Содержание
Крупнейшая галактика во Вселенной поразила астрономов размахом своих лепестков // Смотрим
Профиль
Открытие и исследование галактик во Вселенной
15 февраля 2022, 14:55
- Ольга Мурая
Радиолепестки Алкионея.
Иллюстрация Oei et al./arXiv, 2022.
Учёные могут лишь догадываться о том, как возникают такие космические гиганты.
Астрономы нашли на расстоянии около трёх миллиардов световых лет от Земли совершенно монструозную галактику диаметром пять мегапарсеков.
Такие масштабы совершенно не укладываются в воображении, но добавим, что это аналогично расстоянию в 16,3 миллиона световых лет.
Это крупнейшая из известных на сегодняшний день структур галактического происхождения. Она в 166 раз крупнее нашей галактики (диаметр Млечного Пути составляет «всего лишь» 30 килопарсеков).
Радиогалактика-великанша получила название Алкионей, по имени персонажа древнегреческих мифов — одного из гигантов, сына Геи и Урана.
Гигантские радиогалактики — одна из многочисленных загадок Вселенной.
Они состоят из галактики-хозяйки (скопления звёзд, вращающихся вокруг галактического ядра, содержащего сверхмассивную чёрную дыру), а также исполинских струй и так называемых «лепестков» плазмы, вырывающихся из галактического центра.
Эти струи, также известные как джеты, и лепестки, взаимодействуя с межгалактической средой, действуют как синхротрон (ускоритель частиц), разгоняя электроны. Этот процесс и делает такие галактики источниками мощнейшего радиоизлучения.
Учёные почти уверены, что знают, что производит джеты: активная сверхмассивная чёрная дыра в галактическом центре. Чёрную дыру называют «активной», когда она поглощает (аккрецирует) окружающий её материал.
Считается, что небольшая часть поглощаемого материала выбрасывается из внутренней области аккреционного диска к его полюсам. В итоге она отправляется в космос в виде струй ионизированной плазмы со скоростью, близкой к скорости света.
Эти струи могут преодолевать огромные расстояния, а затем превращаться в гигантские радиоизлучающие «лепестки».
Это вполне обычный для космоса процесс. Даже у Млечного Пути есть радиолепестки.
Чего не могут понять исследователи, так это почему лепестки некоторых галактик вырастают до абсолютно колоссальных размеров, измеряемых в мегапарсеках.
Самые экстремальные примеры таких гигантских радиогалактик — каким и является исполин Алкионей — могут хранить ключ к пониманию того, что движет их ростом. Поэтому учёные изучили этого гиганта очень внимательно.
Авторы нового исследования выяснили, что это довольно обычная эллиптическая галактика, встроенная в нить космической паутины.
Радиогалактика имеет массу примерно в 240 миллиардов раз больше массы Солнца, а масса сверхмассивной чёрной дыры в её центре превышает солнечную массу примерно в 400 миллионов раз.
Оба эти параметра считаются небольшими, если речь идёт о гигантских радиогалактиках. И это может дать некоторые подсказки относительно того, что движет ростом её радиолепестков.
Возможно, Алкионей находится в области космического пространства с меньшей плотностью, что может способствовать его расширению. Также авторы исследования допускают, что некую роль в росте исполинского объекта может играть его взаимодействие с космической паутиной.
Кроме того, учёные считают, что и без того необъятный Алкионей продолжает расти.
Открытие вновь указывает на то, как мало исследователи всё ещё знают об этих колоссах и в частности о том, что движет их невероятным ростом. Но вместе с тем подобные работы прокладывают путь к лучшему пониманию природы не только гигантских радиогалактик, но и межгалактической среды, в которой «раскрываются» их загадочные космические лепестки.
Исследование принято к публикации в издании Astronomy & Astrophysics и в данный момент доступно в формате препринта на портале arXiv.
Ранее мы рассказывали о древнейших столкновениях титанических галактик, а также о галактиках-суперспиралях. А ещё мы писали о том, что в космосе есть стена из сверхскоплений галактик, и учёные даже не знают, где она заканчивается.
Писали мы и о том, что во Вселенной могут скрываться чёрные дыры размером с галактику.
Больше захватывающих новостей из мира науки вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».
общество
наука
космос
новости
астрономия
черная дыра
рекорды
галактики
Весь эфир
Величие Вселенной в цифрах, и немножко в картинках / Хабр
Привет, хабровчанин!
Этот пост является мыслями вслух, криком души, просто размышлением, а так же, небольшими подсчетами. Надеюсь, эта тема заставит развеятся и немножко задуматься. А может, просто доставит удовольствие красивыми картинками.
Я хотел бы показать насколько малы мы в бесконечных просторах космоса. И насколько невозможно сейчас нам оторваться от маленькой песчинки, которая нас породила, и сейчас греет и кормит. Употребляя в отношении землян синонимы слов “малы” и “ничтожны”, я ни в коем случае не хочу показать, что мы действительно являемся таковыми. Ведь именно нам выпала честь созерцать красоты пространства. Таким образом я лишь хочу подчеркнуть величие окружаещего нас мира.
Улететь далеко, хотя бы за пределы Солнечной Системы нам еще не удалось. А наша система — всего лишь задний двор по сравнению с полным межзвездным путешествием по мегаполису Вселеная. Но, благодаря технологиям — в частности телескопам — человек способен смотреть в пространство вселенной, и видеть его по крайней мере таким, каким оно было многие годы назад.
Пока что телескопы — единственный способ путешествовать так далеко. Самым известным из них, несомненно, является Хаббл. Фотографии, сделанные им, вне сомнения, видел каждый, кто даже не заинтересован в космосе. Поэтому, с них я и хочу начать понимание того, насколько мы ничтожны.
Фотографии Космоса
Посмотрев на фотографии, сделанные Хабблом, довольно хорошо видно, что небольшой участок космоса вокруг нашей родной звезды с его прекраснейшими видами планет, комет, астероидов и самого Солнца — всего лишь серое пятно по сравнению с красками окружающего нас далекого пространства.
Итак, начнем.
Крабовидная туманность является остатками сверхновой, взрыв которой наблюдался, согласно записям арабских и китайских астрономов, 4 июля 1054 года. Вспышка была видна на протяжении 23 дней невооружённым глазом даже в дневное время.
В центре туманности находится пульсар, являющийся нейтронной звездой, оставшейся после взрыва сверхновой, его диаметр всего лишь около 25 км. Он вращается вокруг своей оси, совершая 30 оборотов в секунду.
Эта композиция собрана из 26 изображений, снятых в октябре 1999 и январе и декабре 2000г.

Туманность Орел притягивает взгляд как минимум двумя фотографиями.
Знаменитая фотография, известная как «Столпы творения». Здесь находится активная область звёздообразования. Тёмные области в туманности — это протозвёзды.
По данным инфракрасного телескопа Spitzer, «Столпы Творения» были уничтожены взрывом сверхновой примерно 6 тысяч лет назад. Но так как туманность расположена на расстоянии 7 тысяч световых лет от Земли, наблюдать Столпы можно будет ещё около тысячи лет.
Фея. Высота столба пыли и газа, выходящего из туманности – около 90 триллионов километров, что в два раза больше расстояния от нашего Солнца до ближайшей звезды.

Галактика «Сомбреро» — спиральная галактика в созвездии Дева на расстоянии 28 млн световых лет от Земли. Как показали последние исследования этого объекта телескопом Spitzer, является двумя галактиками: плоская спиральная находится внутри эллиптической.
Очень сильное рентгеновское излучение обусловлено по мнению многих астрономов наличием чёрной дыры с массой в миллиард солнечных масс в центре этой галактики.
Сомбреро удаляется от нас со скоростью 1000 км/с.

Я завершу «показ слайдов» потрясающим изображением туманности Карина. Оно было получено при использовании трех фильтров. Красный — сера, зеленый — водород, синий — кислород.


Здесь можно найти больше картин, сделанных при помощи телескопа Хаббл.
Конечно, почти все, изображения сделаны не в привычном нашему глазу спектре света. Авторы этих версий фотографий постарались добавить красок в потрясающие картины, используя рентгеновские, инфракрасные, гамма излучения, а так же спектры свечения различных химических элементов. То есть, если бы мы действительно пролетали на корабле Энтерпрайз мимо одного из таких мест, то увидели бы несколько другую картину (имеются в виду цвета). Но, я думаю, что от этого она бы не стала менее величественной.
Телескопы не только «Фотографируют»
Вся важность телескопов в том, что они (пока что) — единственные устройства, созданные человеком, которые связывают нас со Вселенной. Поэтому человеку не оставалось другого выбора, как придумывать способы изучения космоса по полученному изображению. На ум сразу приходят как минимум два. Красное смещение и параллакс.
Оба эти способа дают нам узнать скорость, расстояние и время. Но как раз и скорости, и расстояния в космосе огромны. Ровно на этом моменте наш мозг приходит в тупик. 1000 километров в секунду — это как быстро? И можно ли представить себе световой год? Миллион лет, долго ли это?
Голые цифры ничего не дают. Так как они настолько большие, что выглядят просто как цифры. Приведем несколько значений в привычные для нас здесь, на Земле.
1000 км/с = 3 600 000 км/ч
1 световой год = 9 460 730 472 580 км
1 астрономическая единица = 150 000 000 км
Видите?
Представление огромных расстояний
Мне всегда нравились сравнения, типа «Земля во столько же раз больше яблока, во сколько яблоко больше молекулы».
Такие сравнения немного проливают свет на большие или малые величины.
Давайте попробуем. Чтоб стало чуть-чуть понятнее можно ввести более «земные» меры.
Например: чтоб понять скорость света — 300 000 км/с, можно сказать, что свет за 1 секунду может обогнуть землю 7,5 раз.
Или, чтобы пролететь световой год, нужно 31 620 раз слетать к Солнцу и обратно.
Но даже такие примеры не всегда спасают, ведь расстояние до Солнца тоже не так уж и мало.
Нужно начать с меньшего.
Диаметр Земли — всего лишь 12 742 км. Это мы можем представить легко. Путешествие на поезде (чуть больше суток на 1000 км) сквозь Землю заняло бы у нас 2 недели. Длина окружности Земли — 40 000 км. На поезде — полтора месяца! Не так уж и мало.
Хотя, с другой стороны, не так уж и много. Пойдем дальше.
До Луны 363 104 км. Она совсем рядом. На поезде мы ехали бы к ней чуть больше года! На самолете (1000 км/ч) 15 суток.
До орбиты Марса по прямой в среднем — 42 000 000 км, на самолете у нас это путешествие займет почти 5 лет! На самом деле дольше, т. к. красная планета чаще дальше от нас, чем расстояние между орбитами Земли и Марса, да и ввиду ограничений межпланетных перелетов, по прямой долететь до любой из планет невозможно. Например, Curiosity — долетел до Марса чуть больше, чем за 8 месяцев. Он преодолел за это время 563 000 000 километров (из-за сложной спиральной траектории почти в 4 раза больше, чем расстояние от Земли до Солнца пруф). Скорость модуля, судя из этого источника достигала 36 210 км/ч. (Что немного странно, простой расчет показывает, что за 253 дня 563 млн. км можно пролететь со скоростью, не меньшей 92 720 км/ч, да объяснят нам этот феномен знающие). Но не в этом суть.
Самая высокая скорость, с которой когда либо передвигался человек (39897 км/ч), была развита основным модулем «Аполлона 10» на высоте 121,9 км от поверхности Земли при возвращении экспедиции 26 мая 1969 г. Скорость Вояджеров — 48 000-61 000 км/ч (Вояджер-1). Но, рекорд скорости космического аппарата — 240 000 км/ч — был установлен американо-германским солнечным зондом «Гелиос-Б», запущенным 15 января 1976 г.
Таким образом, для наших новых сравнений можно смело вводить 2 новых объекта Вояджер-1 и Гелиос Б.
По прямой до Солнца — 150 000 000 км.
Поезд уже не актуален 🙂 (Для интереса — 410 лет)
Самолет — 17 лет.
Вояджер-1 — 3,5 месяца.
Гелиос Б — 26 дней.
Уже понятнее. Но и это не так далеко. Даже на самолете человек в течении своей жизни сможет туда добраться.
Самая последняя планета Солнечной Системы — Нептун. До нее — 30 а.е., что примерно 4 500 000 000 (4,5 млрд км).
Итак, на самолете — 513 лет. (так же уже становится не актуальным)
Вояджер-1 — 8,5 лет.
Гелиос Б — 2 года.
Что ж, планетами полюбоваться нам вполне удастся и сегодня.
Много букв, пора показывать картинку.
Пока что, мы добрались до Нептуна. (Верхняя картинка — едва заметная голубая орбита).
Дальше перескочим сразу к Облаку Оорта, т.к. все интересное, что ближе него (пояс Койпера), всего в 2-3 раза дальше орбиты Нептуна.
Расстояние до внешних границ облака Оорта от Солнца составляет от 50 000 а. е. (приблизительно 1 световой год) до 100 000 а. е. (1,87 св. лет).
С тех пор, как Сатурн долгое время считался краем Солнечной Системы, последняя на сегодняшний день немного «выросла». А точнее с 9.5 а.е. до 125 000 а.е — в 13 000 раз. Краем Солнечной Системы теперь считается, по мнению некоторых ученых, именно преобладание гравитации Солнца над гравитацией окружающих звезд, а это как раз — 125 000 а.е. (приблизительно 2 световых года).
Сколько же времени нужно Вояджеру-1 чтоб пролететь расстояние, которое у света займет год? Ответ — примерно 18 000 лет.
На 28 ноября 2012 года Вояджер находился на расстоянии в 122,589 а. е. или 18,339 млрд км от Солнца. На это он потратил 35 лет! С 1977 года.
На картинке выше, голубая линия, показывающая окружность в центре облака Оорта слишком толстая, чтоб покрыть хотя бы последние 10 лет пути Вояджеров!
А на изображениях с Хаббла даже 1 пиксель, будет, грубо говоря, великоват, чтоб показать облако Оорта.
Продолжим посчеты. От Солнца до края облака Оорта Вояджер-1 долетел бы за 35 409 лет, а Гелиос Б — за 9 000 лет.
Вот вам и расстояния космоса по сравнению с нашими возможностями.
Представим, что мы покинули бы пределы Солнечной Системы. Чего бы мы достигли? Что увидели? Конечно, были бы получены очень многие важные данные о галактическом веществе и солнечном ветре, но небо здесь выглядело бы совсем уныло. Одни звезды вокруг. Не видно ни планет, ни Солнца. То есть, 9000 лет, и мы едва оторвались бы от Солнца.
Ближайший интересный объект — система Альфа Центавра, состоящая из звезд Альфа A, Альфа B и Проксима Центавра. Расстояние до этих звезд — 4,36 световых лет.
Так же, немного дальше, находится звезда Барнарда. Вторая по близости к Солнцу — 5,96 световых лет.
До них, соответственно, в 4 и в 6 раз дальше. Ближайшей звезды Гелиос Б достиг бы только через 36 000 лет. Это примерно половина времени существования человека на Земле. Полет к ближайшей звезде не намного превышает по зрелищности вылет за пределы Солнечной Системы. И это печально.
Безусловно, и то и другое событие — наиболее бы приблизили нас к звездам. Я не хочу умалять достижения человечества. Но, пока что, к сожалению можно мечтать только об этом.
Немного сладкой надежды
Новые разработки могут немного скрасить картину.
Несколько проектов:
Две модификации проекта «Орион» (1950г.) — Первая модификация должна была достигнуть Альфы Центавра за 1800 лет, Вторая — с максимальной скоростью — 10.000 км/с за 130 лет.
Проект «Дедал» (1973г.) был настроен долететь до звезды Барнарда за 40-49 лет.
Оба проекта уже, к сожалению, закрыты. Но, честно говоря, они больше попахивают фантастикой.
Здесь полный список проектов, не буду рассказывать о каждом, но довольно многообещающим выглядит Аннигиляционный двигатель.
С помощью него теоретически можно разогнаться до 70% скорости света! Но слишком уж недостижимо пока еще удерживать антивещество достаточно долго.
В общем, пока что можно мечтать даже о 0,1 скорости света. Но, и в этом случае, сопротивление вещества межзведного пространства не даст нам нормально себя чувствовать в нашем корабле.
Про мечты человечества есть хорошая статья на Хабре. И в ней есть вот эта очень интересная ссылочка, советую. Но завершим, все же, цифрами.
Напоследок, представим на секунду, что мы смогли бы когда-либо разогнаться до 10 млн км/ч — это одна сотая скорости света. При этом, возможно нам не так будут мешать встречные частицы межзвездного пространства да и 10 000 000 км/ч — внушительная скорость.
Тогда:
До Солнца — 15 часов. (многообещающе)
До облака Оорта — 108 лет. (уже настораживает)
До ближайшей звезды — 432 года. 🙁
До центра Млечного Пути 5,3 млн лет.
До Большого Магелланового Облака — 18 млн лет.
До Малого Магелланового Облака — 21,5 млн лет
До галактики Андромеда — 270 млрд лет!
Видно, что и в этом случае человеку на своем жизненном пути светит лишь вылететь за пределы Солнечной Системы.
Конечно, для путешественника данное время может слегка сжиматься из-за приближения к скорости света, согласно Специальной Теории Относительности. Но я, к сожалению, с моими познаниями не могу сказать точно на сколько. Увы, даже с этим, перспектива если и более реальная, то уж точно не близкая.
Итог
Что же получается?
А получается, что любоваться красотой Вселенной нам, пока что, суждено лишь в телескопы.
Надеюсь, я хоть немного приблизил ваше (да и свое (во время написания поста)) понимание величия Мира.
Жду исправлений по расчетам, если где ошибся и дополнений. Особенно по новым разработкам и скоростям.
============
Дополнения из комментариев.
Небольшим плюсом является то, что галактика Андромеды и звезда Барнарда движутся в нашу сторону. Поэтому к ним мы подлетим «чуть» быстрее!
Вот пара пруфов из Википедии.
Галактика Андромеды, как и Млечный Путь, принадлежит к Местной группе, и движется по направлению к Солнцу со скоростью 300 км/с. Определив направление движения Солнца по Млечному Пути, астрономы выяснили, что галактика Андромеды и наша Галактика приближаются друг к другу со скоростью 100—140 км/с.
Поперечная скорость «Летящей Барнарда» относительно Солнца составляет 90 км/с, радиальная скорость равна 106,8 км/с по направлению к нам (измерена по доплеровскому сдвигу).
Звезда приближается к Солнцу. Минимальное расстояние составит 3,8 светового года (1,2 пк) в 11 800 г.; в это время она будет нашей ближайшей соседкой. Невооружённым взглядом не видна.
Различия между Вселенной, Галактикой и Солнечной системой
••• idisimage/iStock/GettyImages
Обновлено 10 марта 2018 г. наука, известная как астрономия. Хотя астрономия — сложная наука, эти основные термины может понять практически каждый. На самом деле базовое понимание этих астрономических систем обычно требуется на уроках естествознания в какой-то момент в начальной школе.
Солнечная система
Солнечные системы — самые маленькие из трех рассматриваемых систем. Солнечная система состоит из звезды, такой как Солнце, и объектов, на которые действует ее гравитация. К таким объектам относятся планеты, луны, астероиды, кометы и метеороиды. Хотя солнечные системы меньше, чем вселенная или галактика, человеческому разуму трудно по-настоящему понять реальный размер даже самой маленькой солнечной системы. С точки зрения масштаба, если бы Солнце имело размеры теннисного мяча, Земля была бы размером с песчинку, расположенную на расстоянии около 8 метров (26 футов).
Звездные галактики
Галактика — это система солнечных систем и других звезд. Галактики, как и солнечные системы, удерживаются вместе гравитацией. В галактиках солнечные системы разделены обширными участками в основном пустого пространства. Галактика, в которой находится Земля и ее Солнечная система, называется Млечный Путь. Считается, что эта галактика содержит более 200 миллиардов различных звезд. Солнечные системы вращаются вокруг своих галактик так же, как планеты вращаются вокруг своих солнц. Солнечной системе Земли требуется примерно от 200 до 250 миллионов лет, чтобы совершить полный оборот по своей орбите.
Вселенная — общая картина
Вселенная — самая большая из этих трех астрономических концепций. Все вещи, включая галактики и солнечные системы, входят в сферу вселенной. Хотя все известное человеку содержится во Вселенной, ученые считают, что Вселенная постоянно расширяется. Считается, что это результат большого взрыва, массивного взрыва сверхконденсированной материи, который создал вселенную и все, что в ней содержится.
Изучение различий
Размер — это основное различие между Вселенной, галактиками и солнечными системами. Однако существуют и другие отличия. Черные дыры — это участки пространства с сильным гравитационным притяжением, из которых не может вырваться даже свет. Эти явления иногда можно обнаружить в центре галактик. Большие облака газа, называемые туманностями, существуют в пространстве между галактиками во Вселенной, но они не рассматриваются как части галактик или солнечных систем.
Связанные статьи
Сколько времени длится один день на Марсе?
Сходства между кометой и метеоритом
Характеристики карликовой планеты
Отношения между гравитацией и массой планеты …
Школьные проекты на милк -Way Way Way Way Way
.
Интересные факты о Солнце, Луне и звездах
Какие элементы входят в состав Урана?
Мифы о черных дырах
Что такое атом, электрон, нейтрон и протон?
Три основных типа галактик
Характеристики комет, метеоров и астероидов
Из чего состоят метеоры?
Какие виды измерений используются для измерения…
Каковы два основных компонента атома?
Примеры планетезималей
Различия между карликовыми планетами, кометами, астероидами…
Каково расстояние от Нептуна до Солнца?
Список созвездий, видимых в зависимости от сезона
Влияние гравитации на Солнечную систему
Факты о Млечном Пути для детей
Южная Центральная Пенсильвания с 2010 года. Он окончил Йоркский колледж в Пенсильвании со степенью бакалавра гуманитарных наук в области профессионального письма. Он писал статьи о музыке и писательстве для различных веб-сайтов.
Последствия закона Хаббла: расширяющаяся Вселенная
Версия для печати
Дополнительное чтение с сайта www.astronomynotes.com
- Вселенная однородна в больших масштабах: нет центра расширения в трехмерном пространстве
Как и законы Кеплера, закон Хаббла является эмпирическим законом. Хаббл обнаружил взаимосвязь между двумя измеримыми свойствами галактик: их скоростями и расстояниями. Однако, учитывая эту взаимосвязь, это, естественно, приводит к нескольким вопросам. Эти вопросы:
- В чем причина этих отношений?
- Почему более далекие галактики должны иметь большие скорости?
На предыдущей странице мы приписали скорости галактик и соотношение между их скоростями и расстояниями взрыву. Поскольку все осколки взрыва возникли в одном и том же месте, более удаленные должны двигаться быстрее, чтобы пройти дальше всех за одно и то же время. Это приемлемая аналогия, но она не совершенна. Однако это помогает нам понять, что Вселенная должна расширяться. Наша лучшая интерпретация взаимосвязи, обнаруженной Хабблом, состоит в том, что она подразумевает, что пространство между галактиками расширяется.
Давайте рассмотрим эту идею расширяющейся Вселенной немного подробнее. Если все объекты движутся наружу с постоянной скоростью, границы, определяемые самыми удаленными объектами, должны постоянно увеличиваться. Чтобы быть более точным в отношении расширения Вселенной, мы снова прибегаем к аналогиям. Первый: нарисуйте точки на очень длинной резинке. Предполагается, что точки представляют галактики. Если потянуть за резинку, расстояние между точками увеличится. Если начальное расстояние между точками равно 1 см (точка B находится на расстоянии 1 см от точки A, точка C — на расстоянии 2 см, а точка D — на расстоянии 3 см) и вы потяните за резинку так, что точки теперь будут равны 2 см, то от точки А точка В будет на расстоянии 2 см, точка С будет на расстоянии 4 см, а точка D будет на расстоянии 6 см. Точка C переместится в два раза дальше от точки A за то же время, что и точка B, а точка D переместится в три раза дальше от точки A за то же время, что и точка B. Следовательно, с точки зрения точки А, более удаленные точки будут двигаться быстрее, чем более близкие (помните, что скорость объекта равна пройденному расстоянию, деленному на время, необходимое для прохождения этого расстояния). Если бы мы повторили предыдущий эксперимент, но измерили расстояния между точками с точки зрения точки B, мы бы обнаружили, что точка B сделала бы тот же вывод, что и точка A. То есть все точки кажутся удаляющимися. от точки B, и казалось бы, что более дальние точки движутся быстрее.
Резиновая лента/точечный аналог расширяющейся вселенной. В примере начального состояния галактики выглядят как точки вдоль резиновой ленты. Синие и желтые точки равноудалены от исходной точки, как и белые и розовые точки, хотя и в противоположных направлениях. Оранжевая точка находится между белой и синей точками и ближе к исходной точке. Зеленая точка находится между желтой и розовой точками и дальше от исходной точки.
Предоставлено: Департамент астрономии и астрофизики штата Пенсильвания
Резиновая лента/точечный аналог расширяющейся вселенной. Расширение Вселенной, когда она удваивается в размерах, приводит к тому, что все точки появляются в два раза дальше, чем когда-то, с точки зрения исходной точки. Это означает, что белые и розовые точки, по-видимому, сместились намного дальше от исходной точки по сравнению с синими и желтыми точками в противоположных направлениях от исходной точки. Однако, с точки зрения розовой точки, зеленая точка не сильно двигалась по сравнению с белой точкой.
Авторы и права: Департамент астрономии и астрофизики штата Пенсильвания
Аналогия на рисунке выше позволяет нам сделать несколько выводов о Вселенной.
- На самом деле галактики не удаляются друг от друга в пространстве. Вместо этого происходит расширение пространства между ними (подобно тому, как расширяется резинка, отделяющая закрепленные на ней точки друг от друга). По мере расширения Вселенной галактики удаляются друг от друга, и кажущаяся скорость будет казаться большей для более удаленных галактик.
- Земля и Млечный Путь не уникальны тем, что все галактики кажутся удаляющимися от нас. Если бы мы были в другой галактике, мы бы также увидели, что все другие галактики удаляются от нас из-за этого расширения.
Следующие две аналогии аналогичны аналогии с резиновой лентой и точкой, но мы собираемся мыслить в большем количестве измерений, поскольку мы знаем, что галактики не ограничены нахождением вдоль одной линии измерения. Вместо линии изобразите тесто для хлеба с изюмом. Внутри теста весь изюм отделяется друг от друга. По мере подъема теста во время выпечки все изюминки будут отдаляться друг от друга. Допустим, размер теста увеличился вдвое. Расстояние между всеми изюминками удвоится, и, как и в случае с точками на резинке, более удаленные изюминки будут двигаться быстрее. Это хорошо видно на анимированном изображении миссии НАСА WMAP, приведенном ниже.
Рисунок 10.6: Анимированное изображение, показывающее подъем буханки теста для хлеба с изюмом. Эта анимация содержит ту же идею, что и на рис. 10.5, но расширена до трех пространственных измерений вместо одного. Изюм в тесте подобен точкам на резинке или галактикам во Вселенной. По мере того, как тесто расширяется, расстояние между изюминками увеличивается, точно так же, как расстояние между галактиками в нашей Вселенной.
Авторы и права: NASA / WMAP
Обе аналогии (резинка и хлеб с изюмом) должны позволить вам представить себе, что каждая галактика (или точка, или изюм) увидит, как все другие галактики удаляются, если пространство между ними расширяется. Мы используем еще одну аналогию, чтобы попытаться объяснить математику расширения Вселенной и ответить на другой общий вопрос, возникающий в космологии:
- Почему мы не можем наблюдать центр расширения?
Представьте вселенную, состоящую из только поверхности воздушного шара. Все галактики и звезды в галактиках закреплены на поверхности воздушного шара. Наблюдатели не могут воспринимать область внутри воздушного шара или область вне воздушного шара, они (и свет) вынуждены путешествовать только по поверхности. В этой аналогии по мере того, как воздушный шар надувается, галактики на его поверхности будут удаляться друг от друга. Как и в аналогиях с резинкой и изюмом, если вы измерите расстояние между галактиками до и после надувания воздушного шара, вы сможете показать, что более далекие галактики будут двигаться быстрее, в точности как закон Хаббла в нашей теории. вселенная (и как эксперименты с резинкой и буханкой изюма). Опять же, каждая галактика будет наблюдать один и тот же эффект, и ни одна галактика не находится в особом месте. Если вы спросите, где находится центр расширения, он находится внутри воздушного шара. Это означает, что никакое место на поверхности воздушного шара (вселенная, по мнению жителей на поверхности воздушного шара) не может быть идентифицировано как «центр» вселенной.
Мы используем эту аналогию, чтобы ответить на вопрос:
- Где находится центр нашей вселенной?
Идея состоит в том, что мы живем во Вселенной с тремя пространственными измерениями, которые мы можем воспринимать, но существуют «дополнительные» измерения (может быть, одно, а может быть, и больше одного), которые содержат центр расширения. Подобно двумерным существам, населяющим поверхность вселенной воздушного шара, мы не можем наблюдать центр нашей вселенной. Мы можем сказать, что он расширяется, но мы не можем определить место в нашем трехмерном пространстве, которое является центром расширения.
До этого момента мы описывали красное смещение света как доплеровское смещение. Однако теперь, когда мы понимаем, что Вселенная расширяется, нам нужно пересмотреть это описание. Мы понимаем космологическое красное смещение галактик следующим образом. Представьте себе фотон, испущенный далекой галактикой по направлению к Земле. Этот фотон имеет определенную длину волны. Однако во время путешествия между далекой галактикой и Землей пространство между этой галактикой и Землей расширилось. Расширение пространства приводит к тому, что длина волны фотона увеличивается, поэтому, когда он достигает Земли, его длина волны больше, чем при выходе. Математически это ведет себя точно так же, как если бы фотон был доплеровски смещен. Итак, мы интерпретируем галактики как движущиеся в пространстве от нас. Однако правильная интерпретация состоит в том, что галактики находятся в определенных положениях в пространстве, а пространство между ними расширяется. Ниже представлена анимация, иллюстрирующая космологическое красное смещение с использованием аналогии с воздушным шаром для расширения пространства.
Иллюстрация космологического красного смещения с использованием аналогии с воздушным шаром. В этой анимации волна, нарисованная на воздушном шаре, представляет собой волну света с определенной длиной волны. По мере расширения воздушного шара длина волны увеличивается. Мы считаем, что именно так ведет себя свет во Вселенной. По мере расширения Вселенной расстояние между гребнями световой волны также увеличивается, что приводит к увеличению длины волны. Свет с большей длиной волны краснее, поэтому свет кажется смещенным в красную сторону из-за расширения.
Предоставлено: Департамент астрономии и астрофизики штата Пенсильвания
Означает ли это, что Солнечная система расширяется? А Млечный Путь? Станет ли Плутон все дальше и дальше от Солнца по мере расширения Вселенной? Ответ отрицательный, и немного сложно понять, почему именно. Снова рассмотрим стабильную звезду Главной последовательности. Мы обсуждали, как для того, чтобы звезда избежала коллапса, направленная наружу сила радиационного давления, создаваемая ядерным синтезом в ядре, уравновешивала направленное внутрь гравитационное притяжение.