Содержание
Плюсы и минусы автомобилей на сжатом воздухе
Несколько лет назад мир облетела новость о том, что индийская компания Tata собирается запустить в серию автомобиль, работающий на сжатом воздухе. Планы так и остались планами, но пневматические автомобили явно стали трендом: каждый год появляется несколько вполне жизнеспособных проектов, а компания Peugeot в 2016 году собирается поставить на конвейер воздушный гибрид. Почему же пневмокары внезапно вошли в моду?
Все новое — это хорошо забытое старое. Так, электромобили в конце XIX века были популярнее бензиновых собратьев, затем они пережили столетнее забвение, а потом снова «восстали из пепла». То же касается и пневмотехники. Еще в 1879 году французский пионер авиации Виктор Татен спроектировал самолет Aéroplane, который должен был подниматься в воздух благодаря двигателю на сжатом воздухе. Модель этой машины успешно летала, хотя в полном размере самолет построен не был.
Родоначальником пневмодвигателей на наземном транспорте стал другой француз, Луи Мекарски, разработавший подобный силовой агрегат для парижских и нантских трамваев. В Нанте машины испытали в конце 1870-х, а к 1900 году Мекарски владел парком из 96 трамваев, что доказывало эффективность системы. Впоследствии пневматический «флот» был заменен электрическим, но начало было положено. Позднее пневмолокомотивы нашли себе узкую сферу повсеместного применения — шахтное дело. В то же время начались и попытки поставить воздушный двигатель на автомобиль. Но до начала XXI века эти попытки оставались единичными и не стоящими внимания.
Преимущества воздуха
Пневматический двигатель (или, как говорят, пневмоцилиндр) преобразует энергию расширяющегося воздуха в механическую работу. По принципу действия он аналогичен гидравлическому. «Сердце» пневмодвигателя — поршень, к которому прикреплен шток; вокруг штока навита пружина. Воздух, поступающий в камеру, с увеличением давления преодолевает сопротивление пружины и перемещает поршень. На фазе выпуска, когда давление воздуха падает, пружина возвращает поршень в исходное положение — и цикл повторяется. Пневмоцилиндр вполне можно назвать «двигателем внутреннего несгорания».
Более распространена мембранная схема, где роль цилиндра выполняет гибкая мембрана, к которой точно так же прикреплен шток с пружиной. Ее преимущество заключается в том, что не нужна столь высокая точность посадки подвижных элементов, не требуются смазочные материалы, а герметичность рабочей камеры повышается. Существуют также роторные (пластинчатые) пневмодвигатели — аналоги ДВС Ванкеля.
Основные плюсы пневмодвигателя — это его экологичность и низкая стоимость «топлива». Собственно, из-за безотходности пневмолокомотивы и получили распространение в шахтном деле — при использовании ДВС в замкнутом пространстве воздух быстро загрязняется, резко ухудшая условия работы. Отработанные же газы пневмодвигателя — это обычный воздух.
Один из недостатков пневмоцилиндра — относительно низкая плотность энергии, то есть количество вырабатываемой энергии на единицу объема рабочего тела. Сравните: воздух (при давлении 30 МПа) имеет плотность энергии порядка 50 кВт•ч на литр, а обычный бензин — 9411 кВт•ч на литр! То есть бензин как топливо эффективнее почти в 200 раз. Даже с учетом не очень высокого КПД бензинового двигателя он «выдает» в итоге около 1600 кВт•ч на литр, что значительно выше, чем показатели пневмоцилиндра. Это ограничивает все эксплуатационные показатели пневмодвигателей и движимых ими машин (запас хода, скорость, мощность и т. д.). Помимо того, пневмодвигатель имеет относительно небольшой КПД — порядка 5−7% (против 18−20% у ДВС).
Плюсы
+ Отсутствие вредных выбросов
+ Возможность заправки автомобиля в домашних условиях
+ Невысокая стоимость ввиду простоты конструкции двигателя
+ Возможность применения рекуператора энергии (например, сжатия и накопления дополнительного воздуха за счет торможения автомобиля)
Минусы
— Низкие КПД (5−7%) и плотность энергии
— Необходимость во внешнем теплообменнике, поскольку при уменьшении давления воздуха двигатель сильно переохлаждается
— Низкие эксплуатационные показатели пневмоавтомобилей.
Пневматика XXI века
Актуальность экологических проблем XXI века заставила инженеров вернуться к давно забытой идее использования пневмоцилиндра в качестве двигателя для дорожного транспортного средства. По сути, пневмоавтомобиль экологичнее даже электромобиля, элементы конструкции которого содержат вредные для окружающей среды вещества. В пневмоцилиндре же — воздух и ничего кроме воздуха.
Поэтому основной инженерной задачей было приведение пневмокара к виду, в котором он мог бы конкурировать с электромобилями по эксплуатационным характеристикам и стоимости. Подводных камней в этом деле множество. Например, проблема дегидратации воздуха. Если в сжатом воздухе будет хотя бы капля жидкости, то из-за сильного охлаждения при расширении рабочего тела она превратится в лед, и двигатель просто заглохнет (или даже потребует ремонта). Обычный летний воздух содержит примерно 10 г жидкости на 1 м3, и при наполнении одного баллона нужно затратить дополнительную энергию (около 0,6 кВт•ч) на дегидратацию — причем эта энергия невосполнима. Данный фактор сводит на нет возможность качественной домашней заправки — оборудование для дегидратации невозможно установить и эксплуатировать в домашних условиях. И это лишь одна из проблем.
Тем не менее тема пневмоавтомобиля оказалась слишком привлекательной, чтобы о ней забыть.
Сразу в серию?
Одно из решений, позволяющих минимизировать недостатки пневмодвигателя, — облегчение автомобиля. Действительно, городской микролитражке не нужен большой запас хода и скорость, а вот экологические показатели в мегаполисе играют значительную роль. Именно на это рассчитывают инженеры франко-итальянской компании Motor Development International, которые на Женевском автосалоне 2009 года представили миру пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. MDI начали «сражаться» за пневмокар еще в 2003-м, показав концепт Eolo Car, но лишь спустя десять лет, набив множество шишек, французы пришли к приемлемому для конвейера решению.
MDI AIRPOD Крошечный трехместный пневмоавтомобиль французской MDI был представлен широкой публике на Женевском автосалоне 2009 года. Пожалуй, самый перспективный пневмокар. Он имеет право передвигаться по выделенным велодорожкам и не требует наличия водительских прав.
MDI AIRpod — это нечто среднее между автомобилем и мотоциклом, прямой аналог мотоколяски-«инвалидки», как ее частенько называли в СССР. Благодаря 5,45-сильному воздушному двигателю трехколесная малолитражка массой всего 220 кг может разогнаться до 75 км/ч, а запас ее хода составляет 100 км в базовом варианте или 250 км в более серьезной конфигурации. Интересно, что у AIRpod вообще нет руля — машина управляется джойстиком. В теории она может передвигаться как по дорогам общего пользования, так и по велодорожкам.
У AIRpod есть все шансы на серийное производство, поскольку в городах с развитой велоструктурой, например в Амстердаме, такие машинки могут быть востребованы. Одна заправка воздухом на специально оборудованной станции занимает около полутора минут, а стоимость передвижения составляет в итоге порядка €0,5 на 100 км — дешевле просто некуда. Тем не менее заявленный срок серийного производства (весна 2014 года) уже прошел, а воз и ныне там. Возможно, MDI AIRpod появится на улицах европейских городов в 2015-м.
Второй предсерийный концепт — это известный проект индийского гиганта Tata, автомобиль MiniCAT. Проект был запущен одновременно с AIRpod, но, в отличие от европейцев, индусы заложили в программу нормальный, полноценный микроавтомобиль с четырьмя колесами, багажником и традиционной компоновкой (в AIRpod, заметим, пассажиры и водитель сидят спинами друг к другу). Масса Tata чуть побольше, 350 кг, максимальная скорость — 100 км/ч, запас хода — 120 км, то есть MiniCAT в целом похож на машину, а не на игрушку. Интересно, что в компании Tata не мучились с разработкой воздушного двигателя «с нуля», а за $28 млн приобрели права на использование разработок MDI (что позволило последней удержаться на плаву) и усовершенствовали двигатель для приведения в движение более крупного транспортного средства. Одна из фишек этой технологии — использование тепла, выделяющегося при охлаждении расширяющегося воздуха, для нагрева воздуха при заправке баллонов.
Tata MiniCAT
Изначально Tata собиралась поставить MiniCAT на конвейер в середине 2012 года и производить порядка 6000 единиц в год. Но обкатка продолжается, а серийное производство отложено до лучших времен. За время разработки концепт успел сменить имя (ранее он назывался OneCAT) и дизайн, так что какая его версия поступит в итоге в продажу, не знает никто. Кажется, даже представители Tata.
На двух колесах
Чем легче автомобиль на сжатом воздухе, тем он более эффективен в плане эксплуатационных и экономических показателей. Логичный вывод из этого утверждения — почему бы не сделать скутер или мотоцикл?
Кроссовый мотоцикл, построенный австралийцем Дином Бенстедом на шасси Yamaha, способен разгоняться до 140 км/ч и безостановочно ехать в течение трех часов на скорости 60 км/ч. Воздушный двигатель системы Анжело ди Пьетро весит всего лишь 10 кг.
Этим озаботился австралиец Дин Бенстед, который в 2011 году продемонстрировал миру кроссовый мотоцикл O2 Pursuit с силовым агрегатом, разработанным фирмой Engineair. Последняя специализируется на уже упомянутых роторных воздушных двигателях разработки Анжело ди Пьетро. По сути, это классической компоновки «ванкели» без сгорания — ротор приводится в движение подачей воздуха в камеры. Бенстед пошел при разработке от обратного. Сперва он заказал Engineair двигатель, а потом построил вокруг него мотоцикл, использовав раму и часть элементов от серийной Yamaha WR250R. Машина получилась на удивление энергоэффективной: на одной заправке она проходит 100 км и в теории развивает максимальную скорость 140 км/ч. Эти показатели, к слову, превышают аналогичные у многих электрических мотоциклов. Бенстед остроумно сыграл на форме баллона, вписав его в раму, — это позволило сэкономить место; двигатель в два раза компактнее своего бензинового собрата, а свободное место позволяет установить второй баллон, увеличив пробег мотоцикла в два раза.
Но, к сожалению, O2 Pursuit остался лишь одноразовой игрушкой, хотя и был номинирован на престижную изобретательскую премию, учрежденную Джеймсом Дайсоном. Спустя два года идею Бенстеда подхватил другой австралиец, Дарби Бичено, который предложил создать по схожей схеме не мотоцикл, а сугубо городское транспортное средство, скутер. Его EcoMoto 2013 должен быть сделан из металла и бамбука (никакого пластика), но дальше рендеров и чертежей дело пока что не продвинулось.
Помимо Бенстеда и Бичено, схожую машину в 2010 году построил Эвин И Ян (его проект назывался Green Speed Air Motorcycle). Все три конструктора, к слову, были студентами Королевского технологического института Мельбурна, и потому их проекты схожи, используют один и тот же двигатель и… не имеют шанса на серию, оставаясь исследовательскими работами.
Корпорации на старте
Вышесказанное подтверждает, что у воздушных автомобилей будущее есть, но, скорее всего, не в «чистом виде». Все-таки они имеют свои ограничения. Тот же MDI AIRpod провалил абсолютно все краш-тесты, поскольку его сверхлегкая конструкция не позволяла должным образом защищать водителя и пассажиров.
А вот использовать пневмотехнологии в качестве дополнительного источника энергии в гибридном автомобиле вполне реально. В связи с этим компания Peugeot объявила о том, что с 2016 года часть кроссоверов Peugeot 2008 будет выпускаться в гибридном варианте, одним из элементов которого будет установка Hybrid Air. Эта система разработана в сотрудничестве с Bosch; суть ее в том, что энергия ДВС будет запасаться не в форме электроэнергии (как в обычных гибридах), а в баллонах со сжатым воздухом.
Шасси Peugeot 2008 Hybrid Air На полном баке и полной заправке воздухом Peugeot 2008 Hybrid Air может проехать до 1300 км.
Peugeot 2008 Hybrid Air сможет двигаться, используя энергию ДВС, воздушного силового агрегата или их комбинации. Система будет сама распознавать, какой из источников энергоэффективнее в той или иной ситуации. В городском цикле, в частности, 80% времени будет использоваться энергия сжатого воздуха — он приводит в движение гидронасос, который вращает вал при отключенном ДВС. Суммарная экономия топлива при такой схеме составит до 35%. При работе на чистом воздухе максимальная скорость автомобиля ограничивается 70 км/ч.
Концепт Peugeot выглядит абсолютно жизнеспособным. С учетом экологических преимуществ подобные гибриды вполне смогут потеснить электрические в течение ближайших пяти-десяти лет. И мир станет немножечко чище. Или не станет.
Соревнование на скорость
В 2011 году спортивный автомобиль Toyota Ku: Rin установил мировой рекорд скорости для транспортных средств, приводимых в движение энергией сжатого воздуха. Обычно пневмоавтомобили не разгоняются более чем до 100−110 км/ч, концепт же Toyota показал официальный результат 129,2 км/ч. Ввиду «заточенности» на скорость, Ku: Rin на одной зарядке мог проехать всего 3,2 км, но больше трехколесному одноместному болиду и не требовалось. Рекорд установлен. Интересно, что до того рекорд составлял всего лишь 75,2 км/ч и был установлен в Бонневилле болидом Silver Rod конструкции американца Дерека Маклиша летом 2010 года.
Источник: popmech.ru
Якщо ви знайшли помилку, будь ласка, виділіть фрагмент тексту та натисніть Ctrl+Enter.
Подобається контент? Підтримай Autogeek на Patreon!
Экологичные авто
Несколько лет назад мир облетела новость о том, что индийская компания Tata собирается запустить в серию автомобиль, работающий на сжатом воздухе. Планы так и остались планами, но пневматические автомобили явно стали трендом: каждый год появляется несколько вполне жизнеспособных проектов, а компания Peugeot в 2016 году планировала поставить на конвейер воздушный гибрид. Почему же пневмокары внезапно вошли в моду?
Тим Скоренко
Все новое — это хорошо забытое старое. Так, электромобили в конце XIX века были популярнее бензиновых собратьев, затем они пережили столетнее забвение, а потом снова «восстали из пепла». То же касается и пневмотехники. Еще в 1879 году французский пионер авиации Виктор Татен спроектировал самолет A? roplane, который должен был подниматься в воздух благодаря двигателю на сжатом воздухе. Модель этой машины успешно летала, хотя в полном размере самолет построен не был.
Родоначальником пневмодвигателей на наземном транспорте стал другой француз, Луи Мекарски, разработавший подобный силовой агрегат для парижских и нантских трамваев. В Нанте машины испытали в конце 1870-х, а к 1900 году Мекарски владел парком из 96 трамваев, что доказывало эффективность системы. Впоследствии пневматический «флот» был заменен электрическим, но начало было положено. Позднее пневмолокомотивы нашли себе узкую сферу повсеместного применения — шахтное дело. В то же время начались и попытки поставить воздушный двигатель на автомобиль. Но до начала XXI века эти попытки оставались единичными и не стоящими внимания.
Преимущества воздуха
Пневматический двигатель (или, как говорят, пневмоцилиндр) преобразует энергию расширяющегося воздуха в механическую работу. По принципу действия он аналогичен гидравлическому. «Сердце» пневмодвигателя — поршень, к которому прикреплен шток; вокруг штока навита пружина. Воздух, поступающий в камеру, с увеличением давления преодолевает сопротивление пружины и перемещает поршень. На фазе выпуска, когда давление воздуха падает, пружина возвращает поршень в исходное положение — и цикл повторяется. Пневмоцилиндр вполне можно назвать «двигателем внутреннего несгорания».
Более распространена мембранная схема, где роль цилиндра выполняет гибкая мембрана, к которой точно так же прикреплен шток с пружиной. Ее преимущество заключается в том, что не нужна столь высокая точность посадки подвижных элементов, не требуются смазочные материалы, а герметичность рабочей камеры повышается. Существуют также роторные (пластинчатые) пневмодвигатели — аналоги ДВС Ванкеля.
Основные плюсы пневмодвигателя — это его экологичность и низкая стоимость «топлива». Собственно, из-за безотходности пневмолокомотивы и получили распространение в шахтном деле — при использовании ДВС в замкнутом пространстве воздух быстро загрязняется, резко ухудшая условия работы. Отработанные же газы пневмодвигателя — это обычный воздух.
Один из недостатков пневмоцилиндра — относительно низкая плотность энергии, то есть количество вырабатываемой энергии на единицу объема рабочего тела. Сравните: воздух (при давлении 30 МПа) имеет плотность энергии порядка 50 кВт•ч на литр, а обычный бензин — 9411 кВт•ч на литр! То есть бензин как топливо эффективнее почти в 200 раз. Даже с учетом не очень высокого КПД бензинового двигателя он «выдает» в итоге около 1600 кВт•ч на литр, что значительно выше, чем показатели пневмоцилиндра. Это ограничивает все эксплуатационные показатели пневмодвигателей и движимых ими машин (запас хода, скорость, мощность и т. д.). Помимо того, пневмодвигатель имеет относительно небольшой КПД — порядка 5−7% (против 18−20% у ДВС).
Пневматика XXI века
Актуальность экологических проблем XXI века заставила инженеров вернуться к давно забытой идее использования пневмоцилиндра в качестве двигателя для дорожного транспортного средства. По сути, пневмоавтомобиль экологичнее даже электромобиля, элементы конструкции которого содержат вредные для окружающей среды вещества. В пневмоцилиндре же — воздух и ничего кроме воздуха.
Поэтому основной инженерной задачей было приведение пневмокара к виду, в котором он мог бы конкурировать с электромобилями по эксплуатационным характеристикам и стоимости. Подводных камней в этом деле множество. Например, проблема дегидратации воздуха. Если в сжатом воздухе будет хотя бы капля жидкости, то из-за сильного охлаждения при расширении рабочего тела она превратится в лед, и двигатель просто заглохнет (или даже потребует ремонта). Обычный летний воздух содержит примерно 10 г жидкости на 1 м3, и при наполнении одного баллона нужно затратить дополнительную энергию (около 0,6 кВт•ч) на дегидратацию — причем эта энергия невосполнима. Данный фактор сводит на нет возможность качественной домашней заправки — оборудование для дегидратации невозможно установить и эксплуатировать в домашних условиях. И это лишь одна из проблем.
Тем не менее тема пневмоавтомобиля оказалась слишком привлекательной, чтобы о ней забыть.
Сразу в серию?
Одно из решений, позволяющих минимизировать недостатки пневмодвигателя, — облегчение автомобиля. Действительно, городской микролитражке не нужен большой запас хода и скорость, а вот экологические показатели в мегаполисе играют значительную роль. Именно на это рассчитывают инженеры франко-итальянской компании Motor Development International, которые на Женевском автосалоне 2009 года представили миру пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. MDI начали «сражаться» за пневмокар еще в 2003-м, показав концепт Eolo Car, но лишь спустя десять лет, набив множество шишек, французы пришли к приемлемому для конвейера решению.
MDI AIRpod — это нечто среднее между автомобилем и мотоциклом, прямой аналог мотоколяски-«инвалидки», как ее частенько называли в СССР. Благодаря 5,45-сильному воздушному двигателю трехколесная малолитражка массой всего 220 кг может разогнаться до 75 км/ч, а запас ее хода составляет 100 км в базовом варианте или 250 км в более серьезной конфигурации. Интересно, что у AIRpod вообще нет руля — машина управляется джойстиком. В теории она может передвигаться как по дорогам общего пользования, так и по велодорожкам.
У AIRpod есть все шансы на серийное производство, поскольку в городах с развитой велоструктурой, например в Амстердаме, такие машинки могут быть востребованы. Одна заправка воздухом на специально оборудованной станции занимает около полутора минут, а стоимость передвижения составляет в итоге порядка 0,5 на 100 км — дешевле просто некуда. Тем не менее заявленный срок серийного производства (весна 2014 года) уже прошел, а воз и ныне там. Возможно, MDI AIRpod появится на улицах европейских городов в 2015-м.
Второй предсерийный концепт — это известный проект индийского гиганта Tata, автомобиль MiniCAT. Проект был запущен одновременно с AIRpod, но, в отличие от европейцев, индусы заложили в программу нормальный, полноценный микроавтомобиль с четырьмя колесами, багажником и традиционной компоновкой (в AIRpod, заметим, пассажиры и водитель сидят спинами друг к другу). Масса Tata чуть побольше, 350 кг, максимальная скорость — 100 км/ч, запас хода — 120 км, то есть MiniCAT в целом похож на машину, а не на игрушку. Интересно, что в компании Tata не мучились с разработкой воздушного двигателя «с нуля», а за $28 млн приобрели права на использование разработок MDI (что позволило последней удержаться на плаву) и усовершенствовали двигатель для приведения в движение более крупного транспортного средства. Одна из фишек этой технологии — использование тепла, выделяющегося при охлаждении расширяющегося воздуха, для нагрева воздуха при заправке баллонов.
Изначально Tata собиралась поставить MiniCAT на конвейер в середине 2012 года и производить порядка 6000 единиц в год. Но обкатка продолжается, а серийное производство отложено до лучших времен. За время разработки концепт успел сменить имя (ранее он назывался OneCAT) и дизайн, так что какая его версия поступит в итоге в продажу, не знает никто. Кажется, даже представители Tata.
На двух колесах
Чем легче автомобиль на сжатом воздухе, тем он более эффективен в плане эксплуатационных и экономических показателей. Логичный вывод из этого утверждения — почему бы не сделать скутер или мотоцикл?
Этим озаботился австралиец Дин Бенстед, который в 2011 году продемонстрировал миру кроссовый мотоцикл O2 Pursuit с силовым агрегатом, разработанным фирмой Engineair. Последняя специализируется на уже упомянутых роторных воздушных двигателях разработки Анжело ди Пьетро. По сути, это классической компоновки «ванкели» без сгорания — ротор приводится в движение подачей воздуха в камеры. Бенстед пошел при разработке от обратного. Сперва он заказал Engineair двигатель, а потом построил вокруг него мотоцикл, использовав раму и часть элементов от серийной Yamaha WR250R. Машина получилась на удивление энергоэффективной: на одной заправке она проходит 100 км и в теории развивает максимальную скорость 140 км/ч. Эти показатели, к слову, превышают аналогичные у многих электрических мотоциклов. Бенстед остроумно сыграл на форме баллона, вписав его в раму, — это позволило сэкономить место; двигатель в два раза компактнее своего бензинового собрата, а свободное место позволяет установить второй баллон, увеличив пробег мотоцикла в два раза.
Но, к сожалению, O2 Pursuit остался лишь одноразовой игрушкой, хотя и был номинирован на престижную изобретательскую премию, учрежденную Джеймсом Дайсоном. Спустя два года идею Бенстеда подхватил другой австралиец, Дарби Бичено, который предложил создать по схожей схеме не мотоцикл, а сугубо городское транспортное средство, скутер. Его EcoMoto 2013 должен быть сделан из металла и бамбука (никакого пластика), но дальше рендеров и чертежей дело пока что не продвинулось.
Помимо Бенстеда и Бичено, схожую машину в 2010 году построил Эвин И Ян (его проект назывался Green Speed Air Motorcycle). Все три конструктора, к слову, были студентами Королевского технологического института Мельбурна, и потому их проекты схожи, используют один и тот же двигатель и… не имеют шанса на серию, оставаясь исследовательскими работами.
Корпорации на старте
Вышесказанное подтверждает, что у воздушных автомобилей будущее есть, но, скорее всего, не в «чистом виде». Все-таки они имеют свои ограничения. Тот же MDI AIRpod провалил абсолютно все краш-тесты, поскольку его сверхлегкая конструкция не позволяла должным образом защищать водителя и пассажиров.
А вот использовать пневмотехнологии в качестве дополнительного источника энергии в гибридном автомобиле вполне реально. В связи с этим компания Peugeot объявила о том, что с 2016 года часть кроссоверов Peugeot 2008 будет выпускаться в гибридном варианте, одним из элементов которого будет установка Hybrid Air. Эта система разработана в сотрудничестве с Bosch; суть ее в том, что энергия ДВС будет запасаться не в форме электроэнергии (как в обычных гибридах), а в баллонах со сжатым воздухом. Планы, правда, так и остались планами: на данный момент на серийные автомобили установка не ставится.
Peugeot 2008 Hybrid Air сможет двигаться, используя энергию ДВС, воздушного силового агрегата или их комбинации. Система будет сама распознавать, какой из источников энергоэффективнее в той или иной ситуации. В городском цикле, в частности, 80% времени будет использоваться энергия сжатого воздуха — он приводит в движение гидронасос, который вращает вал при отключенном ДВС. Суммарная экономия топлива при такой схеме составит до 35%. При работе на чистом воздухе максимальная скорость автомобиля ограничивается 70 км/ч.
Концепт Peugeot выглядит абсолютно жизнеспособным. С учетом экологических преимуществ подобные гибриды вполне смогут потеснить электрические в течение ближайших пяти-десяти лет. И мир станет немножечко чище. Или не станет.
Пневматические двигатели, эффективные и мощные с высоким крутящим моментом
Пневматический двигатель BASIC с его очень прочной и чисто механической конструкцией подходит для универсального применения.
Энергосбережение с помощью эффективной технологии
Чрезвычайно эффективные и мощные , наши пневматические двигатели обеспечивают высокий крутящий момент при минимальном потреблении сжатого воздуха, что делает их новаторской приводной технологией будущего. Наши пневматические двигатели экономит энергию и затраты до 90% по сравнению с другими приводами, такими как лопастной двигатель.
Особенности
Наш пневматический двигатель может работать в режимах вращения против часовой стрелки и по часовой стрелке и устойчив к остановке . Конечно, это без масла и силикона в стандартной комплектации. Так как это IP67 водонепроницаемый , он также может применяться во влажных или пыльных условиях.
Техническая поддержка и контактная информация
Технические характеристики наших двигателей доступны здесь. Для прямого контакта с нашими экспертами, пожалуйста, нажмите здесь.
Преимущества
Наши энергоэффективные двигатели экономят энергию и затраты.
Наши двигатели обеспечивают чрезвычайно высокий крутящий момент при минимальном потреблении воздуха.
Благодаря своей механической конструкции наши двигатели прочны и долговечны.
Чрезвычайно тихая работа.
- Привод фрикционных колес
- Системы балансировки
- Горнодобывающая техника: переработка извести, гипса, бетона, цемента
- Привод конвейерных лент, рольставен
- Герметизация винтовых крышек
- Натяжение в бумагоделательных, ткацких и мотальных машинах
Опции и аксессуары
Витон – для высокой термостойкости и химической стойкости.
Стойкий к ацетону – устойчивый к растворителям EPDM.
Без силикона – безмасляные применения без разделителей.
Соответствует FDA – изготовлен из EPDM с одобрением FDA для гигиенического применения в пищевой и фармацевтической промышленности.
Индивидуальные решения
Индивидуальные решения — наша специализация.
Не каждый проект, не каждая проблема находит свое решение, порывшись в стандартной коробке или поискав в сети. Благодаря нашему систематическому управлению проектами мы воплощаем ваши пожелания в жизнь – надежно, на самом современном техническом уровне и в срок.
Узнать больше
Индивидуальные решения — наша специализация.
Не каждый проект, не каждая проблема находит свое решение, порывшись в стандартной коробке или поискав в сети. Благодаря нашему систематическому управлению проектами мы воплощаем ваши пожелания в жизнь – надежно, на самом современном техническом уровне и в срок.
Узнать больше
Новости и интересные истории
ПРИМЕР
Резать резину как масло
Пневматические двигатели PTM известны своим чрезвычайно высоким крутящим моментом. В нашем примере наш двигатель прорезает толстые резиновые коврики как машина для резки резины. Подробнее см. в нашем видео …
Читайте дальше
ПРИМЕР
Убедительные испытания эффективности на крупнейшем немецком производителе красок
Пневматические двигатели PTM значительно эффективнее и мощнее лопастных двигателей Gast. Это подтверждает наш тест у крупнейшего производителя красок в Германии …
Прочтите
Поддержка
Обзор пневматических двигателей
Гибкость в использовании, надежность, эффективность и мощность – обзор всех наших двигателей:
Свяжитесь с нами:
90 консультации по нашей продукции, наши специалисты с радостью обработают ваш запрос:
info@ptm-mechatronics.
com
Телефон: +1 (850) 462-2730
Следуйте за нами на…
Air Motor Selection и размер
Загрузить эту статью в формате .PDF
Пневматические двигатели используются для получения постоянной вращательной энергии из системы сжатого воздуха. Они имеют ряд преимуществ перед электродвигателями:
• Поскольку им не требуется электроэнергия, пневматические двигатели можно использовать в летучих средах.
• Как правило, они имеют более высокую удельную мощность, поэтому меньший по размеру пневматический двигатель может обеспечить такую же мощность, как и его электрический аналог.
• В отличие от электродвигателей, многие пневматические двигатели могут работать без вспомогательных редукторов.
• Перегрузки, превышающие момент опрокидывания, обычно не наносят вреда пневматическим двигателям. При работе с электродвигателями перегрузки могут вызвать срабатывание автоматических выключателей, поэтому перед повторным запуском оборудования оператор должен сбросить их.
• Скорость пневматического двигателя можно регулировать с помощью простых клапанов управления потоком вместо дорогостоящих и сложных электронных регуляторов скорости.
• Крутящий момент пневматического двигателя можно изменять, просто регулируя давление.
• Для пневматических двигателей не требуются магнитные пускатели, защита от перегрузки или множество других вспомогательных компонентов, необходимых для электродвигателей.
• Пневмодвигатели выделяют гораздо меньше тепла, чем электродвигатели.
Как и следовало ожидать, электродвигатели обладают некоторыми преимуществами по сравнению с пневматическими двигателями:
• Если для применения не существует подходящего источника сжатого воздуха, стоимость пневматического двигателя и связанного с ним вспомогательного , фильтры, клапаны и т. д.) превысит мощность электродвигателя и вспомогательного оборудования.
• Пневматические двигатели потребляют относительно дорогой сжатый воздух, поэтому стоимость их эксплуатации, вероятно, будет выше, чем стоимость эксплуатации электродвигателей.
• Несмотря на то, что электронные регуляторы скорости увеличивают стоимость приводов с электродвигателями, они контролируют скорость более точно (в пределах ±1% от требуемой скорости), чем регуляторы пневматических двигателей.
• Пневматические двигатели, работающие непосредственно от заводской воздушной системы, чувствительны к колебаниям скорости и крутящего момента, если расход и давление в системе колеблются.
Распространенные конструкции пневматических двигателей включают роторно-лопастные, аксиально-поршневые, радиально-поршневые, героторные, турбинные, V-образные и диафрагменные. В промышленности чаще всего используются пластинчато-роторные, аксиально- и радиально-поршневые, героторные пневмодвигатели. Эти конструкции работают с максимальной эффективностью и долговечностью от смазанного воздуха. Конечно, существуют специальные конструкции для применений, в которых применение смазанного воздуха нежелательно. Турбинные двигатели используются там, где требуется очень высокая скорость, но низкий пусковой момент. V-образные и мембранные пневматические двигатели используются в основном для специальных применений и здесь не рассматриваются.
Поршневые двигатели
Поршневые пневматические двигатели используются в приложениях, требующих высокой мощности, высокого пускового момента и точного управления скоростью на низких скоростях. Они имеют два, три, четыре, пять или шесть цилиндров, расположенных аксиально или радиально внутри корпуса. Выходной крутящий момент создается давлением, действующим на поршни, совершающие возвратно-поступательное движение внутри цилиндров.
Двигатели с четырьмя или более цилиндрами обеспечивают относительно плавный крутящий момент при заданной рабочей скорости, поскольку импульсы мощности перекрываются: два или более поршня совершают рабочий ход в любое время в пределах одного оборота. Двигатели, разработанные с перекрывающимися рабочими ходами и точной балансировкой, не имеют вибраций на всех скоростях.
Мощность, развиваемая поршневым двигателем, зависит от входного давления, количества поршней, площади поршней, хода и скорости. При любом заданном давлении на входе большую мощность можно получить от двигателя, который работает с более высокой скоростью, имеет больший диаметр поршня, большее количество поршней или более длинный ход. Факторами, ограничивающими скорость, являются инерция движущихся частей (которая оказывает большее влияние на радиально-поршневые двигатели, чем на аксиально-поршневые) и конструкция клапана, который управляет впуском и выпуском поршней.
Радиально- и аксиально-поршневые двигатели имеют одно существенное ограничение: они смазываются изнутри, поэтому запасы масла и смазки необходимо периодически проверять и пополнять. Они должны быть установлены в горизонтальном положении, чтобы обеспечить надлежащую смазку подшипников. Однако по крайней мере один производитель предлагает радиально-поршневой двигатель с валом, направленным вертикально вниз, в качестве стандартной конфигурации. Другие монтажные положения любого производителя требуют специальных конфигураций смазки.
Радиально-поршневые двигатели имеют прочную конструкцию с масляной смазкой и хорошо подходят для непрерывной работы. Они имеют самый высокий пусковой крутящий момент среди всех пневматических двигателей и особенно удобны для применений с высокими пусковыми нагрузками. Перекрывающиеся импульсы мощности обеспечивают плавный крутящий момент как в прямом, так и в обратном направлении. Размеры варьируются примерно до 35 л.с. при скорости до 4500 об/мин.
Рис. 1. Аксиально-поршневой пневмодвигатель в разрезе. Высокий пусковой крутящий момент является ключевым преимуществом как аксиально-, так и радиально-поршневых пневматических двигателей. Нажмите на картинку для увеличения.
Аксиально-поршневые двигатели , рис. 1, более компактны, чем радиально-поршневые двигатели, что делает их идеальными для установки в ограниченном пространстве. Их конструкция сложнее и дороже, чем у лопастных двигателей, и они смазываются консистентной смазкой. Однако аксиально-поршневые двигатели работают более плавно и развивают максимальную мощность при гораздо более низких скоростях, чем лопастные двигатели. Аксиально-поршневые двигатели меньше и легче, чем электрические мотор-редукторы той же номинальной мощности, а также выдерживают более высокие температуры окружающей среды. Максимальный размер составляет около 3½ л.с.
Лопастные двигатели
Рис. 2. Воздух проходит через корпус лопастного двигателя к концевым пластинам, а затем к открытым отверстиям в форме почки, где он входит в пазы ротора и прижимает лопасти к корпусу. Затем воздух проходит в камеру основного двигателя через отверстия, просверленные в роторе, чтобы непосредственно создавать давление на открытые части лопастей и вращать ротор. Нажмите на картинку для увеличения.
Роторно-лопастные двигатели обычно используются в приложениях, требующих выходной мощности от низкой до средней. Простые и компактные лопастные двигатели чаще всего приводят в действие портативные электроинструменты, но, безусловно, они также используются во многих приложениях для смешивания, привода, поворота и вытягивания.
Лопастные двигатели имеют осевые лопасти, вставленные в радиальные пазы, проходящие по всей длине ротора, который установлен эксцентрично относительно отверстия корпуса двигателя, рис. 2. Лопасти смещены для уплотнения к внутренней стенке корпуса с помощью пружин, кулачкового действия. или давление воздуха, в зависимости от конструкции. Этому уплотняющему действию способствует центробежная сила, возникающая при вращении ротора. Крутящий момент создается за счет давления, действующего на одну сторону лопастей. Крутящий момент на выходном валу пропорционален открытой площади лопасти, давлению и плечу момента (радиус от осевой линии ротора до центра открытой лопасти), через которое действует давление.
В многолопастном двигателе крутящий момент можно увеличить на заданной скорости за счет увеличения давления воздуха на входе в двигатель, чтобы увеличить дисбаланс давления на лопастях двигателя. Однако есть компромиссы: увеличение давления воздуха на входе увеличивает затраты на подачу воздуха и, как правило, приводит к более быстрому износу и сокращению срока службы лопастей.
Выходная мощность при заданной скорости определяет расход воздуха. Небольшой двигатель мощностью 1 л. с., работающий при 2000 об/мин с использованием воздуха под давлением 80 фунтов на квадратный дюйм, потребляет такой же объем сжатого воздуха, как и более крупный пневматический двигатель мощностью 1 л.с. при 2000 об/мин, использующий воздух при более низком и более экономичном давлении.
Роторно-лопастные пневматические двигатели доступны с количеством лопастей от трех до десяти. Увеличение количества лопастей уменьшает внутреннюю утечку или прорыв газов и делает выходной крутящий момент более равномерным и надежным на более низких скоростях. Однако большее количество лопастей увеличивает трение, стоимость двигателя и снижает эффективность.
Если в конструкции с 3 лопастями одна лопасть застревает в убранном положении, это может предотвратить запуск пневматического двигателя под нагрузкой. Подпружинивание лопастей к стенке корпуса, подача сжатого воздуха к основанию лопастей или кулачковое основание лопасти предотвращают эту проблему, как и использование двигателя с четырьмя или более лопастями.
Лопастные двигатели работают со скоростью вращения ротора от 100 до 25 000 об/мин — в зависимости от диаметра корпуса — и обеспечивают большую мощность на фунт, чем поршневые пневматические двигатели. Поскольку лопасти скользят по стенке корпуса, многим лопастным двигателям требуется воздух со смазкой, особенно если за короткими рабочими циклами следуют длительные периоды бездействия. Тем не менее, все больше и больше двигателей по-прежнему проектируются для работы на несмазанном воздухе для критически важных приложений и экологических проблем.
Следует избегать работы неуправляемых лопастных пневматических двигателей без нагрузки на высокой скорости. Когда многолопастной двигатель работает нерегулируемым образом без нагрузки, его высокая скорость может нагревать и обугливать кончики лопастей, когда они трутся о стенки цилиндра. Также следует ожидать чрезмерного износа и повреждения других деталей двигателя.
Пневматические двигатели крыльчатого типа доступны в четырех основных монтажных конфигурациях: основание, торец, ступица и фланец NEMA. Модели с базовым креплением просто крепятся болтами к основанию, а груз передается с ременным приводом или напрямую. Торцевые и ступичные крепления используются, когда двигатель необходимо установить через перегородку или как неотъемлемую часть приводного устройства. Фланцевые крепления NEMA позволяют пневматическим двигателям напрямую заменять электродвигатели на раме NEMA.
Героторные пневмодвигатели
Рис. 3. Героторный пневмодвигатель обеспечивает высокий крутящий момент при низкой скорости. Героторный элемент показан справа. Нажмите на картинку для увеличения.
Пневмодвигатели Gerotor, рис. 3, обеспечивают высокий крутящий момент на низкой скорости без дополнительной передачи. В сочетании с двухступенчатой орбитально-планетарной передачей героторные силовые элементы обеспечивают крутящий момент на скоростях до 20 об/мин. Эти двигатели хорошо подходят для применения в опасных средах, где требуется относительно высокий крутящий момент в ограниченном пространстве.
Низкоскоростные героторные пневматические двигатели с высоким крутящим моментом могут развивать крутящий момент, превышающий 250 фунт-дюйм. в диапазоне скоростей от 20 до почти 100 об/мин при подаче сжатого воздуха под давлением 90 фунтов на квадратный дюйм. Они рассчитаны на непрерывную работу при давлении подачи до 150 фунтов на квадратный дюйм. Низкая инерция вращения конструкции геротора обеспечивает мгновенный запуск, остановку или изменение направления при переключении клапана, питающего двигатель. Кроме того, конструкция предотвращает движение двигателя по инерции или обратное движение, что устраняет необходимость во внешних тормозах. Как и лопастные двигатели, они гораздо менее чувствительны к монтажной ориентации, чем поршневые двигатели.
Турбинные двигатели
КПД пневматического двигателя определяется как отношение фактической выходной мощности к теоретической мощности, получаемой от сжатого воздуха, при той степени расширения, при которой работает машина. Турбины преобразуют пневматическую энергию в механическую с эффективностью от 65% до 75%. КПД турбины выше, чем у других пневматических двигателей, потому что не происходит скользящего контакта деталей, вызывающего внутреннее трение. В результате нет необходимости в интенсивной смазке. Отсутствие смазочного масла значительно улучшает характеристики в холодную погоду.
До недавнего времени турбинные пневматические двигатели обычно использовались для приложений, требующих очень высокой скорости и очень низкого пускового момента — наиболее типичными были стоматологические бормашины и стартеры реактивных авиационных двигателей. Однако теперь турбинная технология применяется для запуска малых, средних и больших поршневых двигателей. Турбинная технология предлагает простые, высокоэффективные пневматические пускатели, которые не требуют смазки приточного воздуха, допускают наличие загрязняющих веществ в приточном воздухе и требуют минимального обслуживания. Стартеры турбины включают планетарную передачу, чтобы снизить высокую скорость вращения ротора турбины до нормальной скорости вращения коленчатого вала двигателя.
Турбинные двигатели относительно компактны и легки для своей мощности. Более высокие передаточные числа — от 9:1 до 20:1 — обеспечивают высокий крутящий момент и универсальность для различных двигателей. Мощность турбины легко изменить, ограничив поток воздуха через двигатель.
Работа турбинного пневматического двигателя включает сопло, которое направляет и дозирует воздух на колесо или ротор турбины. Он изменяет поток воздуха с высоким давлением и низкой скоростью на поток с низким давлением и высокой скоростью. Массовый расход воздуха, проходящего через турбину, определяет ее мощность. Изменение количества форсунок или проходов форсунок пропорционально изменяет выходную мощность. Если стартер с 16 форсунками уменьшить до 8 форсунок, переделанный стартер будет выдавать вдвое меньшую мощность, чем оригинал. Таким образом, в рамках одной и той же базовой конфигурации стартера можно разработать множество моделей с широким диапазоном входного давления, скорости проворачивания и крутящего момента или крутящего момента. Эта возможность в сочетании с различными редукторами позволяет производить недорогие стартеры для самых разных областей применения. Например: для запуска двигателей рабочим объемом от 305 до 23 800 дюймов доступны турбостартеры 9.0238 3 при давлении от 40 до 435 фунтов на кв. дюйм.
Рабочие характеристики
Характеристики мощности пневматических двигателей аналогичны характеристикам двигателей постоянного тока с последовательной обмоткой. При постоянном давлении на входе тормозная мощность пневматического двигателя равна нулю при нулевой скорости. Мощность увеличивается с увеличением скорости до тех пор, пока не достигнет пика примерно на 50 % скорости холостого хода (максимальная скорость в условиях холостого хода), рис. 4.
Давление подачи 0 фунтов на квадратный дюйм. Нажмите на картинку для увеличения.
В пиковой точке уменьшение крутящего момента уравновешивает увеличение скорости. Мощность уменьшается до нуля, когда крутящий момент равен нулю, потому что вся мощность всасываемого воздуха используется для нагнетания объема воздуха, необходимого для поддержания этой скорости, через двигатель.
Выходной крутящий момент для пневматического двигателя заданного объема теоретически является функцией перепада давления и константой, зависящей от физических параметров двигателя. Поэтому, независимо от скорости, крутящий момент должен быть постоянным для данного рабочего давления. На самом деле это не так, потому что по мере увеличения расхода воздуха через двигатель потери давления во впускном и выпускном трубопроводах потребляют большую часть подачи. На практике крутящий момент достигает наибольшего значения вскоре после нулевой скорости, рис. 4, и быстро падает, пока не достигает нуля на свободной скорости.
Пусковой крутящий момент — это максимальный крутящий момент, который двигатель может развивать под нагрузкой. Это около 75% крутящего момента. Для запуска пневматического двигателя требуется больший крутящий момент, чем для поддержания его работы. Не путайте пусковой и пусковой моменты. Если нагрузка пневматического двигателя превышает его пусковой момент, двигатель не запустится.
Максимальный крутящий момент пневматического двигателя примерно в два раза превышает крутящий момент при номинальной мощности и может быть определен на основе информации о мощности и скорости, приведенной в документации производителей. Соотношение между крутящим моментом и номинальной мощностью:
T = 5250 P/n
T — крутящий момент в lb-ft
P — мощность в л.с.,
n — скорость в об/мин.
Поскольку крутящий момент при остановке примерно вдвое превышает крутящий момент при номинальной мощности, если n составляет 525 об/мин, а P составляет 0,03 л.с., то T составляет 3 футо-фунта, а начальный крутящий момент составляет 2,25 футо-фунта.
Номинальная мощность обычно относится к максимальной мощности при давлении 90 psi. Хотя пневматические двигатели обычно могут работать при давлении на входе от 20 до 150 фунтов на квадратный дюйм, обычная практика ограничивает рабочее давление от 30 до 100 фунтов на квадратный дюйм.
Чтобы сравнить двигатели, рассчитанные на разное давление на входе, используйте следующее эмпирическое правило: уменьшайте мощность на 14 % на каждые 10 фунтов на квадратный дюйм снижения давления воздуха. И наоборот, снижение давления воздуха на 10 фунтов на квадратный дюйм снизит эффективность двигателя на 14%. Очевидно, что эта взаимосвязь напрямую влияет на производительность. Опять же, это всего лишь эмпирическое правило, которое не применимо точно к какой-либо конкретной модели двигателя.
Обязательно измерьте давление подачи на входе двигателя . Недостаточно определить, что есть 9Давление подачи 0 фунтов на квадратный дюйм в компрессоре — потери в линии обычно снижают это давление до того, как оно достигнет пневматического двигателя. На входе двигателя должно быть 90 фунтов на квадратный дюйм, чтобы двигатель работал с номинальным крутящим моментом и мощностью в лошадиных силах.
Управление давлением воздуха, подаваемого на двигатель, является самым простым и эффективным методом изменения рабочих характеристик двигателя. И наоборот, неподдержание требуемого давления подачи на входе в двигатель, безусловно, ухудшает рабочие характеристики.
Прямой зависимости между мощностью и скоростью нет; то есть наименьшая мощность не указывает на наибольшую скорость или наоборот, рис. 4.
Скорость холостого хода — максимальная скорость двигателя на холостом ходу. Для регулируемого двигателя термин «свободная скорость» фактически означает свободно регулируемую скорость или максимальную скорость, с которой двигатель будет работать при работе регулятора.
Расчетная скорость – это скорость, при которой достигается номинальная мощность в лошадиных силах. Это примерно половина скорости свободного хода неуправляемого двигателя и 80% скорости свободного хода управляемого двигателя. Пневматический двигатель работает наиболее эффективно на расчетной скорости.
Рис. 5. Утечка через пневматический двигатель, очевидно, снижает расход, доступный для передачи энергии и приводных нагрузок. Нажмите на картинку для увеличения.
Поскольку пневматические двигатели представляют собой устройства постоянного рабочего объема, их скорость теоретически прямо пропорциональна расходу воздуха. Это верно, если утечки нет, но утечка, безусловно, влияет на скорость двигателя. Утечка увеличивается с давлением и почти постоянна при любом заданном давлении. Таким образом, при фиксированной скорости потребление воздуха увеличивается по мере увеличения давления подачи; на низких скоростях гораздо большая часть общего потока теряется из-за утечек.
Типичная кривая производительности пневматического двигателя, рис. 5, показывает, что дополнительное приращение потока на оборот в минуту почти постоянно. Обратите внимание, однако, что общий расход за оборот уменьшается с увеличением скорости. Утечка также немного уменьшается по мере увеличения скорости, потому что для утечки остается меньше времени.
Когда нагрузка на пневматический двигатель увеличивается, скорость уменьшается до тех пор, пока крутящий момент двигателя не будет соответствовать требованиям нагрузки. Открытие дроссельной заслонки двигателя для увеличения давления воздуха на входе может разогнать двигатель до номинальной скорости.
Рис. 6. Три двигателя с одинаковой максимальной мощностью, но с разными характеристиками крутящего момента, могут демонстрировать существенно разные скорости при различных нагрузках. Нажмите на картинку для увеличения.
Для приложений с переменными нагрузками основное внимание уделяется тому, может ли двигатель обеспечить достаточную мощность для всех условий эксплуатации. Двигатели с одинаковой максимальной мощностью, но с разными характеристиками крутящего момента, могут иметь существенные различия в скорости в зависимости от нагрузки, рис. 6. С другой стороны, если вы хотите уменьшить изменение скорости при изменении нагрузки, выберите двигатель с крутой кривой крутящего момента. , рис. 7. Это связано с тем, что чем круче кривая крутящего момента, тем меньше скорость изменяется с нагрузкой.
Рис. 7. Двигатель с крутой кривой крутящего момента менее чувствителен к падению скорости из-за более высокой нагрузки, чем двигатель с более плоской кривой.