Связь в космосе: как это работает / Хабр

как это работает / Хабр

Кадр из фильма “Космическая одиссея 2001 года” (1968)

Представьте, что вам нужно пробросить песчинку через ушко иглы с расстояния 16 000 километров. Примерно тем же самым занимались ученые, отправив в 2004 году к комете Чурюмова-Герасименко межпланетную станцию «Розетта». В 2015 году станция и комета находились на расстоянии около 265,1 млн км от Земли. Однако надёжная связь позволила «Розетте» не только сесть на комету, но и получить ценнейшие научные данные.

Сегодня космическая связь — одно из самых сложных и перспективных направлений развития коммуникационных технологий. Орбитальные спутники уже дали нам GPS, ГЛОНАСС, глобальные точнейшие цифровые карты, интернет и голосовую связь в самых отдаленных районах Земли, но мы смотрим дальше. Как космическая связь работает сейчас и что нас ожидает в будущем?

Путь «Розетты»

Основой инфраструктуры наземных станций, используемых во время миссии «Розетты», стала компьютерная система Intermediate Frequency Modem System (IFMS), разработанная BAE Systems. Помимо расшифровывания 350 гигабайт данных, переданных станцией, система позволила точно рассчитать положение космического корабля, действуя как GPS для Солнечной системы.

Система IFMS принимала и передавала сигналы в течение всей 10-летней миссии и сопровождала станцию около 800 миллионов километров. IFMS позволяет измерять скорость с точностью до долей миллиметра в секунду, а положение космического аппарата с точностью в пределах метра в любой точке Солнечной системы.

Модули IFMS размещаются на наземных станциях Европейского космического агентства (ЕКА), модернизированных более 20 лет назад для более совершенного получения радиосигналов с космических аппаратов. Вместо аналоговой обработки — настройки на сигнал, фильтрации и демодуляции — новая (на тот момент) технология позволила преобразовывать необработанный сигнал в цифровую форму, из которой программное обеспечение извлекало необходимую информацию.

После преобразования большая часть последующей обработки сигнала выполняется с помощью ППВМ-микрочипов (программируемая пользователем вентильная матрица, field-programmable gate array, FPGA). Они состоят из логических блоков, которые могут быть подключены параллельно для выполнения вычислений. Это позволило разработать сложные алгоритмы для поддержания высокого уровня шумоподавления и стабильности сигналов из космоса.

На Марс и обратно

Наземная сеть антенн Deep Space Network (DSN)

В основном спутники обеспечивают радиосвязь как ретрансляторы, однако для связи с межпланетными космическими аппаратами требуется более продвинутая система, состоящая из больших антенн, сверхмощных передатчиков и сверхчувствительных приемников.

Канал передачи данных на Землю очень узкий — например, параболическая антенна DSS (Deep Space Stations) недалеко от Мадрида принимает данные на скорости 720 Кб/сек. Конечно, марсоход передает всего 500-3200 бит в секунду по прямому каналу, однако основной канал проходит через орбитальный спутник Марса — получается около 31 Мб данных в сутки от марсохода, плюс еще данные, полученные от измерительных датчиков самого спутника.

Связь на расстоянии 55 миллионов километров поддерживает международная сеть радиотелескопов и средств связи Deep Space Network. DSN является частью NASA. В России же для связи с далекими космическими аппаратами используют знаменитый Восточный центр дальней космической связи, расположенный неподалеку от Уссурийска.

На сегодняшний день DSN объединяет три наземные базы, расположенные на трех континентах — в США, Испании и Австралии. Станции удалены друг от друга примерно на 120 градусов долготы, что позволяет им частично перекрывать зоны действия друг друга.

Спутник Mars Odyssey — самый долго действующий космический аппарат из всех, когда-либо отправленных на Марс — обменивается данными с DSN с помощью антенны с высоким коэффициентом усиления на частоте 8406 МГц. Прием данных от марсоходов ведется на УВЧ-антенну.

«Роуминг» по Солнечной системе

DSS-63

Марс — далеко не единственное место во Вселенной, с которым нам нужно поддерживать связь. Например, межпланетные зонды отправлялись к Сатурну и Титану, а Вояджер-1 вообще улетел на 20 миллиардов километров от Земли.

Чем дальше от нас улетают межпланетные станции, тем сложнее уловить их радиосигналы. Мы пока не можем по всей Солнечной системе расставить орбитальные спутники, поэтому вынуждены строить огромные параболические антенны.

Возьмём, к примеру, Мадридский комплекс дальней космической связи. Главная параболическая антенна комплекса DSS-63 имеет зеркало диаметром более 70 метров и весом 3,5 тысячи тонн. Для отслеживания зондов антенна вращается на четырех шариковых подшипниках весом в одну тонну каждый.

Антенна не только принимает сигнал, но и передает. И хотя траектория движения и вращения Земли давно посчитана и пересчитана, найти маленький объект в космосе, чтобы точно направить на него огромную антенну, — задача очень сложная.

Для поиска отдаленных объектов используется радиотриангуляция. Две наземные станции сравнивают точный угол, под которым сигнал попадает на зеркало антенны в разные промежутки времени, и таким образом вычисляется расстояние до объекта и его местоположение.

Центры дальней космической связи

Разработка в 50-х гг. первой советской межконтинентальной баллистической ракеты (МБР) Р-7, оснащенной радиоуправлением, поставила перед ее создателями сложную задачу – необходимо было построить большую сеть измерительных станций, которые могли бы определять скорость и корректировать полет ракеты.

Для поддержки запусков первых спутников оборудование, первоначально созданное для испытаний баллистической ракеты, было модернизировано и размещено в научно-измерительных пунктах (НИП). С них осуществлялась передача команд на космические аппараты.

В стране построили десятки НИП. Часть измерительного оборудования разместили на специальных кораблях Военно-морского флота. Корабли участвовали в испытаниях всех типов советских МБР, искусственных спутников и автоматических межпланетных станций, обеспечивали все отработочные и штатные околоземные и лунные полёты советских космических кораблей.

После развала СССР корабли измерительного комплекса за редким исключением были уничтожены. Однако сохранились другие важные для космической связи объекты. По географическим причинам наиболее важные командно-измерительные пункты создали в Крыму (16-й НИП – Западный Центр дальней космической связи) и в Приморском крае (15-й НИП – Восточный Центр дальней космической связи известный как объект «Уссурийск»).

Западный Центр в Евпатории принимал и обрабатывал информацию с первой автоматической станции «Луна», поддерживал связь с межпланетными станциями серий «Венера», «Марс», «Эхо», управлял аппаратами во множестве других проектах.

Главный объект Центра – антенна АДУ-1000 с 8 параболическими зеркалами диаметром 16 метров.

Объект «Уссурийск» был создан в 1965 году в результате перевода Радиоэлектронной части военно-космических сил в районе села Галёнки, в 30 км к северо-западу от Уссурийска. В 1985 году здесь был построена одна из крупнейших в мире антенн – РТ-70 с диаметром зеркала 70 м (такая же антенна находится и в Крыму).

РТ-70 продолжает действовать и будет использоваться в самых перспективных разработках страны – в новой российской лунной программе, стартующей в 2019 году (проект «Луна-25»), и для единственного в мире проекта орбитальной рентгеновской астрономии на ближайшие 15 лет «Спектр-Рентген-Гамма».

Максимальные скорости

Работа устройства Deep Space Optical Communication.


Сейчас на земной орбите находится около 400 коммерческих спутников связи, но в ближайшем будущем их станет гораздо больше. Компания ViaSat объявила о совместном проекте с Boeing по запуску трех спутников нового поколения, пропускная способность которых будет более 1 Тбит/сек — это больше пропускной способности всех вместе взятых работающих спутников на 2017 год.

ViaSat планирует предоставлять доступ в интернет на скорости 100 Мбит/сек по всему миру на частоте 20 ГГц, используя фазированные антенные решетки, а также многопозиционные системы передачи данных.

Компания SpaceX планирует уже в 2019 году начать запускать на орбиту более 12 000 спутников связи (в 30 раз больше всех сегодня летающих!), которые будут работать на частотах 10,7-18 ГГц и 26,5-40 ГГц.

Как вы можете себе представить, нужно обеспечить управление всей орбитальной группировкой спутников таким образом, чтобы не допустить столкновений аппаратов. Кроме того, рассматриваются проекты создания каналов связи со всеми искусственными объектами Солнечной системы. Все эти требования вынуждают инженеров ускорить развертывание новых каналов.

Межпланетные телекоммуникации в радиочастотном спектре с 1960 года увеличились на восемь порядков в пропускной способности, однако нам по-прежнему не хватает скорости для передачи изображений и видео высокой четкости, не говоря уже о коммуникации с тысячами объектов одновременно. Один из перспективных способов решения проблемы — лазерная связь.

Впервые космическая лазерная связь была испытана российскими учеными на МКС 25 января 2013 г. В том же году на аппарате Lunar Atmosphere and Dust Environment Explorer испытывалась система двусторонней лазерной связи между Луной и Землей. Удалось достичь скорости передачи данных 622 Мбит/сек с аппарата на наземную станцию, и 20 Мбит/сек с наземной станции на аппарат, находившийся на расстоянии 385 000 км от Земли.

Проект Laser Communications (LASERCOM) в будущем сможет решить вопрос связи в околоземном пространстве, Солнечной системе и, возможно, в межзвездных миссиях.

Лазерная связь в глубоком космосе будет проверена в ходе миссии «Психея». Зонд стартует в 2022 году, а в 2026 году достигнет металлического астероида 16 Psyche. На борту зонда будет установлено специальное оборудование Deep Space Optical Communications (DSOC) для передачи большего количества данных. DSOC должно повысить производительность и эффективность связи космических аппаратов в 10-100 раз по сравнению с обычными средствами, без увеличения массы, объема, мощности и спектра.

Ожидается, что использование лазерной связи приведет к революционным изменениям в будущих космических миссиях.

Космические радиолинии | Публикации | Вокруг Света

Статьи журнала «Вокруг света»

Электромагнитные волны, с помощью которых радиосигнал передается в космическом пространстве, движутся с гигантской скоростью — скоростью света. На Земле задержки в передаче почти не ощущаются, а вот с космонавтами на орбите приходится говорить уже с задержкой. Ответ с Луны будет идти полторы секунды, с Марса — уже минут шесть. Кроме того, по мере удаления передатчика сигнал стремительно затухает. Как же быть? Проблема тяжелая, но решаемая.

Сегодня самый удаленный космический объект, с которым поддерживается радиоконтакт, — это американская автоматическая межпланетная станция «Вояджер-1», запущенная 5 сентября 1977 года. В августе прошлого года она преодолела рубеж 100 астрономических единиц (15 миллиардов километров) и вплотную подошла к границе Солнечной системы. Радиосигнал с такого расстояния идет около 14 часов.

«Вояджер-1» — самая далекая космическая станция, с которой поддерживается связь

Информация с «Вояджера» на Землю передает жестко скрепленная с корпусом параболическая антенна диаметром 3,65 метра, которая должна быть сориентирована точно на родную планету. Через нее на частотах 2295 МГц и 8418 МГц шлют сигналы два радиопередатчика мощностью по 23 ватта. Для надежности каждый из них дублирован. Большая часть данных транслируется на Землю со скоростью 160 бит/с — это всего раза в три-четыре быстрее, чем скорость набора текста профессиональной машинисткой и в 300 раз медленнее телефонного модема. Для приема сигнала на Земле используется 34-метровые антенны сети дальней космической связи NASA, но в некоторых случаях задействуются самые большие 70-метровые антенны, и тогда скорость удается поднять до 600 и даже 1400 бит/с. По мере удаления станции ее сигнал слабеет, но еще важнее то, что постепенно снижается мощность радиоизотопных генераторов, которые питают передатчики. Ожидается, что станция сможет передавать научные данные еще по крайней мере 10 лет, после чего связь с ней прекратится.

Уже из этого описания видно, что космическая радиосвязь зависит от множества различных факторов: дальности, мощности передатчика, размеров бортовой и наземной антенн, длины волны, качества приемопередающей электроники, помех, шумов, поглощения сигнала в окружающей среде и даже от скорости движения космического аппарата.

Радиомалыши
Связь с космическими аппаратами поддерживают не только профессионалы, но и любители. Первый американский радиолюбительский спутник OSCAR-1 был запущен уже в 1961 году, а в 1969-м в США появилась и общественная спутниковая радиолюбительская организация AMSAT (AMateur SATellite). В СССР первые радиолюбительские аппараты «Радио-1» и «Радио-2» были запущены 26 октября 1977 года. Заядлыми радиолюбителями являются многие космонавты и астронавты. Космонавт Муса Манаров, например, первым вышел на связь в любительском диапазоне с борта орбитальной станции «Мир». На Международной космической станции тоже есть коротковолновая радиостанция, и в часы отдыха экипаж иногда выходит на связь с радиолюбителями разных стран.

А около 10 лет назад из спутникового радиолюбительства возникло новое бурно развивающееся направление — «студенческие» спутники. Как оказалось, участие студенческих групп в создании космических аппаратов — очень эффективный способ подготовки квалифицированных кадров для космической и других высокотехнологичных отраслей промышленности.

Тонна – киловатт – кубометр

Принцип действия радиосвязи состоит в том, что колебания тока в антенне передатчика создают в окружающем пространстве электромагнитные волны, которые, двигаясь со скоростью света, достигают антенны приемника и возбуждают в ней переменный электрический ток. Этот наведенный ток очень слаб, но если настроить приемник точно в резонанс с частотой радиоволны, то даже слабое ее воздействие может раскачать в антенне вполне заметные колебания. Затем их усиливают, анализируют и извлекают переданную информацию.

Радиоволны различных диапазонов по-разному проходят через земную атмосферу. Для космической связи оптимален диапазон от 1,5 до 30 сантиметров. За пределами этого окна радиосигнал заметно ослабляется в атмосфере или даже может от нее отразиться. На более коротких волнах потери энергии растут за счет поглощения молекулами воды и кислорода в тропосфере, а на более длинных волнах прохождению сигнала все сильнее мешает ионосфера, которая для волн длиннее 10—30 метров становится непреодолимой преградой. Поглощение радиоволн также вызывается дождем и туманом, но, конечно, не в такой мере, как в оптическом диапазоне.

Приемник не улавливает радиоволны, если они слабее его порога чувствительности. Между тем энергия электромагнитных волн падает как квадрат пройденного ими расстояния. Это значит, что сигнал с Марса будет в сотни тысяч раз слабее, чем такой же сигнал, переданный с Луны, а с Плутона — еще в тысячу раз слабее. У инженеров есть несколько способов удержать радиосигнал выше порога чувствительности приемника. Самый очевидный — увеличить мощность передатчика. На Земле это легко сделать — антенны системы дальней космической связи NASA излучают в космос до полумегаватта энергии. А вот на космическом аппарате бюджет энергии жестко ограничен. Ее вырабатывают либо солнечные батареи, либо радиоизотопные генераторы. И для получения большей мощности надо увеличивать их массу. При этом растут также площадь и масса радиаторов, отводящих избыток вырабатываемого тепла. Общая масса аппарата ограничена возможностями ракеты-носителя, а увеличить же массу отдельной системы за счет других чаще всего невозможно. Космические аппараты — это очень гармоничные технические комплексы, где все параметры жестко завязаны друг на друга: нельзя серьезно изменить одну систему, не повлияв на параметры других. Сегодня для спутников существует эмпирическая формула: «1 кг, 1 Вт, 1 литр», которая означает, что объем спутника массой в 1 тонну составит около 1 кубометра, а его система энергопитания способна достичь мощности 1 киловатт. К примеру, мощность передатчиков радиолюбительских спутников составляет всего несколько ватт, а современные телекоммуникационные аппараты на геостационарной орбите могут иметь передатчики мощностью несколько киловатт, что позволяет принимать их сигнал небольшими «тарелками» спутникового телевидения.

Если увеличить размер приемной антенны, то можно собрать больше энергии электромагнитной волны и поймать сигнал более слабого передатчика. В космосе размеры антенн обычно не превышают габаритов обтекателя ракеты-носителя, то есть нескольких метров. Хотя в последнее время инженеры научились обходить это ограничение — антенны все чаще делают разворачиваемыми. Например, аппараты «Турая» (Thuraya), поддерживающие мобильную спутниковую связь, оснащены 12-метровой антенной, которая разворачивается как зонтик из первоначальной компактной укладки. На Земле для дальней космической связи используются параболические антенны диаметром до 70 метров. Это уже близко к пределу — современные конструкционные материалы не позволяют создавать на поверхности Земли намного более крупные подвижные антенны, поскольку они деформируются под собственной тяжестью. В будущем их местом станет околоземная орбита. В невесомости гигантская космическая антенна может быть постепенно собрана из очень легких ажурных элементов.

Простейшие сигналы «простейшего спутника»
Ровно 50 лет назад, 4 октября 1957 года, из космоса впервые был принят радиосигнал искусственного происхождения. Радиомаяк первого спутника транслировал с орбиты в эфир простые короткие сигналы «бип-бип». Передача шла на двух частотах — 20 и 40 МГц (длина волны — 15 и 7,5 метра), доступных для приема радиолюбителями на Земле. Для них это был знак выдающегося события — выхода человечества в космос. Специалисты же вдобавок получали важную телеметрическую информацию — периодичность сигналов сообщала о температуре в приборном отсеке, а по прохождению радиоволн через ионосферу определялись физические условия в околоземном пространстве. Первый искусственный спутник поднялся над Землей менее чем на тысячу километров, а химической батареи, питавшей его передатчик, хватило на 22 дня. Спустя полвека, космические аппараты работают в сотни раз дольше и улетают в миллионы раз дальше, чем «простейший спутник» ПС-1. Но даже самые совершенные из них никогда уже не будут первыми.

Критическое звено

Размер антенны важен и еще по одной причине: чем он больше, тем меньше расходится в пространстве пучок радиоволн. Обычная дипольная антенна, как у походной рации, излучает почти одинаково во все стороны, и большая часть энергии теряется зря. Трехметровая параболическая антенна позволяет зажать пучок радиоволн сантиметрового диапазона в пределах угла порядка одного градуса, что дает выигрыш в мощности в десятки тысяч раз. Но при этом возникает необходимость точно нацеливать антенну на Землю. Если откажет система ориентации, связь с аппаратом прервется. Именно так погибла советская межпланетная станция «Фобос-1». В 1989 году на подлете к Марсу она получила неверную команду с Земли, в результате чего произошел сбой в работе бортового компьютера, аппарат потерял ориентацию, солнечные батареи отвернулись от Солнца, а параболическая антенна — от Земли. Операторы безуспешно пытались наладить контакт со станцией.

Таким образом, связь — это критическое звено во всех межпланетных миссиях. Отказ других систем часто удается обойти, пусть иногда и ценой потери части научных данных. Но если рвется связь с Землей, то даже исправный в остальных отношениях аппарат фактически перестает для нас существовать. Поэтому коммуникационная система должна быть исключительно надежна и на всех современных космических аппаратах она как минимум продублирована. При сбоях, которые в большинстве случаев приводят к потере ориентации аппарата или его переводу в режим закрутки, низкоскоростная система связи через всенаправленную антенну передаст на Землю параметры состояния бортовых систем и обеспечит прием команд управления. Когда работоспособность аппарата будет восстановлена, связь пойдет через быстрый канал передачи информации.

Впрочем, ненаправленная антенна используется не только при нештатных ситуациях. Во время длительных межпланетных перелетов, когда станция пребывает в «спящем» режиме, поддерживать связь по высокоскоростному каналу невыгодно — информации мало, а сохранение точной ориентации требует пусть и небольшого, но постоянного расхода топлива. С другой стороны, в сложных межпланетных миссиях к ориентации аппарата могут предъявляться многочисленные противоречивые требования: повернуть солнечные батареи к свету, двигатель — соответственно производимому маневру, научную аппаратуру — на изучаемый объект. А если надо еще, например, правильно сориентировать отделяющийся спускаемый аппарат или защитный экран, предохраняющий от воздействия космической пыли, то связь по узконаправленному каналу в какие-то моменты приходится разрывать. В это время научные данные записываются в память бортового компьютера, а по медленному резервному каналу связи передается только жизненно важная телеметрическая информация. Если в нужный момент аппарат не сможет сам восстановить быстрый канал связи, ему помогут с Земли, отправив нужные команды, используя низкоскоростной канал.

Хорошим примером может служить японский исследовательский зонд «Хаябуса» (Hayabusa), взявший в ноябре 2005 года пробы грунта с астероида Итокава. Из-за ошибок в навигации он совершил незапланированную посадку на поверхность астероида. После взлета вышла из строя система ориентации и существовала реальная опасность потерять аппарат. Однако многократно резервированная и гибкая система связи, имеющая несколько типов антенн и передатчиков, позволила восстановить связь с межпланетной станцией. Вместо отказавшей системы ориентации (из нее испарилось топливо) инженеры решили использовать для поворотов зонда ксенон (рабочее тело маршевого ионного двигателя), понемногу стравливая его через клапаны, — выполнение задания продолжилось.

Другой пример — европейский зонд «Гюйгенс», который в январе 2005 года совершил посадку на поверхность спутника Сатурна — Титана. У аппарата имелось два независимых канала связи для параллельной передачи на разных частотах уникальных снимков и другой информации, получаемой в ходе спуска в атмосфере Титана. Первоначально планировалось, что эти каналы будут для надежности полностью дублировать друг друга, но потом их решили использовать независимо, чтобы увеличить объем получаемой информации. Однако жадность до добра не доводит — из-за ошибки в программе управления один из каналов просто не включился. В результате пропала половина из 700 сделанных снимков, а также данные о скорости ветра в атмосфере спутника. Конечно, и полученных снимков хватило, чтобы сделать множество открытий, а данные о ветре удалось восстановить с помощью земных радиоастрономических сетей благодаря уникальной наблюдательной кооперации. Но только подумайте, что бы случилось, будь отказавший канал связи единственным!

Австралийский узел сети дальней космической связи NASA. Вдали 70-метровая параболическая антенна, перед ней — две 34-метровые

Звонок с космической станции
Вращающиеся на низкой околоземной орбите (до 1000 километров) аппараты попадают в поле зрения одной станции управления только несколько раз в сутки (обычно 4—6) и всего на несколько минут, поэтому им программа работы задается сразу на несколько часов или дней вперед. Чтобы увеличить количество сеансов связи, на Земле ставят больше станций, располагая их на существенном удалении друг от друга. В советское время существовал даже специальный космический флот, суда которого работали в разных частях света, обеспечивая связь со спутниками, пилотируемыми космическими кораблями. Если с низколетящим аппаратом требуется непрерывная связь, сигнал передается на него через спутники-ретрансляторы на геостационарной орбите. Трех таких аппаратов, неподвижно висящих над экватором на высоте 36 тысяч километров, достаточно, чтобы охватить практически всю территорию Земли за исключением полярных районов. Например, связь с Международной космической станцией и американскими космическими челноками «Спэйс Шаттл» происходит через американские спутники-ретрансляторы TDRS (хотя связь через наземные станции тоже используется). Благодаря этому экипаж может связаться с ЦУПом в подмосковном городе Королеве и в американском Хьюстоне, а также звонить домой и пользоваться электронной почтой. Подобная система существовала и в нашей стране. Контакт со станцией «Мир» на так называемых «глухих витках» поддерживался через геостационарный космический аппарат «Луч». Сейчас ведутся работы над системой «Луч» нового поколения.

Шум и скорость

Главный параметр любой системы связи — скорость передачи информации. Она определяется не столько мощностью сигнала, сколько соотношением его амплитуды с шумами, которые мешают приему. Шум возникает в аппаратуре приемника и передатчика из-за теплового движения атомов. А в космическом радиоэфире «шумит» реликтовое микроволновое излучение, оставшееся от Большого взрыва. Собственно, его и открыли в 1964 году случайно, в попытках избавиться от непонятного шума в новой антенне, на которой изучались возможности космической связи.

Шум отфильтровывается статистически за счет его случайного характера. Он равновероятно вызывает в антенне движение тока то в одну, то в другую сторону. В среднем за длительное время его вклад будет нулевым. Но чем слабее сигнал по отношению к шуму, тем дольше нужно вести прием и осреднение, чтобы отфильтровать шум. Сегодня космическая информация передается в цифровом виде, то есть последовательностями нулей и единиц — битов. Чем хуже отношение сигнал/шум, тем больше времени уходит на передачу каждого бита. Если попытаться форсировать передачу, сообщения станут приниматься с ошибками. Поэтому, чем дальше от нас находится аппарат, чем слабее его сигнал, тем медленнее идет с ним обмен информацией.

Впрочем, ошибки с некоторой вероятностью возникают при любой скорости передачи. Причиной могут быть редкие сильные флуктуации шума, сбои аппаратуры, но чаще всего — помехи от посторонних источников, например, от статических микроразрядов в аппаратуре, радиоизлучения молний, земных радиопередатчиков. Сломанная микроволновая печь в окрестностях приемной антенны сойдет в радиоэфире за сигнал внеземной цивилизации. Чтобы избавиться от длительных помех, передачу информации дублируют на разных частотах. А от коротких импульсных помех, которые искажают несколько битов в передаче, спасают особые методы кодирования, позволяющие выявлять и даже автоматически исправлять ошибки.

При проектировании системы космической связи также необходимо принимать во внимание скорость движения аппарата. От нее зависит доплеровский сдвиг частоты радиосигнала. Вариации скорости относительно Земли в некоторых случаях, например при полете к быстро движущемуся по своей орбите Меркурию, могут достигать 100 км/с — это три сотых процента скорости света. На столько же смещаются и частоты сигналов. Если этот эффект не учесть, приемный контур может не попасть в резонанс с несущей частотой передатчика, и его чувствительность резко упадет. Вместе с тем по доплеровскому сдвигу частоты сигнала можно с высокой точностью определить скорость движения космического аппарата вдоль луча зрения. Поэтому системы связи широко используются для контроля точности выполняемых в космосе маневров. И, кстати, скорости дующих на спутнике Сатурна ветров удалось определить именно по изменению частоты ультрастабильного передатчика зонда «Гюйгенс» во время его парашютного снижения в атмосфере Титана.

Лазер сигналит с Марса
Самой высокой скоростью межпланетной передачи данных может сегодня похвастаться аппарат Mars Reconnaissance Orbiter, вышедший на орбиту Марса 10 марта 2006 года. Он оснащен 100-ваттным передатчиком с трехметровой параболической антенной и может передавать информацию на скорости до 6 мегабит в секунду. Доставить к Марсу более крупный и мощный передатчик пока затруднительно. Однако есть принципиально иной подход к увеличению скорости передачи данных — использовать вместо радиоволн оптическое излучение. Длина волны лазерного излучения в десятки тысяч раз меньше, чем в радиодиапазоне. Поэтому расходимость лазерного луча получается значительно меньшей. Это позволит существенно поднять скорость передачи данных при более низком энергопотреблении. Но у лазерной связи есть и недостатки: она нуждается в более точном нацеливании передатчика, и, кроме того, на ее работоспособность существенным образом влияют погодные условия, в первую очередь облака. Поэтому межпланетная лазерная связь будет, скорее всего, поддерживаться с орбитальных аппаратов. Впервые лазерная связь в космосе была осуществлена 21 ноября 2002 года. Европейский спутник дистанционного зондирования Земли SPOT 4, находящийся на орбите высотой 832 километра, установил контакт с экспериментальным космическим аппаратом Artemis, обращающимся на высоте 31 000 километров и передал снимки земной поверхности. А недавно Лаборатория Линкольна в Массачусетсском технологическом институте (MIT) совместно с NASA приступила к разработке лазерной системы дальней космической связи. Первый тестовый коммуникационный лазер планируется отправить к Марсу в 2009 году. Ожидается, что этот 5-ваттный передатчик в период сближения планет обеспечит скорость передачи данных до 30 мегабит в секунду.

Интеллект против расстояний

4,8-метровая антенна станции «Галилео» не раскрылась в полете. Все 8 лет работы в системе Юпитера станцию связывал с Землей ненаправленный канал со скоростью лишь 160 бит/с вместо ожидавшихся 134 Кбит/с

Специфическая проблема в управлении космическими аппаратами связана с задержкой распространения радиоволн на огромных межпланетных расстояниях. Обмен сигналами с Луной занимает больше 2 секунд. Сможете ли вы проехать даже по хорошо знакомой местности, если дорогу будете видеть с задержкой на секунду, а на повороты руля машина станет реагировать еще через секунду? Между тем именно в таких условиях шло управление с Земли советскими «Луноходами». До Марса радиосигнал идет от 3 до 22 минут в зависимости от положения планеты на орбите. При такой задержке невозможно оперативно вмешаться с Земли в такие ответственные этапы миссии, как коррекция траектории полета, выход аппарата на орбиту вокруг планеты, его вхождение в атмосферу, да и движением по поверхности управлять непросто. Поэтому межпланетные аппараты становятся все более интеллектуальными и независимыми от контроля с Земли. Например, одной из основных задач зонда «Хаябуса» была отработка методов автономной навигации с использованием ионных двигателей.

Очень «умными» являются работающие на Марсе американские планетоходы Opportunity и Spirit. В отличие от советских «Луноходов», управление которыми осуществлялось оператором с Земли практически в режиме реального времени, на борт марсоходов обычно отправляют только координаты цели, куда они должны добраться. Бортовой компьютер, обработав стереоскопические снимки местности, самостоятельно оценивает размер валунов, расстояние между ними, наклон поверхности и по этим данным прокладывает путь. Прошлым летом специалисты NASA обновили программное обеспечение марсоходов — залили новую прошивку, говорят компьютерщики. Это повысило их автономность. Кроме того, чтобы не перегружать канал связи, марсоходы теперь сами оценивают, насколько интересны сделанные снимки, и определяют какие из них и в какой очередности передавать на Землю.

Межпланетный интернет

Небольшие планетоходы и спускаемые аппараты неудобно, а иногда и невозможно оснащать полноценной системой дальней космической связи. На них просто негде поместить направленную антенну, да и удерживать направление на Землю при спуске в атмосфере или езде по незнакомой поверхности почти невозможно. В таких случаях сигналы передаются ненаправленной антенной и ретранслируются на Землю находящимся поблизости более мощным аппаратом. По такой схеме работали, например, советские станции «Венера». Европейский зонд «Гюйгенс» ретранслировал сигнал через американскую станцию «Кассини», которая доставила его к Титану. Работа с марсоходами Opportunity и Spirit на 85% осуществляется через орбитальный аппарат «Марс Одиссей» (остальное — напрямую через медленную ненаправленную антенну). Все это напоминает организацию беспроводных систем связи на Земле: сотовый телефон или ноутбук с поддержкой Wi-Fi связывается с базовой станцией, а уже оттуда становится доступна вся инфраструктура связи.

Последние несколько лет специалисты NASA работают над внедрением в космических проектах единого протокола передачи данных, который позволит разнотипным аппаратам свободно обмениваться между собой информацией. Унификация должна значительно повысить надежность связи при активном освоении Луны и Марса. Например, при сбое на одном орбитальном ретрансляторе находящийся на поверхности аппарат сможет оперативно подключиться к другому. Да и просто наличие на орбите нескольких коммуникационных аппаратов позволит непрерывно поддерживать быструю связь с Землей, тогда как сейчас она ограничена лишь теми периодами, когда спутник-ретранслятор виден над горизонтом.

Многие специалисты склоняются к тому, чтобы новым универсальным форматом или его прототипом стал отлично зарекомендовавший себя в компьютерных сетях протокол TCP/IP, который лежит в основе Интернета. Так что, возможно, мы в скором времени станем свидетелями распространения Интернета на межпланетные просторы. Впрочем, на первых порах неавторизованные пользователи вряд ли смогут зайти на лунный или марсианский веб-сервер, чтобы скачать там свежие снимки, сделанные планетоходами, или посмотреть на окружающий ландшафт через космическую веб-камеру. Все же пропускная способность межпланетных каналов пока слишком мала для таких развлечений.

Главной проблемой космического интернета остаются задержки с доставкой информационных пакетов. Даже при обычном выходе в Интернет через спутник сигналу надо пройти 72 тысячи километров — до геостационарной орбиты и обратно, что занимает около четверти секунды. Добавьте такую же задержку при ответе, и станет ясно, что по спутниковому интернету вы вряд ли сможете поиграть в динамичные игры-шутеры. Что же касается межпланетных расстояний, то здесь стандартные протоколы Интернета, в том виде, в каком они используются в наземных линиях, вообще не годятся. В них не предусмотрена возможность получасового ожидания ответа сервера. Большинство программ просто диагностирует ошибку тайм-аута — недопустимое время ожидания, говорящее о потере связи. В NASA уже несколько лет трудятся над модернизированными протоколами связи, учитывающими специфику межпланетного интернета. Некоторые из этих протоколов уже работают на борту марсоходов Spirit и Opportunity, другие еще «доводятся» на Земле.

За пределы солнечной системы

Сегодня коммуникационные возможности человечества ограничены Солнечной системой. На межзвездных расстояниях для связи с аппаратом класса «Вояджер» мощность наземного передатчика должна составлять миллиарды киловатт, что сравнимо с общим производством электроэнергии на Земле. Менее прожорливой межзвездную связь могут сделать антенны диаметром несколько километров. Такие масштабные конструкции, скорее всего, будут строиться и размещаться на орбите. Подобные решения кажутся фантастическими, но нереальными их назвать нельзя. Человечество уже учится создавать в космосе сборные крупногабаритные конструкции. Например, размеры строящейся на орбите Международной космической станции приближаются к сотне метров. И все же самой большой проблемой для связи на межзвездных расстояниях будет оставаться время путешествия сигнала. Даже до ближайшей к Солнцу звезды сигнал дойдет только через 4,2 года после отправки, и еще столько же времени придется ждать ответа.

А пока попытки межзвездной связи остаются односторонними, в их числе нельзя не упомянуть эксперимент с почтовой связью. На обоих «Вояджерах» помещены медные позолоченные диски диаметром около 30 сантиметров, на которых записаны звуки и изображения, дающие представление о жизни на Земле. Простые диаграммы на поверхности диска символически показывают происхождение космического аппарата и дают инструкции, как проигрывать диск. Правда, межзвездная почта работает небыстро, доставка посылок в другую планетную систему займет минимум 40 тысяч лет.

Анатолий Копик

Как НАСА общается с космическим кораблем?

сеть дальнего космоса

Краткий ответ:

Космические аппараты отправляют информацию и изображения обратно на Землю с помощью сети дальнего космоса (DSN), набора больших радиоантенн. Антенны также получают информацию о том, где находятся космические корабли и как они себя ведут. НАСА также использует DSN для отправки списков инструкций на космический корабль.

Посмотрите это видео, чтобы узнать все о сети Deep Space Network, гигантских радиоантеннах НАСА, используемых для связи с космическими кораблями на Луне и за ее пределами.

Космический корабль НАСА исследует нашу планету, нашу солнечную систему и не только. Как они рассказывают нам, что они там находят? Космические аппараты отправляют информацию и изображения обратно на Землю, используя Deep Space Network или DSN . DSN представляет собой набор больших радиоантенн в разных частях мира.

Комплекс DSN в Канберре, Австралия. На каждом сайте DSN имеется как минимум четыре антенны. Изображение предоставлено: NASA/CSIRO/Canberra Deep Space Communication Complex 9.0003

Рядом с Канберрой, Австралия, есть пункты DSN; Мадрид, Испания; и Голдстоун, Калифорния. Эти места почти равномерно распределены по планете. Это означает, что когда Земля вращается, мы никогда не теряем из виду космический корабль.

Карта мира с тремя сайтами Deep Space Network. Изображение предоставлено: NASA/JPL-Caltech

Что делают антенны DSN?

Космические корабли отправляют изображения и другую информацию на эти большие антенны. Антенны также получают информацию о том, где находятся космические корабли и как они себя ведут. В то же время НАСА использует DSN для отправки списков инструкций на космический корабль.

Изображение космического корабля, отправляющего и принимающего информацию от антенны DSN. Изображение предоставлено: NASA/JPL-Caltech

Как космический корабль связывается с DSN?

У наших роботов-исследователей много дел. Инструменты, которые они используют для общения, не должны быть слишком тяжелыми, занимать слишком много места или потреблять слишком много энергии. Небольшие антенны на космическом корабле могут передавать слабые радиосигналы обратно на Землю.

Чем дальше находится космический корабль, тем больше антенна нужна для обнаружения его сигнала. Самая большая антенна на каждом сайте DSN имеет диаметр 70 метров (230 футов).

На каждом сайте DSN установлена ​​большая 70-метровая (230 футов) антенна. Эта, называемая Марсианской антенной, находится в Голдстоуне, Калифорния. Изображение предоставлено: НАСА

Самые удаленные объекты, с которыми связывается DSN, — это два космических корабля НАСА «Вояджер». Запущенные в 1977 году, «Вояджеры-1» и «Вояджеры-2» изучали Юпитер, Сатурн, Уран и Нептун. Сегодня «Вояджер-1» исследует межзвездное пространство за пределами нашей Солнечной системы!

Поскольку «Вояджеры» так далеко, их сигналы на антенны очень слабые. На самом деле мощность, которую антенны DSN получают от сигналов «Вояджера», в 20 миллиардов раз слабее той, которая необходима для работы цифровых часов! Инженеры нашли способы усилить эти сигналы, чтобы их можно было «услышать» громко и четко.

В этом видео зигзагообразные линии представляют информацию, проходящую между космическим кораблем и антеннами DSN. Изображение предоставлено: Скриншот из DSN Now/NASA/JPL-Caltech

Что происходит, когда антенны DSN принимают сигналы?

Центры на каждом сайте DSN получают входящую информацию. Затем они отправляют его в Центр управления космическими полетами в Лаборатории реактивного движения в Пасадене, Калифорния. Там фотографии и другие данные обрабатываются и передаются ученым и всем нам!

Вот фотография Центра управления космическими полетами в Лаборатории реактивного движения НАСА. Это центральный узел DSN. Изображение предоставлено: NASA/JPL-Caltech

Связанные ресурсы для преподавателей

Детская зона космической связи и навигации

Если вам это понравилось, вам может понравиться:

Как мы разговариваем с машинами?

DSN Uplink-Downlink: игра DSN

Orbits ‘R’ Us!

Дальняя космическая связь и навигация

Включение и поддержка

10738 просмотров
47 лайков

В последние годы ЕКА разработало несколько самых передовых космических аппаратов, когда-либо построенных, для достижения таких экзотических мест, как Солнце, Меркурий, Марс, Юпитер и астероиды Дидимос – тенденция, которая сохранится и в предстоящие годы. По мере того, как миссии удаляются от Земли, важно подумать о том, как мы можем продолжать общаться с ними и как они будут перемещаться в космосе, находясь так далеко от дома.

Для эффективной связи с космическим кораблем нам необходимо отправлять и получать статусные, навигационные и научные данные. Это достигается с помощью наземных станций на Земле. ЕКА управляет сложной системой наземных станций, включая три Антенны дальнего космоса (DSA) (четвертая в настоящее время строится), расположенные по всему миру, обеспечивая непрерывное покрытие при вращении Земли.

Чтобы миссии выполняли свои научные задачи, ЕКА продолжает разрабатывать технологии для более эффективного взаимодействия с ними. Это включает в себя технологии на борту космических аппаратов, а также на земле.

Отслеживание космического корабля глубоко в пустоте.

Чем занимается Discovery & Preparation в этой области?

Открытие и подготовка закладывает основу для краткосрочной и среднесрочной будущей деятельности ЕКА. Подразделение «Подготовка» недавно провело кампанию Open Space Innovation Platform (OSIP) «Что дальше — новые идеи для космических миссий и концепций». Был рассмотрен ряд идей для новых миссий в дальний космос, особенно в поддержку будущих межпланетных космических полетов человека, исследования Марса и миссий к околоземным объектам.

В рамках подготовки к будущим экспедициям в дальний космос компания «Открытие и подготовка» провела несколько исследований будущих космических научных миссий ЕКА. В исследовании, завершившемся в 2009 году, была разработана система для улучшения работы этих миссий, которые обычно перемещаются относительно далеко от Земли, за счет гибкого процесса планирования, составления графиков и оптимизации. В более позднем исследовании предложен комплексный симулятор миссии для повышения их эффективности.

Открытие и подготовка также внесли значительный вклад в миссии ЕКА Proba, которые тестируют новые технологии в космосе. 2009 г.исследование предусматривало межпланетную миссию Proba — Proba-IP — для путешествия к объекту, сближающемуся с Землей, и проверки автономных бортовых технологий наведения, навигации и управления.

Вдобавок к этим общим исследованиям, компания «Открытие и подготовка» провела более конкретные исследования, посвященные отдельным технологиям связи и навигации в глубоком космосе.

Сеть наземных станций ЕКА с тремя станциями слежения за дальним космосом, отмеченными желтыми прямоугольниками.

Связь – налаживание отношений на расстоянии

Связь с удаленными космическими кораблями затруднена. Сигналы, которые проходят между космическим кораблем и наземными станциями, очень слабые, и из-за больших расстояний им требуется много времени, чтобы путешествовать между ними. Например, для прохождения сигнала между Землей и Марсом может потребоваться до 24 минут, и почти целый день, чтобы получить сигнал, отправленный космическим кораблем НАСА «Вояджер-1» — космическим кораблем, который путешествовал за пределы Солнечной системы.

Поскольку оборудование на борту космического корабля сильно ограничено, наземные станции используют множество более сложных коммуникационных технологий. Многие исследования в области открытий и подготовки внесли свой вклад в разработку таких технологий.

Исследование, завершившееся в 2012 году, изучало возможность разработки клистронов исключительно в Европе. Эти устройства преобразуют электроэнергию в усиленные радиосигналы для отправки команд с наземных станций. Исследование установило требования и цели для разработки такого устройства, а также определило промышленную среду и потенциальную дорожную карту на будущее. Клистроны теперь используются в сети наземных станций ЕКА; вы можете узнать больше о них в видео в начале этой статьи.

Станция ESA New Norcia (Deep Space Antenna-1) в Австралии.

Еще одно исследование было посвящено выбору наилучшей архитектуры наземной станции для будущих полетов в дальний космос. Собрав данные о текущих характеристиках антенн ESA для дальнего космоса, а также собрав потребности и характеристики будущих миссий, исследование рассчитало характеристики наземной системы, которые потребуются для удовлетворения этих потребностей. В исследовании отмечается, что общение на оптических частотах более эффективно, чем на более традиционных радиочастотах.

Оптическая связь становится интересной альтернативой радиосвязи для связи с удаленными космическими кораблями или внутриспутниковой связи, поскольку позволяет передавать больше данных; это максимизирует научную отдачу и может позволить новые типы миссий. Однако на оптические сигналы больше влияет атмосфера Земли.

Учитывая растущий спрос на скорость передачи данных по нисходящему каналу для повышения отдачи от науки, в 2016 году Исследование архитектуры оптической связи для дальнего космоса (DOCOMAS) показало, как технологии должны развиваться в будущем, чтобы обеспечить оптическую связь между зондом для дальнего космоса и Землей. Исследование было сосредоточено на наземном сегменте, включая стратегии смягчения последствий облачности. Было определено, что ключевыми технологиями являются специальные оптические наземные антенны, новые детекторы фотонов и общий подход к проектированию оптического терминала полезной нагрузки. Концептуальный дизайн был адаптирован для миссии ЕКА по исследованию астероидов (AIM), которая превратилась в миссию Гера.

DOCMAS построен на результатах более раннего исследования, которое было сосредоточено на разработке технологий для связи с межпланетными миссиями, включая изучение необходимых оптических технологий. Поскольку связь является печально известным узким местом в межпланетных научных и исследовательских миссиях, цель состояла в том, чтобы предложить дорожную карту развития технологий для расширения возможностей связи.

В другом исследовании изучалось, как оптическая наземная станция ЕКА (OGS), обычно используемая для связи с ближайшими космическими кораблями, может использоваться для связи с экспедициями в дальний космос.

Навигация – превращение времени в расстояние

Хорошая связь необходима не только для сбора научных данных и данных о состоянии, но и для навигации космического корабля через Солнечную систему. Чтобы управлять космическими кораблями, нам нужно знать их положение, а это непросто, когда они так далеко. Но, измерив три параметра — расстояние, скорость и угол, под которым космический корабль находится в небе, — можно рассчитать положение спутника вплоть до небольшой прямоугольной области пространства.

Одним из элементов, необходимых для навигации в дальнем космосе, является синхронизация времени, в частности обеспечение синхронизации времени на борту космического корабля со временем на земле. Чтобы рассчитать, где находится космический корабль в Солнечной системе, мы точно измеряем время, необходимое электромагнитным волнам для прохождения между космическим кораблем и антенной на Земле. Затем навигаторы на Земле передают корректировки курса. В исследовании 2007–2009 годов изучались методы дальновидного мышления для синхронизации времени на борту зондов для дальнего космоса для точной навигации, в частности, рассматривались недорогие варианты. Параллельное исследование показало, что точность передачи сигнала с космического корабля на Землю в десять наносекунд возможна без использования бортовых атомных часов.

Навигация с помощью пульсаров.

Для перемещения космического корабля в отдаленные места требуется команда ученых и инженеров, использующих сложные радиоприемники, большие антенны, компьютеры и точное оборудование для измерения времени. В то время как DSA были стандартным инструментом для навигации космических кораблей в прошлом, сеть имеет ограничения, и частичная автономная навигация становится все более распространенной. Один из методов, который больше изучался в последнее десятилетие, — это навигация с использованием пульсаров — намагниченных, быстро вращающихся, умирающих звезд, которые испускают пучки электронного излучения из своих магнитных полюсов.

Миллисекундные пульсары, период вращения которых составляет менее десяти тысячных долей секунды, представляют собой самый точный из известных стандартов времени. В своего рода небесной GPS космический корабль может измерять время между получением каждого импульса излучения от трех разных пульсаров, отслеживая крошечные изменения во времени прибытия, чтобы точно определить его местоположение.

В период с 2012 по 2014 год это была очень новая идея, когда Discovery & Preparation поддержала два исследования, в которых изучалась возможность навигации в дальнем космосе с помощью рентгеновских пульсаров. Первый был проведен Национальной физической лабораторией Великобритании и Лестерским университетом, а второй – Хельсинкским университетом. Среди других открытий исследование показало, что преимущества такого метода включают повышенную автономию космического корабля, улучшенную точность определения местоположения и гораздо более низкие эксплуатационные расходы за счет существенного сокращения использования связанных наземных систем.

Подготовка практического испытания плавания Геры вокруг Дидима.

Пульсары — не единственные астрономические объекты, которые можно использовать для навигации. В исследовании 2016 года изучалась возможность бортовой системы визуальной навигации для миссии ESA Hera (тогда AIM), которая посетит двойной астероид Didymos в конце этого десятилетия. Система проложила путь к развитию такой системы; Гера будет использовать свою бортовую камеру для определения положения астероидов по отношению к фоновым звездам. Hera также продемонстрирует связь с наземной станцией по оптической линии связи, а также связь между основным космическим кораблем и двумя спутниками CubeSat.

Как насчет использования Глобальных навигационных спутниковых систем , которые позволяют наземной навигации проложить путь дальше? Навигационные спутники вращаются на высоте около 22 000 километров над поверхностью Земли. Поскольку они направлены вниз к Земле, любой космический корабль под ними хорошо обслуживается сигналами, которые они посылают. Но около десяти лет назад инженеры начали демонстрировать, что космические аппараты за пределами орбиты навигационных спутников также могут перемещаться в космосе, используя их «перетекающий» сигнал.

Европейская группировка спутников Galileo GNSS.

В 2012 году были начаты два исследования «Открытие и подготовка» для изучения, казалось бы, радикального вопроса: можно ли использовать этот переходящий сигнал для навигации вокруг Луны, и если да, то какой тип приемника нам нужно построить, чтобы иметь возможность использовать эти сигналы? Исследования, проведенные под руководством Deimos and Joanneaum Research, показали, что действительно сигнал от навигационных спутников, вращающихся вокруг Земли, можно использовать для навигации по поверхности Луны. Но из-за того, что сигнал был таким слабым, они пришли к выводу, что необходимо построить новый тип приемника. В настоящее время ЕКА вложило средства в разработку такого приемника и изучает возможность его демонстрации в миссии Lunar Pathfinder.

Чем еще занимается ЕКА?

У ЕКА уже есть несколько миссий, работающих в дальнем космосе, включая Solar Orbiter, ExoMars и BepiColombo. В следующем году состоится запуск Jupiter ICy moons Explorer (Juice), который проведет не менее трех лет, наблюдая за Юпитером и тремя его самыми большими спутниками. В 2024 году миссия ЕКА по планетарной обороне «Гера» отправится к астероиду, в процессе чего мы узнаем больше об этих скалистых объектах и ​​выясним, сможем ли мы отклонить астероид при столкновении с Землей.

Амбициозные планы ЕКА на следующее десятилетие исследования космоса людьми и роботами перенесут нас с МКС на Луну, путь в дальний космос и высадку на Марс. Уже предпринимаются конкретные шаги по изучению Луны; Новый корабль НАСА «Орион» с европейским служебным модулем в основе построит мосты на Луну и Марс, отправив людей в космос дальше, чем когда-либо прежде.

Пункт назначения: Луна

Для всех роботизированных и пилотируемых миссий на Луну, астероиды, Марс или за его пределы для связи необходим хотя бы один DSA. Оперативное управление ЕКА контролирует космические корабли, в том числе летающие вглубь Солнечной системы, а также разрабатывает и управляет необходимой наземной инфраструктурой. Перед запуском каждой миссии группы эксплуатации тщательно проектируют и строят наземные сегменты, которые позволяют инженерам управлять спутниками в космосе, а также получать и распространять их данные.

Станция слежения ESA Malargüe поддерживает множество миссий в дальнем космосе.

ESA Operations наблюдает за сетью станций слежения ESA, Estrack, ядро ​​которой включает семь станций в семи странах, включая четыре DSA. Кроме того, управление в настоящее время эксплуатирует крошечный спутник OPS-SAT, предназначенный для тестирования и проверки значительно улучшенных возможностей управления полетами.

В дополнение к ежедневной эксплуатации космических кораблей, исследующих космос на расстоянии сотен миллионов километров, оперативные группы ЕКА постоянно работают над созданием новых возможностей для поддержки будущих миссий, включая методы динамики полета, устойчивые к задержкам сети, технологии связи в дальнем космосе и инновационное программное обеспечение и системы управления спутниками.

Чем занимаются другие космические агентства?

ЕКА делит возможности Estrack с другими космическими агентствами, которые в свою очередь предоставляют услуги слежения миссиям ЕКА в рамках ряда соглашений о совместном использовании ресурсов. К ним относятся сети и станции, которыми управляют ASI (Италия), CNES (Франция), DLR (Германия), Сеть дальнего космоса НАСА и Центр космических полетов имени Годдарда и JAXA (Япония).

Например, станции NASA Deep Space Network регулярно поддерживают Mars Express (а также другие уже завершенные миссии, такие как Rosetta, Huygens и Venus Express), а Estrack поддерживает японскую миссию Hayabusa-2. В последние годы Estrack оказывает поддержку миссиям, проводимым Китаем и Россией, а также отслеживает спуск марсоходов НАСА на поверхность Марса.

Другие космические агентства также разрабатывают собственные технологии для связи и навигации с космическими кораблями в дальнем космосе. Например, НАСА разработало атомные часы для дальнего космоса и рентгеновское навигационное устройство, которое определяет положение космического корабля в любой точке Солнечной системы, а JAXA работало над навигационной системой, использующей высокоточный трехмерный радар и технологию управления навигационным наведением для сближение и переход орбиты в окрестности Луны.