Устройство автомобиля для чайников: разбираемся вместе. То же что и двигатель


в чем разница между мотором и двигателем?

мотор на лодке, двигатель в машине

Двигатель мощнее

двигатель в транспортных средствах, а мотор - нет

нифига подобного. Двигатель и мотор-по сути одинаковые вещи. Синонимы если хотите.

Вообще-то это одно и то же. Разве что ...ну, скажем так. Если двигатель просто "крутится" не совершая полезной работы, то он мотор. А если мотор подсоединить к приводу механизма, то он становится двигателем.

Это одно и тоже. Motor в переводе с латинского двигатель. Всё равно, что на помидоры сказать томаты. Единственно, что слово мотор употребляется в разговорах, как "поймать мотор", как транспортное средство

touch.otvet.mail.ru

Принцип работы электродвигателя - устройство и отличия разных видов

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.принцип работы электродвигателя постоянного токаЧтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

синхронный электродвигатель принцип работыЭлектродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат).

Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока — в чем отличие?

принцип действия электродвигателя переменного токаУстройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М. О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

принцип работы асинхронного электродвигателяНесмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатели этого типа легко запускаются, но частоту их вращения практически невозможно регулировать.

Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератор.

Универсальные коллекторные двигатели — принцип работы и характеристики

коллекторный электродвигатель принцип работыВ бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

elektrik24.net

Мотор И Двигатель Одно И То Же | С Чего Начать Автолюбителю?

Главная » С Чего Начать Автолюбителю?

Техника › Двигатели. Рядный? V-образный? «Оппозит»?

Алексей Воскресенский, Леонид Голованов (Авторевю ), 20 июля 2010.

Рядный шестицилиндровый двигатель — редкий пример абсолютно уравновешенного мотора. Вымирающий вид. А какой ещё архитектуры бывают ДВС и на что она влияет?

В начале XX века, когда конструкторская мысль бушевала вовсю, двигатель рабочим объёмом 10 л мог быть как одноцилиндровым, так, к примеру, и рядной «восьмёркой». Тогда никого особо не удивляли установленная на автомобиле рядная «шестёрка» объёмом 23 л или семицилиндровый звездообразный мотор с аэроплана.

Однако рост мощностей, оборотов и ожесточенная борьба за снижение себестоимости всё расставили по местам. Простейший одноцилиндровый мотор для автомобилестроителей остался в далёком прошлом. Средний объём цилиндра двигателя обычного автомобиля сейчас — от трёхсот до шестисот кубических сантиметров. Литровая мощность — от 35 л.с./л для безнаддувного дизеля до 100 л.с./л для форсированного бензинового «атмосферника». Для серийных двигателей это оптимум, выходить за рамки которого просто невыгодно.

Очень маленькие цилиндры часто встречаются на японских микролитражках: например, объём рядной «четвёрки» у Subaru R1 — всего 658 см³. Из «европейцев» отличился трёхцилиндровый дизельный Smart — 799 «кубиков». Есть цилиндры-напёрстки и у «корейцев»: трехцилиндровый Matiz — это 796 «кубиков», а четырёхцилиндровый — 995. «Четвёркой» объёмом 1086 см³ оснащаются Hyundai i10 и Kia Picanto. На другом полюсе — конечно же «американцы». Объём V-образной «восьмёрки» купе Chevrolet Corvette Z06 составляет 7011 см³. Хотя японцы, например, оснащали внедорожник Nissan Patrol предыдущего поколения рядной «шестёркой» TB48DE объёмом 4758 «кубиков».

Сегодня двигатель мощностью 100 л.с. в большинстве случаев окажется четырёхцилиндровым, у 200-сильного будет четыре, пять или шесть цилиндров, у 300-сильного — восемь. Но как эти цилиндры расположить? Иными словами — по какой схеме строить многоцилиндровый двигатель?

Простота хуже компактности
  • Двигатель R3 (А). Угол между кривошипами — 120°.
  • Добиться равномерности вспышек в двухцилиндровом двигателе (В) можно только при двухтактном цикле.
  • А такой мотор (C), например, стоит на «Оке». Поршни движутся синфазно.

Двух- и трёхцилиндровые двигатели встречаются на автомобилях нечасто, хотя мода на «двухгоршковые» моторчики набирает обороты. Тому способствуют продвинутые системы смесеобразования и применение турбонаддува (как, например, на 85-сильной двухцилиндровой турбоверсии хэтчбека Fiat 500 ). А вот рядная «четвёрка» попала в самый массовый диапазон рабочего объёма легковых автомобилей — от 1,0 до 2,4 л.

В современных четырёхтактных двухцилиндровых двигателях, вроде турбомотора Фиата 500, проблему вибраций отчасти решает балансирный вал.

Пятицилиндровые рядные моторы появились на серийных автомобилях сравнительно недавно — в середине 70-х годов. Первым был Mercedes-Benz со своими дизельными «пятёрками» — они появились в 1974 году (на модели 300D с кузовом W123). Через два года увидел свет пятицилиндровый двухлитровый бензиновый двигатель Audi. А в конце 80-х годов такие моторы сделали Volvo и FIAT.

Рядные «шестёрки», до недавнего времени столь популярные в Европе, нынче во мгновение ока стали вымирающим видом. А про рядную «восьмёрку» и говорить нечего — с ней практически распрощались еще в 30-х годах. Почему?

Ответ прост. С ростом числа цилиндров двигатель становится длиннее, и это создаёт массу неудобств при компоновке. Например, втиснуть поперёк моторного отсека переднеприводного автомобиля рядную «шестёрку» удавалось в считанных случаях — можно припомнить лишь английский Austin Maxi 2200 середины 60-х годов (тогда конструкторам пришлось спрятать коробку передач под двигателем) и Volvo S80 с суперкомпактной коробкой передач.

Два мотора R3, составленные друг за другом, дают великолепный результат — абсолютно уравновешенную рядную «шестёрку».

Как укоротить рядный мотор? Его можно «распилить» пополам, поставить две половинки рядом друг с другом и заставить работать на один коленвал. Такие моторы, у которых цилиндры расположены в виде латинской буквы V, вдвое короче рядных — наибольшее распространение получили двигатели с углом развала блока 60° и 90°. А V-образный мотор с углом развала блока 180°, в котором цилиндры расположены друг против друга, называют оппозитным (или «боксером» — обозначения В2, В4, В6 и т. д. происходят именно от слова boxer).

Почему моторы умирают раньше срока: страшные сказки

Любой мотор рассчитан на долгую и счастливую жизнь. Срок его службы определен в важном и четко обозначенном параметре, закладываемом еще при его проектировании, – сроке службы до списания, или полном ресурсе. Но, бывает, не доживает он до предписанного срока жизни, причем так, что дым из-под капота, шум и грохот. Иногда еще может помочь реанимация в виде капитального ремонта, но частенько – сразу в морг, то есть под замену.

Итак, рассмотрим наиболее часто встречающиеся случаи «внезапной смерти» моторов, но не для того, чтобы насладиться «страшилкой», а чтобы разобраться, почему такое могло случиться. И виноват ли сам мотор? Или первопричиной беды все-таки были мы сами?

СТРАШИЛКА №1: КОГДА ТЕПЛО НЕ ВО БЛАГО

Мотор – это тепловая машина. Чтобы она работала, в ней должно что-то выделять тепло. Топливо горит – значит, мотор греется, и это нормально, это штатный режим его работы. Но греть бесконечно нельзя, каждый металл, из которого изготовлены детали, имеет свой порог термостойкости. Если предельные температуры превышены, чудес может быть много. Страдают при этом в первую очередь поршни и клапаны.

Пламенный мотор. 10 худших двигателей «Формулы-1» в истории

Зачастую на коленке собирают не только шасси, но и двигатель – это доказали специалисты восьмидесятых и подтвердили эксперты Renault в нынешнем сезоне.

Pratt Whitney STN76

1971 год

Эра турбин захватила не только авиастроение: новые двигатели применяли на танках, кораблях и даже автомобилях. Конструкторский гений «Формулы-1» семидесятых Колин Чепмен решил, что его Lotus готов шагнуть в сторону газотурбинной невероятной тяги. Инженеры компании Pratt Whitney подготовили для Lotus 56B компактный двигатель от вертолета, повысив его мощность и доработав для гонок.

На бумаге все выглядело отлично, но на трассе оборачивалось кошмаром. Турбина пожирала газ из расчета литр на километр, реагировала на педаль акселератора с запозданием в пару секунд и глохла в поворотах без тяги. Технические проблемы сыпались одна за другой – особенно доставалось приводу, испытывавшему непривычные нагрузки. Лишь в одной гонке Эмерсон Фиттипальди добрался до финиша, но лишь на восьмом месте, не сумев реализовать турбину на самой быстрой трассе «Формулы-1» в Монце.

Результаты для двигателя: 3 Гран-при, 0 очков.

Motori Moderni 615-90 1.5 V6

1985 год

Итальянский самодел для итальянских конюшен. Именно таким было призвание увесистого (на 50 кг тяжелее остальных) и маломощного (720 сил против 1000) двигателя V6 турбо. В среднем он позволял своим клиентам проигрывать какие-то 6-10 секунд с круга, приводя фанатов «Формулы-1» в бешенство своей медлительностью. Бедные Minardi и AGS не могли себе позволить монстров из Германии, Японии или Франции, довольствуясь проблемным итальянским товаром. Лишь трижды Пьерлуиджи Мартини добирался до финиша, хотя двигатель виноват только в половине сходов – итальянец много рисковал, чтобы ликвидировать недостатки ужасного мотора, и часто вылетал с трассы сам.

Концепция разрабатываемой схемы

После длительных размышлений и изучений уровня существующей техники, как и истории всего двигателестроения я пришел к выводу - что совершенный роторный мотор не должен иметь в своём устройстве ни одной детали или части, совершающей возвратно - поступательные или колебательные движения и испытывающей знакопеременные нагрузки. Именно только в таком варианте роторный двигатель будет иметь неоспоримые и многократные преимущества перед поршневым мотором и сразу же вытеснит его из техники двигателей малой и средней мощности. Именно как произошло в 50-60-х годах в области авиционного применения двигателей, где турбореактивные двигатели быстро и навсегда вытеснили поршневые моторы в схемах средних и больших самолетов.

Итак - совершенный роторный мотор такой, в котором все движущиеся детали совершают лишь простое вращательное движение. Именно по причине отсутствия такого положения дел двигатель Ванкеля и не смог стать эффективнее, чем поршневые моторы- планетарное вращение ротора в нем порождает массу трудно разрешимых технических проблем.

Вначале я разработал схему, которая потом- при тщательном изучении материалов этой схемы, оказалась известна (точнее забыта), а именно - применена 140 лет назад в России инженером - механиком Н.Н. Тверским для паровых установок и вполне эффективно эксплуатировалась в десятках моторов долгое время. Но потом, как это часто бывает в России, об этой технической удаче просто забыли.

Получилось, что я повторно изобрел принцип, который уже применялся более ста лет назад. Было очень досадно - вот изобрел, но уже оказался не первым. Но у Н.Н. Тверского на его подводных миноносках и паровых яхтах стояла лишь машина простого расширения - применить ее для работы в режиме ДВС было невозможно. Но - сама схема по идее была настолько красивая и совершенная, что я начал ломать голову - а как её применить для ДВС? Через некоторое количество времени, наполненного бесконечными размышлениями, экспериментами на картонных и плексигласовых модельках, и вычерчиванием бесконечных схем как на компьютере,так и вручную - по старинке, у меня было уже готово несколько вариантов решения технической задачи- как вмонтировать в схему нашего великого инженера Тверского такты сжатия рабочей смеси. Из них я выбрал самую эффективную, помаялся с чертежами и расчетами еще полгодика. и понял, что всё приближается к некоей идеальной схеме и решил назвать эту концепцию совершенным роторным двигателем .

Но всякая теоретическая идея должна воплотиться в практику, чтобы доказать свое право на эффективную жизнь или потерпеть фиаско в столкновении с реальностью. Поэтому я немедленно занялся изготовлением опытно - экспериментальной модели, которая сейчас - июнь 2010 года, уже практически собрана, и готовится к режиму опытной эксплуатации.

Ниже несколько фотографий вырисовывающегося мотора.

Прошу не бросаться в критическую атаку и говорить о массивности корпуса и толщине стенок- это опытная модель и ее задача лишь подтвердить работоспособность принципа. В этой модели нет даже охлаждения - поэтому массивный корпус должен играть роль массы для отвода тепла от поверхности рабочей камеры. Но уже делаются рабочие чертежи опытно - промышленного образца, который выглядит уже существенно иначе.

Крышка корпуса на координатно - расточном станке

Украинский завод «Мотор Сич» продолжает продавать в Россию двигатели для военных вертолетов

Авиастроители России и Украины продолжают плановые кооперационные поставки на предприятия двух стран, сообщил президент ассоциации Союз авиационного двигателестроения (АССАД) Виктор Чуйко.

«Пока все поковки, штамповки, агрегаты авиадвигателей в рамках кооперационных поставок в нормальном режиме поступают из России в Украину и из Украины в Россию. Также нормально функционирует и система финансовых расчетов», — сказал В.Чуйко.

Он напомнил, что, согласно указу президента Украины Петра Порошенко, продукция военного назначения в Россию не поставляется, но в указе есть уточнение, что это касается только поставок для Минобороны РФ.

«В настоящее время запорожское предприятие „Мотор Сич“ поставляет в полном объеме авиадвигатели для вертолетов гражданского назначения и для военных вертолетов, которые изготавливаются по линии экспорта», — сказал В.Чуйко.

По его словам, были определенные проблемы с оплатой предоставляемых сторонами друг другу услуг по проектным и научным работам, но и этот вопрос сейчас решен. «В прошлом месяце Национальный банк Украины запретил финансирование услуг, которые не связаны с поставкой конкретных товаров, но в начале текущего месяца этот запрет был уточнен — разрешили оплату услуг на сумму не более 40 тыс. евро и платежи пошли», — сказал В.Чуйко.

Он отметил, что объемы сотрудничества между Россией и Украиной в сфере авиационного двигателестроения в этом году будут не ниже прошлогодних. «В целом тенденция по сравнению с прошлым годом положительная. Растут как количественные показатели производства авиадвигателей, так и объемы их продаж», — сказал В.Чуйко.

Напомним, 13 ноября гендиректор российской корпорации «Тактическое ракетное вооружение» Борис Обносов заявлял, что украинская компания «Мотор Сич» полностью приостановила поставки в Россию малоразмерных газотурбинных двигателей для крылатых ракет.

«Мотор Сич» — одно из наиболее зависимых от российского рынка предприятий Украины. На РФ приходится до 70% дохода завода.

Источники: http://www.drive.ru/technic/2010/07/20/3453536.html, http://www.zr.ru/content/articles/779178-pochemu-motory-umirayut-ranshe-sroka-strashnye-skazki/, http://www.eurosport.ru/formula-1/story_sto4796305.shtml, http://www.rotor-motor.ru/page10.htm, http://rusvesna.su/future/1417274544

Комментариев пока нет!

autopaor.ru

Виды двигателей автомобилей - Атмосферный, турбированный и компрессорный

Виды двигателей автомобилейЕще каких-то 10 лет назад турбиной, или компрессором мог похвастаться только спортивный, или тюнингованный автомобиль. Но сегодня мало кого удивишь «дополнительной мышцей» двигателя, ведь на многие автомобили завод-производитель сам устанавливает агрегат, увеличивающий мощность мотора. И если вы хотите знать, в чем отличие между атмосферным, турбированным и компрессорным двигателем, то вы попали куда нужно, потому что именно об этом мы вам и расскажем.

Для начала упомянем, что автомобильные двигатели можно разделить на 2 группы: атмосферные и наддувные. Конструктивно эти типы очень сильно отличаются, да и прирост мощности двигателя дают разный.

Основы атмосферного двигателя

Атмосферный двигатель является едва ли не самым сложным по своему устройству. В атмосферном двигателе  топливно-воздушная смесь подается в цилиндры без малейших сопротивлений, а это означает, что серьезным доработкам подвергся коллектор. Во-вторых, очень тонко настраивается распредвал, с целью обеспечить максимально длительное открытие впускного клапана. Наконец, увеличивается ход поршня и диаметр цилиндра, с целью обеспечить еще большую мощность двигателя. Как видим, атмосферный двигатель очень сложен в конструктивном плане, но эластичен и отзывчив в работе.

Главная изюминка атмосферного двигателя в том, что он имеет запас мощности на любых оборотах, мгновенно реагирует на нажатие педали акселератора. Это значит, что атмосферный двигатель лучше всех раскручивается до максимальных оборотов. Вместе с этим, среди имеющихся недостатков, наиболее серьезными является высокий расход топлива и относительно не высокий ресурс мотора.

Немного о турбированных двигателях

Турбированный двигатель – это классика жанра. Большинство автовладельцев отдают свое предпочтение именно турбированным моторам. Принцип работы турбированного двигателя примерно тот же, что и у атмосферного. Топливно-воздушная смесь под давлением попадает в цилиндры двигателя. Разница только в давлении. Кроме того, в зависимости от желаний владельца, можно увеличить давление, нагнетаемое турбиной, что даст прирост мощности.

Тем не менее, хоть турбированные двигатели и являются наиболее распространенными из рассматриваемых нами типов, турбо моторы все же имеют некоторые недостатки:

  • Во-первых, турбина дает прирост мощности только на высоких оборотах двигателя, при малых оборотах она практически не чувствуется.
  • Во-вторых, для турбированных моторов характерно такое явление, как турбопровал. Это значит, что турбина не сразу же дает прирост мощности, после того, как вы нажали педаль газа в пол, а спустя несколько десятых секунд. Возможно, для городской езды это мелочь, но в автоспорте это серьезный недостаток. Наконец, турбированные двигатели очень чувствительны к системе смазки.

Компрессорные двигатели

Компрессор на двигателе – это своего рода механический нагнетатель, который приводится в движение ременным приводом. Это значит, чем выше будут обороты двигателя, тем больше мощности он получит. Компрессор не только подает топливно-воздушную смесь в цилиндры под давлением, но и продувает их, когда впускной и выпускной клапан находятся в положении наполовину открытия и закрытия. Таким образом, компрессор не только увеличивает мощность, но и прочищает цилиндры, что позволяет двигателю постоянно работать на максимуме своих возможностей.

Недостатком компрессора является то, что он эффективно себя показывает только на двигателях большого объема. Следовательно, об экономичности такого двигателя также следует забыть.

Читайте также:
  • Плюсы и минусы турбированных двигателейПлюсы и минусы турбированных двигателей

    Большинство современных автомобилей с завода оснащены турбиной, которая, как минимум на 10% способна увеличить мощность двигателя, не в ущерб расходу топлива. Безусловно, турбированные моторы – это большой шаг вперед, так как при небольшом объеме двигателя можно получить довольно высокую мощность. Но, как и любая другая доработка, турбированные моторы имеют как свои преимущества, так и ...

  • Что делать, если плохо дует печка в машине?Что делать, если плохо дует печка в машине?

    Представьте себе одну из неприятнейших ситуаций, которая может приключиться абсолютно с каждым автомобилистом: вы подходите к своему автомобилю, двигатель и кондиционер которого активированы с помощью сигнализации с автозапуском, надеетесь на то, что салон уже успел прогреться. Но попав в машину, понимаете, что не все так сладко. Вроде бы, все работает, но поток воздуха совсем уж слабый. Что ...

  • Как правильно установить в автомобиле детское кресло?Как правильно установить в автомобиле детское кресло?

    Если в вашей семье ожидается пополнение, либо же оно уже произошло, тогда данная статья будет особенно актуальна для вас. Мы поговорим о том, как правильно установить детское кресло в салоне автомобиля, но прежде, чем мы перейдем к технической части, давайте поговорим немного о том, для чего же все-таки созданы детские автокресла, и можно ли обойтись без ...

pro-tachku.ru

ДВИГАТЕЛЬ - это... Что такое ДВИГАТЕЛЬ?

  • двигатель — мотор, движок; движущая сила; болиндер, ветряк, пружина, рычаг, сердце, нефтянка Словарь русских синонимов. двигатель 1. мотор 2. см. рычаг Словарь синонимов русского языка. Практический справочник. М.: Русский язык …   Словарь синонимов

  • ДВИГАТЕЛЬ — устройство, преобразующее один вид энергии в др. вид или механическую работу; (1) Д. внутреннего сгорания тепловой двигатель, внутри которого происходит сжигание топлива и часть выделившейся при этом теплоты преобразуется в механическую работу.… …   Большая политехническая энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, двигателя, муж. 1. Машина, приводящая что нибудь в движение; механизм, преобразующий какой нибудь вид энергии в механическую работу (тех.). Двигатель внутреннего сгорания. Электрический двигатель. 2. Сила, способствующая прогрессу в… …   Толковый словарь Ушакова

  • ДВИГАТЕЛЬ — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Подразделяют на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов (воды,… …   Большой Энциклопедический словарь

  • Двигатель — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Двигатели подразделяются на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов …   Официальная терминология

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, машина, преобразующая различные виды энергии в механическую работу. Работа может быть получена от вращающегося ротора, возвратно поступательно движущегося поршня или от реактивного аппарата. Различают первичные и вторичные двигатели.… …   Современная энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, я, муж. 1. Машина, преобразующая какой н. вид энергии в механическую работу. Д. внутреннего сгорания. Ракетный д. 2. перен., чего. О силе, содействующей росту, развитию в какой н. области (высок.) Труд д. прогресса. Толковый словарь… …   Толковый словарь Ожегова

  • ДВИГАТЕЛЬ — (Engine) машина, работающая по прямому замкнутому циклу и превращающая какой нибудь вид энергии в механическую работу. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • двигатель — – машина, преобразующая энергию сгорания горючки в механическую энергию – сердце любого авто. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • двигатель — Машина, преобразующая какой либо вид энергии в механическую работу [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Синонимы мотор EN enginemotor DE Motor FR moteur …   Справочник технического переводчика

  • dic.academic.ru

    Устройство автомобиля для чайников: разбираемся вместе

    Изобретение автомобиля в корне изменило человеческую жизнь, причем как в положительную, так и в негативную сторону. На сегодняшний день автомобиль – это не только средство передвижения, но и показатель статуса и положения в обществе.

    Практически каждая семья имеет в своем распоряжении хотя бы один автомобиль, а существуют и города, где автомобилей уже давно больше чем людей.

    Для того, что бы понимать, как управлять транспортным средством и как правильного его эксплуатировать нужно, знать, по крайней мере, из чего оно состоит и как работает. Каждый владелец автомобиля не раз интересовался устройством своего железного коня. Для некоторых достаточно владение базовыми знаниями, а некоторые предпочитают изучить каждую деталь автомобиля. Конечно, для того, что бы охватить все нюансы устройства автомобиля потребуется, как минимум написать книгу, а вот для того, что бы понимать основу и знать элементарное, достаточно прочитать данную статью.

    Возможно для кого-то устройство автомобиля – это высшая математика, но если потратить немного времени и вникнуть в суть, все достаточно просто. Теперь обо всем по порядку.

    1.Основные узлы и системы

    Несмотря на то, что сегодня существует огромное количество разных марок и моделей автомобилей, практически все они устроены по одному и тому же принципу. Речь идет о легковых транспортных средствах. Схема устройства автомобиля условно делиться на несколько частей:

    • Кузов автомобиля или несущая конструкция. Сегодня кузов автомобиля является его основой, к которой крепятся практически все агрегаты и узлы. Кузов, в свою очередь, состоит из штампованного днища, передних и задних ланжеронов, крыши, моторного отсека и остальных навесных составляющих. Под навесными составляющими подразумевают двери, крылья, капот, крышку багажника и пр. Данное разделение достаточно условно, поскольку все детали автомобиля, так или иначе, связаны между собой;

    • Ходовая часть автомобиля. Название говорит само за себя и предполагает, что ходовая часть состоит из множества узлов и агрегатов, с помощью которых автомобиль имеет возможность передвигаться. Ее основными составляющими принято считать переднюю и заднюю подвески, ведущие мосты и колеса. Также к ходовой части автомобиля относят раму, к которой также крепиться большинство агрегатов. Рама является предшественницей кузова.

    • С помощью ведущих мостов нагрузка передается от рамы или кузова на колеса и наоборот. Что касается подвески, на многих автомобилях установлена подвеска по типу МакФерсон, которая значительно улучшает управление автомобилем. Существуют также независимые (каждое колесо по отдельности прикреплено к кузову) и зависимые (может быть в виде балки или ведущего моста, считается устаревшей) подвески;

    • Трансмиссия автомобиля. Под трансмиссией автомобиля принято считать силовую передачу. Ее основной задачей является передача крутящего момента от коленчатого вала к ведущим колесам. В свою очередь, трансмиссия также состоит из нескольких частей, в частности из коробки передач, сцепления, карданной передачи, дифференциала, полуосей и главной передачи. Последние соединены со ступицами колес;

    • Двигатель автомобиля. Основной задачей и предназначением двигателя является преобразование тепловой энергии в механическую. Далее данная энергия передается через трансмиссию на колеса автомобиля;

    • Механизм управления. Собственно сам механизм управления состоит из тормозной системы и рулевой;

    • Электрооборудование автомобиля. Ни один современный автомобиль не обходиться без электрики, основными частями которой являются аккумуляторная батарея, электропроводка, генератор переменного тока и система управления двигателем. Это только основные части автомобиля, каждая из которых предусматривает систему в системе и порой не одну. На некоторых частях стоит остановиться детальней.

    2. Краткий обзор видов моторов

    Прежде всего, стоит отметить, что двигатель и мотор это одно и то же. Мотором чаще называют двигатели внутреннего сгорания или электрические. Не секрет, что двигатель служит источником энергии для передвижения транспортного средства. Большинство автомобилей предусматривает наличие двигателей внутреннего сгорания, которые условно можно поделить на:

    • Поршневые, в которых расширяющиеся газы во время сгорания топлива заставляют двигаться поршень, который в свою очередь приводит в движение коленчатый вал автомобиля;

    • В роторных двигателях те же газы приводят в движение вращающуюся деталь, собственно ротор.

    Если углубляться, существует большое количество типов и подтипов двигателей. По типу топлива двигатели можно разделить на дизельные, бензиновые, газобаллонные и газогенераторные.

    Также есть газотурбинные двигатели внутреннего сгорания, электрические, орбитальные, ротативные, роторно-лопастные и пр. На сегодняшний день наиболее распространенным является поршневой двигатель внутреннего сгорания.

    3. Краткий обзор видов КПП

    КПП или коробка передач – это одна из основных частей трансмиссии автомобиля. В основном КПП принято делить на три типа, а именно:

    • Механическая коробка передач. Принцип ее работы заключается в том, что водитель с помощью рычага переключает передачи, при этом постоянно следит за нагрузкой двигателя и скоростью автомобиля;

    • Автоматическая коробка передач исключает необходимость постоянно следить за скоростью и нагрузкой, так же не нужно постоянно пользоваться рычагом;

    • Роботизированная коробка передач – это полуавтоматический вид коробки передач, которая комбинирует свойства механической и автоматической коробки передач.

    На самом деле видов и подвидов КПП гораздо больше. Так, различают Tiptronic(основа – автоматическая КПП с ручным переключателем скоростей), DSG( оборудована 2 сцеплениями, имеет автоматический привод переключения и представляет собой 6ти ступенчатую КПП) и вариатор ( бесступенчатая трансмиссия).

    4. Тормозная система

    Как и следует из названия, тормозная система предназначена для снижения скорости автомобиля или полной его остановки. Состоит тормозная система из тормозных колодок, дисков, барабанов и цилиндров. Условно тормозную систему можно поделить на два типа – это рабочая (предназначена для полной остановки или снижения скорости) и стояночная (предназначена для удержания автомобиля на неровном или сложном дорожном покрытии).

    Современные автомобили предусматривают установку тормозных систем, которые состоят из тормозных механизмов и гидропривода. В то время, когда вы нажимаете на педаль тормоза,в гидроприводе возникает избыточное давление, которое возникает благодаря тормозной жидкости. Это, в свою очередь, влечет срабатывание прочих тормозных механизмов.

    5. Сцепление

    Если говорить простыми словами, сцепление предназначено для того, что бы на короткое время разъединять двигатель от трансмиссии, а потом заново их соединять. Сцепление состоит из механизма сцепления и привода. Привод предназначен для того, что бы передавать усилия от водителя к определенному механизму. В автомобиле каждый механизм имеет свой привод, благодаря которому и приходит в действие.

    Механизм сцепления – это устройство, в котором происходит процесс передачи крутящего момента посредством трения. Составляющими частями механизма сцепления являются картера, кожуха, ведущий, ведомый и нажимный диски.

    Все вышеописанное – это только вершина айсберга, так как каждый из пунктов содержит еще не один десяток подпунктов. Для общего понимания устройства автомобиля вполне достаточно знать его основные узлы и агрегаты. Теперь вы точно знаете, как и почему ваш автомобиль двигается, тормозит и «кушает» бензин.

    Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

    Была ли эта статья полезна?Да Нет

    auto.today

    Зачем выбирать мотор большого объема и почему на американских авто устанавливается большой объем двигателя при не всегда впечатляющей мощности?

    Некоторые японские/европейские авто выжимают 300 л.с. из 2 или 3 литров двигателя, а не из 5 литров (как американские) и они же при одинаковом его объеме с американскими авто выдают больше мощности в л.с., например, Мерседес объемом в 5 литров выдает 330 л/с, а Джип Гранд Чероки при том же объеме выдает всего-навсего 220.Почему?

    Откинув эмоции и не переходя на личности, попробую рассказать, что такое американский двигатель вообще и он же большого объема в частности.

    Дело в том, что люди, которые пытаются сравнивают классические американские двигатели с европейскими или японскими по мощности — являются абсолютными невеждами в автомобильной области вообще, и в области двигателестроения в частности.

    Поясню.

    Классический большеобъемный американский мотор и европейские/японские малолитражные моторы имеют кардинальные отличия.

    Но обо всем по порядку.

    Когда то давно, в 50-70 годах, американцы были беззаботными и веселыми ребятами, которые с удовольствием ездили на больших, и на тот момент очень совершенных автомобилях.

    В то время надпись Made in USA на автомобиле означала престиж и качество. Да и по другому быть не могло, ибо уже тогда американцы делали отличных машин едва ли не больше, чем во всем остальном мире вместе взятом.

    Японский автопром тогда ходил под стол пешком и ходил туда в таком положении где-то до середины 80-х годов. В европе тогда автопром тоже не блистал яркостью и разнообразием.

    Кстати, такой любимый нынешнеми ценителями MB SL Gullwing, имел в подвеске не шаровые опоры, а шкворни, в то время как в америке в это же время даже на семейные седаны ставились шаровые опоры. Это так, для сведения, чтобы был ясен уровень Америки и Европы с Японией на тот момент.

    Тогда, каждому американцу было ясно как день, что хороший автомобиль — это большой американский автомобиль. Чем больше и просторнее — тем лучше. И для обеспечения неплохой динамики почти 3-х тонным машинкам нужен был мощный двигатель.

    И американцы, не долго думая, рассудили просто. Чем больше объем — тем больше мощность. Отсюда и пошли 4, 5, 7 и 8 литровые двигатели. Тогда, в то время они без особого напряга выдавали 300-400 лошадей и могли разгонять 3-х тонного 6-ти метрового сверкающего хромом красавца до сотни секунд за 9-10. Машинка при этом могла кушать 30-40 литров бензина, однако, такой расход в то время никого особенно не пугал, ибо бензина было много, он был дешевый а доходы даже простых американцев росли вместе с подъемом экономики Америки.

    В европе же, от банальной послевоенной бедности и природной прижимистости европейцев такие мощные двигатели никак не могли появится, и европа пошла своим путем. Они начали делать маленькие двигатели и ставить их в свои плешивые маленькие автомобильчики типа Ситроен 2CV. А уж потом, по мере развития технологий стали доводить эти маленькие моторчики и поднимать их мощность с целью научить свои евродрандулеты ездить быстрее.

    Но пришел топливный кризис 70-х и американцы задумались о том, что не все в этом мире так просто. К тому же в штатах, вовсю набирались сил т.н. зеленые, борющиеся за чистый воздух и прочие высокие материи. Их крайне раздражали прожорливые и достаточно неэкологичные моторы большого объема, и в результате под лозунгом борьбы за экологию и экономию бензина, произошло ключевое событие:

    АМЕРИКАНСКИЕ ДВИГАТЕЛИ УРЕЗАЛИ ПО МОЩНОСТИ ОСТАВИВ ПРИ ЭТОМ ИХ ОБЪЕМ.

    И в результате к примеру Бьюик Ривера 74 года выпуска с двигателем объемом 7.5 литров имел мощность 245 лошадей при степени сжатия 8.5:1. Хотя снять с этого двигателя все 400 лошадей можно было бы путем нескольких простых операций. Но НИЗЗЯ. Зеленые не разрешали.

    НО.

    Как примерно гласит американская пословица — "Если тебе попался лимон, не расстраивайся — сделай из него лимонад" так и в урезании мощности двигателей вскоре нашли своеобразный плюс.

    Во-первых, большие двигатели с низкой мощностью обладали гигантским крутящим моментом на низких оборотах, и как следствие во первых, автомобиль обладал хорошей динамикой разгона на любых скоростях.

    Во-вторых, из за того что двигатель был низкооборотистым (максимум 4000-4500 об/мин), автомобиль обладал НИЗКИМ УРОВНЕМ ШУМА двигателя при движении с постоянной скоростью. Ну а так как хорошая машина для американцев — это комфортная машина, то такое положение вещей очень даже всех устроило.

    И с тех пор, американцы поступили мудро, сохранив традицию оснащать свои автомобили большеобъемными, низкооборотистыми моментными двигателями. Именно поэтому двигатель, например Джип Гранд Чероки при объеме в 5.2 литра имеет мощность "лишь" 220 лошадей, но зато при этом обладает далеко недетским крутящим моментом в 406 Nm уже при 2800 оборотах, что делает его очень серьезным противником на светофорных гонках даже для 740 БМВ.

    А все дело в том, что БМВ обладая большей мощностью при меньшем объеме, имеет пик крутящего момента выше чем двигатель гранда. И так в любом европейском или японском двигателе.

    ЧЕМ ВЫШЕ МОЩНОСТЬ ПРИ МЕНЬШЕМ ОБЪЕМЕ, ТЕМ БЫСТРЕЕ ДОЛЖЕН ВРАЩАТЬСЯ ДВИГАТЕЛЬ.

    И наоборот.

    На практике это означает, что для того чтобы какой нибудь узкоглазый автомобиль с 2 литровым 200 лошадным двигателем разгонялся так как Гранд, двигатель этого узкоглазого должен визжать как электродрель где нибудь на 8000 оборотов, в то время как гранд будет разгонятся точно так же, а то и быстрее расслабленно бурча на 3000 оборотах.

    Это немного утрированно, но смысл именно такой.

    Итак, законспектируем и запомним:

    1. На разгонную динамику автомобиля влияет не максимальная мощность двигателя, а его крутящий момент, измеряемый в Ньютон-метрах. Чем ниже по оборотам двигателя находится пик крутящего момента, тем быстрее машина будет разгонятся с низкого старта. Именно в этом сильны американские большеобъемные двигатели.

    2. Максимальная мощность двигателя влияет на максимальную скорость автомобиля, а не на динамику его разгона.

    3. Классический большеобъемный американский двигатель отличается от европейского и японского прежде всего тем, что обладает низкой литровой мощностью но при этом большим крутящим моментом на низких оборотах (2500-3000), низкой степенью сжатия и, как следствие, БОЛЬШОЙ ДОЛГОВЕЧНОСТЬЮ.

    4. Для особо непонятливых — еще проще: Американский двигатель крутится медленно, а разгоняет машину офигенно быстро. В этом его ОСНОВНОЕ отличие от европейских и японских малообъемных агрегатов.

    auto.mirtesen.ru


    Читайте также
    • Гиперскоростная звезда – более 1.000.000 миль в час
      Гиперскоростная звезда – более 1.000.000 миль в час
    • Астрономы обнаружили самую большую спиральную галактику
      Астрономы обнаружили самую большую спиральную галактику
    • Млечный путь содержит десятки миллиардов планет, схожих с Землей
      Млечный путь содержит десятки миллиардов планет, схожих с Землей
    • Млечный путь разорвал своего спутника на четыре отдельных хвоста
      Млечный путь разорвал своего спутника на четыре отдельных хвоста
    • Найден источник водородных газов для нашей Галактики
      Найден источник водородных газов для нашей Галактики