятся суперконденсаторы для нужд автотранспорта в Германии компанией Epcos. Следует отметить продукты фирм Maxwell Technologies, NessCap, Panasonic. Интересные разработки ведутся фирмой Evans Capacitor, где создан новый тип суперконденсаторов - гибридные суперконденсаторы.
Преимущества и недостатки суперконденсаторных батарей:
Преимущества
- наибольшая плотность мощности из всех разновидностей аккумуляторов - как объемная, так и весовая
- долговечность - свыше 10 лет и 100000 циклов заряда/разряда (уже подтвеждена практическим использованием суперконденсаторов)
- очень быстрый процесс заряда батарей - до 100% емкости от 15 до 40 минут (зависит, в основном, от возможностей зарядного устройства)
- необслуживаемость - суперконденсаторы герметичны
- относительно низкий показатель саморазряда - до 10% в месяц
- дружественность окружающей среде - большинство суперконденсаторов построены на основе активированного угля, щелочи, гидроксида никеля и никелевых элекродов, для суперконденсаторов на основе свинцовых электродов имеется уже отработанная технология переработки
- возможность работы при низких температурах без существенного снижения характеристик
- простота определения уровня заряда суперконденсатора - однозначная зависимость от уровня напряжения на конденсаторе
Недостатки
- вес - лучшие производимые суперконденсаторы имеют плотность энергии на уровне 10-12Вт*ч/кг, массовые - 5-6Вт*ч/кг
- большое падение напряжения при разряде
- высокая стоимость, до USD10 за килоджоуль накопленной энергии, но эта стоимость, в основном, определяется мелкосерийным процессом производства суперконденсаторов, и при росте спроса и появлении настоящей конкуренции может быть уменьшена в 7-10 раз
Copyright © Дмитрий Спицын, 2007.
sdisle.com