Грозит ли нам тепловая смерть Вселенной? Вселенная смерти


Тепловая смерть Вселенной

Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.

Появление теории в 19 веке

Рудольф Клаузис

В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия — к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.

В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S — энтропия, k — константа Больцмана, W — количество микросостояний, реализующих макросостояние. Микросостояние — это состояние отдельной составляющей системы, а макросостояние — состояние системы в целом.

Наглядно об энтропии

В настоящее время энтропия видимой части нашей Вселенной оценивается примерно в 1088 или 10 октовигинтиллионов. Это значение примерно соответствует числу фотонов в нашей Вселенной, для сравнения число фотонов во Вселенной примерно в миллиард раз превышает число барионов (обычных элементарных частей состоящих из нескольких кварков – протонов, нейтронов, и т.д.).

Развитие теории в 20 веке

Открытие расширения Вселенной в 20 веке укрепило гипотезу будущей “тепловой смерти Вселенной“. Астрономические наблюдения наиболее удаленных частей наблюдаемой Вселенной показали, что наша Вселенная на масштабе в несколько сотен мегапарсек имеет неупорядоченный ячеистый вид, в котором сверхскопления галактик чередуются с огромными пустотами (войдами).

Крупномасштабная структура Вселенной

Ещё большим свидетельством справедливости гипотезы стало открытие реликтового излучения – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.

Наглядная модель Вселенной

Астрономические наблюдения позволяют построить т.н. диаграмму Мадо («Madau-diagram»), которая показывает зависимость темпа звездообразования в зависимости от возраста Вселенной.

Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.

Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.

Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и черные дыры не являются вечными, а постепенно испаряются под действием “излучения Хокинга“ (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).

Аргументы против гипотезы “тепловой смерти“ Вселенной

Иллюстрация теории Большого разрыва Вселенной

Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).

Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.

Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной

Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо — Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.

Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной

С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.

При охлаждении обычного вещества (переходе его в твердое состояние) его энтропия не увеличивается, а наоборот уменьшается:

Энтропия на примере воды

Ключевыми моментами теории “тепловой смерти” Вселенной является возможность распада протона и существование “излучения Хокинга“, но эти гипотетические явления пока не доказаны экспериментально.

Информационный парадокс

Существует большая неопределенность в вопросе влияния жизни и разума на динамику энтропии Вселенной. В вопросе влияния неразумных жизненных форм на энтропию Вселенной мало сомнений, что жизнь уменьшает энтропию. В качестве доказательств этого можно привести факты более сложной природы живых организмов по сравнению с любыми неорганическими химическими веществами. Поверхность нашей планеты за счет биосферы выглядит куда более разнообразной по сравнению с “мертвой“ поверхностью Луны, Марса или Венеры. Кроме того простейшие живые организмы замечены в деятельности по обогащению земной атмосферы кислородом (биогенный кислород), а так же генерированию богатых месторождений полезных ископаемых (биогенез).

Сравнение поверхности Венеры, Земли, Луны, Марса и Титана (слева направо)

В то же время остаётся без ответа вопрос о том, увеличивает или уменьшает энтропию Вселенной разумная жизнь (то есть человек)? С одной стороны человеческий мозг является наиболее сложной формой из известных среди живых организмов, как и то, что научно-технический прогресс позволил людям достичь невиданных высот в познании и конструирование, в том числе в синтезировании химических элементов и элементарных частиц, которых не наблюдается в природе. Современная человеческая цивилизация способна предотвращать крупные природные катастрофы (лесные пожары, наводнения, массовые эпидемии и т.д.) и в шаге от возможности предотвращения катастроф планетарного масштаба (падения небольших астероидов и комет).

Ночная фотография поверхности Земли из космоса

С другой стороны человеческая цивилизация выделяется и “энтропийными“ тенденциями. Растет разрушительная мощь оружейных арсеналов вместе с увеличением числа опасных химических и ядерных производств, горная промышленность всего за десятилетия способна опустошить месторождения полезных ископаемых, которые накапливались на планете многие сотни миллионов лет. Развитие сельского хозяйства привело к обезлесению большей части поверхности нашей планеты, а так же способствует деградации почв и опутыванию. Браконьерство, выбросы парниковых газов (возможное окисление океана) и т.д. быстро сокращают биоразнобразие нашей планеты, в связи, с чем экологи причисляют нынешнее время к новому массовому вымиранию. Кроме того в последние десятилетия отмечено сильное снижение рождаемости и в наиболее развитых странах, не исключено что эта демографическая ситуация стала следствием запредельного усложнения быта человеческой цивилизации.

Тепловая смерть Земли

В связи со всеми этими тенденциями, ближайшее будущее человеческой цивилизации представляет собой огромное количество возможных вариантов: начиная от эпической картины космической колонизации всей галактики вместе со строительством сфер Дайсона, расцветом искусственного интеллекта и установлением контакта с внеземными цивилизациями вплоть до отката в вечное средневековье на планете с подорванными минеральными и биологическими ресурсами. Парадокс Ферми (Великое молчание Вселенной) добавляет ещё больше неопределенности в вопросе влияния жизни и разума на динамику энтропии Вселенной, так как существует огромный диапазон для его объяснения: от огромной редкости биосфер и разумных цивилизаций во Вселенной до гипотезы, что наша Земля представляет собой некий “заповедник“ или “матрицу“ в мире разумных сверхцивилизаций.

Современное представление о “тепловой смерти“ Вселенной

В настоящее время физики рассматривают следующую последовательность эволюции Вселенной в будущем при условии её дальнейшего расширения с текущей скоростью:

  • 1-100 триллионов (1012) лет – завершение процессов образования звезд во Вселенной и угасание даже самых поздних красных карликов. После этого момента во Вселенной останутся только звездные остатки: черные дыры, нейтронные звезды и белые карлики.
  • 1 квадратиллионов (1015) лет – все планеты покинут свои орбиты вокруг звезд в связи с гравитационными возмущениями от близких пролетов других звезд.
  • 10-100 квинтиллионов (1018) лет – все планеты, коричневые карлики и звездные остатки покинут свои галактики по причине постоянных гравитационных возмущений друг от друга.
  • 100 квинтиллионов (1018) лет – приблизительное время падения Земли на Солнце по причине излучения гравитационных волн, в случае если бы Земля пережила стадию красного гиганта и осталась бы на своей орбите.
  • 2 анвигинтиллиона (1066) лет – приблизительное время полного испарения черной дыры массой с Солнце.
  • 17 септдециллиардов (10105) лет – приблизительное время полного испарения черной дыры массой в 10 триллионов масс Солнца. Это время окончания эпохи черных дыр.

В дальнейшем будущее Вселенной распадается на два возможных варианта в зависимости от того является ли протон стабильной элементарной частицей или нет:

  • А) Протон является нестабильной элементарной частицей;
  • А1) 10 дециллионов (1033) лет – наименьшее возможное время полураспада протона согласно экспериментам ядерных физиков на Земле;
  • А2) 2 ундециллиона (1036) лет – наименьшее возможное время распада всех протонов во Вселенной;
  • А3) 100 додециллионов (1039) лет – наибольшее возможное время полураспада протона, которое следует из гипотезы, что Большой взрыв объясняется инфляционными космологическими теориями, и что распад протона вызван тем же процессом, который ответственен за преобладание барионов над антибарионами в ранней Вселенной;
  • А4) 30 тредециллионов (1041) лет – максимальное возможное время распада всех барионов во Вселенной. После этого времени должна начаться эпоха черных дыр, так как они останутся единственными существующими небесными объектами во Вселенной;
  • А5) 17 септдециллиардов (10105) лет – примерное время полного испарения даже наиболее массивных черных дыр. Это время окончания эпохи черных дыр, и наступления эпохи вечной тьмы, в которой все объекты Вселенной распались до субатомных частиц и замедлились до наименьшего энергетического уровня.

Иллюстрация сценария будущего Вселенной где протон является нестабильной элементарной частицей

Б) Протон стабильная элементарная частица;

Б1) 100 вигинтиллионов (1063) лет – время, за которое все тела в твердой форме даже при абсолютном нуле превратятся в “жидкообразное” состоянии, вызванное эффектом квантового туннелирования – миграцией в другие части кристаллической решетки;

Б2) 101500 лет – появление гипотетических железных звезд по причине процессов холодного нуклеосинтеза, идущего путём квантового туннелирования, в ходе которого легкие ядра преобразуются в наиболее стабильный изотоп – Fe56 (по другим сведениям самым стабильным изотопом является никель-62, который обладает наиболее высокой энергией связи.). Одновременно тяжелые ядра также превращаются в железо по причине радиоактивного распада;

Черные дыры

Б3) 10 в 1026 – 10 в 1076 лет – оценка диапазона времени в течение которого все вещество во Вселенной аккрецирует в черные дыры.

Эпоха черных дыр

Кадр из клипа группы Комплексные числа “Неизбежность”

И в заключение можно отметить предположение, что после 10 в 10120 лет все вещество во Вселенной достигнет минимального энергетического состояния. То есть это и будет гипотетическое наступление “тепловой смерти“ Вселенной. Кроме того у математиков существует понятие времени возврата Пуанкаре.

Это понятие означает вероятность того, что рано или поздно любая часть системы вернется в свое первоначальное состояние. Хорошей иллюстрацией этого понятия является вариант, когда в сосуде, разделенном на две части перегородкой, в одной из частей находится некий газ. Если убрать перегородку, то все равно рано или поздно наступит время, когда все молекулы газа окажутся в исходной половине сосуда. Для нашей Вселенной время возврата Пуанкаре оценивается фантастически большой величиной.

Теория “тепловой смерти“ Вселенной стала популярна и в массовой культуре. Хорошей иллюстрацией этой теории стал клип группы Комплексные числа: “Неизбежность”, а так же научно-фантастический рассказ Айзека Азимова “Последний вопрос”.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 984

Запись опубликована: 04.12.2017Автор: Борислав Славолюбов

spacegid.com

10 сценариев гибели Вселенной | Журнал Популярная Механика

Мы живем в странное время, когда писатели и кинематографисты буквально фонтанируют фантазиями на тему конца света. На самом же деле наш финал не будет похож на киносценарий с хэппи-эндом: если Вселенной суждено погибнуть, людей просто сметет, как песчинку с пляжа. У нас не получится остановить этот процесс. И, скорее всего, мы даже не успеем понять, что происходит.

10. Разумное разрушение

[RICH_HTML type=imageset] [/RICH_HTML]

До изобретения ядерного оружия никто и подумать не мог, что одна бомба может уничтожить целый город. Однако все изменилось после атаки на Хиросиму 6 августа 1945 года. Люди впервые столкнулись с технологией такой разрушительной силы. Это привело к появлению концепции «разумного разрушения»: однажды человек сделает или изобретет нечто такое, что уничтожит Вселенную. Хорошие новости: всех наших ядерных запасов не хватит даже для того, чтобы разрушить Землю. Но кто сказал, что мы единственные разумные существа во Вселенной?.

9. Конец игры

[RICH_HTML type=imageset] [/RICH_HTML] Одна из самых шокирующих теорий относительно нашей реальности заключается в том, что жизнь — это всего лишь компьютерная симуляция. По словам философа Ника Бострома из Оксфордского университета, поскольку компьютеры постоянно совершенствуются, в какой-то момент у людей разовьются настолько мощные вычислительные способности, что они смогут сами моделировать виртуальные миры. Если до этого кто-то не выключит программу, в которой моделями являемся мы сами. Мы даже не успеем осознать, что Вселенной пришел конец.

8. Разрушение основ

[RICH_HTML type=imageset] [/RICH_HTML] По одной из теорий наша Вселенная возможна благодаря существованию физических постоянных вроде скорости света или массы протона. Если бы хоть одна из этих фундаментальных констант имела другое значение, то нас бы просто не было. Как ни странно, австралийские физики выяснили, что с момента Большого Взрыва постоянная тонкой структуры изменилась в пространстве и времени. Это означает, что и другие константы могли меняться с течением времени. И если так пойдет и дальше, то однажды Вселенная просто рассыплется на мелкие частички. А планеты и звезды взорвутся. Правда, произойдет это не раньше, чем через 3 млрд лет.

7. Столкновение с другой вселенной

[RICH_HTML type=imageset] [/RICH_HTML] Что находится за пределами нашей Вселенной? Вероятно — другие вселенные. И если теория множественных вселенных верна, то однажды может произойти великое столкновение. Не исключено, что нечто подобное уже случалось, поскольку наша Вселенная искривлена. Однако в следующий раз последствия могут быть куда более катастрофическими. Другая вселенная может существовать по физическим законам, которые отличаются от наших. Она может врезаться в нас на скорости, близкой к скорости света. Если бы мы могли наблюдать столкновение в замедленном режиме, это выглядело бы так, словно на нас падает гигантское зеркало.

6. Большое сжатие

[RICH_HTML type=imageset] [/RICH_HTML] С момента Большого Взрыва, который произошел 13,8 млрд лет назад, Вселенная расширяется. Большинство физиков считают, что Вселенная бесконечна, однако есть и противоположное мнение. Если это не так, значит, в какой-то момент она начнет сжиматься — подобно волнам, которые откатываются назад в океан. Вселенная будет уменьшаться и схлопнется в одну точку. Теория Большого сжатия подкреплена теорией относительности Эйнштейна. Однако не стоит волноваться: если нечто подобное и произойдет, то через миллиарды лет.

5. Осциллирующая Вселенная

[RICH_HTML type=imageset] [/RICH_HTML] Согласно современным представлениям, Большой Взрыв произошел из сингулярности, то есть из одной точки. Но откуда взялась эта точка? Свое объяснение предлагает теория осциллирующей Вселенной: Большой Взрыв возник после коллапса другой вселенной. Это значит, что наша Вселенная когда-нибудь вновь сожмется в одну точку и из нее возникнет новый мир. Что интересно: если теория верна, значит, мы понятия не имеем, произошла ли наша Вселенная после первого коллапса или после миллион первого.

4. Барьер смерти

[RICH_HTML type=imageset] [/RICH_HTML] Вселенная будет расширяться, пока не достигнет физического барьера. Как если бы хоккейный каток заливали большим количеством воды — и в конце концов она бы ударилась о бортики и перестала растекаться. Согласно расчетам, барьера Вселенная достигнет примерно через 3,7 млрд лет. А вероятность того, что он вообще существует, составляет 50%.

3. Большое поглощение

[RICH_HTML type=imageset] [/RICH_HTML] 4 июля 2012 года Большой адронный коллайдер наконец-то подтвердил существование бозона Хиггса. Так называемое «поле Хиггса» пронизывает Вселенную. Интересно, что у этого поля могут быть разные состояния — подобно тому, как вещество может быть жидким, твердым и газообразным. Сейчас поле находится на низком энергетическом уровне, однако оно может перейти как на более высокий, так и на еще более низкий. Последний вариант, по мнению исследователей, более вероятен. Этот энергетический «провал» может быть вызван квантовой флуктуацией. В результате новое маломощное поле Хиггса образует пузырь, который начнет расширяться со скоростью света и поглощать все, что попадется у него на пути. То есть нашу Вселенную. Но у этой пессимистичной теории есть два светлых пятна. Первое — у нас в запасе имеется несколько миллиардов лет. И второе — все случится настолько быстро, что мы не успеем испугаться.

2. Большое замерзание

[RICH_HTML type=imageset] [/RICH_HTML] Сценарий, также известный как Тепловая смерть, основан на втором законе термодинамики — об увеличении энтропии в закрытых системах. Вселенная будет расширяться, а объекты в ней — удаляться друг от друга. Когда энтропия достигнет максимума, энергия будет равномерно распределена, а все процессы остановятся. Звезды остынут, материя распадется… Одним словом, все кругом перестанет работать.

1. Большой разрыв

[RICH_HTML type=imageset] [/RICH_HTML] Вселенная на 68,3% состоит из загадочной темной энергии, о которой физики знают не так уж много. До ее открытия ученые считали, что расширение Вселенной с момента Большого Взрыва либо замедлилось, либо прекратилось. Однако, наблюдая за сверхновыми, астрофизики пришли к выводу, что расширение на самом деле ускоряется, и причина тому — темная энергия. Именно она может привести к тому, что называется Большим разрывом. Этот сценарий гибели Вселенной основан на предположении, что со временем темная энергия набирает силу, все более активно «расталкивая» галактики и космические объекты, разрывая все существующие связи и структуры. Одним словом, Вселенная распадется на мельчайшие частицы. Но нас на финальное шоу не позовут — скорее всего, человечество вымрет гораздо раньше.

www.popmech.ru

Грозит ли нам тепловая смерть Вселенной?

«Солнце сделается темным, как власяница, и луна не даст света своего… Силы небесные поколеблются и все стихии угаснут…» Эти слова были произнесены около двух тысяч лет назад, в художественных образах описывая, как будет происходить конец времен или тепловая смерть Вселенной. Но прошло восемнадцать веков, пока исследователи подошли к изучению этой проблемы с научной точки зрения. На самом деле, как только человечество открыло для себя основные законы термодинамики, этот вопрос рано или поздно должен был возникнуть. Рассуждая логически, если какой-либо природный принцип действует в замкнутой системе, почему бы не предположить, что эта самая тенденция работает применительно ко всему универсуму?

Впервые гипотеза тепловой смерти Вселенной была выдвинута Уильямом Томпсоном в 1852 году, но позже, в 1865 году, ее более подробно сформулировал Р. Клаузиус. Он экстраполировал на космос второе начало термодинамики. Согласно этому правилу, всякая замкнутая система стремится к равновесию, когда энергия излучения переходит в тепловую. «Смерть» наступает, когда достигается максимальный уровень энтропии. В этот момент никакого обмена энергией не происходит, поскольку вся она переходит в тепло. А поскольку нет оснований предполагать, что кроме космоса существует еще что-либо, то, делает вывод Клаузиус, нашу Вселенную также можно рассматривать как замкнутую систему, и в ней действует тот же закон.

Естественно, ни Томпсон, ни Клаузиус даже не предполагали, что тепловая смерть Вселенной произойдет в скором времени, однако прогнозы даже очень отдаленного конца света наделали много шума в научном сообществе и породили разнообразные опровержения такой гипотезы. Еще в 1872 году ученый Л. Больцман выдвинул теорию флуктуаций. Согласно ей, наша Вселенная слишком огромна и сложна, чтобы умереть такой простой смертью. Она вечно пребывала и будет пребывать в состоянии изотермического равновесия, однако в разных ее частях постоянно происходят и всегда будут происходить отклонения от этого состояния. То есть такие всплески, выбросы энергии не дадут запуститься механизму перевода всей энергии универсума в тепловую.

Современная наука ни подтвердила, ни опровергла гипотезу о том, что тепловая смерть Вселенной неминуемо наступит. Концепция Большого Взрыва, якобы произошедшего около 14 миллиардов лет тому назад и породившего всё, не доказывает еще, что в космосе действует лишь реликтовое излучение. Нужно также учитывать действие переменного гравитационного поля. Особого внимания заслуживает теория А. Фридмана: наполненная тяготеющим веществом Вселенная не стационарна, она или расширяется, или сжимается. А если так, все возрастающая энтропия не приводит систему в целом к термодинамическому равновесию.

Тепловая смерть Вселенной может быть поставлена под вопрос и с позиций общей теории относительности. Мы до сих пор слишком мало знаем о нашем мире, чтобы судить со стопроцентной достоверностью, замкнут ли наш мир и существует ли за его пределами что-то еще. Возможно, на него действуют иные внешние силы и системы? Законы физики, известные нам, не обязательно должны быть применимы в масштабе безграничного космоса, – говорят защитники вечности излучения во Вселенной. Звезды загораются и гаснут, но сама система находится в равновесии, что, однако, не приводит к тепловой смерти всего.

Несмотря на то, что концепция о возможной кончине Вселенной ни подтверждена, ни опровергнута современной наукой, этот вопрос стал волновать не только «физиков», но и «лириков». Особенно черпают вдохновение в возможной гибели всего живого писатели-фантасты. Так, Айзек Азимов предрек в буквальном смысле леденящий конец всякой жизни в своем рассказе «Последний вопрос». Тепловая смерть всей органики легла в основу сюжетов многих японских мультфильмов и аниме-сериалов.

fb.ru

Тепловая смерть | Наука | FANDOM powered by Wikia

Тепловая смерть Вселенной - ошибочный вывод о том, что все виды энергии во Вселенной, в конце концов, должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы. Этот вывод был сформулирован немецким физиком Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно 2-му началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключён), стремится к наиболее вероятному равновесному состоянии, к состоянию с максимумом энтропии. Такое состояние соответствовало бы «Тепловой смерти» Вселенной. Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о «Тепловой смерти» Вселенной. Наиболее известна из них флуктуационная гипотеза австрийского физика Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о «Тепловой смерти» Вселенной, но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы, и прежде всего тяготение. С учётом тяготения однородное изотермическое распределение вещества не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной — к «Тепловой смерти» Вселенной. Вселенная эволюционирует, оставаясь всегда нестатичной.

О последствиях неверных представлений о тепловой смерти

Основные недоразумения в понимании проблем возникновения жизни, эволюции с позиции физики и физической химии, как правило, связаны с неверными представлениями об энтропии. Этот термин ввел Рудольф Клаузиус. Свое «модельное» представление о мире (Вселенной) он представил в виде высказывания: «Энергия мира постоянна. Энтропия мира стремиться к максимуму». В дальнейшем это высказывание Дж. У. Гиббс выбрал в качестве эпиграфа к работе «О равновесии гетерогенных веществ». Упомянутые ученые сделали приведенное высказывание применительно к своей модели Вселенной. Эта модель соответствует простой изолированной системе идеального газа, т. е. изолированной системе идеального газа, энергия и объем которой постоянны и в которой не совершается никакой работы, или совершается только работа расширения. Энтропия такой системы может только возрастать!

Следует заметить, что если говорить о подобной модели, которая соответствовала бы реальной Вселенной, необходимо было бы принять недоказуемое предположение о том, что все виды энергии реальной Вселенной перейдут в тепловую энергию. Только в этом случае, к тому же при дополнительных нереальных предположениях, Вселенная могла бы превратиться в «модельную систему» Клаузиуса – Гиббса.

Однако любители науки и дилетанты распространили рассматриваемое утверждение на системы других типов, в которых имеют место взаимодействия различной природы между частицами (молекулами или объектами других иерархий) и которые (системы) взаимодействуют с окружающей средой. Подобных ошибок не избежали некоторые ученые, не являющиеся профессионалами в соответствующих областях знания. Это привело к невообразимой путанице и затормозило, более чем на столетие, развитие науки. Появились тысячи публикаций в научных журналах и популярной литературе, содержащие отмеченные недоразумения. К этим недоразумениям прибавились некорректные представления о негэнтропии и «диссипативных структурах Пригожина в живом мире».

Возникновение жизни и ее эволюция легко объяснимы с позиции иерархической термодинамики близких к равновесию сложных динамических систем. Эта термодинамика создана на прочном фундаменте классической (равновесной) термодинамики – термодинамики Рудольфа Клаузиуса, Дж. У. Гиббса и других великих творцов.

ru.science.wikia.com

Проблема тепловой смерти Вселенной

Содержание

Введение

1. Понятие Вселенной

2. Проблема тепловой смерти Вселенной

2.1 Второй закон термодинамики

2.2 "За" и "против" теории тепловой смерти

Заключение

Введение

В данной работе мы поговорим о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти». В данной работе мы и рассмотрим его.

1. Понятие Вселенной

A что такое Вселенная? Ученые под этим термином понимают максимально большую область пространства, включающую в себя как все доступные для изучения небесные тела и их системы, т.е. как Метагалактику, так и возможное окружение, еще влияющее на характер распределения и движения тел в ее астрономической части.

Известно, что Метагалактика находится в состоянии приблизительно однородного и изотропного расширения. Все галактики удаляются друг от друга со скоростью тем большей, чем больше расстояние между ними. С течением времени скорость этого расширения уменьшается. На расстоянии 15-20 миллиардов световых лет удаление происходит со скоростью, близкой к скорости света. По этой и ряду других причин, мы не можем видеть более далекие объекты. Существует как бы некий «горизонт видимости». Вещество на этом горизонте находится в сверхплотном («сингулярном», т.е. особом) состоянии, в каком оно было в момент условного начала расширения, хотя на этот счет имеются и другие предположения. Из-за конечности скорости распространения света (300000 км/с) мы не можем знать, что происходит на горизонте сейчас, но некоторые теоретические расчеты позволяют думать, что за пределами горизонта видимости вещество распределено в пространстве примерно с той же плотностью, что и внутри него. Именно это и приводит как к однородному расширению, так и к наличию самого горизонта. Поэтому часто Метагалактику не ограничивают видимой частью, а рассматривают как сверхсистему, отождествленную со всей Вселенной в целом, считая ее плотность однородной. В простейших космологических построениях рассматривают два основных варианта поведения Вселенной – неограниченное расширение, при котором средняя плотность вещества с течением времени стремится к нулю, и расширение с остановкой, после которой Метагалактика должна начать сжиматься. В общей теории относительности показывается, что наличие вещества искривляет пространство. В модели, где расширение сменяется сжатием, плотность достаточно высока и кривизна оказывается такой, что пространство «замыкается на себя», подобно поверхности сферы, но в мире с большим, чем «у нас», числом измерений. Наличие горизонта приводит к тому, что даже этот пространственно конечный мир мы не можем видеть целиком. Поэтому с точки зрения наблюдений замкнутый и открытый мир различаются не очень сильно.

Скорее всего, реальный мир устроен сложнее. Многие космологи предполагают, что существует несколько, может быть, даже очень много метагалактик и все они вместе могут представлять какую-то новую систему, являющуюся частью некоторого еще более крупного образования (может быть, принципиально иной природы). Отдельные части этого гипермира (вселенные в узком смысле) могут иметь совершенно различные свойства, могут быть не связаны друг с другом известными нам физическими взаимодействиями (или быть слабо связанными, что имеет место в случае так называемого полузамкнутого мира). В этих частях гипермира могут проявляться иные законы природы, а фундаментальные константы типа скорости света могут иметь другие значения или вообще отсутствуют. Наконец, в таких вселенных может быть не такое, как у нас, число пространственных измерений.

2. Проблема тепловой смерти Вселенной

2.1 Второй закон термодинамики

Согласно второму закону (началу) термодинамики, процессы, происходящие в замкнутой системе, всегда стремятся к равновесному состоянию. Иными словами, если нет постоянного притока энергии в систему, идущие в системе процессы стремятся к затуханию и прекращению.

Идея о допустимости и даже необходимости применения второго закона термодинамики ко Вселенной как целому принадлежит В. Томсону (лорду Кельвину), который опубликовал ее еще в 1852 г. Несколько позже Р. Клаузиус сформулировал законы термодинамики в применении ко всему миру в следующем виде: 1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму.

Максимальная энтропия как термодинамическая характеристика состояния соответствует термодинамическому равновесию. Поэтому обычно интерпретация этого положения сводилась (часто сводится и сейчас) к тому, что все движения в мире должны превратиться в теплоту, все температуры выровняются, плотность в достаточно больших объемах должна стать всюду одинаковой. Это состояние и получило название тепловой смерти Вселенной.

Реальное разнообразие мира (кроме, разве что, распределения плотности на самых больших ныне наблюдаемых масштабах) далеко от нарисованной картины. Но если мир существует вечно, состояние тепловой смерти уже давно должно было бы наступить. Полученное противоречие получило название термодинамического парадокса космологии. Чтобы его ликвидировать, нужно было допустить, что мир существует недостаточно долго. Если говорить о наблюдаемой части Вселенной, а также о ее предполагаемом окружении, то это, по-видимому, так и есть. Мы уже говорили о том, что она находится в состоянии расширения. Возникла она скорее всего в результате взрывообразной флуктуации в первичном вакууме сложной природы (или, можно сказать, в гипермире) 15 или 20 миллиардов лет назад. Астрономические объекты – звезды, галактики – возникли на более поздней стадии расширения из первоначально почти строго однородной плазмы. Однако по отношению к далекому будущему вопрос остается. Что ждет нас или наш мир? Наступит рано или поздно тепловая смерть или же этот вывод теории по каким-то причинам неверен?

2.2 «За» и «против» теории тепловой смерти

Многие выдающиеся физики (Л. Больцман, С. Аррениус и др.) категорически отрицали возможность тепловой смерти. Вместе с тем даже и в наше время не менее крупные ученые уверены в ее неизбежности. Если говорить о противниках, то, за исключением Больцмана, обратившего внимание на роль флуктуаций, их аргументация была скорее эмоциональной. Лишь в тридцатые годы нашего столетия появились серьезные соображения относительно термодинамического будущего мира. Все попытки решения термодинамического парадокса можно сгруппировать в соответствии с тремя основными идеями, положенными в их основу:

1. Можно думать, что второй закон термодинамики неточен или же неверна его интерпретация.

2. Второй закон верен, но неверна или неполна система остальных физических законов.

3. Все законы верны, но неприменимы ко всей Вселенной из-за каких-то ее особенностей.

В той или иной мере все варианты могут быть использованы и действительно используются, хотя с разным успехом, для опровержения вывода о возможной тепловой смерти Вселенной в сколь угодно удаленном будущем. По поводу первого пункта заметим, что в «Термодинамике» К.А. Путилова (М., Наука, 1981) приводится 17 различных определений энтропии, не все из которых эквивалентны. Мы скажем лишь, что если иметь в виду статистическое определение, учитывающее наличие флуктуаций (Больцман), второй закон в формулировке Клаузиуса и Томсона действительно оказывается неточным.

Закон возрастания энтропии, оказывается, имеет не абсолютный характер. Стремление к равновесию подчинено вероятностным законам. Энтропия получила математическое выражение в виде вероятности состояния. Таким образом, после достижения конечного состояния, которое до сих пор предполагалось соответствующим максимальной энтропии Smax, система будет находиться в нем более продолжительное время, чем в других состояниях, хотя последние неизбежно будут наступать из-за случайных флуктуаций. При этом крупные отклонения от термодинамического равновесия будут значительно более редкими, чем небольшие. На самом деле состояние с максимальной энтропией достижимо только в идеале. Эйнштейн отметил, что «термодинамическое равновесие, строго говоря, не существует». Из-за флуктуаций энтропия будет колебаться в каких-то небольших пределах, всегда ниже Smax. Ее среднее значение <S> будет соответствовать больцмановскому статистическому равновесию. Таким образом, вместо тепловой смерти можно было бы говорить о переходе системы в некоторое «наиболее вероятное», но все же конечное статистически равновесное состояние. Считается, что термодинамическое и статистическое равновесие – практически одно и то же. Это ошибочное мнение опроверг Ф.А. Цицин, показавший, что различие в действительности весьма велико, хотя о конкретных значениях разницы мы здесь говорить не можем. Важно, что любая система (например, идеальный газ в сосуде) рано или поздно будет иметь не максимальное значение энтропии, а скорее <S>, соответствующее, как будто, сравнительно малой вероятности. Но здесь дело в том, что энтропию <S> имеет не одно состояние, а громадная их совокупность, которую лишь по небрежности называют единым состоянием. Каждое из состояний с <S> имеет и в самом деле малую вероятность осуществления, и поэтому в каждом из них система не задерживается долго. Но для их полного набора вероятность получается большой. Поэтому совокупность частиц газа, достигнув состояния с энтропией, близкой к <S>, должна довольно быстро перейти в какое-то другое состояние с примерно той же энтропией, затем в следующее и т.д. И хотя в состоянии, близком к Smax, газ будет проводить больше времени, чем в любом из состояний с <S>, последние вместе взятые становятся более предпочтительными.

mirznanii.com

Тепловая смерть Вселенной — WiKi

История гипотезы

В 1852 году Уильям Томсон (барон Кельвин) сформулировал «принцип рассеяния энергии», из которого следовало, что спустя конечный промежуток времени Земля очутится в состоянии, непригодном для обитания человека[5]. Это была первая формулировка идей о «тепловой смерти», пока только Земли.

Вывод о тепловой смерти Вселенной был сформулирован Р. Клаузиусом в 1865 году на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами, стремится к наиболее вероятному равновесному состоянию — к так называемому состоянию с максимумом энтропии. Такое состояние соответствовало бы тепловой смерти Вселенной[6]. Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о тепловой смерти Вселенной. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872 год), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения.

Возражения против гипотезы «тепловой смерти Вселенной»

Один из аргументов против гипотезы «тепловой смерти Вселенной» основан на представлении о бесконечности Вселенной, так что законы термодинамики, базирующиеся на изучении объектов конечных размеров, ко Вселенной не применимы в принципе. М. Планк по этому поводу заметил: «Едва ли вообще есть смысл говорить об энергии или энтропии мира, ибо такие величины не поддаются точному определению»[7].

Возражения против гипотезы «тепловой смерти Вселенной» со стороны статистической физики сводятся к тому, что абсолютно запрещаемые вторым началом процессы со статистической точки зрения просто маловероятны. Для обычных макросистем и статистические, и феноменологические законы ведут к одним и тем же выводам. Однако для систем с малым числом частиц, или для бесконечно большой системы, или для бесконечно большого времени наблюдения самопроизвольные процессы, нарушающие второе начало термодинамики, становятся допустимыми[8].

В современной космологии учёт гравитации приводит к выводу о том, что однородное изотермическое распределение вещества во Вселенной не является наиболее вероятным и не соответствует максимуму энтропии.

Наблюдения подтверждают расчёты А. А. Фридмана, согласно которым Метагалактика (астрономическая Вселенная) нестационарна: она расширяется, и вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуя скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и для своего объяснения не требуют модификации законов термодинамики[9]; даже сама постановка вопроса о «тепловой смерти Вселенной» представляется неправомерной[10].

Сколь ни сомнительным может казаться с современной точки зрения вывод Клаузиуса о «тепловой смерти» Вселенной, именно этот вывод послужил толчком к развитию теоретической мысли, которая в работах Эйнштейна, Фридмана и Гамова привела к ныне широко принятой релятивистско-термодинамической модели эволюции[11][неоднозначно].

Современное состояние Вселенной

В культуре

Теме тепловой смерти вселенной посвящён ряд научно-фантастических рассказов (например, рассказ «Последний вопрос» Айзека Азимова). Также данная тема легла в основу сюжета аниме «Mahou Shoujo Madoka Magica»

Во вселенной британского телесериала Доктор Кто именно это конечное состояние произошло через 100 триллионов лет (показано в эпизоде «Утопия»)[12] после Большого взрыва, через который точно образовалась та вселенная.

В эпизоде The Late Philip J. Fry мультсериала «Футурама» герои воочию наблюдали тепловую смерть текущей и последующее рождение новой, полностью идентичной вселенной.

См. также

Примечания

  1. ↑ WMAP – Fate of the Universe, WMAP's Universe, NASA.
  2. ↑ «Тепловая смерть» Вселенной // Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
  3. ↑ Plait, Philip Death From the Skies!, Viking Penguin, NY, ISBN 978-0-670-01997-7, p. 259
  4. ↑ Lisa Dyson, Matthew Kleban, Leonard Susskind: "Disturbing Implications of a Cosmological Constant"
  5. ↑ Второе начало термодинамики, 1934, с. 180—182.
  6. ↑ Галетич Юлия. Тепловая смерть Вселенной. astrotime.ru (2 августа 2011). Проверено 15 января 2014. Архивировано 3 декабря 2013 года.
  7. ↑ Бродянский В. М., Вечный двигатель, 1989, с. 148.
  8. ↑ Поляченок О. Г., Поляченок Л. Д., Физическая и коллоидная химия, 2008, с. 106.
  9. ↑ БСЭ, 3-е изд., т. 25, 1976, с. 443.
  10. ↑ Базаров, 2010, с. 84.
  11. ↑ Эбелинг В., Энгель А., Файстель Р. Физика процессов эволюции. — 2001.
  12. ↑ http://www.bbc.co.uk/programmes/b007qltt и http://www.bbc.co.uk/doctorwho/s4/episodes/S3_11

Литература

  • Алексеев Г. Н. Энергия и энтропия. — М.: Знание, 1978. — 192 с. — (Жизнь замечательных идей).
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.—Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. — М.: УРСС, 2003. — 120 с. — ISBN 5-354-00391-1.
  • Большая Советская Энциклопедия / Гл. ред. А. М. Прохоров. — 3-е изд. — М.: Советская Энциклопедия, 1976. — Т. 25: Струнино — Тихорецк. — 600 с.
  • Бродянский В. М. Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии. — М.: Энергоатомиздат, 1989. — 256 с. — (Научно-популярная библиотека школьника). — ISBN 5-283-00058-3.
  • Второе начало термодинамики: Сади Карно — В. Томсон-Кельвин — Р. Клаузиус — Л. Больцман — М. Смолуховский / Под. ред. и с пред. А. К. Тимирязева. — М.—Л.: Гостехиздат, 1934. — 311 с.
  • Герасимов Я. И., Древинг В. П., Еремин Е. Н. и др. Курс физической химии / Под общ. ред. Я. И. Герасимова. — 2-е изд. — М.: Химия, 1970. — Т. I. — 592 с.
  • Поляченок О. Г., Поляченок Л. Д. Физическая и коллоидная химия. — Могилев: Могилев. гос. ун-т продовольствия, 2008. — 196 с.

Ссылки

ru-wiki.org

Десять теорий гибели нашей Вселенной

Одна из самых увлекательных вещей о Вселенной это то, как мало мы о ней знаем.

  1. Большое Сжатие.

Наиболее заметная теория о том, как началась Вселенная Большого Взрыва, где вся материя сначала существовала как сингулярность, бесконечно плотная точка в крошечном пространстве. Потом что-то привело ее к взрыву. Материя расширилась с невероятной скоростью и в конечном итоге сформировала Вселенную, которую мы видим сегодня.

Большое Сжатие, как вы могли догадаться, противоположность Большого Взрыва. Все, что разлетелось по краям Вселенной, под воздействием силы тяжести будет сжиматься. Согласно этой теории, гравитация замедлит расширение, вызванное Большим Взрывом и в конечном итоге все вернется обратно в точку.

  1. Неизбежная тепловая смерть Вселенной.

Подумайте о тепловой смерти, как полной противоположности Большому Сжатию. В этом случае, сила тяжести не достаточно сильна, чтобы преодолеть расширение, так как Вселенная просто держит курс на расширение в геометрической прогрессии. Галактики отдаляться друг от друга, как несчастные влюбленные, и всеохватывающая ночь между ними становится все шире и шире.

Вселенная подчиняется тем же правилам, как и любая термодинамическая система, что в конечном итоге приведет нас к тому, что тепло равномерно распределится по всей Вселенной.  Наконец, вся Вселенная погаснет.

  1. Тепловая смерть от Черных дыр.

Согласно популярной теории, большинство материи во Вселенной вращается вокруг черных дыр. Просто посмотрите на галактики, которые содержат сверхмассивные черные дыр в их центрах. Большая часть теории черной дыры предполагает поглощение звезд или даже целых галактик, как они попадают в горизонт событий дыры.

В конце концов, эти черные дыры поглотят большую часть материи, и мы останемся в темной Вселенной.

  1. Конец Времени.

Если что-то вечное, то это, безусловно, время. Есть ли Вселенная или нет, время все равно идет. В противном случае, не было бы никакого способа, чтобы различить один момент из следующего. Но что, если время упущено и просто замерло? Что делать, если не будет больше моментов? Просто один и тот же момент времени. Навсегда.

Предположим, что мы живем во Вселенной, время в которой никогда не заканчивается. С бесконечным количеством времени, все, что может случиться происходит со 100-процентной вероятностью. Парадокс же произойдет, если у вас есть вечная жизнь. Вы живете бесконечное время, поэтому все, что можно гарантированно произойдет (и произойдет бесконечное количество раз). Остановка времени тоже может случится.

  1. Большое Столкновение.

Большое Столкновение похоже на Большое Сжатие, но гораздо более оптимистично. Представьте себе, тот же сценарий: Гравитация замедляет расширение Вселенной и все сжимается обратно в одну точку. В этой теории, сила этого быстрого сжатия достаточна, чтобы начать еще один Большой Взрыв, и Вселенная начинается снова.

Физикам не нравится это объяснение, так что некоторые ученые утверждают, что, возможно, Вселенная не пройдет весь путь обратно к сингулярности. Вместо этого, она сожмется очень сильно, а затем оттолкнется от силы, подобной той, что отталкивает мяч, когда вы его ударяете об пол.

 

  1. Большой Разрыв.

Независимо от того, как заканчивается мир, ученые пока не чувствуют необходимость использовать (ужасно заниженное) слово «большой», чтобы описать его. В этой теории, невидимая сила называется «темная энергия», она вызывает ускорение расширения Вселенной, что мы и наблюдаем. В конце концов, скорости вырастут настолько, что материя начнет рваться на мелкие частицы. Но есть и светлая сторона этой теории, по крайней мере Большого Разрыва придется ждать еще 16 миллиардов лет.

  1. Эффект Метастабильности Вакуума.

Эта теория зависит от идеи, что существующая Вселенная находится в крайне нестабильном состоянии. Если вы посмотрите на значения квантовых частиц физики, то можно сделать предположение, что наша Вселенная находится на грани устойчивости.

Некоторые ученые предполагают, что миллиарды лет спустя, Вселенная будет на грани разрушения. Когда это произойдет, в какой-то момент во Вселенной, появится пузырь. Подумайте об этом как об альтернативной Вселенной. Этот пузырь будет расширяться во всех направлениях со скоростью света, и уничтожать все, к чему прикасается. В конце концов, этот пузырь уничтожит все во Вселенной.

 

  1. Временной Барьер.

Потому что законы физики не имеют смысла в бесконечной мультивселенной, единственный способ понять эту модель это предположить, если что есть реальная граница, физическая граница Вселенной, и ничто не может выйти за пределы. И в соответствии с законами физики, в ближайшие 3,7 млрд лет, мы пересечем временной барьер, и Вселенная кончится для нас.

  1. Это не случится (потому что мы живем в мультивселенной).

По сценарию мультивселенных, с бесконечными Вселенными, эти Вселенные могут возникать в или из существующих. Они могут возникать из Больших Взрывов,  уничтожаться Большими Сжатиями или Разрывами, но это не имеет никакого значения, так как новых Вселенных всегда будет больше, чем уничтоженных.

  1. Вечная Вселенная.

Ах, вековая идея, что Вселенная всегда была, и всегда будет. Это одна из первых концепций, которую люди, создали о природе Вселенной, но есть и новый виток в  этой теории, что звучит немного интересней, ну, серьезно.

Вместо сингулярности и Большого Взрыва, который положил начало самого времени, время мог существовать раньше. В этой модели, Вселенная циклична, и будет продолжать расширяться и сжиматься всегда.

В ближайшие 20 лет мы с большей уверенностью сможем сказать, какая из этих теорий наиболее соответствует реальности. И возможно, найдем ответ на вопрос, как наша Вселенная начиналась и как она закончится.

Поделиться

Твитнуть

Поделиться

Плюсануть

Источник: Listverse

Поделиться

Твитнуть

Поделиться

Плюсануть

mks-onlain.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики