Содержание
Загадки по физике с ответами для учеников 7-11 классов
Дети всех возрастов обожают головоломки, но загадки по физике редко используются учителями. Очень зря, ведь они способны разнообразить учебный процесс, помочь усвоить новый материал, подстегнуть интерес к предмету и просто развлечь. При этом детские головоломки только кажутся простыми. На самом же деле для разгадывания физических загадок ребятам придется подключить всю свою природную внимательность, смекалку и применить полученные знания. Стихотворные версии легче усваиваются, но основываются на хитроумных метафорах, поэтому учат мыслить образами.
Когда сутки короче: зимой или летом?
Узнать ответСутки — это всегда 24 ч.
Даже Эйнштейн, физический гений,
Весьма относительно всё понимал.
Какую ж теорию, важную очень,
Он в своё время создал?
Узнать ответТеория относительности
С какой физической величиной можно связать эти пословицы: не все на свой аршин меряй; семь раз отмерь — один раз отрежь; без меры и лаптя не сплетешь?
Узнать ответДлина
Кто может путешествовать по свету, оставаясь в одном и том же углу?
Узнать ответПочтовая марка на конверте
Что не имеет длины, глубины, ширины, высоты, а можно измерить?
Узнать ответВремя, температура
Бегу, бегу по проводам,
И нет меня быстрее!
Тепло и свет несу я вам
И делать все умею!
Узнать ответЭлектрический ток
Нужная величина,
В электричестве глава.
Чтоб приборы были целы,
Чтобы не было проблем,
Каждый знает как она
С силой тока связана!
Узнать ответНапряжение
Мал золотник да дорог; своя ноша не тянет; тяжело понесешь — домой не донесешь.
Узнать ответМасса
Кофе с молоком Очень полезная задачка. Можно долго выписывать уравнения, а можно понять, что ответ очевиден… Есть два одинаковых стакана, в которые налито поровну: в один — молоко, в другой — кофе. Из первого стакана переливают ложку молока в стакан с кофе. Потом размешивают, и из второго стакана обратно в первый переливают ложку кофе с молоком. Чего теперь больше: молока в кофе или кофе в молоке?
Узнать ответОдинаковое содержание молока в кофе и кофе в молоке
Механику и атомы,
Наука изучает,
И оптику, молекулы,
Дотошно разбирает!
Узнать ответФизика
Тут не долго испугаться —
Их в розетке двести двадцать.
Узнать ответВольт
Она характеризует
Быстроту движения,
Но при этом имеет
Своё направление.
Узнать ответСкорость
Этот жадный предмет
Всё железо хватает.
Для него нормы нет,
Прилипанием страдает.
Узнать ответМагнит
Все поведает, хоть без языка,
Когда будет ясно, а когда – облака.
Узнать ответБарометр
И в тайге, и в океане
Он отыщет путь любой.
Умещается в кармане.
А ведет нас за собой.
Узнать ответКомпас
Плохи дела, где сила без ума; без уменья и сила не при чем; через силу и конь не тянет.
Узнать ответСила
Какой расплавленный металл замораживает воду?
Узнать ответРтуть
Какой металл пишет, как карандаш?
Узнать ответСвинец
Энергия отключается,
Но движение продолжается.
Как же такое явление
В физике называется?
Узнать ответИнерция
С помощью линзы получено действительное изображение электрической лампочки. Как изменится изображение, если закрыть верхнюю половину линзы?
Узнать ответВсе изображение останется на том же месте, но будет менее ярким.
Папа знает всё на свете —
Как на небе Солнце светит,
Про молекулу и атом
Может рассказать ребятам.
Знает всё про ультразвук.
Папа — кандидат наук!
Узнать ответФизик
Им силу тока изменяют,
Если что – то в нем сдвигают.
Узнать ответРеостат
Назови-ка посмелей
В каком разделе физики
Мы с Ньютоном встречаемся
И к его фамилии
Часто обращаемся?
Узнать ответМеханика
Через массу и объём определяется
В единице объёма —
Физический смысл заключается,
О какой величине здесь упоминается?
Узнать ответПлотность
На двух чашах рычажных весов находятся два ведра, наполненные водой. Уровень воды в них одинаков. В одном ведре плавает деревянный брусок. Будут ли весы находиться в равновесии?
Узнать ответДа. Плавающее тело всегда вытесняет своей погруженной частью столько жидкости (по весу), сколько весит это тело.
Нельзя здесь отшутиться —
Радиоактивности единица.
Узнать ответКюри
Какое действие тока используется в электросварке?
Узнать ответТепловое
Сила упругости так вычисляется,
А полученное выражение —
Законом называется,
Чьей же фамилией он величается?
Узнать ответЗакон Гука
Вес корабля легко узнать,
Какую же силу нужно при этом рассчитать?
Узнать ответСилу Архимеда
Через нос проходит в грудь
И обратный держит путь.
Он невидимый, и все же
Без него мы жить не можем.
Узнать ответВоздух
Паскаль был очень остроумен,
Получил он выражение
Как для расчета,
Так и для вычисления.
Укажи величину,
Принадлежащую ему.
Узнать ответДавление
На спине язык, что скажет — люди верят.
Узнать ответДинамометр
11 величайших нерешенных проблем современной физики
Наука
Физика
Квантовая физика
Черные дыры
11 величайших нерешенных проблем современной физики
Егор Морозов
—
В 1900 году британский физик лорд Кельвин объявил: «в физике больше нет ничего нового, все, что можно было открыть, уже открыто. То, что остается — это все более и более точное измерение старого». В течение трех десятилетий физика показала, что он серьезно ошибался: были открыты квантовая механика и теория относительности Эйнштейна, которые произвели революции в науке. Сегодня ни один физик не посмел бы утверждать, что мы знаем все о вселенной. Напротив, каждое новое открытие, кажется, открывает ящик Пандоры с еще более глубокими вопросами физики. В этой статье мы поговорим про те вопросы в физике, которые до сих пор остаются без ответа.
Темная материя и энергия
Как бы ученые не пытались объяснить нашу вселенную текущими законами физики, у них ничего не получается. Если учитывать только видимое вещество, то его гравитации не хватит, чтобы удерживать галактики от распада на части. И, дабы объяснить стабильность галактик во вселенной, была введена темная материя — гипотетическое вещество, которое не испускает электромагнитного излучения и взаимодействует с привычной материей только с помощью гравитации. Увы, хотя термину «темная материя» уже 90 лет, ее до сих пор не обнаружили, хотя и нашли потенциального претендента, возможно, полностью состоящего из нее.
Как это обычно бывает, темной материи не хватило, чтобы объяснить все несостыковки текущей физики и наблюдаемых явлений. Поэтому, чтобы объяснить расширение Вселенной с ускорением, была введена еще и темная энергия, являющейся космологической константой — иными словами, неизменной энергетической плотностью, равномерно распределенной по Вселенной. Причем, что самое любопытное, привычное нам вещество занимает по массе всего 4% Вселенной, когда темная материя — 22%, а темная энергия вообще 74%. Казалось бы, при таком распространении мы должны найти ее следы, но, увы, пока что этого не произошло.
Почему время идет только вперед?
Пожалуй, этот вопрос задавали себе многие — ведь так хотелось бы вернуться в прошлое и что-то исправить. Физики пытались объяснить эту «стрелу времени», направленную только вперед, энтропией: грубо говоря, мерой хаоса во вселенной. Все, что мы не делали, приводит к увеличению энтропии: это гласит второй закон термодинамики. Яйцо, будучи целым, имеет низкую энтропию. Разбив его на сковородку, вы ее увеличите. Но, казалось бы, в чем проблема собрать обратно желток и белок в скорлупу и склеить ее? Ведь тем самым можно будет уменьшить энтропию и как бы сделать для яйца «машину времени».
Увы, это не так — в итоге на «сборку» яйца снова вы потратите некоторое количество энергии, а, значит, снова увеличите общую энтропию Вселенной. Казалось бы, вот и ответ на вопрос: раз энтропия и время связаны, и энтропия может только увеличиваться, то время может идти только вперед. Но и тут хватает загвоздок: так, в будущем Вселенная достигнет равновесия и максимума энтропии — она будет полностью однородной и темной, без всяких звезд и галактик. Энтропия в ней навечно станет константой — значит, и время тоже? Ведь в таком мире без разницы, куда оно течет, в итоге все равно ничего не меняется!
С другой стороны, вспомним начало Вселенной из Большого Взрыва, когда энтропия была минимальной, и с тех пор постоянно растет. Возникает вопрос — почему это происходит именно так, а не наоборот? Увы — мы не знаем ответа на этот вопрос. 122 степени), но все же конечным числом. А раз пространство-время бесконечно, то на нем будет бесконечной множество различных вселенных, и раз наша Вселенная конечна, то она будет иметь… бесконечное число своих копий. И бесконечное число копий, где вы позавтракали не йогуртом, а бутербродом с сыром. Но, конечно, это чисто математические выкладки, которые мы никак не можем проверить, так что этот вопрос так и остается вопросом.
Почему материи больше, чем антиматерии?
След первого обнаруженного позитрона в пузырьковой камере.
В привычном нам мире электрон заряжен отрицательно, а протон — положительно. А может ли быть наоборот? Вполне: последние 50 лет ученые создают антипротоны и позитроны (антиэлектроны), которые отличаются от своих «нормальных» братьев только зарядом и барионным числом (то есть позитрон заряжен положительно). При столкновении частицы с античастицей они аннигилируют, производят огромное количество энергии.
Но отсюда возникает вполне логичный вопрос: если материя и антиматерия максимально схожи, то после Большого Взрыва их должно было оказаться поровну. Разумеется, они бы аннигилировали полностью, и вселенная была бы пуста (ну, почти пуста — остались бы одни фотоны). А раз мы существуем, значит, материи в итоге было образовано больше, чем антиматерии. Почему? Никто не знает.
Как измерения разрушают квантовые волновые функции?
Микромир работает совсем не так, как привычная нам реальность. Частицы ведут себя не как шарики, а как волны. Каждая из частиц описывается так называемой волновой функцией — распределением вероятностей, которые говорят нам лишь о том, какими могут быть ее местоположение, скорость и другие свойства.
Фактически, частица имеет диапазон значений для каждого из свойств — но только до того момента, пока вы это свойство не станете измерять. Например, если вы захотите узнать местоположение частицы, то волновая функция коллапсирует, и вместо набора различных мест вы получите только одно, которое и образует привычную нам реальность. Этот парадокс, названный проблемой измерения, так и остается без решения.
Что происходит внутри черной дыры?
Куда исчезает информация внутри черной дыры? Если вы бросите в нее зонд, то вы не получите от него никаких данных, так как скорость убегания от черной дыры больше скорости света. Но черные дыры не вечны — существует излучение Хокинга, благодаря которому они медленно испаряются, и в итоге полностью исчезают. При этом само излучение зависит лишь от характеристик черной дыры (ее массы, скорости вращения и так далее), то есть, получается, данные о нашем зонде полностью теряются — без разницы, что вы кинете в черную дыру, зонд или камень с той же массой, на выходе излучение будет абсолютно одинаковое.
Но тут мы приходим к противоречию с квантовой физикой: она гласит, что квантовая информация не теряется и не копируется, и, если знать полную информацию о начальном состоянии любого объекта (например, зонда), то можно рассчитать и любое последующее. А «пережеванное» черной дырой вещество, получается, теряет всю свою информацию — парадокс, решение которого играет ключевую роль для построения законов квантовой гравитации, и пока что эта проблема остается без решения.
Что такое гравитация?
Почти все силы во вселенной определены различными частицами. Так, за электромагнетизм отвечают фотоны, за слабую ядерную силу — W- и Z-бозоны, за сильную ядерную силу — глюоны. Остается гравитация, и с ней есть одна проблема: гипотетическая частица, переносчик гравитации — гравитон — так и не была обнаружена. Теоретически, она не имеет массы и почти не взаимодействует с веществом, но на практике мы лишь получили ограничение сверху на ее массу благодаря гравитационным волнам от столкновения черных дыр, и это не ноль, хотя и очень близкая к нему цифра.
Пока мы не нашли гравитон, мы не можем работать с гравитацией так, как с другими фундаментальными взаимодействиями, которые по сути являются обменом частиц. Более того, некоторые физики даже предполагают, что гравитоны работают в дополнительных измерениях за пределами пространства-времени. В любом случае, ответа на вопрос у нас пока нет.
Мы живем в ложном вакууме?
Что мы подразумеваем под вакуумом? Отсутствие чего-либо в данной точке пространства. Ну хорошо, мы можем освободить от частиц небольшой объем (хотя сделать это в случае с нейтрино, которые практически не взаимодействуют с веществом, будет, мягко говоря, трудновато). Остаются еще различные излучения и поля — ладно, попробуем избавиться и от них. А вот это уже не получится — есть и темная энергия, и поле Хиггса, и различные квантовые флуктуации. То есть, получается, вакуум, который мы можем создать, все-таки имеет какую-то отличную от нуля энергию, поэтому он и называется ложным.
Отсюда возникает вполне логичный вопрос — раз наш вакуум ложный, то может где-то есть истинный, с нулевой энергией? Или хотя ты чуть менее ложный, где энергия вакуума чуть ниже? Вполне может быть, и отсюда приходит «белый пушной зверек».
Частицы имеют одно интересное свойство — возможность туннелировать сквозь вещество, не обращая на него внимание, в значение с другой энергией. Что произойдет, когда хотя бы одна частица переместится в значение с меньшей энергией вакуума, чем в окружающей нас вселенной? Правильно, она потянет за собой все другие, и, в конечном счете, всю вселенную. Чем это грозит нам? Да тем, что мы просто перестанем существовать: ведь все, что мы видим, и все, из чего мы состоим, подчиняется определенным законам физики с определенными константами. «Перескок» в область, где энергия ложного вакуума ниже, чем у нас, изменит и законы, и константы. Да, вселенная от этого существовать не перестанет, она просто изменится. Но вот не факт, что мы останемся жить.
Конечно, все написанное выше выглядит страшилкой на ночь — да, собственно, ей и является. По расчетам Хокинга, дабы хотя бы одна частица туннелировала в состояние с другим ложным вакуумом, требуется энергия порядка 100 миллионов ТэВ — это в 10 миллионов раз больше, чем может дать Большой Адронный Коллайдер. Такие значения энергий не встречаются даже в сверхмассивных звездах, так что можете быть спокойны — с крайне высокой вероятностью наша вселенная никуда не денется. Но все же может, если теория ложного вакуума верна.
Что лежит за пределами Стандартной модели?
Стандартная модель — одна из самых успешных физических теорий, которая проходит все проверки на протяжении вот уже больше 40 лет. Эта модель описывает поведение частиц вокруг нас и, например, объясняет, почему они имеют массу. К слову, открытие бозона Хиггса — частицы, которая дает материи массу — как раз является одним из тех экспериментов, в очередной раз подтвердивших Стандартную модель.
Но уже понятно, что вселенная устроена сложнее — взять, например, потерю квантовой информации в черной дыре. Поэтому становится очевидным, что нужно придумывать новые модели: например, существует Теория струн, которая говорит о том, что фундаментальные взаимодействия возникают в результате колебаний ультрамикроскопических струн с масштабами порядка 10-35 метра. Это на пару десятков порядков меньше диаметра атомного ядра, и у нас нет абсолютно никаких инструментов для работы на таких масштабах, поэтому мы не можем проверить Теорию струн. Так что ответ на вопрос, что же лежит за пределами Стандартной модели, остается открытым.
Как звуковые волны излучают свет?
Синяя точка — не лазер и не ошибка камеры, это вспышка в пузырьке внутри воды.
Один из тех редких примеров загадок, которые можно наблюдать в лаборатории, но не получается объяснить. Сам эксперимент максимально прост: возьмите немного воды и направьте на нее звуковые волны — внутри нее образуются пузырьки, которые образуются из-за перепада давления от звуковых волн. Разумеется, эти пузырьки быстро схлопываются, однако в этот момент… они излучают свет в виде вспышек, длящихся триллионные доли секунды — явление, называемое сонолюминесценция.
Проблема тут в том, что неизвестен источник этого света. Ученые обнаружили, что внутри пузырьков на долю секунды температура достигает десятков тысяч градусов, откуда строятся абсолютно фантастические теории, начиная от крошечных реакций ядерного синтеза вплоть до электрического разряда. И хотя существует множество снимков этого процесса, до сих пор нет хорошего объяснения происходящего.
Есть ли порядок в водовороте хаоса?
Школьный пример — зная состояние воды в левой трубке, его можно вычислить для правой.
Отличным примером того, что даже в школьном курсе физики есть задачи тысячелетия, за решения которых предлагают миллион долларов, являются уравнения Навье-Стокса. По сути это система дифференциальных уравнений, которая описывает движение вязкой ньютоновской жидкости. Проблема в том, что нахождение общего решения в случае пространственного потока усложняется тем, что оно нелинейно и сильно зависит от начальных и граничных условий. И хотя в частных случаях решения есть (думаю, все в школе решали задачки по нахождению скорости потока воды в трубах разного диаметра), мы даже не знаем, есть ли оно в общем случае — а ведь это важно даже для таких, казалось бы, банальных вещей, как правильный прогноз погоды.
И это далеко не все проблемы, с которыми сталкивается современная физика, и чем больше мы в них углубляемся, тем больше понимаем, что все наши знания, накопленные за столетия и даже тысячелетия, или не верны, или крайне поверхностны. Но это не повод опускать руки — наоборот, это шанс узнать больше об окружающем нас мире и пустить эти знания нам же на благо.
Рекомендации
У карт «МИР» появилось неприятное ограничение
Банковские карты «МИР» станут намного полезнее
Весь AliExpress подешевел для Россиян. Спешите — это ненадолго
На этом можно заработать»>
Продавцы на Wildberries и Ozon очень хитро накручивают отзывы. На этом можно заработать
Рекомендации
У карт «МИР» появилось неприятное ограничение
Банковские карты «МИР» станут намного полезнее
Весь AliExpress подешевел для Россиян. Спешите — это ненадолго
Продавцы на Wildberries и Ozon очень хитро накручивают отзывы. На этом можно заработать
Читайте также
iPhone
Apple
Вышли iPadOS 16.
2, macOS Ventura 13.1 и tvOS 16.2
Apple
Apple выпустила важное обновление для старых Mac
macOS
Mac
7 самых больших вопросов физики без ответов
Большие вопросы
Физики разгадали некоторые из самых больших загадок Вселенной. Но они еще не сделаны.
Steven Hunt / Getty Images
Дэн Фальк , он был бы рад увидеть, как далеко продвинулась физика. Вещи, которые несколько столетий назад казались глубоко загадочными, теперь преподаются на уроках физики для первокурсников (хорошим примером является состав звезд).
Ньютон был бы ошеломлен, увидев огромные эксперименты, такие как Большой адронный коллайдер (БАК) в Швейцарии, и, возможно, был бы возмущен, узнав, что его теория гравитации была заменена теорией, придуманной каким-то парнем по имени Эйнштейн. Квантовая механика, вероятно, показалась бы ему странной, хотя современные ученые думают так же.
Но как только он наберет скорость, Ньютон, несомненно, будет аплодировать тому, чего достигла современная физика — от открытия природы света в 19века до определения структуры атома в 20 веке до прошлогоднего открытия гравитационных волн. И все же современные физики первыми признают, что у них нет ответов на все вопросы. «Есть основные факты о Вселенной, о которых мы не знаем», — говорит доктор Дэниел Уайтсон, физик из Калифорнийского университета и соавтор новой книги «У нас нет идей: Путеводитель по неизвестной Вселенной».
Далее следует краткий обзор семи крупнейших нерешенных проблем физики. (Если вам интересно, почему в списке нет таких головоломок, как темная материя и темная энергия, это потому, что они были в нашей предыдущей статье о пяти самых важных вопросах о Вселенной.)
1. Из чего состоит материя?
Мы знаем, что материя состоит из атомов, а атомы состоят из протонов, нейтронов и электронов. И мы знаем, что протоны и нейтроны состоят из более мелких частиц, известных как кварки. Может ли более глубокое исследование обнаружить еще более фундаментальные частицы? Мы не знаем наверняка.
У нас есть так называемая Стандартная модель физики элементарных частиц, которая очень хорошо объясняет взаимодействие между субатомными частицами. Стандартная модель также использовалась для предсказания существования ранее неизвестных частиц. Последней частицей, которая была обнаружена таким образом, был бозон Хиггса, открытый исследователями LHC в 2012 году9.0003
Но есть загвоздка.
«Стандартная модель не все объясняет», — говорит доктор Дон Линкольн, физик частиц из Национальной ускорительной лаборатории Ферми (Fermilab) недалеко от Чикаго. «Это не объясняет, почему существует бозон Хиггса. Это не объясняет в деталях, почему бозон Хиггса имеет такую массу». На самом деле бозон Хиггса оказался намного менее массивным, чем предполагалось — теория утверждала, что он будет примерно «в квадриллион раз тяжелее, чем есть на самом деле», — говорит Линкольн.
Один из детекторов частиц в Большом адронном коллайдере ЦЕРН. Rex Features via AP
На этом загадки не заканчиваются. Известно, что атомы электрически нейтральны — положительный заряд протонов уравновешивается отрицательным зарядом электронов — но почему это так, Линкольн говорит: «Никто не знает».
2. Почему гравитация такая странная?
Нет силы более привычной, чем гравитация — в конце концов, именно она удерживает наши ноги на земле. А общая теория относительности Эйнштейна дает математическую формулировку гравитации, описывая ее как «искривление» пространства. Но гравитация в триллион триллионов триллионов раз слабее трех других известных взаимодействий (электромагнетизма и двух видов ядерных сил, действующих на крошечных расстояниях).
Одна возможность — на данный момент спекулятивная — заключается в том, что в дополнение к трем измерениям пространства, которые мы замечаем каждый день, существуют скрытые дополнительные измерения, возможно, «свернутые» таким образом, что их невозможно обнаружить. Если эти дополнительные измерения существуют — и если гравитация способна «просачиваться» в них — это может объяснить, почему гравитация кажется нам такой слабой.
«Возможно, гравитация так же сильна, как и эти другие силы, но она быстро разбавляется, выплескиваясь в другие невидимые измерения», — говорит Уайтсон. Некоторые физики надеялись, что эксперименты на БАК дадут намек на эти дополнительные измерения, но пока безрезультатно.
3. Почему кажется, что время течет только в одном направлении?
Со времен Эйнштейна физики рассматривали пространство и время как образующие четырехмерную структуру, известную как «пространство-время». Но пространство отличается от времени в некоторых очень фундаментальных аспектах. В космосе мы вольны двигаться как хотим. Когда дело доходит до времени, мы застряли. Мы взрослеем, а не моложе. И мы помним прошлое, но не будущее. Время, в отличие от пространства, кажется, имеет предпочтительное направление — физики называют его «стрелой времени».
Некоторые физики подозревают, что второй закон термодинамики дает ключ к разгадке. В нем говорится, что энтропия физической системы (грубо говоря, степень беспорядка) со временем увеличивается, и физики считают, что это увеличение определяет направление времени. (Например, разбитая чашка имеет большую энтропию, чем целая, и, конечно же, разбитые чашки всегда возникают после целых, а не раньше.)
Энтропия может расти сейчас, потому что раньше она была ниже, но почему это низко для начала? Была ли энтропия Вселенной необычно низкой 14 миллиардов лет назад, когда она возникла в результате Большого взрыва?
Для некоторых физиков, включая Шона Кэрролла из Калифорнийского технологического института, это недостающая часть головоломки. «Если вы можете сказать мне, почему в ранней Вселенной была низкая энтропия, тогда я смогу объяснить все остальное», — говорит он. По мнению Уайтсона, энтропия — это еще не все. «Для меня, — говорит он, — самая глубокая часть вопроса заключается в том, почему время так отличается от пространства?» (Недавние компьютерные симуляции, кажется, показывают, как асимметрия времени может возникать из фундаментальных законов физики, но работа вызывает споры, а окончательная природа времени продолжает вызывать страстные споры. )
4. Куда делась вся антиматерия?
Антиматерия может быть более известна в художественной литературе, чем в реальной жизни. В оригинальном «Звездном пути» антивещество вступает в реакцию с обычным веществом, приводя в действие варп-двигатель, который приводит в движение США. Предприятие на сверхсветовых скоростях. В то время как варп-двигатель — чистая выдумка, антиматерия вполне реальна. Мы знаем, что для каждой частицы обычного вещества может быть идентичная частица с противоположным электрическим зарядом. Например, антипротон похож на протон, но с отрицательным зарядом. Между тем античастица, соответствующая отрицательно заряженному электрону, — это положительно заряженный позитрон.
Физики создали антивещество в лаборатории. Но когда они это делают, они создают равное количество материи. Это говорит о том, что Большой взрыв должен был создать материю и антиматерию в равных количествах. Однако почти все, что мы видим вокруг себя, от земли под нашими ногами до самых отдаленных галактик, состоит из обычного вещества.
Что происходит? Почему материи больше, чем антиматерии? Наше лучшее предположение состоит в том, что Большой взрыв каким-то образом произвел чуть больше материи, чем антиматерии. «То, что должно было произойти в начале истории Вселенной — в самые моменты после Большого взрыва — это то, что на каждые 10 миллиардов частиц антиматерии приходилось 10 миллиардов и одна частица материи», — говорит Линкольн. «И материя и антиматерия уничтожили 10 миллиардов, оставив один. И этот маленький «один» — это масса, из которой мы состоим».
Но почему в первую очередь небольшой избыток материи над антиматерией? «Мы действительно этого не понимаем, — говорит Линкольн. «Это странно». Если бы начальные количества материи и антиматерии были равны, они бы полностью уничтожили друг друга в результате выброса энергии. В этом случае, говорит Линкольн, «нас бы не существовало».
Национальная ускорительная лаборатория Ферми в Батавии, Иллинойс. М. Spencer Green / AP file
Некоторые ответы могут прийти, когда Deep Underground Neutrino Experiment (DUNE) начнет собирать данные в 2026 году. DUNE будет анализировать пучок нейтрино — крошечных, беззарядных и почти безмассовых частиц — запущенных из Фермилаборатории в подземный исследовательский центр Сэнфорда. в Южной Дакоте, примерно в 800 милях отсюда. Луч будет включать в себя нейтрино и антинейтрино с целью увидеть, ведут ли они себя одинаково, что потенциально может дать ключ к разгадке природной асимметрии материи и антиматерии.
5. Что происходит в серой зоне между твердым телом и жидкостью?
Твердые и жидкие вещества хорошо изучены. Но некоторые материалы ведут себя и как жидкость, и как твердое тело, поэтому их поведение трудно предсказать. Песок является одним из примеров. Песчинка тверда, как камень, но миллион песчинок может пройти через воронку почти как вода. Точно так же может вести себя и автомобильный транспорт, свободно движущийся до тех пор, пока он не заблокируется в каком-нибудь узком месте.
Песчинка тверда, как камень, но миллион песчинок может течь через воронку почти как вода. Владислав Данилин / Getty Images
Таким образом, лучшее понимание этой «серой зоны» может иметь важное практическое применение.
«Люди спрашивали, при каких условиях вся система заклинивает или забивается?» — говорит доктор Керстин Нордстром, физик из колледжа Маунт-Холиок. «Каковы важные параметры, чтобы избежать засорения?» Как ни странно, препятствие в потоке транспорта может при определенных условиях фактически уменьшить пробки. «Это очень нелогично, — говорит она.
6. Можем ли мы найти единую теорию физики?
Теперь у нас есть две всеобъемлющие теории, объясняющие почти каждое физическое явление: теория гравитации Эйнштейна (общая теория относительности) и квантовая механика. Первый хорошо объясняет движение всего, от мячей для гольфа до галактик. Квантовая механика в равной степени впечатляет и в своей области — в области атомов и субатомных частиц.
Проблема в том, что две теории описывают наш мир совершенно по-разному. В квантовой механике события разворачиваются на фиксированном фоне пространства-времени, тогда как в общей теории относительности само пространство-время гибко. Как будет выглядеть квантовая теория искривленного пространства-времени? Мы не знаем, говорит Кэрролл. «Мы даже не знаем, что мы пытаемся квантовать».
Это не остановило людей от попыток. Уже несколько десятилетий теория струн, которая изображает материю как состоящую из крошечных вибрирующих струн или энергетических петель, рекламировалась как лучший способ создать единую теорию физики. Но некоторые физики предпочитают петлевую квантовую гравитацию, в которой само пространство представляется состоящим из крошечных петель.
Каждый из подходов имел определенный успех — методы, разработанные, в частности, специалистами по теории струн, оказались полезными для решения некоторых сложных физических задач. Но ни теория струн, ни петлевая квантовая гравитация не были проверены экспериментально. Пока долгожданная «теория всего» продолжает ускользать от нас.
7. Как возникла жизнь из неживой материи?
Первые полмиллиарда лет Земля была безжизненной. Затем жизнь вошла в свои права, и с тех пор она процветает. Но как возникла жизнь? Ученые считают, что до начала биологической эволюции происходила химическая эволюция, когда простые неорганические молекулы реагировали с образованием сложных органических молекул, скорее всего, в океанах. Но что в первую очередь запустило этот процесс?
Физик из Массачусетского технологического института доктор Джереми Ингланд недавно выдвинул теорию, которая пытается объяснить происхождение жизни с точки зрения фундаментальных принципов физики. С этой точки зрения жизнь является неизбежным результатом роста энтропии. Если теория верна, появление жизни «должно быть таким же неудивительным, как камни, катящиеся вниз по склону», — сказал Ингланд журналу Quanta в 2014 году9.0003
Идея весьма гипотетическая. Однако недавние компьютерные симуляции могут его поддержать. Моделирование показывает, что обычные химические реакции (типа тех, которые были обычным явлением на недавно сформировавшейся Земле) могут привести к созданию высокоструктурированных соединений — по-видимому, важной ступенькой на пути к живым организмам.
Как только жизнь пустила корни на нашей планете, примерно четыре миллиарда лет назад, она распространилась повсюду. Но то, как жизнь развилась из неживой материи, остается загадкой. Марк Боулер / Nature Picture Library / Getty Images
Что делает жизнь такой трудной для изучения физиками? Все живое «далеко от равновесия», как сказал бы физик. В системе, находящейся в равновесии, один компонент почти такой же, как и все остальные, без потока энергии внутрь или наружу. (Примером может служить камень; другим примером может служить ящик, наполненный газом.) В жизни все наоборот. Например, растение поглощает солнечный свет и использует его энергию для образования сложных молекул сахара, излучая при этом тепло обратно в окружающую среду.
Понимание этих сложных систем — «великая нерешенная проблема в физике», — говорит Стивен Моррис, физик из Университета Торонто. «Как нам быть с этими далекими от равновесия системами, которые самоорганизуются в удивительные, сложные вещи, такие как жизнь?»
ПОДПИСЫВАЙТЕСЬ НА NBC MACH НА TWITTER, FACEBOOK И INSTAGRAM.
Дэн Фальк
Дэн Фальк — научный журналист из Торонто. Среди его книг «Наука Шекспира» и «В поисках времени».
10 загадок, на которые физика не может ответить… пока
Что было до большого взрыва?
Вселенная существовала вечно? Или что-то было до этого? Чтобы это выяснить, нам нужна работающая теория квантовой гравитации и новая концепция времени 9.0003
Подробнее
Как велосипед остается в вертикальном положении?
Мы думали, что разбираемся в математике велоспорта. Мы были неправы, и наши попытки понять это привели к появлению новых странных и замечательных моделей велосипедов
.
Подробнее
Где заканчиваются квантовые странности?
В причудливой реальности квантового мира частицы могут находиться в двух местах одновременно. Почему мячи для гольфа или молоко не могут сделать то же самое?
Подробнее
Почему мы движемся вперед во времени?
Время идет, или так кажется. Это может быть иллюзией, или нам может понадобиться спасти течение времени, вмешиваясь в нашу концепцию пространства.0003
Подробнее
Почему пространство трехмерно?
Вселенная могла бы пойти наперекосяк, если бы не знакомые три измерения, но теории всего говорят, что их должно быть больше. Что нам не хватает?
Подробнее
Можем ли мы получить энергию из ничего?
Эффект Казимира предполагает, что вакуум кишит эфемерными частицами. Это реально? И можем ли мы использовать эту энергию, скрытую в пустом пространстве?
Подробнее
Что такое стекло?
Все не так ясно, как вы думаете. Стекло — это странная твердая жидкость, и то, как оно становится таким, не поддается никакому объяснению
Подробнее
Почему лед скользкий?
Большинство думает, что это жидкий слой, но не могут прийти к единому мнению о том, как он формируется.