Турбовинтовой двигатель самолета и вертолета. Двигатель вертолета


Двигатель вертолета. Фото. Видео. Определение.

 

 

Двигатель вертолета служит для вращения несущего винта. Если на вертолете имеется несколько несущих винтов, то они могут приводиться во вращение от одного общего двигателя или каждый от отдельного двигателя, но так, чтобы вращение винтов было строго синхронизировано.

Назначение двигателя на вертолете отличается от назначения двигателя на самолете, автожире, дирижабле, так как в первом случае он вращает несущий винт, посредством которого создает как тягу, так и подъемную силу, в остальных же случаях он вращает тянущий винт, создавая только тягу «ли силу реакции газовой струи (на реактивном самолете), также дающей только тягу.

Если на вертолете установлен поршневой двигатель, то в его конструкции должен быть учтен ряд особенностей, присущих вертолету.

 

Двигатель вертолета

 

Вертолет может летать при отсутствии поступательной скорости, т. е. висеть неподвижно относительно воздуха. В этом случае отсутствует обдув и охлаждение двигателя, водо-радиатора и маслорадиатора, в результате чего возможен перегрев двигателя и выход его из строя. Поэтому на вертолете целесообразней применять двигатель не водяного, а воздушного охлаждения, так как последний не нуждается в тяжелой и громоздкой системе жидкостного охлаждения, для которой на вертолете потребовались бы очень большие поверхности охлаждения.

Двигатель воздушного охлаждения, обычно устанавливаемый на вертолете в туннеле, должен иметь привод для вентилятора принудительного обдува, который обеспечивает охлаждение двигателя на режиме висения и при горизонтальном полете, когда скорость относительно невелика.

В этом же туннеле устанавливается маслорадиатор. Регулировка температуры двигателя и масла может осуществляться путем изменения величины входного или выходного отверстий туннеля при помощи подвижных заслонок, управляемых из кабины летчика вручную или автоматически.

Авиационный поршневой двигатель обычно имеет номинальное число оборотов порядка 2000 в минуту. Понятно, что полное число оборотов двигателя на винт передавать нельзя, так как при этом концевые скорости лопастей будут настолько велики, что вызовут возникновение скоростного срыва потока. Из этих соображений число М на концах лопастей должно быть не более 0,7—0,8. Кроме того, при больших центробежных силах несущий винт был бы тяжелой конструкции.

Подсчитаем, какова величина максимально допустимых оборотов несущего винта диаметром в 12 м, при которых число М концов лопастей не превышает 0,7 для высоты полета в 5000 м при скорости полета в 180 км/час,

 

Двигатель вертолета

 

Итак, двигатель для вертолета обязательно должен иметь редуктор с высокой степенью редукции.

На самолете двигатель всегда жестко соединен с винтом. Прочный, малого диаметра цельнометаллический винт легко выдерживает рывки, сопровождающие запуск поршневого двигателя, когда он резко набирает несколько сот оборотов. Винт вертолета, имеющий большой диаметр, далеко разнесенные от оси вращения массы п, следовательно, большой момент инерции, не рассчитан на резкие переменные нагрузки в плоскости вращения; при запуске может произойти повреждение лопастей от пусковых рывков.

Поэтому необходимо, чтобы в момент запуска несущий винт вертолета был отсоединен от двигателя, т. е. двигатель должен запускаться вхолостую, без нагрузки. Обычно это осуществляется введением в конструкцию двигателя фрикционной и кулачковой муфт.

Перед запуском двигателя муфты должны быть выключены, при этом вращение вала двигателя на несущий винт не передается.

Однако без нагрузки двигатель может развить очень большие обороты (дать раскрутку), которые вызовут его разрушение. Поэтому при запуске до включения муфт нельзя полностью открывать дроссельную заслонку карбюратора двигателя и превышать установленное число оборотов.

 

Двигатель вертолета

 

Когда двигатель уже запущен, необходимо соединить его с несущим винтом посредством фрикционной муфты.

В качестве фрикционной муфты может служить гидравлическая муфта, состоящая из нескольких металлических дисков, покрытых материалом, обладающим высоким коэффициентом трения. Часть дисков соединена с валом редуктора двигателя, а промежуточные диски соединены с приводом главного вала к несущему винту. До тех пор, пока диски не сжаты, они свободно проворачиваются относительно друг друга. Сжатие дисков осуществляется поршнем. Подача масла с высоким давлением под поршень заставляет поршень передвигаться и постепенно сжимать диски. При этом крутящий момент от двигателя передается на винт постепенно, плавно раскручивая винт.

Счетчики оборотов, установленные в кабине, показывают числа оборотов двигателя и винта. Когда обороты двигателя и винта равны, это означает, что диски гидравлической муфты плотно прижаты друг к другу и можно считать, что муфта соединена по типу жесткого сцепления. В этот момент может быть плавно (без рывков) включена кулачковая муфта.

Наконец, для обеспечения возможности самовращения, несущего винта надо, чтобы винт автоматически отключался от двигателя. До тех пор, пока двигатель работает и вращает винт, кулачковая муфта находится в зацеплении. При отказе же двигателя его обороты быстро уменьшаются, но несущий винт некоторое время по инерции продолжает вращение с тем же числом оборотов; в этот момент кулачковая муфта выходит из зацепления.

Несущий винт, отсоединенный от двигателя, может продолжать затем вращение на режиме самовращения.

Полет на режиме самовращения с учебными целями производится при выключенном двигателе или при работающем двигателе, в последнем случае обороты его уменьшаются настолько, чтобы винт (с учетом редукции) делал большее число оборотов, чем коленчатый вал двигателя.

После посадки вертолета обороты двигателя сначала уменьшаются, выключается муфта сцепления, а затем останавливается двигатель. При стоянке вертолета винт всегда должен быть заторможен, иначе он может начать вращаться от порывов ветра.

 

Двигатель вертолета

 

Мощность двигателя вертолета расходуется на преодоление сопротивления вращения несущего винта, на вращение рулевого винта (6—8%), на вращение вентилятора (4—6%) и на преодоление потерь в трансмиссии (5—7%).

Таким образом, несущий винт использует не всю мощность двигателя, а только часть ее. Использование винтом мощности двигателя учитывается коэффициентом, который показывает, какую часть мощности двигателя использует несущий винт. Чем выше этот коэффициент, тем более совершенна конструкция вертолета. Обычно = 0,8, т. е. винт использует 80 % мощности двигателя:

Мощность поршневого двигателя зависит от весового заряда воздуха, всасываемого в цилиндры, или от плотности окружающего воздуха. В связи с тем, что с поднятием на высоту плотность окружающего воздуха уменьшается, постоянно падает также мощность двигателя. Такой двигатель носит название невысотного. С поднятием на высоту 5000—6000 м мощность такого двигателя уменьшается примерно вдвое.

Для того чтобы до определенной высоты мощность двигателя не только падала, а даже увеличивалась, на магистрали всасывания воздуха в двигатель ставят нагнетатель, повышающий плотность всасываемого воздуха. За счет нагнетателя мощность двигателя до определенной высоты, называемой расчетной, возрастает, а затем падает так же, как у невысотного.

Нагнетатель приводится во вращение от коленчатого зала двигателя. Если в передаче от коленчатого вала к нагнетателю имеются две скорости, причем при включении второй скорости увеличиваются обороты нагнетателя, то с поднятием на высоту можно дважды обеспечивать повышение мощности. Такой двигатель имеет уже две расчетные высоты.

На вертолетах, как правило, устанавливаются двигатели с нагнетателями.

Агрегаты техники

avia.pro

Вертолётный двигатель - это... Что такое Вертолётный двигатель?

 Вертолётный двигатель          На некоторых вертолётах применяли самолётные турбовинтовые двигатели (См. Турбовинтовой двигатель) одновальной схемы, которые вытесняются, особенно на многодвигательных вертолётах, двухвальными турбовинтовыми двигателями с так называемой свободной турбиной (рис.). В таких двигателях турбокомпрессор не имеет механической связи с несущим винтом. Применение двухвального двигателя повышает эффективность использования силовой установки вертолёта, которая, независимо от частоты вращения турбокомпрессора, устанавливает наивыгоднейшую для каждого режима полёта частоту вращения несущего винта. Двухвальные двигатели со свободной турбиной обеспечивают более высокую надёжность работы силовой установки.

         Возможен также реактивный привод несущего винта. При этом окружное усилие прикладывается непосредственно к лопастям несущего винта без применения тяжёлой и сложной механической трансмиссии. Окружное усилие создаётся или автономными реактивными двигателями, установленными на лопастях несущего винта, или истечением газа (сжатого воздуха) из сопловых отверстий, расположенных на концах лопастей. Экономичность реактивного привода ниже механического. Из реактивных приводов наиболее экономичным является привод с турбореактивными двигателями на лопастях винта, однако из-за сложности конструкции он не получил практического применения.

         Лит.: Силовые установки вертолетов. Сб. ст., под ред. М. М. Масленникова, М., 1959; Вертолетные газотурбинные двигатели. Сб. ст., под ред. М. М. Масленникова, М., 1966.

         Г. Н. Леонов.

        

        Схема вертолётного турбовинтового двигателя со свободной турбиной: 1 — компрессор; 2 — камера сгорания; 3 — турбина для привода компрессора; 4 — свободная турбина.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Вертолётная площадка
  • Вертолётный спорт

Смотреть что такое "Вертолётный двигатель" в других словарях:

  • вертолётный — см. вертолёт; ая, ое. Вертолётный двигатель. В ая площадка …   Словарь многих выражений

  • вертолётный — ая, ое. прил. к вертолет. Вертолетный двигатель …   Малый академический словарь

  • Вертолёт —         летательный аппарат тяжелее воздуха с вертикальными взлётом и посадкой, подъёмная сила в котором создаётся одним или несколькими (чаще двумя) несущими винтами. Слово «вертолёт» введено вместо иностранного «геликоптер». В. взлетает… …   Большая советская энциклопедия

  • вертолёт — летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может… …   Энциклопедия техники

  • вертолёт — а; м. Летательный аппарат тяжелее воздуха, с вертикальным взлётом и посадкой, подъёмная сила которого создаётся горизонтальными несущими винтами; геликоптер. Грузовой, военный, санитарный в. Одновинтовой в. ◁ Вертолётный, ая, ое. В. двигатель. В… …   Энциклопедический словарь

  • вертолёт — Рис. 1. Основные схемы вертолётов. вертолёт — летательный аппарат, у которого подъёмная сила и пропульсивная сила для горизонтального полёта создаются одним или несколькими несущими винтами (НВ). В. может совершать вертикальные взлет и… …   Энциклопедия «Авиация»

  • вертолёт — Рис. 1. Основные схемы вертолётов. вертолёт — летательный аппарат, у которого подъёмная сила и пропульсивная сила для горизонтального полёта создаются одним или несколькими несущими винтами (НВ). В. может совершать вертикальные взлет и… …   Энциклопедия «Авиация»

  • Специальный лётный отряд «Россия» — ИКАО RSD Позывной State Aero Дата основания 1956 …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия

  • Комбинированный вертолёт — Винтокрыл  аэродинамический летательный аппарат, способный к вертикальному взлёту и посадке, в котором подъёмная сила создаётся комбинированной несущей системой, состоящей из одного или двух несущих винтов и крыла. Представляет собой комбинацию… …   Википедия

dic.academic.ru

Как устроен вертолет?

 

 

Вертолетом называется летательный аппарат тяжелее воздуха, подъемная сила которого создается одним или несколькими несущими винтами, приводимыми во вращение одной или несколькими силовыми установками (двигателями).

Наиболее распространенный тип вертолета с одним винтом и поршневым двигателем состоит из следующих основных частей: несущего винта, фюзеляжа, рулевого винта и шасси.

Несущий винт 1 служит для создания подъемной силы и тяги. При вращении несущего винта летчик с помощью ручки управления вертолетом 16 через автомат-перекос может изменять направление полной аэродинамической силы несущего винта R, перпендикулярной плоскости вращения концов лопастей, и тем самым создавать составляющую Р этой силы, направленную по касательной к траектории полета. Она аналогична силе тяги воздушного винта поршневого самолета или силе реакции газовой струи реактивного самолета и может меняться по величине в зависимости от угла наклона несущего винта, а следовательно, полной аэродинамической силы R.

Изменение величины аэродинамической силы несущего пиита осуществляется рычагом общего шага 17, с помощью которого производится перемещение вертолета в вертикальной плоскости (спуск и подъем).

В фюзеляже 2 вертолета расположены кабина для экипажа и пассажиров, поршневой двигатель 3 с системой передачи (трансмиссией) к главному редуктору 7 и баки с горючим н маслом.

В кабине экипажа сосредоточено все управление вертолетом и двигателем, в том числе: ручка управления вертолетом, рычаг общего шага несущего винта, ножное управление (педали), управление триммерами, системы управления двигателем, приборы и агрегаты, размещенные как на приборной доске, так и в других местах кабины, и другое оборудование вертолета.

Рычаг общего шага связан с дроссельной заслонкой двигателя. Это необходимо для того, чтобы при изменении шага несущего винта, т. е. при изменении нагрузки на двигатель, изменять газ так, чтобы обороты двигателя были постоянными. Поэтому рычаг общего шага несущего винта называют рычагом «шаггаз».

Трансмиссия на вертолете состоит из редуктора двигателя с муфтой включения и приводами на вентилятор и главный вал.

Главный редуктор вертолета через автомат-перекос и втулку связан с лопастями несущего винта, а через вал, расположенный в хвостовой балке, промежуточный редуктор и концевой вал, расположенный в концевой балке, связан с хвостовым редуктором 15 и рулевым винтом.

Рулевой винт служит для погашения реактивного момента, передаваемого от несущего винта на фюзеляж, а также для поворота вертолета вокруг вертикальной оси. Втулка рулевого винта механически связана с педалями ножного управления 18. Перемещая педали, летчик меняет общий шаг рулевого винта и изменяет тем самым величину развиваемой им тяги TV.

В полете требуется координированное действие всем;1 тремя органами управления в кабине — ручкой управления, рычагом «шаг-газ» и педалями.

Шасси. Вертолет имеет неубирающиеся шасси с передним колесом.

 

Посмотреть все вертолеты

avia.pro

Управление общим шагом несущего винта и двигателями вертолета

 

Управление общим шагом НВ и двигателями на вертолете осуществляется рычагом общего шага 1, который кинематически связан с ползуном АП при помощи рычага 10 и одновременно с рычагами 8 топливного агрегата, расположенными на двигателях.

Рычаг общего шага с системой фиксации в любом положении располагается слева от сидения летчика. Для фиксации рычага служат фрикционные устройства с ручным или гидравлическим управлением.

Изменение общего шага связано с управлением мощностью двигателей вертолета либо посредством механической кинематической связи, либо автоматически через стабилизатор частоты вращения. В обоих случаях обеспечивается поддержание заданной частоты вращения НВ при изменении общего шага, т.к. одновременно соответственно изменяется мощность двигателя. В случае механической связи шага с газом ручка шага имеет специальную поворотную рукоятку коррекции, соединенную с дросселем (рычагом подачи топлива) двигателя. При помощи этой рукоятки летчик может корректировать частоту вращения НВ в допустимых пределах независимо от его шага.

Автоматическое регулирование частоты вращения НВ при изменении его общего шага, угла атаки и скорости полета вертолета осуществляется обычно путем изменения подачи топлива в двигатели. Автономная система регулирования силовой установки может быть расположена непосредственно в двигателе. Она обеспечивает как изменение его мощности вручную в диапазоне от малого газа

до взлетного режима, так и автоматическое поддержание заданной частоты вращения НВ постоянной. Данная система регулирования двигателей может работать и без ручного управления «шаг-газ», т.е. рычаг общего шага может изменять только величину шага без изменения положения рычага подачи топлива, который должен быть переведен в положение «автомат». Перестраивая регулятор частоты вращения, можно менять ее диапазон ограничения, что необходимо для получения оптимальных режимов работы силовой установки в зависимости от высоты и скорости полета.

Возможна и другая система автоматического регулирования частоты вращения НВ, в которой используется стабилизатор — автоматический регулятор подачи топлива, включенный в систему ручного правления «шаг-газ» через раздвижную тягу. Летчик в любой момент может вмешаться в управление. Стабилизатор может быть выключен в случае какой-либо его неисправности. Раздвижная тяга, работающая от стабилизатора частоты вращения, автоматически становится в нейтральное положение, обеспечивая этим возможность нормального ручного управления.

Диапазон работы стабилизатора частоты вращения через раздвижную тягу может составлять до 40—50% полного хода рычага подачи топлива на двигателях. Включение стабилизатора частоты вращения в неполном диапазоне управления увеличивает безопасность при его отказе. В то же время наличие ручного управления дает возможность летчику при резких изменениях режима полета вмешаться в управление и увеличивать диапазон, необходимый стабилизатору. При отказе одного из двигателей автомат выводит работающий двигатель на увеличенную мощность вплоть до взлетной и выше — в зависимости от режима полета. При наличии стабилизатора частоты вращения рукояткой коррекции летчик не пользуется, но ее целесообразно сохранить для работы при отказе автоматики.

На вертолетах , имеющих два и более двигателей, кроме системы «шаг-газ», устанавливается система раздельного управления мощностью двигателей. Уменьшение мощности двигателей достигается перемещением рычагов вниз (от себя), увеличение — перемещением рычагов вверх (на себя). Этими рычагами пользуются, в основном, на земле при раздельном опробовании двигателей и в аварийных случаях в полете, при необходимости повторного запуска отказавшего двигателя.

Для раздельного выключения двигателей в кабине летчиков имеются рукоятки управления кранами останова, располагаемые в удобном для управления месте.

Для аварийного выключения двигателей (в случае пожара) летчик дополнительно может прекратить подачу топлива в двигатели при помощи пожарных кранов.

Для улучшения балансировочных характеристик одновинтовых вертолетов управление общим шагом НВ, обычно связывают со стабилизатором 4 . Особо важное значение эта связь имеет для перехода на режимы моторного планирования и авторотации. Узел управления стабилизатором подсоединяется к ползуну АП.

Характер зависимости изменения угла установки стабилизатора от общего шага НВ.

Чтобы при изменении общего шага НВ свести к минимуму отклонение кольца АП, тяги 3, идущие к качалкам продольного или поперечного управления, должны быть достаточно длинными и расположенными по возможности перпендикулярно направлению перемещения ползуна. Значение этой нежелательной взаимосвязи невелико. На легких вертолетах может быть применена специальная кинематика , полностью устраняющая взаимосвязь продольного и поперечного управления от общего шага. Однако применение такой схемы на тяжелых вертолетах ведет к существенному увеличению массы элементов механической проводки управления.

Кинематическая схема управления НВ может быть выполнена таким образом, что по трем каналам работают одновременно три ГУ . Подобная кинематическая схема работы ГУ управления НВ позволяет обеспечить независимость каналов управления НВ, создать оптимальную КСС АП и уменьшить потребные усилия на штоках силовых ГУ.

 

avia.pro

Турбовинтовой двигатель самолета и вертолета

 

Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики. На большом количестве современных транспортных самолетов применяются именно ТВД. Их преимущество прежде всего в экономичности. Двигатель снабжен воздушным винтом, который устанавливается впереди компрессора.

 

 

Воздушный винт с валом связан редуктором, так как его скорость вращения значительно меньше скорости вращения компрессора-турбины. Для турбовинтовых двигателей сила тяги состоит из тяги воздушного винта и силы тяги, возникающей при истечении газа из сопла. В зависимости от скорости полета самолета изменяются доли двух составляющих тяги. При малых скоростях (крейсерских для транспортных самолетов) доля тяги от воздушных винтов значительно превышает вторую составляющую. В ТВД часто используется комбинация компрессоров.

 

 

Конструкция двухконтурных турбореактивных двигателей обеспечивает поступление воздуха в значительных количествах, что на высоких скоростях обеспечивает большую тягу. Второй контур, контур низкого давления, таким образом, дает дополнительную силу тяги. Соотношение двух составляющих общей тяги зависит от конструкции двигателей и режимов работы. На лучших современных самолетах (МиГ-29, МиГ-31 и др.) в качестве силовой установки используются двухконтурные турбореактивные двигатели. В турбореактивном двигателе для кратковременного повышения тяги двигателя используется форсажная камера. Абсолютное большинство современных истребителей в качестве силовой установкиимеют двигатели с форсажной камерой (Миг-29, Су-33 и др.).

Турбовинтовые двигатели для вертолетов стали применяться значительно позже. Двигатели в 19591961 гг. имели m = 0,1.

 

 

Еще в довоенное время в наиболее развитых странах проводились работы в области создания реактивных двигателей. Исключительность темы была понятна, не имелось никаких причин для отмены или переноса сроков внедрения новых образцов авиационной техники вообще и реактивных самолетов в частности. Достижения фундаментальной науки, конструкторские разработки, технологические решения, создание испытательной базы и отработка производственных процессов — все это дало конкретные результаты: были созданы, прошли испытания и были внедрены реактивные двигатели:

 

Avia.pro

avia.pro

Реактивный привод несущего винта вертолета

 

 

Главное отличие реактивного двигателя от поршневого состоит в том, что в реактивном двигателе энергия сгораемого топлива расходуется на создание силы тяги непосредственно, за счет отбрасывания назад с большой скоростью воздуха и продуктов сгорания, тогда как в поршневом двигателе энергия сгораемого топлива расходуется на вращение воздушного винта, который создает при этом необходимую для движения тягу.

Исходя из этого, можно заключить, что самым простым способом вращения несущего винта вертолета при помощи реактивных двигателей оказывается установка этих двигателей на концах лопастей самого несущего винта.

Следовательно, тяга каждого двигателя должна быть равна 38,2 кг. Реактивный двигатель с такой тягой будет весить совсем немного, примерно 10 кг. Вес всех трех двигателей составит 30 кг.

У одновинтового вертолета с рулевым винтом весом 1500 кг вес двигателя составит около 300 кг, а вес трансмиссии — около 100 кг.

При сравнении вертолета с реактивным двигателем с вертолетом, имеющим поршневой двигатель, разница в весе их составит для данного примера 370 кг. За счет этой разницы может быть увеличен запас топлива. В результате этого дальность вертолета с реактивным двигателем, несмотря на большие расходы топлива, может быть такой же, как и вертолета с поршневым двигателем. Применяя вертолет с реактивным двигателем на малые расстояния, за счет неполной заправки топлива можно значительно увеличить его грузоподъемность.

Реактивный привод несущего винта имеет много преимуществ по сравнению с приводом от поршневого двигателя. При установке реактивных двигателей на концах лопастей совершенно не требуются трансмиссии, т. е. редукторы, валы л т. д. Для такого вертолета рулевой винт нужен только для обеспечения путевого управления, так как отсутствует реактивный момент от винта на фюзеляж, ибо привод винта находится на самом винте; в этом случае рулевой винт будет потреблять меньше мощности, так как диаметр его будет малым. Вес вертолета в целом будет значительно меньше. Так, в случае применения вместо поршневого двигателя прямоточных реактивных двигателей вес вертолета, обладающего той же грузоподъемностью, станет примерно на 30°/о меньше.

Однако наряду с этим реактивному приводу свойственен ряд недостатков. Основной из них заключается в том, что реактивные двигатели имеют малый коэффициент полезного действия, что приводит к большому расходу топлива. Кроме того, реактивный привод трудно осуществить, так как

надо одновременна удовлетворить целому ряду противоречивых требований.

Если на конце лопасти несущего винта установлен реактивный двигатель, то изменение установочного угла лопасти приводит к изменению направления силы тяги двигателя. Так, например, при увеличении установочного угла тяга двигателя уже не будет лежать в плоскости вращения, а составит с ней некоторый угол а, благодаря чему тяга даст две составляющих: в плоскости вращения, которая будет создавать крутящий момент, и вдоль оси вращения винта, которая непосредственно пойдет на увеличение подъемной силы лопасти и увеличит угол взмаха.

Величина этих составляющих тяги в течение одного оборота будет все время изменяться, что вызовет появление значительной вибрации вертолета. Для того чтобы устранить этот недостаток, необходимо крепить двигатель на штанге или трубе, вокруг которой располагать подвижную лопасть таким образом, чтобы изменение угла атаки лопасти происходило вокруг этой штанги или трубы без отклонения оси двигателя.

Труба может служить магистралью для подвода топлива к реактивному двигателю.

Трудность установки двигателя на концах лопастей несущего винта заключается также в том, что реактивный двигатель работает с высоким эффектом только при больших окружных скоростях лопастей, так как в этом случае создается достаточный скоростной напор на входе в диффузор двигателя. Но, с другой стороны, большие окружные скорости приводят к тому, что на профиле лопасти возникает срыв обтекания, что снижает коэффициент полезного действия винта.

Однако это еще далеко не все трудности. Каким бы легким ни был реактивный двигатель, он является сосредоточенной нагрузкой на конце лопасти и в значительной мере увеличивает центробежную силу, стремящуюся разорвать лопасть. Следовательно, по сравнению с несущим винтом, имеющим привод от поршневого двигателя, прочность лопастей несущего винта с реактивными двигателями должна быть повышенной. Кроме того, разнос масс лопастей от оси вращения создает большой момент инерции винта, а сила сопротивления двигателя, находящегося на большом удалении от оси, создает большой момент сопротивления. Все это, вместе взятое, ухудшает способность несущего винта к самовращению при переходе на безмоторный полет в случае отказа реактивных двигателей.

Агрегаты техники

avia.pro

Вертолётный двигатель — с русского

См. также в других словарях:

  • Вертолётный двигатель —         Авиационный двигатель, предназначенный для привода одного или нескольких несущих винтов вертолёта. В. д. могут быть поршневыми (см. Двигатель внутреннего сгорания) и воздушно реактивными двигателями (См. Воздушно реактивный двигатель).… …   Большая советская энциклопедия

  • вертолётный — см. вертолёт; ая, ое. Вертолётный двигатель. В ая площадка …   Словарь многих выражений

  • вертолётный — ая, ое. прил. к вертолет. Вертолетный двигатель …   Малый академический словарь

  • Вертолёт —         летательный аппарат тяжелее воздуха с вертикальными взлётом и посадкой, подъёмная сила в котором создаётся одним или несколькими (чаще двумя) несущими винтами. Слово «вертолёт» введено вместо иностранного «геликоптер». В. взлетает… …   Большая советская энциклопедия

  • вертолёт — летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может… …   Энциклопедия техники

  • вертолёт — а; м. Летательный аппарат тяжелее воздуха, с вертикальным взлётом и посадкой, подъёмная сила которого создаётся горизонтальными несущими винтами; геликоптер. Грузовой, военный, санитарный в. Одновинтовой в. ◁ Вертолётный, ая, ое. В. двигатель. В… …   Энциклопедический словарь

  • вертолёт — Рис. 1. Основные схемы вертолётов. вертолёт — летательный аппарат, у которого подъёмная сила и пропульсивная сила для горизонтального полёта создаются одним или несколькими несущими винтами (НВ). В. может совершать вертикальные взлет и… …   Энциклопедия «Авиация»

  • вертолёт — Рис. 1. Основные схемы вертолётов. вертолёт — летательный аппарат, у которого подъёмная сила и пропульсивная сила для горизонтального полёта создаются одним или несколькими несущими винтами (НВ). В. может совершать вертикальные взлет и… …   Энциклопедия «Авиация»

  • Специальный лётный отряд «Россия» — ИКАО RSD Позывной State Aero Дата основания 1956 …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия

  • Комбинированный вертолёт — Винтокрыл  аэродинамический летательный аппарат, способный к вертикальному взлёту и посадке, в котором подъёмная сила создаётся комбинированной несущей системой, состоящей из одного или двух несущих винтов и крыла. Представляет собой комбинацию… …   Википедия

translate.academic.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики