Как сделать своими руками паровой двигатель: Самодельная паровая машина чертежи. Паровой двигатель своими руками. Катер с паровой машиной

Содержание

Как сделать паровой двигатель своими руками

Мастер сделал сам паровой двигатель

Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.

В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.

От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.

Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты

Как сделать рабочую модель парового двигателя на дому

Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно. Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop.com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.

Как создать свой собственный паровой двигатель?

Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.

Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.

Паровой двигатель начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Устройство двигателя очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем алюминиевую банку из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.

Кроме такой конструкции, можно собрать паровой двигатель Стирлинга своими руками, но это материал для совершенно отдельной статьи.

Из инструментов будут необходимы: ножовка, наждак, паяльник, эпоксидная смола, холодная сварка, суперклей, дрель.

Процесс изготовления парового генератора:

Шаг первый. Принципиальная схема генератора
На схеме можно увидеть, как работает механизм. То есть это кривошип, который через шатун соединен с поршнем. Также в системе предусмотрен клапан (золотник), который открывает и закрывает один из двух каналов. Когда поршень находится в нижней мертвой точке, золотник открывает канал и в цилиндр поступает пар под давлением. Достигая верхней мертвой точки, золотник перекрывает подачу пара, и открывает цилиндр для выпуска пара наружу, поршень затем опускается. Возвратно-поступательные движения по классике преобразуются кривошипом во вращение вала генератора.

Во второй трубке нужно сделать отверстие диаметром 4 мм, оно должно находиться по центру. Третью трубку нужно перпендикулярно приклеить ко второй, для этого используется суперклей. Когда клей высохнет, сверху все замазывается холодной сваркой.

К третьему куску нужно прикрепить металлическую шайбу, после высыхания нужно также все зафиксировать холодной сваркой. Когда сварка высохнет, сверху швы нужно обработать эпоксидной смолой для максимальной прочности и герметичности.

Шаг третий. Изготовления поршня и шатуна
Поршень изготавливается из болта диаметром 7 мм. Для этого его нужно закрепить в тисках и намотать сверху медную проволоку, всего понадобится сделать порядка 6-ти витков, в зависимости от диаметра проволоки. Затем проволока пропитывается эпоксидной смолой. Лишний край болта можно отрезать. Далее, когда смола высохнет, понадобится поработать наждачной бумагой, чтобы подогнать поршень под диаметр цилиндра. В итоге поршень должен двигаться легко, но при этом не должен пропускать воздух.

Для крепления шатуна на поршне нужно сделать специальный кронштейн, он делается из листового алюминия. Ее нужно выгнуть в виде буквы «П», на краях сверлятся отверстия, диаметр отверстия должен быть таким, чтобы в него можно было выставить велосипедную спицу. Кронштейн приклеивается к поршню.

Шатун треугольника изготавливается подобным образом, но здесь с одной стороны будет кусок спицы, а с другой трубка. Длина такого шатуна составляет 75 мм.

Шаг четвертый. Золотник и треугольник
Треугольник нужно вырезать из листа металла, в нем сверлится три отверстия. Что касается поршня золотника, то его длина составляет 3.5 мм, нужно добиться его свободного перемещения в трубке золотника. Длина штока может быть разной, здесь все зависит от маховика.

Подпорки лучше всего делать из брусков, они подбираются индивидуально. Что касается кривошипа поршневой тяги, то он должен быть 8 мм, а кривошип золотника составляет 4 мм.

Ниже можно увидеть, как будет выглядеть двигатель, если его немного доработать. Бачок теперь имеет индивидуальную площадку, а также блюдечко, на которое кладется сухое горючее. Авто рекомендует в качестве источника тепла применять примус или спиртовую горелку, которую можно сделать своими руками. Все элементы можно покрасить на свой вкус.

Принцип работы паровой машины схема. Двигатель своими руками паровой: подробное описание, чертежи

15 ряд ли кто-то сомневается, что одной из главных движущих сил прогресса являются человеческая лень и стремление к комфорту. Это подтверждается бесчисленными сказками, где транспорт передвигается «по щучьему велению», а у счастливчиков имеются волшебные помощники, избавляющие хозяина от необходимости сделать хоть какое-то физическое усилие. Но поскольку в реальности «само» ничего не делается, на протяжении всей истории человечества лучшие умы корпели над изобретениями, которые помогли бы воплотить эти мечты в жизнь.

Если говорить на языке физики и техники, нужно было изобрести устройство, которое смогло бы преобразовать тот или иной вид энергии в полезную механическую работу. С древнейших времен главным и основным источником энергии была мускульная сила человека и животных, а все имеющиеся технические приспособления в лучшем случае помогали использовать ее более рационально и продуктивно. Позднее люди научились применять силу ветра и воды, текущей или падающей с высоты, заставив их работать в ветряных и водяных двигателях . Однако мощность таких двигателей была невелика, и надо было осваивать более перспективные виды энергии тепловую, химическую и электрическую.

Первое известное тепловое устройство, работавшее за счет силы пара, было построено греческим ученым Архимедом в III в. до н. э. Это была пушка, один конец которой нагревали, а затем заливали туда воду. Мгновенно нагреваясь, вода превращалась в пар, который, расширяясь, выталкивал из жерла ядро. Спустя два столетия другой греческий ученый Герон Александрийский создал и описал еще одну тепловую машину полый железный шар, способный вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по трубке поступал в шар, откуда выходил наружу через изогнутые сопла, при этом шар приходил во вращение.

Пароход «Мэйфлауэр» на реке Миссисипи. 1855 г.

Полтора тысячелетия «геронов шар» был всего лишь забавной игрушкой, и только в XVI в. ученые задумались о возможности практического применения тепловой энергии. Знаменитый изобретатель Леонардо да Винчи был первым, кто предположил, что пар может выполнять полезную работу. Об этом свидетельствуют рисунки в его рукописях, изображающие цилиндр и поршень. Да Винчи утверждал, что если под поршень в цилиндр поместить воду, а сам цилиндр нагреть, то образующийся водяной пар будет расширяться, что заставит его искать выход и перемещать поршень вверх. Параллельно арабский инженер Таги аль Дин разработал проект устройства, в котором пар, направляемый на закрепленные по ободу колеса лопасти, вращал вертел. В XVII в. похожую машину построил итальянский изобретатель Джованни Бранка. Приводимое в движение паром анкерное устройство поочередно поднимало и опускало пару пестов в ступах, в результате чего можно было дробить зерно. Однако в этих прообразах паровых турбин поток пара был слишком рассеянным, в результате чего происходила значительная потеря энергии.

До конца XVII в. создаваемые паровые машины были скорее единичными техническими диковинками, поскольку экономических предпосылок для их массового использования еще не было. В 1б70-х годах французский изобретатель Дени Папен и голландский физик Христиан Гюйгенс работали над машиной, в которой поршень поднимался за счет расширения газов при взрыве пороха. В 1680 г. Папен создал вариант двигателя, в котором вместо пороха использовалась вода. Ее наливали в цилиндр под поршень, а сам цилиндр разогревали снизу, при этом образующийся пар поднимал поршень. Затем цилиндр охлаждали, и находящийся в нем пар конденсировался, снова превращаясь в воду.

Паровой двигатель Д. Папена.

Поршень, как и в случае порохового двигателя, под действием своего веса и атмосферного давления опускался. Папен также считается изобретателем парового котла, поскольку именно он понял, что для автоматизации цикла пар должен подаваться в цилиндр извне (поэтому паровой двигатель считается двигателем внешнего сгорания: топливо, разогревающее воду сжигается вне рабочего цилиндра).

Первым паровым двигателем, который был не без успеха использован на производстве, стала сконструированная в 1698 г. английским военным инженером Томасом Севери «пожарная установка». Это устройство, самим изобретателем названное «друг рудокопа», представляло собой паровой насос, который использовался для вращения колес водяной мельницы и для откачки воды из шахт. Машина была не слишком эффективной из-за больших потерь тепла во время охлаждения контейнера и достаточно опасной в эксплуатации, поскольку из-за высокого давления пара трубопроводы и емкости двигателя нередко взрывались.

В 1712 г. английский кузнец Томас Ньюкомен продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором рабочее давление пара удалось значительно снизить, следовательно, двигатель стал более безопасным. Пар из котла поступал в основание цилиндра и поднимал поршень.

Сколько лошадей?

Понятие лошадиной силы как единицы мощности паровой машины ввел Дж. Уатт. Но первым термин стал применять Т. Севери еще в 1698 г. При этом подход у них был разный. Севери оценивал мощность своего насоса, исходя из того, что для его работы в сутки потребуется 10 меняющихся по мере усталости лошадей. Уатт же учитывал только работающих на данный момент пару запряженных лошадей. В итоге получалось, что мощность почти одинаковых паровых машин Севери оценивал в 10 «лошадок», а Уатт только в две.

Откачка воды из угольной шахты при помощи паровой машины Т. Ньюкомена. Иллюстрация из The Universal Magazine. 1747 г.

К. Ф. фон Бреда. Потрет Джеймса Уатта. 1792 г.

При впрыскивании в цилиндр холодной воды пар конденсировался, образовывался вакуум, и под воздействием атмосферного давления поршень опускался. Этот обратный ход удалял воду из цилиндра и посредством цепи, соединенной с коромыслом, поднимал шток насоса. Именно машина Ньюкомена явилась первым паровым двигателем, с которым принято связывать начало промышленной революции в Англии. Она оказалась настолько удачной, что использовалась в Европе более 50 лет. Тем не менее в конструкцию вносились некоторые важные изменения. В частности, в 1718 г. англичанин Генри Бейтон изобрел распределительный механизм, который автоматически включал или отключал пар и впускал воду. Он же дополнил паровой котел предохранительным клапаном.

Проект первой в мире паровой машины, способной непосредственно приводить в действие любые рабочие механизмы, предложил в 1763 г. русский изобретатель Иван Иванович Ползунов, механик на Колывано-Воскресенских горнорудных заводах Алтая. Его машина представляла собой двухцилиндровый вакуумный агрегат с поршнями, соединенными цепью, перекинутой через шкив. Все действия в нем совершались автоматически. Вместо опытного образца заводское начальство потребовало сразу построить большую машину для мощной воздуходувки. Двигатель строили почти два года, и до запуска изобретатель не дожил. Машина успешно прошла испытания и была запущена в эксплуатацию. Уже через три месяца она не только оправдала затраты, но и дала прибыль. Однако через некоторое время котел дал течь, и по непонятным соображениям чинить машину не стали.

Примерно в это же время в Англии над созданием паровой машины работал шотландец Джеймс Уатт. Он занимался усовершенствованием двигателя Ньюкомена. Было ясно, что основной недостаток машины Ньюкомена состоял в попеременном нагревании и охлаждении цилиндра. Уатт предположил, что цилиндр может постоянно оставаться горячим, если до конденсации отводить пар в отдельный резервуар через трубопровод с клапаном. Более того, цилиндр может оставаться горячим, а конденсатор холодным, если снаружи их покрыть теплоизоляционным материалом. В 1768 г. он получил на свое изобретение патент, но построить машину смог только в 1776 г. Она оказалась вдвое эффективнее машины Ньюкомена.

Паровая машина Ползунова.

И. И. Ползунов.

В 1782 г. появилась созданная Уаттом первая универсальная паровая машина двойного действия. Ее крышка была оснащена сальником, который обеспечивал поршню свободное движение штока и в то же время предотвращал утечку пара из цилиндра. Пар поступал в цилиндр с двух сторон поршня попеременно, таким образом, поршень совершал с помощью пара и рабочий, и обратный ход, чего не было в прежних машинах. Уатт получил на свою «ротативную паровую машину» патент, и она начала широко применяться для приведения в действие станков и машин сначала на прядильных и ткацких фабриках, а затем и на других промышленных предприятиях.

Паровоз «Пыхтящий Билли».

Макет паровой машины Дж. Уатта.

Помимо промышленности паровые машины прочно заняли место в сельском хозяйстве и на транспорте. Еще в 1850 г. английский изобретатель Уильям Говард использовал для пахоты локомобиль компактный передвижной паровой двигатель. В 1879 г. крестьянин Федор Блинов из Саратовской губернии построил и запатентовал первый в мире гусеничный трактор, приводимый в действие паровой машиной мощностью 20 л. с.

Первый образец автомобиля с паровым двигателем в 1769 г. испытал французский изобретатель Николя Жозе Кюньо, его творение получило известность как «малая паровая телега Кюньо». Год спустя публике представили уже «большую паровую телегу Кюньо». В 1788 г. в США было организовано пароходное сообщение по реке Делавер между городами Филадельфия и Берлингтон. Сконструированный Джоном Фитчем пароход мог принять на борт 30 пассажиров и везти их со скоростью 7-8 миль в час. А в 1804 г. Ричард Тревитик продемонстрировал первый самоходный железнодорожный локомотив на паровой тяге, построенный на металлургическом заводе Пенидаррен в Мер-тир-Тидвиле (Южный Уэльс).

Несмотря на все усилия инженеров, довольно низкий КПД паровых двигателей повысить так и не удалось, и уже к концу XIX в. с полной отдачей послужившие техническому прогрессу машины начали постепенно сдавать свои позиции. На автомобильном транспорте они уступили место двигателям внутреннего сгорания, на железной дороге и в промышленности электродвигателям. Однако в теплоэнергетике и на отдельных видах транспорта паровые машины (в особенности паровые турбины) по-прежнему используются достаточно широко.

Паровая турбина сталелитейного завода.

Паровой двигатель

Сложность изготовления: ★★★★☆

Время изготовления: Один день

Подручные материалы: ████████░░ 80%

В этой статье я расскажу вам о том, как сделать паровой двигатель своими руками. Двигатель будет небольшой, однопоршневой с золотником. Мощности вполне хватит, чтобы вращать ротор небольшого генератора и использовать этот двигатель в качестве автономного источника электричества в походах.

  • Телескопическая антенна (можно снять со старого телевизора или радиоприёмника), диаметр самой толстой трубки должен составлять не менее 8 мм
  • Маленькая трубка для поршневой пары (магазин сантехники).
  • Медная проволока с диаметром около 1,5 мм (можно найти в катушке трансформатора или радиомагазине).
  • Болты, гайки, шурупы
  • Свинец (в рыболовном магазине или найти в старом автомобильном аккумуляторе). Он нужен, чтобы отлить маховик в форме. Я нашёл готовый маховик, но вам этот пункт может пригодиться.
  • Деревянные бруски.
  • Спицы для велосипедных колёс
  • Подставка (в моём случае из листа текстолита толщиной 5 мм, но подойдёт и фанера).
  • Деревянные бруски (куски досок)
  • Банка из под оливок
  • Трубка
  • Суперклей, холодная сварка, эпоксидная смола (стройрынок).
  • Наждак
  • Дрель
  • Паяльник
  • Ножовка

    Как сделать паровой двигатель

    Схема двигателя

    Цилиндр и золотниковая трубка.

    Отрезаем от антенны 3 куска:
    ? Первый кусок 38 мм длиной и 8 мм диаметром (сам цилиндр).
    ? Второй кусок длиной 30 мм и 4 мм диаметром.
    ? Третий длиной 6 мм и 4 мм диаметром.

    Возьмём трубку №2 и сделаем в ней отверстие диаметром 4 мм посередине. Возьмем трубку №3 и приклеим перпендикулярно трубке №2, после высыхания суперклея, замажем все холодной сваркой (например POXIPOL).

    Крепим круглую железную шайбу с отверстием посредине к куску №3 (диаметр — чуть больше трубки №1), после высыхания укрепляем холодной сваркой.

    Дополнительно покрываем все швы эпоксидной смолой для лучшей герметичности.

    Как сделать поршень с шатуном

    Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.

    Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.

    Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).

    Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.

    Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.

    Спицу с двух концов подклеиваем, чтобы не выпала.

    Шатун треугольника

    Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.

    Треугольник и золотник

    Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.
    Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.

    Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника — 4 мм.

  • Паровой котёл

    Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.
    Вот фото:

    Фото двигателя в сборе

    Собираем двигатель на деревянной платформе, размещая каждый элемент на подпорке

    Видео работы парового двигателя

  • Версия 2. 0

    Косметическая доработка двигателя. Бак теперь имеет свою собственную деревянную площадку и блюдце для таблетки сухого горючего. Все детали покрашены в красивые цвета. Кстати в качестве источника тепла лучше всего использовать самодельную

Изобретение паровых машин стало переломным моментом в истории человечества. Где-то на рубеже XVII-XVIII веков началась замена малоэффективного ручного труда, водяных колес и на совершенно новые и уникальные механизмы — паровые двигатели. Именно благодаря им стали возможны техническая и промышленная революции, да и весь прогресс человечества.

Но кто изобрел паровую машину? Кому человечество этим обязано? И когда это было? На все эти вопросы и постараемся найти ответы.

Еще до нашей эры

История создания паровой машины начинается еще в первых столетиях до нашей эры. Герон Александрийский описал механизм, который начинал работать только тогда, когда на него воздействовал пар. Устройство представляло собой шар, на котором были закреплены сопла. Из сопел по касательной выходил пар, тем самым заставляя двигатель вращаться. Это было первое устройство, которое работало на пару.

Создатель паровой машины (а точнее, турбины) — Таги-аль-Диноме (арабский философ, инженер и астроном). Его изобретение стало широко известно в Египте в XVI веке. Механизм был устроен следующим образом: потоки пара направляли прямо на механизм с лопастями, и когда дым валил — лопасти вращались. Нечто подобное в 1629 году предлагал и итальянский инженер Джованни Бранка. Главным недостатком всех этих изобретений был слишком большой расход пара, что в свою очередь требовало огромных затрат энергии и не было целесообразно. Разработки были приостановлены, так как тогдашних научных и технических знаний человечества было недостаточно. Кроме того, надобность в таких изобретениях напрочь отсутствовала.

Разработки

До XVII века создание паровой машины было невозможно. Но как только планка уровня развития человечества взлетела, тут же появились и первые экземпляры и изобретения. Хотя серьезно их никто на тот момент не воспринял. Так, например, в 1663 году английский ученый опубликовал в прессе проект своего изобретения, которое он установил в замке Реглан. Его устройство служило для того, чтобы поднимать воду на стены башен. Однако, как и все новое и неизведанное, данный проект был принят с сомнением, и спонсоров для его дальнейших разработок не нашлось.

История создания паровой машины начинается с изобретения пароатмосферной машины. В 1681 году ученый из Франции изобрел устройство, которое откачивало воду из шахт. В качестве движущей силы в первое время применялся порох, а затем его заменили на водяной пар. Так появилась пароатмосферная машина. Огромный вклад в ее усовершенствование внесли ученые из Англии Томас Ньюкомен и Томас Северен. Неоценимую помощь также оказал русский изобретатель-самоучка Иван Ползунов.

Неудавшаяся попытка Папена

Пароатмосферная машина, далекая в то время от совершенства, привлекла особое внимание в судостроительной области. Д. Папен свои последние сбережения потратил на приобретение небольшого судна, на котором занялся установкой водоподъемной пароатмосферной машины собственного производства. Механизм действия заключался в том, чтобы, падая с высоты, вода начинала вращать колеса.

Свои испытания изобретатель проводил в 1707 году на реке Фульде. Много народу собралось, чтобы посмотреть на чудо: двигающееся по реке судно без парусов и весел. Однако во время испытаний произошла катастрофа: взорвался двигатель и погибли несколько человек. Власти разозлились на неудачливого изобретателя и запретили ему какие-либо работы и проекты. Судно конфисковали и разрушили, а через несколько лет скончался и сам Папен.

Ошибка

У парохода Папена был следующий принцип работы. На дно цилиндра необходимо было залить небольшое количество воды. Под самим цилиндром располагалась жаровня, которая служила для нагревания жидкости. Когда вода начинала кипеть, образующийся пар, расширяясь, поднимал поршень. Из пространства над поршнем через специально оборудованный клапан выталкивался воздух. После того как вода закипала и начинал валить пар, необходимо было убрать жаровню, закрыть клапан, чтобы удалить воздух, и при помощи прохладной воды охладить стенки цилиндра. Благодаря таким действиям пар, находившийся в цилиндре, конденсировался, под поршнем образовывалось разрежение, и благодаря силе атмосферного давления поршень вновь возвращался на свое первоначальное место. Во время его движения вниз и совершалась полезная работа. Однако КПД паровой машины Папена был отрицательным. Двигатель парохода был крайне неэкономичен. А главное, он был слишком сложным и неудобным в эксплуатации. Поэтому изобретение Папена не имело будущего уже с самого начала.

Последователи

Однако история создания паровой машины на этом не закончилась. Следующим, уже гораздо более удачливым, чем Папен, оказался английский ученый Томас Ньюкомен. Он долго изучал работы своих предшественников, делая упор на слабые места. И взяв самое лучшее из их работ, создал в 1712 году свой аппарат. Новая паровая машина (фото представлено) была сконструирована следующим образом: использовались цилиндр, находившийся в вертикальном положении, а также поршень. Это Ньюкомен взял из работ Папена. Однако пар образовывался уже в другом котле. Вокруг поршня закреплялась цельная кожа, что значительно повышало герметичность внутри парового цилиндра. Данная машина также была пароатмосферной (вода поднималась из шахты при помощи атмосферного давления). Главными минусами изобретения были его громоздкость и неэкономичность: машина «съедала» огромное количество угля. Однако пользы она приносила значительно больше, чем изобретение Папена. Поэтому ее почти пятьдесят лет применяли в подземельях и шахтах. Ее использовали для откачивания грунтовых вод, а также для осушки кораблей. пытался преобразовать свою машину так, чтобы была возможность применять ее для движения транспорта. Однако все его попытки не увенчались успехом.

Следующим ученым, заявившим о себе, стал Д. Хулл из Англии. В 1736 году он представил миру свое изобретение: пароатмосферную машину, у которой в качестве движителя были лопастные колеса. Его разработка оказал более удачной, чем у Папена. Сразу же было выпущено несколько таких суден. В основном они использовались для того, чтобы буксировать баржи, корабли и другие суда. Однако надежность пароатмосферной машины не вызывала доверия, и суда оборудовали парусами как основным движителем.

И хотя Хуллу повезло больше, чем Папену, его изобретения постепенно потеряли актуальность, и от них отказались. Все-таки у пароатмосферных машин того времени было множество специфических недостатков.

История создания паровой машины в России

Следующий прорыв случился в Российской Империи. В 1766 году на металлургическом заводе в Барнауле была создана первая паровая машина, которая подавала в плавильные печи воздух при помощи специальных воздуходувных мехов. Создателем ее стал Иван Иванович Ползунов, которому за заслуги перед родиной даже дали офицерское звание. Изобретатель представил своему начальству чертежи и планы «огненной машины», способной приводить в действие воздуходувные мехи.

Однако судьба сыграла с Ползуновым злую шутку: через семь лет после того, как его проект был принят, а машина собрана, он заболел и умер от чахотки — всего за неделю до того, как начались испытания его двигателя. Однако его инструкций оказалось достаточно, чтобы завести двигатель.

Итак, 7 августа 1766 года паровая машина Ползунова была запущена и поставлена под нагрузку. Однако уже в ноябре того же года она сломалась. Причиной оказались слишком тонкие стенки котла, не предназначенного для нагрузки. Причем изобретатель в своих инструкциях писал, что этот котел можно использовать только во время испытаний. Изготовление нового котла легко бы окупилось, ведь КПД паровой машины Ползунова был положительный. За 1023 часа работы с ее помощью выплавили серебра 14 с лишним пудов!

Но несмотря на это, никто ремонтировать механизм не стал. Паровая машина Ползунова пылилась более 15 лет на складе, пока мир промышленности не стоял на месте и развивался. А потом и вовсе была разобрана на запчасти. Видимо, в тот момент Россия еще не доросла до паровых двигателей.

Требования времени

Между тем жизнь на месте не стояла. И человечество постоянно задумывалось над тем, чтобы создать механизм, позволяющий не зависеть от капризной природы, а самим управлять судьбой. От паруса все хотели отказаться как можно быстрее. Поэтому вопрос о создании парового механизма постоянно висел в воздухе. В 1753 году в Париже был выдвинут конкурс среди мастеров, ученых и изобретателей. Академия наук объявила награду тому, кто сможет создать механизм, способный заменить силу ветра. Но несмотря на то что в конкурсе участвовали такие умы, как Л. Эйлер, Д. Бернулли, Кантон де Лакруа и другие, дельного предложения не вынес никто.

Годы шли. И промышленная революция накрывала все больше и больше стран. Первенство и лидерство среди других держав доставалось неизменно Англии. К концу восемнадцатого века именно Великобритания стала создательницей крупной промышленности, благодаря чему завоевала титул всемирной монополистки в данной отрасли. Вопрос о механическом двигателе с каждым днем становился все более актуальным. И такой двигатель был создан.

Первая паровая машина в мире

1784 год стал для Англии и для всего мира переломным моментом в промышленной революции. И человеком, ответственным за это, стал английский механик Джеймс Уатт. Паровая машина, которую он создал, стала самым громким открытием века.

На протяжении нескольких лет изучал чертежи, строение и принципы работы пароатмосферных машин. И на основании всего этого он сделал вывод, что для эффективности работы двигателя необходимо сравнять температуры воды в цилиндре и пара, который попадает в механизм. Главный минус пароатмосферных машин заключался в постоянной необходимости охлаждения цилиндра водой. Это было расходно и неудобно.

Новая паровая машина была сконструирована иным образом. Так, цилиндр заключался в специальную рубашку из пара. Таким образом Уатт добился его постоянного нагретого состояния. Изобретатель создал специальный сосуд, погруженный в холодную воду (конденсатор). К нему трубой присоединялся цилиндр. Когда пар отрабатывался в цилиндре, то через трубу попадал в конденсатор и там превращался обратно в воду. Работая над усовершенствованием своей машины, Уатт создал разрежение в конденсаторе. Таким образом, весь пар, попадавший из цилиндра, конденсировался в нем. Благодаря этому нововведению очень сильно увеличивался процесс расширения пара, что в свою очередь позволяло извлекать из того же количества пара намного больше энергии. Это был венец успеха.

Создатель паровой машины также изменил и принцип подачи воздуха. Теперь пар попадал сначала под поршень, тем самым поднимая его, а затем собирался над поршнем, опуская. Таким образом, оба хода поршня в механизме стали рабочими, что ранее даже не представлялось возможным. А расход угля на одну лошадиную силу был в четыре раза меньше, чем, соответственно, у пароатмосферных машин, чего и добивался Джеймс Уатт. Паровая машина очень быстро завоевала сначала Великобританию, ну а затем и целый мир.

«Шарлотта Дандас»

После того как весь мир был поражен изобретением Джеймса Уатта, началось широкое применение паровых машин. Так, в 1802 году в Англии появился первый корабль на пару — катер «Шарлотта Дандас». Его создателем считается Уильям Саймингтон. Катер применялся в качестве буксировки барж по каналу. Роль движителя на судне играло гребное колесо, установленное на корме. Катер с первого раза успешно прошел испытания: отбуксировал две огромные баржи на 18 миль за шесть часов. При этом ему сильно мешал встречный ветер. Но он справился.

И все-таки его поставили на прикол, потому что опасались, что из-за сильных волн, которые создавались под гребным колесом, берега канала будут размыты. Кстати, на испытаниях «Шарлотты» присутствовал человек, которого весь мир сегодня считает создателем первого парохода.

в мире

Английский судостроитель с юношеских лет мечтал о судне с паровым двигателем. И вот его мечта стала осуществима. Ведь изобретение паровых машин стало новым толчком в судостроительстве. Вместе с посланником из Америки Р. Ливингстоном, который взял на себя материальную сторону вопроса, Фултон занялся проектом корабля с паровой машиной. Это было сложное изобретение, основанное на идее весельного движителя. По бортам судна тянулись в ряд плицы, имитирующие множество весел. При этом плицы то и дело мешали друг другу и ломались. Сегодня можно с легкостью сказать, что тот же эффект мог быть достигнут всего при трех-четырех плицах. Но с позиции науки и техники того времени это увидеть было нереально. Поэтому судостроителям приходилось намного сложнее.

В 1803 году изобретение Фултона было представлено всему миру. Пароход медленно и ровно шел по Сене, поражая умы и воображение многих ученых и деятелей Парижа. Однако правительство Наполеона отвергло проект, и раздосадованные судостроители вынуждены были искать счастья в Америке.

И вот в августе 1807 года первый в мире пароход под названием «Клермонт», в котором была задействована мощнейшая паровая машина (фото представлено), пошел по Гудзонскому заливу. Многие тогда просто не верили в успех.

В свой первый рейс «Клермонт» отправился без грузов и без пассажиров. Никто не хотел отправляться в путешествие на борту огнедышащего судна. Но уже на обратном пути появился первый пассажир — местный фермер, заплативший шесть долларов за билет. Он стал первым пассажиром в истории пароходства. Фултон был так сильно растроган, что предоставил смельчаку пожизненный бесплатный проезд на всех своих изобретениях.

Начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.

Кроме такой конструкции, можно собрать паровой но это материал для совершенно отдельной статьи.

Современный мир заставляет многих изобретателей снова возвращаться к идее применения паровой установки в средствах, предназначенных для перемещения. В машинах есть возможность использовать несколько вариантов силовых агрегатов, работающих на пару.


Поршневой мотор

Современные паровые двигатели можно распределить на несколько групп:

Конструктивно установка включает в себя:

  • пусковое устройство;
  • силовой блок двухцилиндровый;
  • парогенератор в специальном контейнере, снабженный змеевиком.

Процесс происходит следующим образом. После включения зажигания начинает поступать питание от аккумуляторной электробатареи трех двигателей. От первого в работу приводится воздуходувка, прокачивающая воздушные массы по радиатору и передающая их по воздушным каналам в смесительное устройство с горелкой.

Одновременно с этим очередной электромотор активирует насос перекачки топлива, подающий конденсатные массы из бачка по змеевидному устройству подогревательного элемента в корпусную часть отделителя воды и подогреватель, находящийся в экономайзере, в паровой генератор.
До начала запуска пару нет возможности пройти к цилиндрам, так как путь ему перекрывают клапан дросселя или золотник, которые приводятся в управление кулисной механикой. Поворачивая ручки в сторону, необходимую для передвижения, и приоткрывая клапан, механик приводит в работу паровой механизм.
Отработанные пары по единому коллектору поступают на распределительный кран, в котором разделяются на пару неодинаковых долей. Меньшая по объему часть попадает в сопло смесительной горелки, перемешивается с воздушной массой, воспламеняется от свечи. Появившееся пламя начинает подогревать контейнер. После этого продукт сгорания переходит в водоотделитель, происходит конденсирование влаги, стекающей в специальный бак для воды. Оставшийся газ уходит наружу.

Паровая установка может напрямую соединяться с приводным устройством трансмиссии машины, и с началом ее работы машина приходит в движение. Но с целью повышения кпд специалисты рекомендуют использовать механику сцепления. Это удобно при буксировочных работах и разных проверочных действиях.

Аппарат отличается способностью работать практически без ограничений, возможны перегрузки, имеется большой диапазон регулировки мощностных показателей. Следует добавить, что во время любой остановки паровой двигатель перестает работать, чего нельзя сказать про мотор.

В конструкции нет необходимости устанавливать коробку переключения скоростей, страртерное устройство, фильтр для очистки воздуха, карбюратор, турбонаддув. Кроме этого, система зажигания в упрощенном варианте, свеча только одна.

В завершении можно добавить, что производство таких машин и их эксплуатация будут обходиться дешевле, чем автомобили с двигателем внутреннего сгорания, так как топливо будет недорогим, материалы, применяемые в производстве – самыми дешевыми.

Паровой двигатель своими руками чертежи

Содержание

  • 1 Паровые двигатели современности
  • 2 Метод 1: мини-паровой двигатель своими руками
  • 3 Мини-сопла
  • 4 Запуск двигателя
  • 5 Модель парового двигателя для взрослых
  • 6 Основной элемент
  • 7 Емкость для воды
  • 8 Результат
  • 9 Мастер сделал сам паровой двигатель
  • 10 Как сделать рабочую модель парового двигателя на дому

Паровой двигатель начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Устройство двигателя очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем алюминиевую банку из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром ¼-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.

Кроме такой конструкции, можно собрать паровой двигатель Стирлинга своими руками, но это материал для совершенно отдельной статьи.

Мастер сделал сам паровой двигатель

Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.

В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.

От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.

Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты

Как сделать рабочую модель парового двигателя на дому

Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно. Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop. com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.

Как создать свой собственный паровой двигатель?

Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.

Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.

продублирую с форума:
машина там установлена на катере, что для нас не обязательно

КАТЕР С ПАРОВОЙ МАШИНОЙ

Изготовление корпуса
Корпус нашего катера вырезается из сухого, мягкого и легкого дерева: липы, осины, ольхи; береза более тверда, и ее труднее обрабатывать. Можно также взять ель или сосну, однако они легко колются, что осложняег работу.
Выбрав полено подходящей толщины, обтешите его топором и отпилите кусок требуемого размера. Последовательность изготовления корпуса показана на рисунках (см. таблицу 33, слева, вверху).
Палубу выпилите из сухой доски. Сверху сделайте палубу немного выпуклой, как у настоящих судов, чтобы попавшая на нее вода стекала за борт. Вырежьте на ней ножом неглубокие бороздки, чтобы придать поверхности палубы вид обшивки из досок.

Постройка котла
Вырезав кусок жести размером 80×155 мм, отогните края шириной около 10 мм в противоположные стороны. Согнув жесть в кольцо, соедините отогнутые края в шов и пропаяйте его (см, таблицу, в середине, справа). Изогните заготовку, чтобы получился овал, вырежьте по нему два овальных донышка и впаяйте их.
Сверху в котле пробейте два отверстия: одно для водоналивной пробочки, другое для прохода пара в сухопарник. Сухопарник — маленькая круглая баночка из жести. Из сухопарника выходит маленькая спаянная из жести трубочка, на конец которой натягивается другая, резиновая трубочка, по которой пар идет к цилиндру паровой машины.
Топка приспособлена только для спиртовой горелки. Снизу топка имеет жестяное дно с загнутыми краями. На рисунке дана выкройка топки. Пунктирными линиями показаны линии сгиба. Спаивать топку нельзя; боковые стенки ее скрепляются двумя-тремя маленькими заклепками. Нижние края стенок отгибаются наружу и охватываются краями жестяного дна.
Горелка имеет два фитиля из ваты и длинную воронкообразную трубочку, спаянную из жести. Через эту трубочку можно подливать в горелку спирт, не вынимая котла с топкой из катера или горелки из топки. Если котел будет соединен с цилиндром паровой машины резиновой трубкой, топку с котлом можно легко вынимать из катера.
Если нет спирта, можно сделать топку, которая будет работать на мелком предварительно разожженном древеслом угле. Уголь насыпается в жестяную коробочку с решетчатым дном. Коробочка с углем устанавливается в топке. Для этого котел придется сделать съемным и закреплять его над топкой проволочными зажимами.

Изготовление машины
На модели катера установлена паровая машина с качающимся цилиндром. Это простая и вместе с тем хорошо работающая модель. Как она работает, видно на таблице 34, справа, вверху.
Первое положение показывает момент впуска пара, когда отверстие в цилиндре совпадает с паровпускным отверстием. В этом положении пар поступает в цилиндр, давит на поршень и толкает его вниз. Давление пара на поршень передается через шатун и кривошип на гребной вал. Во время движения поршня цилиндр поворачивается.
Когда поршень немного не дойдет до нижней точки, цилиндр окажется стоящим прямо, и впуск пара прекратится: отверстие в цилиндре уже не совпадает с впускным отверстием. Но вращение вала продолжается, уже за счет инерции маховика. Цилиндр поворачивается все больше и больше, и когда поршень начнет подниматься кверху, отверстие цилиндра совпадет с другим, выпускным отверстием. Находящийся в цилиндре отработанный пар выталкивается через выпускное отверстие наружу.
Когда поршень поднимется в самое высокое положение, цилиндр снова станет прямо, и выпускное отверстие закроется. В начале обратного движения поршня, когда он уже начнет опускаться, отверстие в цилиндре снова совпадет с паровпускным, пар опять ворвется в цилиндр, поршень получит новый толчок, и все повторится сначала.
Цилиндр отрежьте от латунной, медной или стальной трубочки с диаметром отверстия 7—8 мм или от пустой гильзы патрона соответственного диаметра. Трубочка должна иметь гладкие внутренние стенки.
Шатун выпилите из латунной или железной пластинки толщиной 1,5—2 мм, конец без отверстия вылудите.
Поршень отлейте из свинца непосредственно в цилиндре. Способ отливки точно такой, как и для паровой мащины, описанной раньше. Когда свинец для отливки расплавится, в одну руку возьмите зажатый плоскогубцами шатун, а другой рукой вылейте свинец в цилиндр. Сразу же погрузите в не застывший еще свинец на отмеченную заранее глубину луженый конец шатуна. Он окажется прочно впаянным в поршень. Следите за тем, чтобы шатун был погружен точно отвесно и в центр поршня. Когда отливка остынет, поршень с шатуном вытолкните из цилиндра и осторожно очистите.
Крышку цилиндра вырежьте из латуни или железа толщиной 0,5— 1 мм.
Парораспределительное устройство паровой машины с качающимся цилиндром состоит из двух пластинок: цилиндровой парораспределительной пластинки А, которая припаивается к цилиндру, и парораспределительной пластинки Б, припаиваемой к стойке (раме). Их лучше всего изготовить из латуни или меди и только в крайнем случае из железа (см. таблицу, слева, вверху).
Пластинки должны плотно прилегать друг к другу. Для этого они пришабриваются. Делается это так. Достаньте так называемую проверочную плитку или возьмите небольшое зеркало. Поверхность его покройте очень тонким и ровным слоем черной масляной краски или копоти, стертой на растительном масле. Краска рястирается по поверхности зеркала пальцами. Пришабриваемую пластинку положите на покрытую краской зеркальную поверхность, прижмите пальцами и некоторое время подвигайте по зеркалу из стороны в сторону. Затем снимите пластинку и все выступающие покрывшиеся краской места поскоблите специальным инструментом — шабером. Шабер можно изготовить из старого трехгранного напильника, заточив его грани, как показано на рисунке. Если металл, из которого изготовляются парораспределительные пластинки, мягкий (латунь, медь), то шабер можно заменить перочинным ножом.
Когда все выступающие покрытые краской места пластинки сняты, остаток краски сотрите и снова положите пластинку на проверочную поверхность. Теперь краска покроет большую поверхность пластинки. Очень хорошо. Шабровку продолжайте до тех пор, пока вся поверхность пластинки не станет покрываться мелкими частыми пятнышками краски. После того как пришабрите парораспределительные пластинки, к цилиндровой пластинке А припаяйте винт, вставленный в просверленное в пластинке отверстие. Пластинку с винтом припаяйте к цилиндру. Тогда же припаяйте и крышку цилиндра. Другую пластинку припаяйте к раме машины.
Раму выпилите из латунной или железной пластинки толщиной 2—3 мм и укрепите ее на дне катера при помощи двух шурупов.
Гребной вал сделайте из стальной проволоки толщиной 3—4 мм или из оси набора «конструктор». Вал вращается в трубке, спаянной из жести, К концам ее припаиваются латунные или медные шайбочки с отверстиями точно по валу, В трубку налейте масло, чтобы вода не могла попасть в катер даже тогда, когда верхний конец трубки будет расположен ниже уровня воды. Трубка гребного вала закрепляется в корпусе катера с помощью припаянной наклонно круглой пластинки. Все щели вокруг трубки и крепительной пластинки залейте расплавленной смолой (варом) или замажьте шпаклевкой.
Кривошип изготовляется из небольшой железной пластинки и обрезка проволоки и укрепляется на конце вала пайкой.
Маховик подберите готовый или отлейте из цинка или свинца, как для клапанной паровой машины, описанной раньше. На таблице в кружке показан способ отливки в жестяной баночке, а в прямоугольнике — в глиняной форме.
Гребной винт вырезается из тонкой латуни или железа и припаивается к концу вала. Лопасти изогните под углом не более 45° к оси винта. При большем наклоне они будут не ввинчиваться в воду, а только разбрасывать ее по сторонам.

Сборка
Когда изготовите цилиндр с поршнем и шатуном, раму машины, кривошип и гребной вал с маховиком, можно приступить к разметке, а затем к сверловке впускного и выпускного отверстий парораспределительной пластинки рамы,
Для разметки необходимо сначала просверлить 1,5-миллиметровым сверлом отверстие в цилиндровой пластинке. Это отверстие, просверленное в центре верхней части пластинки, должно входить в цилиндр как можио ближе к крышке цилиндра (см таблицу 35). Впросверленное отверстие вставьте кусочек грифеля от карандаша так, чтобы он на 0,5 мм выступал из отверстия.
Цилиндр вместе с поршнем и шатуном поставьте на место. На конец винта, впаянного в цилиндровую пластинку, наденьте пружинку и навинтите гайку. Цилиндр с вставленным в отверстие графитом прижмется к пластинке рамы. Если вы будете теперь вращать кривошип, как это показано на таблице вверху, графит прочертит на пластинке маленькую дугу, по концам которой и нужно просверлить по отверстию. Это будут впускное (левое) и выпускное (правое) отверстия. Впускное отверстие сделайте немного меньше выпускного. Если впускное отверстие просверлите сверлом диаметром 1,5 мм, то выпускное можно сверлить сверлом диаметром 2мм. По окончании разметки снимите цилиндр и выньте грифель. Заусенцы, оставшиеся после сверловки по краям отверстии, осторожно соскоблите.
Если под руками нет маленького сверла и дрели, то, обладая некоторым терпением, отверстия можно просверлить сверлышком, изготовленным из толстой иглы. Обломайте ушко иглы и вколотите ее наполовину в деревянную ручку. Выступающий конец ушка заточите на твердом брусочке, как показано в кружке на таблице. Вращая рукой ручку с иглой то в одну, то в другую сторону, можно не спеша просверлить отверстия. Это особенно легко, когда пластинки изготовлены из латуни или меди.
Руль изготовляется из жести, толстой проволоки и железа толщиной 1 мм (см. таблицу, справа, внизу). Для наливания воды в котел и спирта в горелку необходимо спаять маленькую воронку.
Чтобы модель не валилась набок на суше, она устанавливается на подставку — стойку.

Испытание и пуск машины
После того как модель будет закончена, можно взяться за испытание паровой машины. Налейте в котел волы на ¾ высоты. В горелку вставьте фитили и налейте спирта. Подшипники и трущиеся части машины смажьте жидким машинным маслом. Цилиндр протрите чистой тряпочкой или бумагой и тоже смажьте. Если паровая машина построена точно, поверхности пластинок хорошо притерты, правильно размечены и просверлены паровпускное и выходное отверстия, нет перекосов и машина легко вращается за винт, она должна сразу же пойти.
При пуске машины соблюдайте следующие предосторожности:
1. Не отвинчивайте водоналивной пробочки, когда в котле есть пар.
2. Не делайте тугую пружинку и не подтягивайте ее слишком сильно гайкой, так как при этом, во-первых, увеличивается трение между пластинками и, во-вторых, возникает риск взрыва котла. Надо помнить, что при слишком большом давлении пара в котле цилиндровая пластинка с правильно подобранной пружинкой является как бы предохранительным клапаном: она отодвигается от пластинки рамы, излишек пара выходит наружу, и благодаря этому давление в котле все время поддерживается нормальным.
3. Не давайте долго стоять паровой машине, если вода в котле кипит. Образующийся пар должен все время расходоваться.
4. Не давайте выкипеть всей воде в котле. Если это произойдет, котел распаяется.
5. Не закрепляйте очень сильно концы резиновой трубочки, которая также может быть хорошим предохранителем от образования в котле слишком большого давления. Но имейте в виду, что тонкую резиновую трубку раздует давлением пара. Возьмите прочную эбонитовую трубку, в которой иногда прокладывают электропровода, или обмотайте изоляционной лентой обыкновенную резиновую трубку,
6. Для предохранения котла от ржавчины наливайте его кипяченой водой. Чтобы вода в котле скорее закипала, проще всего наливать горячую воду.

Модель парового двигателя — tavika.ru

Этим постом я открываю небольшую серию сообщений, получившуюся в ходе нашей с Витей подготовки доклада для городского конкурса исследовательских работ и проектов “Шаг в науку”, проводящемся в МАН (Малой Академии Наук школьников).

В прошлом году Витя на этом конкурсе, а потом и на областном, и даже на всеукраинском занимал первые и вторые места с докладом “Исследование конструктивных особенностей и технических характеристик космических кораблей и ракет-носителей”  в секции “Астрономия”. А еще раньше, в четвертом классе, Витин доклад в секции “Биология” о вкусовой карте языка занял третье место в двух городских конкурсах.

Поэтому в этом году мы были просто обязаны придумать еще что-нибудь не хуже:) Сейчас Витя решил делать доклад по физике. В этот раз он называется совсем просто  – “Сила воды”. Про использование воды как источника для получения энергии.  На днях Витя прошел пробный просмотр в школе, выступил, показал опыт. Учителя его хвалили. Надеюсь, и в МАН все будет хорошо.

Кроме написания теории (которая, увы, по прежнему висит только на мне, Витя тут не помощник), мы решили сделать и показать две модели двигателей, демонстрирующих способы получения энергии из воды: паровой турбины и водяной ракеты.
Делать модели – это для Вити 🙂 Конечно, не обошлось без помощи Антона, но с каждым разом Витя все больше понимает в этом деле сам. А уж компьютерную презентацию потом делать и схемы рисовать – это Витя может уже лучше нас:)

Сегодня я напишу о первой модели для доклада – модели паровой турбины (вторая модель здесь).

Звучит важно. На самом деле  – забавная штучка.

Вот видео работы нашей паровой турбины (39 секунд).

Катя все спрашивала: “А когда она полетит?” Видимо, ей колесо напоминало винт от вертолета. Да и мне эта штука напоминает космический корабль из кинофильма “Кин-дза-дза”. Пепелац 🙂

Принцип работы паровой турбины практически такой же как у чайника – из-за горения топлива в топке вода в резервуаре закипает, образуется пар, который под давлением вырывается через узенькую трубочку и крутит колесо укрепленной над трубочкой турбины. Энергию вращения турбины можно использовать для получения электричества. Именно так и делают на различного рода электростанциях – тепловых, геотермальных, ядерных. С помощью паровых турбин получается 86% электроэнергии в мире!

Схема работы модели паровой турбины. Рисовал Витя

Дальше мастер-класс по созданию парового двигателя:)

Для паровой турбины нам понадобится:

  • 2 жестяных банки (у нас они были от сгущенки). Одна из них обязательно должна быть еще не открытая, потому что мы будем открывать ее особым способом!
  • Тонкая трубка или стальной стержень, в котором надо будет просверлить отверстие.
  • Гайка, шуруп, длинный гвоздь, 2 пластмассовых дюбеля 
  • Сухой спирт, вода.

Сначала рисуем эскиз. Примерно так:

Эскиз модели

Когда все детали продуманы, приступаем к изготовлению.
Самый интересный этап: берем целую банку, и в ее крышке пробиваем два диаметрально противоположных отверстия. Через них надо будет вылить содержимое банки. Так как у нас там была сгущенка, Витя очень быстро справился с заданием опустошить банку 🙂  Банку моем. Наш резервуар для воды готов.

Подготавливаем консервную банку 🙂

Вторую банку можно открывать как обычно, мы все равно будем разрезать ее пополам. Из нижней половины будем делать топку.  Ножницами по металлу прорезаем отверстие для того, чтобы класть туда топливо. По окружности шилом делаем ряд отверстий, чтобы улучшить доступ кислорода (мы сначала не сделали, и огонь плохо разгорался).

Так выглядит топка паровой турбины

Из оставшихся от второй банки кусков жести надо вырезать колесо-крыльчатку для турбины и ушки-держалки для него. Этим занялся Витя.

Вырезание крыльчатки и держателей для нее

После этого все детали нужно припаять к резервуару. Тут уж Антон Вите помог.
Сначала по окружности к дну резервуара надо припаять топку.

С помощью тонкого сверлышка Антон сверлит отверстие в металлическом стержне.
А потом припаивает все детали модели.

Затем, к верху резервуара нужно припаять сверху на одно отверстие гайку. Это будет отверстие для наливания воды. Мы его будем закручивать шурупом, чтобы пар выходил только через второе отверстие.
А на второе отверстие нужно припаять узкую трубочку и ушки для установки турбины

Модель паровой турбины. Вид сверху без крыльчатки
Подготовленная к установке крыльчатка турбины

С помощью длинного гвоздя устанавливаем турбину на место. Чтобы во время вращения она не съезжала, мы ее зафиксировали кусочками пластикового дюбеля.

Модель паровой турбины с установленной крыльчаткой

Все готово, можно наливать воду (не очень много, примерно 1/3 банки, чтобы закипала скорее), закручивать шуруп, класть в топку сухой спирт и поджигать. Как только вода закипит (где-то минут 3-5), пойдет пар и колесико закрутится.

Модель паровой турбины в действии

Мы не делали ничего, чтобы гасить огонь – таблетки сухого спирта как раз хватает на то, чтобы налюбоваться вращением. Только будьте осторожны – помните, что в банке кипящая вода, а снизу открытый огонь! Используйте прихватки и подставку для горячего из невоспламеняющихся материалов.

Общий вид паровой турбины

А тут можно посмотреть еще всякие научно-технические самоделки, которые делал Витя сам или с помощью Антона: Макет космического аппарата,  Пищалка, Модель электрического мотора, Фонарик-пчелка, Прибор для проверки твердости руки, Радистский (телеграфный) ключ, Робот-мышь, Робот-паук, Водяная ракета, Светофор,  Перископ.

Другие исследовательские проекты, которые делали мои дети для конкурсов Малой академии наук тут:
Витя: “Исследование астероидов” (8 класс), “Сила воды” (7 класс), “Исследование конструктивных особенностей и технических характеристик космических кораблей и ракет-носителей” (6 класс), “Вкусовая карта языка” (4 класс),

Катя: “Изучение дождевого червя” (1 класс), “Интеллект хомяка” (2 класс), “Реконструкция моря мелового периода” (3 класс), “Караларский природный парк” (4 класс), “Наблюдение метеорного потока Геминиды” (4 класс), “Каменная карта звездного неба” (8 класс)

Самодельные паровые двигатели чертежи

Мастер сделал сам паровой двигатель

Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.

В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.

От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.

Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты

Как сделать рабочую модель парового двигателя на дому

Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно. Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop.com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.

Как создать свой собственный паровой двигатель?

Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.

Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.

в книге О.Курти «Постройка моделей судов», которую полностью можно скачать тут depositfiles.com/files/3b9jgisv9 есть пара интересных чертежей машин для привода моделей пароходов.
Вот они:

ПАРОВАЯ МАШИНА С КАЧАЮЩИМСЯ ЦИЛИНДРОМ ПРОСТОГО ДЕЙСТВИЯ И ПАРОРАСПРЕДЕЛИТЕЛЬНОЙ ПЛИТОЙ (С КЛАПАННЫМ УПРАВЛЕНИЕМ)

Машины этого типа наиболее часто применяют в судомоделизме (рис. 562, а, b). Обычно детали изготовляют из латуни; цилиндр, чтобы не смазывать, — из фосфористой бронзы, а поршень — из стали. Крепят машину на квадратном или прямоугольном фунда­менте в зависимости от места установки в корпусе. На фундамент ставят L-образную стойку, к которой прикрепляют парораспреде­лительную плиту с отверстиями (окнами) для впуска и выпуска пара. Эти окна располагают по дуге, длина которой равна круго­вому пути, проходимому качающимся цилиндром. Цилиндр выпол­няют из куска латунной трубки и припаивают к опорной плите. Посредине плиты и цилиндра имеется отверстие, через которое впускается и выпускается пар. Болт в плите, служащий осью ка­чания цилиндра, имеет пружину. Ее натяжение регулируется гайкой, благодаря чему удается достичь хорошего прилегания опорной плиты к парораспределительной плите.
В поршень, изготовленный из круглого куска бронзы, ввинчи­вают шток и присоединяют его к мотылю болтом с гайкой.
Приводной вал выполняют из круглого стерженька латуни, на концах которого делают нарезку. Один конец вала ввертывают в мотыль, затем вал пропускают через пустотелый винт, поддержи­вающий его в L-образной стойке, а на второй конец навинчивают маховик.
Паровые трубки для подвода и отвода пара делают из латунных или медных трубок и крепят к небольшим штуцерам, которые, в свою очередь, припаяны к парораспределительной плите. Детали паровой машины такого типа имеют следующие средние размеры:
цилиндр: внутренний диаметр — 12—15 мм, длина — 30— 45 мм;
стойка: высота — 40—60 мм, ширина — 40—50 мм;
маховик: диаметр — 35—45 мм, толщина — 12—15 мм;
трубопроводы: 5хб мм (внутренний и внешний диаметры).
На рис. 562, c и d приведена паровая машина, подобная опи­санной, но с цилиндром двойного действия, поэтому на парорас­пределительной плите просверлены еще два небольших отверстия для впуска и выпуска пара, а на цилиндре — второе небольшое отверстие.

Рис. 562. Паровая машина с качающимся цилиндром для модели: a) -конструктивный чертеж; b) – вид по деталям; c) – вид машины с цилиндром двойного действия; d) – принципиальная работа машины с цилиндром двойного действия.
1 – фундаментная плита; 2 – стойка; 3 – плита парораспределительных окон; 4 – деталь крепления впускной и выпускной трубок; 5 – опорная плита крепления цилиндра; 6 – цилиндр; 7 – крышка цилиндра; 8 – поршень; 9 – шток; 10 – мотыль; 11 – пустотелый винт; 12 – приводной вал; 13 – маховик; 14 – пружина с гайкой; 15 – трубка для подвода пара; 16 – трубка для отвода пара; 17 – штуцер для соединения с трубкой подвода пара от котла; 18 – контрольный болт на цилиндре; 19 – выход пара; 20 – подвод пара.

ПАРОВАЯ МАШИНА С НЕПОДВИЖНЫМ ЦИЛИНДРОМ ПРОСТОГО ДЕЙСТВИЯ И ЗОЛОТНИКОВЫМ ПАРОРАСПРЕДЕЛИТЕЛЕМ

Машина сконструирована так, что ее можно устанавливать как в горизонтальном, так и вертикальном положениях (рис. 563, а). Цилиндр укреплен на фундаментной плите и представляет собой прямоугольный латунный брусок со сквозными отверстиями для поршня, а также для впуска и выпуска пара. В верхней части цилиндра находится парораспределительная коробка с золотни­ком. Сбоку цилиндр закрывают крышкой, устанавливаемой на че­тырех болтах.
Поршень выполняют из куска круглой бронзы. Внутри пор­шень полый. Один конец шатуна соединяют с поршнем при помощи поршневого пальца и двух опорных колец; другой — с цилиндри­ческим латунным мотылем.
Приводной вал вращается в двух опорных латунных подшипни­ках, которые при помощи сквозных болтов закреплены на фунда­менте. На приводном валу кроме мотыля установлен эксцентрик, соединенный со штоком золотника вилкой, причем движение экс­центрика сдвинуто по фазе относительно движения поршня. На конце приводного вала находится маховик. Выполнить золотник, как видно из рис. 563, несложно.
Входные и выходные паровые трубопроводы обычно изготов­ляют из медных или латунных трубок.
Средние размеры деталей машины:
цилиндр: длина — 45—55 мм, высота — 35—45 мм, ширина — 35—45 мм;
фундаментная плита: длина — 100—120 мм, ширина — 65— 85 мм;
маховик: диаметр — 45—50 мм, толщина — 12—15 мм.
трубопроводы: 5×6 мм.
Изменить направление вращения у паровой машины легко, для этого достаточно применить реверсивный клапан (рис. 563, b).

Рис. 563. Паровая машина с золотниковым парораспределителем: а — контруктивный чертеж; b — реверсивный клапан для изменения направления вращения машины; с — детали.
1 — цилиндр; 2 — крышка цилиндра; 3 — поршень; 4 — шатун; 5 — маховик с соединительным болтом для крепления на приводном валу; 6 — цилиндрический мотыль; 7 — крепление опорного подшипника коленчатого вала; 8 — эксцентрик; 9 — поршневой палец; 10 — парораспределительная камера; 11 — золотник; 12 — сальник для уплотнения штока золотника;
13 — уплотнительное кольцо; 14 — шток золотника; ментная плита для горизонтального расположения машины; 15 — приводной вал; 16 — вилка для соединения штока с эксцентриком; 17 — фундаментиая плита для горизонтального расположения машины; 18 — дополнительная опорная плита для вертикального расположения машины;19 — поступление пара; 20 — назад; 21 — вперед; 22 — выход пара.

Самодельный паровой двигатель. Сложное положение с модельными микродвигателями в нашей стране, а также с трудом поддающееся Объяснению, но весьма привлекательное стремление некоторых конструкторов-моделистов всего мира снабжать свои аппараты нетрадиционными моторами приводят иногда к очень интересным результатам.

Журнал «Моделист-конструктор» старается знакомить своих читателей со всеми новинками в этой области. Так, мы неоднократно публиковали материалы по перспективным, получившим сегодня уже всеобщее признание двигателям, работающим на сжиженном углекислом газе. Не обходим мы и тему паровых машин, которыми, правда, занимаются в основном судомоделисты. Сегодня мы знакомим приверженцев «пароходов» с занятной конструкцией, эскизы которой в редакцию прислал из города Симферополя В. Абрамов, методист Крымской облСЮТ.

Построенная им паровой двигатель легко воспроизводима практически в любых условиях. Ее достоинство — отсутствие сложных, требующих прецизионной обработки и сборки элементов распределения впуска и выпуска пара из полости рабочего цилиндра. Основные требования, предъявляемые к качеству изготовления узлов этого двигателя,— легкость хода всех движущихся деталей, отсутствие заеданий, а также хорошая подгонка поршня к рабочей поверхности цилиндра.

Особо внимательно нужно отнестись к притирке трущихся плоскостей припаянной к цилиндру пластины и рамы в зоне впускных и выхлопных отверстий. Здесь можно рекомендовать решение, предложенное в книге «Техническое творчество» (издательство «Молодая гвардия», Москва, 1956 год), где были опубликованы чертежи и описание именно такой конструкции (лишь немного меньших размеров и работающей на сжатом воздухе).

Там на цилиндр напаивалась не просто пластина, а специальная призма, имеющая два сравнительно узких, разнесенных по высоте пояска трения. Это обеспечивает не только улучшение притирки и меньшие механические потери, но и более качественный прижим зон, выполняющих функции золотника и находящихся под влиянием давления пара (чем больше давление, тем сильнее должны быть сжаты трущиеся детали).

Данная паровая машина может устанавливаться на модели судов в любом положении, удобном для компоновки. Передача вращающего момента — резиновым пасиком или с помощью шестерен; в зависимости от этого за маховиком на валу закрепляется шкив или шестерня. Такой паровой мотор неплохо работает при питании его от спаянной жестяной баночки-котла, нагреваемого таблетками сухого спирта. При этом, однако, необходимо строго соблюдать правила безопасности, предъявляемые к парообразующим установкам среднего давления.

Поршневой паровой двигатель с качающимся цилиндром: 1 — патрубок впуска пара (медная трубка, паять в отверстии В детали 2; аналогичный патрубок паять в отверстии Г выпуска пара), 2 — рама двигателя (стальной лист толщиной 4 мм), 3 — гайка М4,4 — пружина прижима пластины 6 к раме 2,5 — ось качания цилиндра (стальная проволока диаметром 4 мм с резьбой М4), 6 — пластина (бронза, паять на детали 16), 7 — маховик, 8 — ось кривошипа (стальная проволока диаметром 4 мм), 9 — бронзовая втулка-подшипник, 10 — палец кривошипа (стальная проволока диаметром 4 мм, прессовать в детали 11), 11 — щека кривошипа (стальной лист толщиной 5 мм, прессовать и заклепать на детали 8), 12 — пластина балансира, 13 —шток поршня, 14 — нижняя крышка цилиндра с направляющим отверстием под шток поршня (выполнить четыре отверстия диаметром 2 мм для продувки подпоршневого пространства), 15 — поршень (подогнать к внутреннему размеру цилиндра, выполнить две уплотнительных канавки в соответствии с рисунком), 16 — цилиндр (металлическая трубка диаметром 16 1 мм длиной 50 мм), 17 — верхняя глухая крышка цилиндра (паять в детали 16 после сборки, как и деталь 14). Внизу показана призма, устанавливаемая вместо пластины в соответствии с рекомендациями книги «Техническое творчество».

Паровик | Max Journal

Полный отчет об изготовлении простенького парового двигателя. Делал в основном из любопытства: одно дело теоретически знать, как там все работает, совсем другое — решить инженерную задачу изготовления паровика из всякого хлама.

Немного теории

Базовые принципы изготовления паровика изложены в книге Абрамова «Самодельные электрические и паровые двигатели». Идея использовать сантехническую арматуру взята из статьи «Паровой двигатель без станков и инструментов». Кое-что почерпнул из обсуждения «Паровой двигатель своими руками из дверных замков».

Принцип действия парового двигателя. Пар из котла подается в трубку золотника 1. В этой трубке ходит поршенек 2. В том положении золотника, который изображен на левом рисунке, пар проходит по трубке 4 в цилиндр 5 и толкает поршень 6. Шатун 7 толкает кривошип 8 вала 9. Вал с маховиком 10 проворачивается и второй кривошип 11 толкает тягу 12. Тяга закрывает золотник, перекрывая подачу пара из котла и стравливая давление в цилиндре. За счет маховика вращение вала не останавливается и продолжается движение до следующего цикла.


На схеме: 1. Трубка от золотника к паровому котлу. 2. Поршень золотника. 4. Трубка, соединяющая золотник и рабочий цилиндр. 5. Рабочий цилиндр. 6. Поршень рабочего цилиндра. 7. Шток поршня рабочего цилиндра. 8. Кривошип вала. 9. Вал. 10. Маховик. 11. Второй кривошип. 12. Шток поршня золотника.

Закупаемся

Все детальки были в наличии дома или докупались по мере необходимости в близлежащих магазинах.

Из сантехнического магазина: полудюймовый сгон на 75 мм, тройник, 2 штуцера на 7 мм и 4 штуцера на 9 мм, 4 полудюймовых муфты, стандартный крепеж для полипропиленовых труб — 4 шт.

Лирическое отступление: можно прийти в магазин сантехники и с интеллигентным видом попросить аэратор с внешней резьбой. А можно х…ю, которая в кран вворачивается. В первом случае продавец выдаст вам желаемое после секундного замешательства, во втором сразу. Так вот, сгон – это трубка; штуцер – фигня, чтоб шланг нацепить; муфта — фигня, чтоб две трубки сцепить.

Из магазина метизов: болты, гайки, гроверные шайбы и просто шайбы на 4 и 5 мм, россыпью, без счета. Отдельно длинная шпилька на 4 мм. Крепеж – 2 оцинкованных уголка на 75 x 75 мм, по 2 пластины на 80 и 100 мм. И еще 6 уголков на 15 x 15 мм. И еще нужен шланг на 8 мм, около 1 метра, чтоб с запасом.

Из спортивного магазина – хоккейная шайба.

Мастерим

Из штуцеров на 7 мм делаем головки цилиндров. Спиливаем лишнее, при желании еще можно рассверлить отверстие до 5 мм. Если оставить на 4 мм, то иногда закусывает шток поршня.

Шток поршня делается из 70 мм болта М4. Сам поршень состоит из двух гаек, между которыми плотно накручена ФУМ лента. На другом конце – крепление для шатуна, в моем случае – уголок 15 x 15 мм. Посередине – головка цилиндра. После сбора поршень надо притереть в цилиндре. В последствии поршень смазывал перед каждым запуском литолом.

Лирическое отступление. Самые большие проблемы в двигателе с поршнями – от качества их сборки зависит КПД. Но сделать вручную с минимальными допусками – чтоб поршень ходил легко и не было зазоров – очень сложно. Поршни переделывал несколько раз. В какой-то мере проблему решает смазка – она немного герметизирует и облегчает ход поршня.

Золотник нужен для управления потоком пара. Делаем его из тройника, на который с одной стороны через муфту прикручен поршень, с другой – 9 мм штуцер посаженый на ФУМ ленту. Сверху потом надо будет добавить еще один штуцер.

Поршень рабочего цилиндра делается из шпильки М4 длиной 75 мм. Технология изготовления аналогична поршню для золотника.

Рабочий цилиндр выполняет основную работу. Собирается из 75 мм сгона, 2 муфт, поршня и штуцера на 9 мм.

Лирическое отступление. Последующие испытания показали, что рабочий цилиндр слишком велик, и для его работы требуется весьма внушительный котел. Для более эффективной работы надо уменьшать ход поршня или сам цилиндр. Лучше сразу делать маленький высокооборотистый двигатель.

Золотник и рабочий цилиндр в сборе.

Шатуны нужны для преобразования поступательного движения во вращательное. Изготавливаются из 75 мм болтов М4, на концах – 15 мм уголки.

Кривошипно-шатунный механизм в сборе. Плечи кривошипа делаются из оцинкованных пластин, которые скрепляются между собой 40 мм М5 болтом. На кривошип сажается шатун, шатун крепиться к поршню. Изначально ход поршня планировался 70 мм, ход золотника 40 мм (это удвоенное расстояние между отверстиями в пластине или удвоенное плечо кривошипа). Потом, в процессе доработки стало 46 мм и 20 мм соответственно.

Половинка коленчатого вала. По сути сам вал – это два болта. Один болт, коротенький, 30 мм М5, второй длинный – 60 мм М5. На длинном потом будет висеть маховик. К болтам, под углом 90 градусов, крепятся кривошипы.

Сборка основания коленчатого вала. Вал висит на оцинкованных 75 мм уголках. Уголки крепятся к куску 14 мм фанеры.

Чтобы поршни были в одной плоскости с валом, монтируем на основании площадку из фанеры высотой 28 мм. На площадку ставим рабочий цилиндр и золотник. Выравниваем их положение, чтобы добиться оптимального хода поршней.

На золотник наворачиваем штуцер на 9 мм. Соединяем шлангом рабочий цилиндр и золотник. Все крепим, тестируем, переделываем. И еще раз, и еще…

Испытания двигателя

Не стоит надеяться, что эта фигня сразу заработает. Поэтому берем автомобильный компрессор, которым колеса накачивают, и подсоединяем его шлангом к золотнику, вместо котла. Компрессор легко обеспечивает рабочие давление в пару атмосфер, а мы вылавливаем ошибки конструкции.

Лирическое отступление, как происходят испытания. Собираем установку, включаем компрессор, двигатель делает ПФФФФФФ. Ага, поршни травят воздух – переделаем. Разбираем-правим-собираем. Снова включаем компрессор, двигатель делает ХРЯСЬ. Ага, закусывает шток поршня – расточим головку цилиндра. Разбираем-делаем-собираем, снова включаем компрессор…

В результате получаем работающий от компрессора двигатель:

Хоккейная шайба не потянула на маховик, пришлось вешать дополнительный противовес в виде накидного ключа на 14.

Работа от пара

Паровая машина с котлом. Котел собрал из уголка, бочки и муфты на 32. С торцов две закрытые заглушки. Сверху заглушка с внутренней резьбой на полдюйма.

До постройки модели был наивно уверен, что главная часть паровой машины – двигатель. По факту оказалось, что наиболее важен котел. Мои заблуждения были настолько глубоки, что поначалу попробовал запустить котел от 2 свечей. Ага, щас, за полчаса вода даже не начала закипать.

В результате котел грел на газе. С момента поджига рабочее давление достигается минуты через пять. Пара вырабатываемого котлом хватает примерно на 10 секунд работы двигателя, потом опять надо примерно 30 сек. набирать давление. Двигатель можно запускать в течении двух-трех минут, потом давление пара резко падает. До полного выкипания воды в котле проходит где-то 10 минут.

Все это безобразие мгновенно нагревается, пар получается непривычно горячим (если что — в кипящем чайнике пар относительно холодный), обжечься элементарно, ничего касаться нельзя. Из-за агрессивной среды оцинкованные болты окисляются чуть ли не на глазах.

02.07.2013

вк
steam
diy

Паровой двигатель Героя

Вот очень простой в изготовлении паровой двигатель, паровой двигатель Героя. Это
назван в честь Героя Александрийского, который описал его в документе в
I век нашей эры.

Состоит из закрытой банки содовой с двумя
крошечные отверстия с обеих сторон и немного воды внутри. Нагрев банки
нагревает часть воды до пара, который выходит через отверстия в
стороны. Отверстия сделаны так, чтобы пар выходил под углом
который продвигает банку по кругу.

Паровой двигатель Simple Hero — банка из-под газировки с отверстиями.
Из отверстий выходит пар.
Иллюстрация по мотивам Героя Александрийского.

Делал спиртовку и решил повеселиться
сделать миньона из банки из-под газировки и
заставить его вращаться как герой
паровой двигатель. Посмотрите видео на этой странице, чтобы увидеть его в действии
(с добавлением звуков миньонов. )

Как сделать паровоз Героя

Шаг 1. Используйте булавку, чтобы сделать отверстие в
сторона банки содовой. Банка должна быть еще не открыта. Когда вы тянете
штифт там, вероятно, будет какой-то спрей.

Шаг 2. Опустошите банку через отверстие.
В зависимости от газировки в банке, встряхивание увеличит давление.
в банке, из-за чего газировка выходит быстрее. Не беспокойтесь, если есть
немного газировки осталось, когда вы закончите.

Шаг 3. Сделайте еще одно отверстие в другом
сторона банки.

1. Проделайте отверстие.
2. Опорожните канистру.
3. Сделайте еще одно отверстие.

Шаг 4 Вставьте штифт обратно в один
отверстий и потяните вниз, как показано на фотографиях ниже. Этот
достаточно модифицирует отверстие, чтобы пар позже выходил через
угол по отношению к банке.

Шаг 5. Сделайте то же самое для другого отверстия,
потянув штифт в том же направлении по отношению к банке.

4. Штифт опущен…
… и другой вид.
5. Другое отверстие.

Шаг 6. Налейте в банку немного воды
через одно из маленьких отверстий.
Его не должно быть много, и лучше меньше, чем больше, поскольку
требуется время, чтобы нагреть воду до пара.

Шаг 7. Чтобы повесить банку, найдите что-нибудь
чтобы повесить его. Я повесил свой на кронштейн настольной лампы. Сначала поставьте
привяжите ремешок, затем повесьте на него рыболовный вертлюжок, а затем петлю
строки. Вертлюг является ключевой частью здесь, так как он имеет встроенный
подшипник, который легко крутится. Если ваш не поворачивается легко, распылите
WD-40 или другой смазкой.

Шаг 8. Аккуратно поднимите язычок
в верхней части банки и поместите строку под ним. Убедитесь, что вы не
сломайте уплотнение в верхней части банки. Единственные отверстия в банке
должны быть два отверстия, которые вы сделали по бокам.

6. Налейте воду.
7. Вещи, на которых можно повеситься.
8. Строка во вкладке.

Шаг 9. На фото к шагу 9 ниже
вы можете видеть, что в верхней части есть небольшой кружок (на самом деле заклепка)
банки. Этот круг находится в центре, поэтому нить должна быть
сосредоточены на этом.

Шаг 10. Зажгите пропановую горелку.
Я попробовал лампу, в которой горел медицинский спирт, но она была недостаточно горячей.
Из этого я предполагаю, что свеча также не будет работать. бутан
пламя настольной горелки в типичном классе физики или естественных наук
должно сработать. Примите все необходимые меры безопасности.

Шаг 11. Нагрейте дно банки.
Нагрев, как показано на фото ниже, занимает около 30 секунд.
может начать вращаться. Когда это происходит, он вращается довольно быстро.

9. По кругу.
10. Зажгите факел.
11. Нагрейте банку.

Вот мое видео, показывающее это в действии, а также то, как это сделать.

Как работают паровые машины?

Как работают паровые двигатели? | Кто изобрел паровые двигатели?

Вы здесь:
Домашняя страница >
Инжиниринг >
Паровые машины

  • Дом
  • Алфавитный указатель
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Представьте, что вы живете только за счет угля и
вода и еще достаточно энергии
бегать со скоростью более 100 миль в час! Это именно то, что может сделать паровоз.
Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части
железных дорог мира, паровые технологии живут в сердцах людей и
такие локомотивы до сих пор используются как туристические достопримечательности во многих культурных центрах.
железные дороги.

Паровозы приводились в движение паровыми двигателями и заслужили
вспомнили, потому что они прокатились по миру через Индустриальный
Революция 18-19 веков. Паровые двигатели занимают
машины,
самолеты, телефоны,
радио и телевидение
среди величайших изобретений всех времен. Это чудеса техники и превосходные
примеры инженерной мысли, но под всем этим дымом и паром, как
точно работают?

На фото: паровой железнодорожный локомотив, работающий на железной дороге Твитси в Северной Каролине.
Это узкоколейный поезд, а значит, колея не такая широкая, как на обычной железной дороге. Узкие дорожки
часто используются в гористой местности и в другой труднопроходимой местности, потому что их обычно дешевле строить.
Предоставлено: фотографии из американского проекта Кэрол М. Хайсмит в архиве Кэрол М. Хайсмит,
Библиотека Конгресса, Отдел эстампов и фотографий.

Содержание

  1. Что приводит в действие паровой двигатель?
  2. Что такое паровая машина?
  3. Как работает паровая машина
  4. Типы паровых двигателей
  5. Пар действительно умер?
  6. Кто изобрел паровую машину… и когда?
  7. Узнать больше

Что приводит в действие паровой двигатель?

Чтобы сделать что угодно, нужна энергия
можно придумать — кататься на скейтборде,
летать на самолете, ходить в магазины или водить машину по
улица. Большая часть энергии, которую мы сегодня используем для транспорта, поступает из
масла, но так было не всегда. До начала 20 века основным источником энергии был уголь.
любимое топливо в мире, и оно приводило в действие все, от поездов до кораблей
к злополучным паровым самолетам, изобретенным американским ученым
Сэмюэл П. Лэнгли, один из первых соперников братьев Райт. Что было так
специально для угля? Внутри Земли его много, так что это было
относительно недорогой и широко доступный.

Уголь является органическим химическим веществом, что означает
он основан на элементе
углерод. Уголь образуется в течение миллионов лет, когда останки мертвых
растения погребены под камнями, сдавлены давлением и
приготовленный внутренним теплом Земли.
Вот почему его называют ископаемым топливом. Куски угля на самом деле являются кусками
энергия. Углерод внутри них связан с атомами водорода и
кислород соединениями, называемыми химическими связями. Когда мы сжигаем уголь в костре,
связи разрываются, и энергия высвобождается в виде тепла.

Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистые ископаемые виды топлива, такие как бензин, дизельное топливо и керосин, и это одна из причин, почему паровые двигатели должны сжигать так много его.

Фото: Основные части паровоза.
(Альтернативный вид сбоку смотрите здесь.) Это бывший цистерна-локомотив British Railways Standard 4MT под номером 80104 (построен в Брайтоне в 1955 году).
работает на железной дороге Суонидж, Англия, август 2008 года.
Почитайте, как его восстановили из ржавеющей кучи и вернули в строй
его владельцы, «Южные локомотивы», в
80104 Реставрация.

Что такое паровая машина?

Паровой двигатель — это машина, которая сжигает уголь для выделения тепла
энергия, которую он содержит, так что это пример того, что мы называем тепловым двигателем. Это
немного похоже на гигантский чайник, стоящий на вершине угольного огня. Тепло от огня кипятит воду в чайнике и превращает ее в пар. Но вместо того, чтобы бесполезно сдуться в воздух,
как и пар из чайника, пар улавливается и используется для питания
машина. Давайте узнаем, как!

Как работает паровой двигатель

Грубо говоря, паровая машина состоит из четырех частей:

  1. Огонь, в котором горит уголь.
  2. Котел, наполненный водой, которую огонь нагревает до пара.
  3. Цилиндр и поршень, похожие на велосипедный насос, но намного
    больше. Пар из котла подается в цилиндр, вызывая
    поршень двигался сначала в одну сторону, потом в другую. Это движение вперед и назад
    (который также известен как «поршневой») используется для привода…
  4. Машина, прикрепленная к поршню. Это может быть что угодно от
    водяной насос к заводскому станку… или даже к гигантскому паровозу
    бегать вверх и вниз по железной дороге.

Конечно, это очень упрощенное описание. На самом деле, даже в одном устройстве есть сотни или, может быть, даже тысячи деталей.
Самый маленький локомотив.

Пошагово

Проще всего увидеть, как все работает, в нашей небольшой анимации
паровоза, внизу. В кабине локомотива вы загружаете уголь
в топку (1), что вполне
буквально металлический ящик
содержащий ревущий угольный огонь. Огонь нагревает котел — «гигантский
чайник» внутри паровоза.

Котел (2) в паровозе
не очень похоже
чайник, который вы бы использовали, чтобы заварить чашку чая, но он работает
таким же образом, производя пар под высоким давлением.
Котел представляет собой большой резервуар с водой с десятками тонких металлических трубок.
Бег
через него (для простоты мы показываем здесь только один, окрашенный в оранжевый цвет).
Трубы идут от топки к дымоходу, перенося тепло и
дым от костра с ними (показан белыми точками внутри трубки).
Такое расположение котельных труб, как их называют, означает
двигатель
огонь может нагревать воду в баке котла намного быстрее, поэтому он производит пар
быстрее и эффективнее. Вода, которая делает пар либо
поступает из цистерн, установленных сбоку от локомотива, или из отдельного вагона, называемого тендером, который тянется за локомотивом.
локомотив. (Тендер также осуществляет поставку угля для локомотива.) Вы можете увидеть фото
тендера с резервуаром для воды ниже на этой странице.

Пар, образующийся в котле, стекает в цилиндр (3)
прямо перед колесами, толкая плотно прилегающий плунжер, поршень
(4), туда и обратно. Маленькая механическая заслонка в цилиндре, известная как
впускной клапан
(показан оранжевым цветом) пропускает пар. Поршень соединен с одним или
больше колес паровоза через своего рода плечо-локоть-рука
соединение, называемое кривошипом и шатуном
(5).

Когда поршень толкает, кривошип и шатун поворачивают
колеса локомотива и приведите поезд в движение (6).
Когда поршень достигает конца цилиндра, он не может толкать
дальше. Импульс поезда (стремление продолжать движение) несет в себе
проворачивая вперед, толкая поршень обратно в цилиндр таким образом,
Оно пришло. Клапан подачи пара закрывается. Открывается выпускной клапан и
поршень выталкивает пар обратно через цилиндр и наружу
паровозная труба (7). Прерывистый шум пыхтения, который
паровой двигатель делает, и его прерывистые клубы дыма происходят, когда
поршень движется вперед-назад в цилиндре.

С каждой стороны локомотива есть цилиндр, и два цилиндра
стреляйте немного не в ногу друг с другом, чтобы всегда
мощность, толкающая двигатель вперед.

Рекламные ссылки

Типы паровой машины

Фото: Крупный план поршня и цилиндра паровой машины.

На приведенной выше схеме показана очень простая одноцилиндровая паровая машина, приводящая в действие
паровоз по рельсам. Это называется поворотный
готовить на пару
двигатель, потому что работа поршня состоит в том, чтобы заставить колесо вращаться.
самые ранние паровые машины работали совершенно по-другому. Вместо
поворачивая колесо, поршень толкал балку вверх и вниз простым
возвратно-поступательное или возвратно-поступательное движение.
Поршневой пар
двигатели использовались для откачки воды из затопленных угольных шахт в начале
18-ый век.

На нашей диаграмме пар толкает поршень в одну сторону, а импульс
локомотива, ведущего его в другую сторону. Это называется одностороннего действия.
паровой двигатель, и это довольно неэффективная конструкция, потому что поршень
питание только в половине случаев. Гораздо лучше (хотя и немного больше
сложная) конструкция использует дополнительные паровые трубы и клапаны для подачи пара
поршень сначала в одну сторону, потом в другую. это называется двойное действие
(или противоточная) паровая машина.
Он мощнее, потому что пар все время приводит поршень в движение.
время.

Анимация: в цилиндре двойного действия клапан (оранжевый) щелкает вперед и назад, позволяя пару входить (желтый) и выходить (красный) из цилиндра с обоих направлений, таким образом обеспечивая мощность в два раза больше времени. Я упростил механизм здесь, чтобы его было легко понять. Клапан фактически скользит из стороны в сторону, а не переворачивается.

Если вы внимательно посмотрите на колеса типичной паровой машины, вы
видите, что все сложнее, чем мы видели в простой анимации выше:
там гораздо больше механизмов, чем просто кривошип и шатун. На самом деле, есть
замысловатая коллекция блестящих рычагов, двигающихся вперед и назад с дотошным
точность. Это называется клапанным механизмом. Его работа
заключается в открытии и закрытии клапанов цилиндров в нужные моменты, чтобы позволить
пар поступает с обоих концов, чтобы двигатель работал как можно эффективнее и мощнее, а также чтобы он
ехать задним ходом. Существует довольно много различных типов
клапанный механизм; один из наиболее распространенных дизайнов называется Walschaerts, названный в честь
его бельгийский изобретатель Эгиде Вальшартс (1820–1919 гг.01). Танковый двигатель 80104
показанный на второй фотографии на этой странице, имеет клапанный механизм типа Walschaerts, как и
Эддистоун, локомотив, изображенный ниже.

Фото: Клапанный механизм Walschaerts на типичном большом паровозе,
34028 Эддистоун.

Первые паровые машины были очень большими и неэффективными, а значит
требовалось огромное количество угля, чтобы заставить их что-либо делать. Более поздние двигатели
производил пар при гораздо более высоком давлении: пар производился в
меньший, гораздо более прочный котел, поэтому он выдавливался с большей силой и
ударил поршень сильнее. Дополнительная сила высокого давления
готовить на пару
двигатели позволили инженерам сделать их легче и компактнее,
и именно это проложило путь паровозам, пароходам,
и паровые машины.

Фото: Паровые машины не смогли перевезти всю воду
они нужны для дальней дороги. Периодически им приходилось останавливаться для пополнения запасов.
резервуары для воды на стороне пути, подобные этому (вверху) на железной дороге Суониджа.
У более крупных паровозов были тендеры: грузовики, которые они тащили за собой, с запасами топлива.
уголь (перед нарисованной нами красной линией) и вода (за красной линией). Уголь лежит на наклонной
пластина внутри тендера, благодаря которой он естественным образом наклоняется к отверстию
спереди, где пожарный может легко закинуть его в топку.
Внизу: Вы можете увидеть, как выглядит тендер внутри, на этой необычной фотографии пустого тендера.
сфотографировано немного сверху и сзади, снято в Музее науки Think Tank в Бирмингеме, Англия. Этот тендер вмещает около 18000 литров (4000 британских галлонов) воды и принадлежит музейному локомотиву Бирмингема.

Пар действительно умер?

Уголь был дешевым и доступным топливом в начале индустриальной эпохи.
Революция, но изобретение бензинового двигателя
(бензиновый двигатель) в середине 19 века ознаменовали новую эру:
в течение 20-го века нефть обогнала уголь в качестве фаворита в мире
топливо. Паровые двигатели крайне неэффективны, расходуют впустую около 80–90 процентов энергии.
всей энергии, которую они производят из угля. Это означает, что они должны гореть
огромное количество угля для производства полезного количества энергии.

Паровая машина настолько неэффективна, потому что огонь, который сжигает уголь,
полностью отдельный (и часто на некотором расстоянии от) цилиндр, который вращается
тепловую энергию пара в механическую энергию, приводящую в действие
машина. Такая конструкция называется двигателем внешнего сгорания.
потому что огонь и котел находятся вне цилиндра. это неэффективно
потому что энергия тратится впустую, поскольку тепло и пар перемещаются от огня,
через котел в цилиндр. Бензиновые и дизельные двигатели основаны на совершенно другой конструкции, называемой
двигатель внутреннего сгорания. Бензин или дизельное топливо
горит внутри цилиндра, а не снаружи, и это делает
двигатели внутреннего сгорания значительно эффективнее.
(Подробнее о внутреннем и внешнем сгорании вы можете прочитать в нашем обзоре
двигателей.)
У нефти есть и много других преимуществ: она чище угля, производит меньше
загрязнение воздуха, и его гораздо легче транспортировать по трубам.

Во многом поэтому с наших железных дорог исчезли паровозы — тепловозы были
вообще удобнее. Требуется несколько часов, чтобы запустить паровой двигатель, прежде чем вы сможете его использовать; Вы можете
запустить дизельный двигатель менее чем за минуту. Паровые машины исчезли с заводов, когда электричество
стал более удобным способом питания зданий. Кому захочется каждый день загружать уголь на фабрику, когда можно просто
щелкнуть переключателями, чтобы все заработало?

Работа: Чем меньше, тем лучше: Великобритания перешла с паровых двигателей на дизельные и электрические в 19 веке.60-е годы. Последние паровозы были построены здесь в 1956 г. , а самый последний паровоз ходил в августе 1968 г. К 1968 г. в эксплуатации находилось лишь около трети локомотивов по сравнению с 1962 г., но перевозилось столько же грузов: дизель-электрическая рельсовая система, по-видимому,
намного эффективнее. Источник: составлено с использованием данных из «Работы британских железных дорог за 1962–1968 годы» CDJones, Journal of Transport Economics and Policy, Vol. 4, № 2 (май 1970 г.), стр. 162–170.

Но все не совсем так, как кажется. Пар и уголь никогда не делали
исчезнуть — не совсем так.
Откуда берется используемая нами электроэнергия?
Было бы здорово, если бы все это происходило из возобновляемых источников энергии.
(ветряки, солнечные батареи и т. д.), но
большая часть его по-прежнему поступает из угля,
сгорели на электростанциях в милях от
наши дома и фабрики.
Внутри угольной электростанции уголь по-прежнему сжигается для производства пара, который приводит в действие устройства, похожие на ветряные мельницы.
паровые турбины, которые намного эффективнее паровых двигателей. При вращении они поворачиваются
электромагнитные генераторы и производят электричество.
Вот видите, хотя паровозы и исчезли из нашего
железные дороги, паровая энергия
жив и здоров — и столь же важен, как и прежде!

На фото: некоторые из паровых двигателей, которые работают на старых линиях.
были еще относительно новыми, когда они были выведены из эксплуатации.
Вот этот,
Bulleid Pacific № 34070 «Мэнстон»,
был построен в 1947 г. и выведен менее чем через 20 лет (в 1964 г.).
После долгой реставрации компанией «Южные локомотивы» он вернулся в
обслуживание на железной дороге Суонидж в сентябре 2008 г.
Удивительно впечатляющее зрелище, он весит 128 тонн и может развивать скорость более 160 км/ч (100 миль в час).

Кто изобрел паровой двигатель… и когда?

Вот краткая история паровой энергии:

  • 1 век н.э.: Герой Александрии
    демонстрирует паровую вращающуюся сферу, называемую эолипилом.
  • 16 век н.э.: итальянский архитектор Джованни.
    Бранка
    (1571–1640) использует струю пара для вращения лопастей небольшого колеса,
    предвосхищая паровую турбину, разработанную сэром Чарльзом Парсонсом в 1884 году.
  • 1680: голландский физик Христиан Гюйгенс.
    (1629–1693)
    делает первый поршневой двигатель, используя простой цилиндр и поршень
    питается от взрыва пороха. Помощник Гюйгенса Денис
    Папен
    (1648–1712) понимает, что пар — лучший способ приводить в движение цилиндр, и
    поршень.
  • 1698: Томас Савери (ок. 1650–1715)
    разрабатывает
    паровой водяной насос под названием «Друг шахтера». это просто
    поршневая паровая машина (или лучевая машина) для откачки воды из
    шахты.
  • 1712: англичанин Томас Ньюкомен
    (1663–1729) разрабатывает
    гораздо лучшая конструкция парового двигателя с водяной помпой, чем у Савери.
    и обычно приписывают изобретение паровой машины. А
    шотландский инженер по имени Джеймс Уатт
    (1736–1819) вычисляет
    гораздо более эффективный способ получения энергии из пара после улучшения
    Модель двигателя Ньюкомена. Улучшения Уатта Ньюкомена
    двигателя привели к широкому распространению пара.
  • 1770: офицер французской армии Николя-Жозеф
    Кюньо
    (1725–1804) изобретает трехколесный трактор с паровым двигателем.
  • 1797: английский горный инженер Ричард.
    Тревитик
    (1771–1833) разрабатывает паровую версию двигателя Уатта, работающую под высоким давлением.
    прокладывая путь для паровозов.
  • 1803: английский инженер Артур Вульф.
    (1776–1837) составляет
    паровой двигатель с более чем одним цилиндром.
  • 1804: американский промышленник Оливер Эванс.
    (1775–1819)
    изобретает паровой пассажирский автомобиль. Как и Тревитик, он
    признает важность пара высокого давления и строит более
    50 паровых машин.
  • 1807: американский инженер Роберт Фултон.
    (1765–1815) работает
    первое пароходное сообщение по реке Гудзон.
  • 1819: Океанский корабль на паровой тяге «Саванна».
    пересекает
    Атлантика из Нью-Йорка в Ливерпуль всего за 27 дней.
  • 1825: английский инженер Джордж Стефенсон.
    (1781–1848) строит первую в мире паровую железную дорогу между
    города Стоктон и Дарлингтон. Для начала паровозы тянут
    только большегрузные угольщики, а пассажиров перевозят в конных экипажах.
  • 1830: Ливерпульско-Манчестерская железная дорога стала первой железной дорогой, использующей энергию пара.
    для перевозки как пассажиров, так и грузов.
  • 1882: плодовитый американский изобретатель Томас
    Эдисон
    (1847–1931) открывает первую в мире коммерческую электростанцию ​​​​в Перл.
    Улица, Нью-Йорк. Он использует высокоскоростные паровые двигатели для питания
    генераторы электроэнергии.
  • 1884: английский инженер сэр Чарльз Парсонс.
    (1854–1931)
    разрабатывает паровую турбину для своего быстроходного парохода Turbinia.

Фото: Подумайте о паровых двигателях, и вы, вероятно, думаете о паровозах, но корабли тоже были паровыми до того, как появились дизельные двигатели. Это прекрасно отреставрированный PS Waverley, последний колесный пароход в мире, построенный в 1947 году и направляющийся к пирсу Суонидж в сентябре 2009 года.

Подробнее

На этом сайте

  • Автомобильные двигатели (бензиновые двигатели)
  • Дизельные двигатели
  • Электродвигатели
  • Энергия
  • Реактивные двигатели
  • Двигатели Стирлинга

На других веб-сайтах

  • Паровозы: несколько удивительно запоминающихся теле- и радиоклипов от BBC. [Архивировано с помощью Wayback Machine.]
  • Flickr: Steam Powered: группа Flickr для любителей паровых двигателей. В настоящее время более 32 000 фотографий от примерно 1000 участников.
  • Йорк, сверх ожиданий: прекрасное описание замечательного парового двигателя в разрезе в Национальном железнодорожном музее в Йорке, Англия.

Видеоролики

  • Эксплуатация паровоза: Это отличное «виртуальное» руководство по вождению паровоза с использованием компьютерного моделирования RailWorks внутренней части кабины.
  • Курсы вождения паровоза на Лавандовой линии: посмотрите видео о том, как кто-то управляет паровозом. Там нет комментариев, и трудно понять, что делает машинист, но вы понимаете, насколько «физически» управлять паровозом!

Книги

Как это работает (для читателей старшего возраста)
  • Как на самом деле работают паровозы PWB Semmens и AJ Goldfinch. Oxford University Press, 2004. Я не читал эту книгу полностью, но, судя по отрывкам, которые я видел, она выглядит неплохо. Довольно подробный (348 страниц) и с очень британским колоритом.
  • Паровые двигатели, объяснение Стэна Йорка. Countryside Books, 2009. Великолепная небольшая книга с фантастически четкими иллюстрациями различных типов паровых двигателей. Хорошая отправная точка для людей, которые не хотят вдаваться в инженерные подробности.
Как это работает (для младших читателей)
  • Как работают маленькие паровозики (Томас и друзья) Криса Окслейда. Random House, 2017. 48-страничное введение для поклонников Паровозика Томаса (возраст 5–7 лет). Обратите внимание, что в этой книге повторно используются материалы из Руководства Хейнса Паровозик Томас: 1945 г. и далее .
История (для читателей постарше)
  • Великая железнодорожная революция: история поездов в Америке Кристиана Вольмара. Hachette, 2012. Как трансконтинентальные железные дороги сыграли ключевую роль в формировании Соединенных Штатов.
  • Огонь и пар Кристиана Вольмара. Atlantic Books, 2008. Превосходная книга об истории железных дорог в Великобритании. Вольмар — страстный и знающий транспортный журналист из Великобритании, и он идеально подходит для написания такой книги.
  • Кровь, железо и золото: как железные дороги изменили мир Кристиана Вольмара. PublicAffairs, 2010. Продолжение Fire and Steam, исследует распространение железных дорог в других странах.
  • Герцогини, Aurum, 2015;
    Летучий шотландец, Aurum, 2011;
    и Great Western Railway, Aurum, 2011, все Эндрю Роден. Три книги, написанные с чуть большей страстью и темпом, чем у Кристиана Вольмара; Я получил огромное удовольствие от всех трех.
  • Пар Джона К. Мерриама в Восьмидесятилетний прогресс Соединенных Штатов , 1867 год. Увлекательная история паровой энергии 19-го века, написанная с американской точки зрения.
История (для младших читателей)
  • Паровые двигатели: великие изобретения Джеймса Линкольна Кольера. Marshall Cavendish/Benchmark Books, 2005. Краткая история паровых двигателей для юных читателей.
  • Джеймс Уатт и паровой двигатель Джима Уайтинга. Митчелл Лейн, 2006. Биография Ватта для читателей в возрасте около 9 лет.–12.

Статьи

  • Великолепная кряква: самый быстрый в мире паровоз: BBC News, 3 июля 2013 г. Ностальгическое путешествие в прошлое с непревзойденным паровым двигателем сэра Найджела Гресли.
  • Фотографии паровоза О. Уинстона Линка, сделанные Мэттом Макканном. The New York Times, 16 ноября 2012 г. Исследование работы известного фотографа, который задокументировал последние годы американского пара.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2007, 2022. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оценить эту страницу

Пожалуйста, оцените или оставьте отзыв на этой странице, и я сделаю пожертвование WaterAid.

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2007/2022) Паровые двигатели. Получено с https://www.explainthatstuff.com/steamengines.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем веб-сайте…

  • Средства связи
  • Компьютеры
  • Электричество и электроника
  • Энергия
  • Машиностроение
  • Окружающая среда
  • Гаджеты
  • Домашняя жизнь
  • Материалы
  • Наука
  • Инструменты и инструменты
  • Транспорт

↑ Вернуться к началу

Jensen Steam Engine Единственная уступка высоких технологий!!!!


АМЕРИКАНСКАЯ ТРАДИЦИЯ С 1932 ГОДА
СТАРЕЙШАЯ В МИРЕ И ЕДИНСТВЕННАЯ В АМЕРИКЕ
ПРОИЗВОДИТЕЛЬ

ТАКОГО ТИПА

 

Здравствуй, товарищ пароход
и добро пожаловать на веб-сайт Jensen Steam Engine Mfg. Company… наше первое предприятие
в современные технологии. На протяжении всей нашей богатой 88-летней истории «Дженсен
Steam Team» и три поколения нашей семьи,
никогда не колебались в нашей цели сделать лучшее,
готовая к запуску стационарная модель Паровые двигатели, Паровые
Турбины и миниатюра
Электростанции
в мире. Наше долголетие и постоянный рост свидетельствуют о соблюдении этих
проблемы. Мы не только последний оставшийся американский производитель этого
добрый, но мы по-прежнему используем оригинальные инструменты, штампы и ручное мастерство
которым мы известны. Это внимание к качеству и деталям делает нашу легендарную
двигатели, высоко ценимые любителями, студентами, преподавателями, операторами электростанций,
инженер и коллекционер. Наши цельнолитые латунные и никелированные паровые двигатели
производится в ограниченном количестве по цене от 133,9 долларов США. 5, (далеко
меньше, чем импорт), но наше качество и мощность значительно
начальство.

Теперь у нас есть
делать покупки стало еще проще
для вашего нового парового двигателя Jensen
и аксессуары, интегрируя
наши безопасные зашифрованные покупки
корзина более полно в Интернете
сайт. Теперь вы можете делать покупки в
почти на любой странице, где наши продукты
отображаются, а затем использовать
«Продолжить покупки»
кнопку для серфинга, пока вы не
готов проверить.

Вы можете
по-прежнему иметь КАТАЛОГ JENSEN мгновенно, просто нажав на новый, «Распечатать это
Страница» на странице спецификации каждой машины. Кроме того, вы всегда можете
Напишите нам по электронной почте или позвоните в нашу службу поддержки клиентов, если вы хотите узнать больше
информация о Jensen Steam Engines. Сейчас!… Подожди!!!… для уникального
приключение ждет вас, когда вы исследуете наш онлайн-интерактивный
Каталог.


Наслаждайтесь!… и будьте счастливы
Стим,

Том Дженсен-младший, инженер-механик, президент


…Осторожно!!…

посетителей сообщили
что просмотр паровых двигателей Дженсена может вызвать учащенное сердцебиение
ставки
, потные ладони и напряжение глаз … в сопровождении
неконтролируемое желание иметь один !!
Прежде чем продолжить,
возможно, вы захотите, чтобы присутствовала медсестра или близкий член семьи!


НАЖМИТЕ НА ССЫЛКИ НИЖЕ, ЧТОБЫ УЗНАТЬ БОЛЬШЕ 

 ********************************************
Мы только что добавили два Новые двигатели для Jensen Line !!!!
 ********************************************
Повторное представление Jensen
Модель № 50 Миниатюрная электростанция
  и
Все новые
Модель 70-D Сухой топливный двигатель с подогревом
 ********************* **********************


  ХОББИ И ОБРАЗОВАНИЕ
ДВИГАТЕЛИ

  КОЛЛЕКЦИОНЕРЫ И КОММЕРЧЕСКИЕ ТОВАРЫ
ДВИГАТЕЛИ


  ДЖЕНСЕН ПАРОВОЙ ДВИГАТЕЛЬ
ПРИНАДЛЕЖНОСТИ

  ЧАСТИ!!
ЗАПЧАСТИ!! У НАС ЕСТЬ ЗАПЧАСТИ!!


****** Сейчас
с безопасными онлайн-частями
Заказ*****
 

ДЖЕНСЕН
ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ПАРОВОЙ ДВИГАТЕЛИ

 

  ОНЛАЙН-МУЗЕЙ ДЖЕНСЕНА
И АРХИВЫ

 

ОНЛАЙН
ЗАВОД ДЖЕНСЕН
ТУР

  БЕСПЛАТНО
КЛАССИЧЕСКИЙ
JENSEN ENGINES ЗАСТАВКА
 

WHATCHAMACALLEMS. ДУХИКИ, КОЗИТЫ И ШТУКИ-БОБЫ

РАБОЧИХ СТОЛОВ ОТ
ДЖЕНСЕН


НЕМНОГО
JENSEN ДЛЯ ВАШЕГО САЙТА

СТАРЫЙ
ДВИГАТЕЛИ
РАЗЫСКИВАЕТСЯ

бы
тебе нравится становиться
паровой двигатель Дженсена
Дилер?

ЭЛЕКТРОННАЯ ПОЧТА
****
КОНТАКТЫ
США

* ***

   
 


Мы всегда добавляем новые функции для улучшения
ваш визит и сделать выбор вашего нового парового двигателя Jensen или
Паротурбинная электростанция еще проще.
Не забудьте добавить нас в список закладок и посетить с нами
опять таки.

Спасибо, что провели с нами время и
пожалуйста, расскажите другу о нашем маленьком уголке Интернета.

 

С гордостью изготовлено вручную в США

 

 

  Copyright 1996-2014
Jensen Steam Engine Mfg.
Co. Inc
Все права защищены. Все Несанкционированные коммерческие публикации,
любыми средствами, материалов, включая, помимо прочего, Шаблоны Сайтов,
Графика и дизайн, содержащиеся на этом сайте, запрещены.

Шаблоны сайтов, графика и дизайн от:
Creative Edge Design Специализация
in 3D Graphics Design,
Коммерческий веб-сайт
Разработка и обслуживание.
Контакт
нам
, если вам нужен высокоэффективный веб-сайт с удобной навигацией для вашего
Компания.

 

Кто изобрел паровой двигатель? Урок промышленной истории

Изображение предоставлено: Eder/Shutterstock.com

История паровой машины восходит к I веку нашей эры, когда «эолипил» впервые был описан Героем Александрийским. Более 1500 лет спустя примитивные формы турбин, приводимых в движение силой пара, были объяснены Таки ад-Дином в 1551 году, а также Джованни Бранка в 1629 году. Это были либо небольшие паровые домкраты, либо спусковые устройства. В основном они использовались изобретателями для демонстрации того, что паровую энергетику нельзя недооценивать.

История парового двигателя — открытие силы пара

В 1700-х годах горняки столкнулись с серьезной промышленной проблемой, связанной с добычей воды из глубоких шахт. В это время была продемонстрирована истинная сила пара, поскольку энергия использовалась для выкачивания воды из глубины шахт. При этом была обнаружена потенциальная сила пара, что привело к изобретению полноценной паровой машины.

Паровые электростанции в современном мире появились позже. Основным принципом, по которому работали первые паровые машины, была «конденсация водяного пара для создания вакуума». Позже это стало зависеть от расширяющейся силы пара, чтобы двигать поршни в обоих направлениях.

Кто вообще изобрел паровой двигатель?

Томас Савери был первым человеком, который изобрел паровой насос для откачки воды в 1698 году. Он назвал это «огненной водой». Запатентованный им паровой насос работал на кипящей воде до тех пор, пока она полностью не превращалась в пар. затем был собран в резервуар, извлекая все пары из исходного резервуара, тем самым создавая вакуум в исходном резервуаре. Именно этот вакуум использовался для производства достаточного количества энергии для откачки воды из шахт. Это оказалось временное решение, так как энергия могла выкачивать воду с глубины всего в несколько метров.Еще одним недостатком этого насоса было то, что давление пара использовалось для удаления воды, которая всасывалась внутрь резервуара.Давление было слишком большим для котлы, и было несколько взрывов, так как котлы были недостаточно мощными.

  • Томас Савери: Биография Томаса Савери с информацией о его двигателе.
  • Разработка парового двигателя: в статье рассказывается о разработке парового двигателя, включая вклад Савери и атмосферных двигателей.

Паровой двигатель Томаса Ньюкомена

В 1712 году Томас Ньюкомен изобрел эффективный и практичный паровой двигатель. Разработанный им паровой двигатель состоял из поршня и цилиндра, соединенных с насосом через качающуюся балку. Подобно конструкции Савери, атмосферный двигатель Ньюкомена использовал конденсирующийся пар в цилиндре для создания вакуума. Возникающего в результате перепада давления между вакуумом и атмосферой было достаточно, чтобы протолкнуть поршень в цилиндр и поднять насос. Затем вес насоса втягивал поршень обратно в цилиндр, и клапан открывался, выпуская пар из котла. Затем другой клапан вводил конденсирующуюся воду в цилиндр, и пар снова конденсировался в воду, повторяя цикл.

Балочный двигатель Ньюкомена использовался более 50 лет в качестве насосов для угольных шахт, которые в противном случае были бы затоплены и заброшены. Они оказались неэффективными, так как для эффективной работы двигателя требовалось много энергии. Цилиндр требовал нагрева и охлаждения при каждом цикле, расходуя большую часть своей энергии и вызывая большие потери.

  • Паровой двигатель Ньюкомена: BBC предоставляет информацию о паровом двигателе этого человека с иллюстрацией.
  • Паровой двигатель Томаса Ньюкомена: зайдите сюда, чтобы узнать все о паровом двигателе, созданном Томасом Ньюкоменом.

Двигатели низкого давления

Высокий расход угля, характерный для паровой машины Ньюкомена, был снижен благодаря инновациям Джеймса Уатта в конструкции двигателя. Цилиндр двигателя низкого давления имел теплоизоляцию, отдельный конденсатор и механизм откачки конденсата. Таким образом, двигателю низкого давления удалось снизить расход топлива более чем на 50%.

  • Паровой двигатель низкого давления Watt: Немецкий музей предлагает некоторую информацию об этом раннем инженерном чуде.

Иван Ползунов и первая двухцилиндровая паровая машина

Иван Ползунов был русским изобретателем, который в 1766 году построил первую паровую машину в своей стране и первую в мире двухцилиндровую машину. Двухцилиндровая паровая машина Ползунова была мощнее английских атмосферных двигателей. Он имел номинальную мощность 32 л.с. Ползунов умер за три дня до того, как машина была закончена, но она была запущена в работу воздушного насоса для сталелитейного завода. Она проработала три месяца, прежде чем ее заменили более традиционной технологией. Модель двухцилиндровой паровой машины Ползунова в настоящее время экспонируется в Барнаульском музее.

  • Иван Ползунов: В статье представлена ​​информация о том, как этот русский ученый построил двухцилиндровую паровую машину.

Улучшенный паровой двигатель Джеймса Ватта

Наконец, именно Джеймс Уатт произвел революцию в паровой машине, применив в оригинальной конструкции отдельный конденсатор. Он придумал отдельный конденсатор в 1765 году. И только 11 лет спустя его конструкция воплотилась в успешной паровой машине. Конденсатор позволял цилиндру и поршню оставаться горячими, а не попеременно нагреваться и охлаждаться, как в двигателе Ньюкомена, что значительно повышало его эффективность. Одна проблема, которая была решена, заключалась в растачивании необходимых цилиндров большого диаметра. Джон Уилкинсон изготовил расточный инструмент, который поддерживался с обоих концов, а не был консольным, что позволяло точно растачивать цилиндры диаметром до 50 дюймов. Это привело к лучшему прилеганию поршня к стенкам цилиндра. Технология увидела большой прогресс. Ватт лицензировал свой двигатель на основе количества сэкономленного топлива. Дальнейшие улучшения включали кожух цилиндра и разработку параллельного соединения, которое позволяло поршню толкать и тянуть. Это привело бы к вращательному движению и замене водяных колес в качестве источника промышленной энергии. Ватт считал пар высокого давления, но не принимал его во внимание, полагая, что котлы того времени не могли выдержать такое давление. Уатт также разработал метод измерения давления в зависимости от объема в цилиндре, что привело к хорошо известному 9Схема 1036 p-v используется до сих пор.

  • Джеймс Ватт: Хорошо написанная и длинная биография Джеймса Ватта.
  • Джеймс Уатт (1736-1819): Доктора Коррозии представляют еще один отчет о жизни и достижениях этого человека.
  • Джеймс Уатт и паровой двигатель: Сэмюэл Смайлс объясняет, как Джеймс Уоттс посвятил свою жизнь совершенствованию парового двигателя.

Двигатели высокого давления

Но кто изобрел паровую машину высокого давления? В 1801 году Ричард Тревитик изобрел двигатель с паром, работающим под высоким давлением. Это использовалось для питания локомотива. Они оказались более мощными по сравнению со всеми двигателями, изобретенными ранее, но не получили немедленного признания. Сам Уатт выразил озабоченность по поводу опасности пара высокого давления. В конечном счете, именно конструкция двигателя, представленная Оливером Эвансом, стала успешной. Он использовал концепцию пара для питания двигателя, а не для конденсации пара и создания вакуума. Эванс изобрел первую паровую машину высокого давления без конденсации в 1805 году. Двигатель был стационарным и мог производить 5 л.с., что составляет примерно 1/25 размера соседнего двигателя низкого давления, производившего 12 л.с. Этот двигатель впервые был использован для работы мраморной пилы. Двигатель высокого давления питался от котла с медным корпусом, обшитого деревом и усиленного железными кольцами.

Со временем эти паровые машины использовались на моторных лодках и железных дорогах в 1802 и 1829 годах соответственно. Почти полвека спустя были изобретены первые автомобили с паровым двигателем. Чарльз А. Парсонс изобрел первую паровую турбину в 1880 году. К 20 веку паровая машина широко использовалась на промышленных предприятиях, локомотивах и кораблях. Некоторые из них будут использоваться для питания автомобилей, пока не появится Генри Форд и не изменит этот путь.

  • Паровые двигатели высокого давления: Университет Хьюстона предлагает информацию об этих двигателях.
  • Современные паровозы высокого давления: зайдите сюда, чтобы узнать больше об этих машинах.

Корнуоллский паровой двигатель

Ричард Тревитик попытался обновить насосный двигатель, созданный Ваттом, и внес значительные изменения, чтобы обойти патент, в частности, используя пар более высокого давления. Он был модифицирован, чтобы адаптироваться к котлам Корнуолла, которые разработал Тревитик. Уильям Симс, Артур Вульф и Сэмюэл Гроуз впоследствии улучшили эффективность корнуоллских паровых двигателей. Обновленные паровые двигатели Корнуолла имели изолированные цилиндры, трубы и котлы для повышения эффективности. Вульф также понял, что пар можно было бы лучше использовать, смешивая его, пропуская его через несколько цилиндров увеличивающегося объема, что привело бы к созданию двигателей с двойным и тройным расширением.

  • Ричард Тревитик: Вот биография этого промышленного гения, полная интересных фактов о Ричарде Тревитике.

Эпоха пара

Паровые двигатели будут обеспечивать стационарную и транспортную энергию более века, пока волна не повернется в сторону паровых турбин и двигателей внутреннего сгорания. К 1890-м годам паровая машина тройного расширения стала основным двигателем на суше и на море. В течение пятидесяти лет в эту конструкцию постоянно вносились усовершенствования: давление увеличилось до 250 фунтов на квадратный дюйм, был введен перегрев, тройное расширение стало четырехкратным и т. Д. Последним значительным улучшением паровой машины была реализация прямоточной схемы, в которой вводился пар. в цилиндр на горячих концах и выбрасывается в более холодном центре, уменьшая относительный нагрев и охлаждение стенок цилиндров.

Многие из классических форм машиностроения были разработаны в эпоху паровых двигателей, включая цилиндры, шатуны, коленчатые валы, маховики и регуляторы. Звено Ватта, в котором центральное звено перемещается по почти прямолинейному пути, было описано изобретателем в его патентной заявке 1784 года. Звено позволяло поршням как толкать, так и тянуть, что было улучшением по сравнению с цепными соединениями более ранних атмосферных двигателей, которые могли только тянуть. Звено до сих пор используется в подвеске некоторых автомобилей.

Многие утверждают, что паровая машина сделала для области термодинамики больше, чем термодинамика для паровой машины. Развитие многих его принципов в девятнадцатом веке было направлено непосредственно на определение характеристик этих первых двигателей. Таблицы и диаграммы пара, которые количественно определяли отношения температуры-энтропии, энтальпии-энтропии и давления-объема, в значительной степени повлияли на понимание тепловых характеристик электростанций. Французский инженер Сэди Карно понял, что КПД идеализированного двигателя не зависит от рабочего тела и зависит только от температуры, при которой тепло подводится к горячему источнику и отводится в холодном приемнике. Это заложило некоторые основы для термодинамической теории, которая будет разработана в середине века. Инженеры узнают его имя по циклу Карно. В начале двадцатого века безопасность котлов высокого давления была повышена за счет принятия Кодекса по котлам и сосудам под давлением.

К концу Второй мировой войны паровые двигатели, ласково называемые «Вверх и вниз», все еще приводили в движение многие торговые суда со скоростью 10-12 узлов в океане. Но растущий спрос на более быстрое время перевозки привел к появлению паровых турбин в мире мореплавателей, которые в конечном итоге сами были вытеснены дизелями. Стационарные электростанции будут полагаться на пар гораздо дольше; сегодня более 80% электроэнергии, доступной в США, производится с помощью паровых турбин.

Резюме

В этой статье представлена ​​краткая история паровых машин. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Другие популярные темы на сайте ThomasNet.com включают штамповки с глубокой вытяжкой, литье пластмасс под давлением, компании по лазерной резке, мастерские по изготовлению металлических изделий, прядильные цеха по металлу, цеха по штамповке металлов, резиновые детали для пресс-форм и изготовление пластиковых форм для литья под давлением.

Другие товары для двигателей

  • Типы катушек индуктивности и сердечников
  • Типы контроллеров двигателей и приводов
  • Типы двигателей постоянного тока
  • Двигатели переменного тока

  • и двигатели постоянного тока — в чем разница?
  • Все об асинхронных двигателях — что это такое и как они работают
  • Типы двигателей переменного тока
  • Все о синхронных двигателях — что это такое и как они работают
  • Понимание двигателей
  • Однофазные промышленные двигатели

  • — как они работают?
  • Что такое двигатель с короткозамкнутым ротором и как он работает?
  • Что такое двигатель с фазным ротором и как он работает?
  • Все о реактивных двигателях — что это такое и как они работают
  • Все о бесщеточных двигателях постоянного тока — что это такое и как они работают
  • Все о двигателях с постоянными магнитами — что это такое и как они работают
  • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
  • Все о шунтирующих двигателях постоянного тока — что это такое и как они работают
  • Все о шаговых двигателях — что это такое и как они работают
  • Шаговые двигатели

  • и серводвигатели — в чем разница?
  • Все о контроллерах двигателей переменного тока — что это такое и как они работают
  • Синхронные двигатели

  • и асинхронные двигатели — в чем разница?

Еще от Изготовление и изготовление на заказ

Как работает паровоз

В отличие от современных машин, паровоз, который за 125 лет развития претерпел мало принципиальных изменений, открыто демонстрирует многие свои части. Эта механическая честность уже давно очаровывает зрителей и побуждает к изучению, но многие до сих пор задаются вопросом, как все это работает. На самом деле, этой теме посвящены целые книги.

В паровозе есть две основные области деятельности: котел, где производится пар, и двигатель (цилиндры, шатуны и ведущие колеса), где используется пар.

Основное действие любой паровой машины, стационарной или мобильной, заключается в том, что пар под давлением (200–300 фунтов на квадратный дюйм для большинства локомотивов) входит в узел цилиндр-поршень и давит на поршень, когда он расширяется, стремясь достичь нормального атмосферного давления. давление.

Производство пара

Производство пара начинается с огня, который опирается на решетки в нижней части топки. Горячие газы поднимаются из топки в верхнюю часть топки или камеру сгорания. На угольном локомотиве накопление золы контролируется встряхиванием решеток, чтобы зола падала в зольник внизу. По окончании пробега зола выбрасывается из бункера зольника.

Газы перемещаются из топки вперед через ряд труб, называемых дымоходами или трубами, в основной части котла, которая заполнена водой. Лучший способ представить себе, как выглядит цилиндрический котел внутри, — это представить себе связку соломинок для питья в стакане (только стакан будет лежать на боку, а не вертикально).

Тепло от газов в дымоходах доводит воду до кипения, образуя пар. Пар поднимается в верхнюю часть котла и собирается в куполе, где обычно находится дроссель, регулирующий подачу пара в цилиндры. (У более современных локомотивов дроссельные заслонки располагались в дымовой камере.)

Сухая труба подает пар из купола вперед к пароперегревателю, усовершенствование, которое стало широко использоваться примерно в 1910 году. пар возвращается через очень большие дымоходы, где он нагревается до более высокой температуры, прежде чем возвращаться в пароподводящие трубы, ведущие к цилиндрам. Использование перегретого, а не насыщенного пара позволило повысить КПД паровоза на 25-30 процентов.

Котел, работающий под давлением, требует осторожного обращения, чтобы он не взорвался. Предохранительные клапаны предназначены для автоматического выпуска пара, если давление в котле становится слишком высоким. Верхняя часть топки, называемая верхним листом, должна быть все время покрыта водой. Если уровень воды упадет ниже кровельного листа, жар огня может ослабить его, что приведет к взрыву котла под давлением. В кабине предусмотрены такие устройства, как водомер или стекло, чтобы экипаж мог контролировать уровень воды. Сигнализация низкого уровня воды встречается на новых локомотивах.

С использованием пара

Из паровых трубок пар поступает в клапанные коробки (по одной с каждой стороны). Клапаны, двигаясь вперед и назад, позволяют пару поступать в цилиндры в то время, когда он может с пользой толкать поршни. Когда пар сделал свою работу, клапан сдвинулся, чтобы позволить ему выйти при значительном уменьшении давления в дутьевую трубу в дымовой камере.

Движение клапанов происходит от крейцкопфа, который движется в соответствии с вращением ведущих колес и также связан с клапанным механизмом. Инженер управляет клапанным механизмом с помощью рычага реверса, названного так потому, что он используется для управления направлением движения локомотива, а также синхронизацией событий клапана.

После того, как пар толкнул поршень, ряд соединений – шток поршня к основному штоку, основной шток к боковому штоку, боковой шток к ведущим колесам – преобразует возвратно-поступательное движение поршня во вращательное движение колес. Противовесы, расположенные напротив точки крепления тяг, удерживают ведущие колеса в равновесии.

Первые локомотивы имели одну пару машинистов, а наибольшее количество колес, приводимых в движение одним набором цилиндров, составляло шесть пар. Из-за их большого размера или потребности в гибкости многие локомотивы имели два двигателя — два набора ведущих колес, каждый из которых приводился в движение набором цилиндров.

Чтобы направлять его в повороты, многие локомотивы также имели небольшую пару колес (одну или две) впереди под дымовой коробкой, называемую ведущей или пони-тележкой. Точно так же в задней части локомотива размещалась двух- или четырехколесная прицепная тележка для поддержки топки.

В зависимости от назначения локомотива и эпохи его постройки было много вариантов колесных пар.

Вытяжной дым и пар

После использования пара в цилиндрах он поступает в дымовую камеру через дутьевую трубу. Когда выхлопной пар устремляется вверх к дымовой трубе, он обеспечивает тягу для огня, втягивая газы через дымоходы в дымовую камеру. (Свежий воздух поступает в локомотив через открытые пространства в основании топки.) Смешанные отработавшие пар и газы затем покидают локомотив через дымовую трубу. Относительно сильный выброс пара из цилиндров производит знакомый звук пыхтения.

Поскольку выхлоп зависит от отработанного пара, выходящего из цилиндров, необходимо предусмотреть выпуск горячих газов или дыма, когда механик закрыл дроссельную заслонку. Для этого в дымовой камере размещается группа небольших паровых струй, называемых нагнетателями.

Дымовая камера также служит для сбора частично сгоревших частиц угля от огня, прошедших через дымоходы. Когда они накапливаются на глубине, достаточной для того, чтобы препятствовать потоку газов, некоторые из них подхватываются завихряющимися выхлопными газами и выбрасываются в виде золы.

Топливо, вода, непредвиденные расходы

Топливо (уголь для большинства паровозов, масло для некоторых, дерево в первые дни) и вода доставляются в тендере, отдельном вагоне, полупостоянно сцепленном с локомотивом.

Уголь изначально подавался в топку кочегаром с лопатой, но локомотивы любого размера и современности оснащены механическими кочегарами. Некоторые локомотивы, предназначенные для ближних перевозок, были построены без проведения тендеров; они несут ограниченное количество собственных припасов и известны как танковые двигатели.

Вода подается в котел двумя форсунками (одна для инженера, одна для кочегара) или форсункой и подогревателем питательной воды. Инжектор использует пар, чтобы нагнетать воду в котел, нагревая воду при этом. Вода из инжектора еще холодная по сравнению с той, что в котле, поэтому обратный клапан на входе в котел вынесен вперед, чтобы не охлаждать воду возле топки. Более эффективные нагреватели питательной воды, установленные на большинстве больших пароходов после середины 1930-х годов, используют отработанный пар для предварительного нагрева воды.

Другие аксессуары, встречающиеся на паровозах, представляют собой функции безопасности, которые были перенесены, хотя и в измененной форме, в качестве стандартного оборудования на современные дизели.

Фара и другие электроприборы, такие как габаритные огни и фонари кабины, питаются от небольшого турбогенератора с паровым приводом. Раньше фары работали на масле.

Пилот, который постепенно уменьшался в размерах от «короволовов» середины 19 века, расталкивает препятствия. Для размещения тормозников локомотивы, выполняющие множество переключений, часто имели подножки вместо пилотов, но они были запрещены для дизелей из соображений безопасности.

Песок для тяги хранится в одном или нескольких песчаных куполах или ящиках с песком, как их иногда называют.

Свисток, установленный на куполе многих локомотивов, можно было разместить в нескольких разных местах. Механические звонари заменили простое действие члена экипажа, тянущего за шнур, прикрепленный к звонку.

Паровой двигатель — Энциклопедия Нового Света

«Паровая энергия» перенаправляется сюда.

Масштабная модель тягового двигателя Allchin — пример самоходной паровой машины

Паровой двигатель — это тепловой двигатель, который выполняет механическую работу, используя пар в качестве рабочего тела. [1]

Паровые двигатели имеют долгую историю, насчитывающую почти две тысячи лет. Ранние устройства не были практичными производителями энергии, но более совершенные конструкции стали основным источником механической энергии во время промышленной революции. Современные паровые турбины вырабатывают около половины электроэнергии в мире.

Многие паровые двигатели являются двигателями внешнего сгорания, [2] , хотя часто используются и другие источники тепла, такие как солнечная энергия, ядерная энергия или геотермальная энергия. Тепловой цикл известен как цикл Ренкина.

Содержимое

  • 1 Двигатель внешнего сгорания
  • 2 Приложения
    • 2.1 Стационарное применение
    • 2.2 Транспортные приложения
  • 3 История
  • 4 Основная работа простой поршневой паровой машины
  • 5 Компоненты паровых двигателей
    • 5.1 Источник тепла
    • 5.2 Холодильная мойка
    • 5.3 Котлы
    • 5.4 Блоки двигателя
      • 5.4.1 Простое расширение
      • 5.4.2 Составные двигатели
      • 5.4.3 Несколько двигателей расширения
      • 5.4.4 Прямоточный (или прямоточный) двигатель
      • 5.4.5 Турбинные двигатели
      • 5. 4.6 Роторные паровые машины
      • 5.4.7 Струйный тип
      • 5.4.8 Тип ракеты
    • 5.5 Контрольное оборудование
  • 6 Преимущества
  • 7 Безопасность
  • 8 Эффективность
  • 9 Современные приложения
  • 10 патентов
  • 11 См. также
  • 12 Примечания
  • 13 Каталожные номера
  • 14 Внешние ссылки
  • 15 кредитов

В общем случае термин «паровой двигатель» может относиться к интегрированным паровым установкам, таким как железнодорожные паровозы и переносные двигатели, или может относиться к отдельному двигателю, например, к лучевому двигателю и стационарному паровому двигателю. Специализированные устройства, такие как паровые молоты и паровые копры, зависят от пара, подаваемого из отдельного, часто удаленно расположенного котла.

«Сохранившийся» (но неполный) переносной двигатель, Тентерфилд, Новый Южный Уэльс — пример мобильного парового двигателя

Двигатель внешнего сгорания

Паровые двигатели были классифицированы как двигатели внешнего сгорания. В двигателе внешнего сгорания тепло к рабочему телу силового цикла подводится от внешнего источника. Двигатель внешнего сгорания позволяет сжигать практически любое топливо в качестве источника тепла для двигателя. Это объясняет успех этого двигателя, поскольку можно использовать менее дорогое и/или более возобновляемое или устойчивое топливо или источники тепла, поскольку рабочее тело остается отделенным от топлива, и, следовательно, 9очиститель 0283, , что снижает потребность в техническом обслуживании и увеличивает срок службы двигателя.

В отличие от обычно более знакомой формы теплового двигателя (известного как двигатель внутреннего сгорания), в котором рабочим телом энергетического цикла являются газообразные продукты процесса сгорания, а тепло добавляется в цикл за счет сгорания топлива внутри машины. Типичными бензиновыми/бензиновыми и дизельными двигателями являются двигатели внутреннего сгорания.

Области применения

С начала восемнадцатого века паровая энергия использовалась для различных практических целей. Сначала оно применялось к поршневым насосам, но с 1780-х гг. стали появляться ротационные двигатели (т. е. преобразующие возвратно-поступательное движение во вращательное), приводившие в движение заводские машины. На рубеже девятнадцатого века начал появляться паровой транспорт как на море, так и на суше, который с течением века становился все более преобладающим.

Можно сказать, что паровые двигатели были движущей силой промышленной революции и нашли широкое коммерческое применение в качестве приводных механизмов на фабриках и заводах, для питания насосных станций и транспортных средств, таких как железнодорожные локомотивы, корабли и дорожные транспортные средства. Их использование в сельском хозяйстве привело к увеличению земель, пригодных для возделывания.

Двигатели очень малой мощности используются для питания моделей и специальных устройств, таких как паровые часы.

Наличие нескольких фаз между источником тепла и подачей энергии означало, что всегда было трудно получить отношение мощности к массе, близкое к тому, которое можно получить от двигателей внутреннего сгорания; в частности, это сделало паровые самолеты крайне редкими. Подобные соображения означают, что для малых и средних применений пар был в значительной степени вытеснен двигателями внутреннего сгорания или электродвигателями, что придало паровому двигателю устаревший образ. Однако важно помнить, что электроэнергия, подаваемая в электрическую сеть, преимущественно вырабатывается с помощью паротурбинных установок, так что косвенно мировая промышленность по-прежнему зависит от энергии пара. Недавние опасения по поводу источников топлива и загрязнения вызвали новый интерес к пару как к компоненту процессов когенерации, так и к первичному двигателю. Это становится известным как движение Advanced Steam.

Паровые двигатели можно классифицировать по их применению.

Стационарные установки

Стационарные паровые двигатели можно разделить на два основных типа:

  1. Намоточные двигатели, двигатели прокатных станов, паровые ослы, морские двигатели и аналогичные устройства, требующие частой остановки и реверса.
  2. Двигатели, обеспечивающие мощность, которые редко останавливаются и не нуждаются в реверсе. К ним относятся двигатели, используемые на тепловых электростанциях, и те, которые использовались на насосных станциях, мельницах, заводах и для питания канатных дорог и канатных дорог до широкого использования электроэнергии.

Паровой осел технически является стационарным двигателем, но установлен на салазках, чтобы быть полупортативным. Он предназначен для ведения журнала и может перетаскивать себя в новое место. Прикрепив трос лебедки к прочному дереву в нужном месте, машина будет двигаться к точке крепления по мере затягивания троса.

Переносной двигатель представляет собой стационарный двигатель, установленный на колесах таким образом, чтобы его можно было буксировать на рабочую площадку лошадьми или тяговым двигателем, а не фиксировать в одном месте.

Применение на транспорте

Паровые двигатели использовались для питания широкого круга транспортных средств:

  • Морской пехотинец: пароход, пароход
  • Рельс: Паровоз, Беспожарный локомотив
  • Сельское хозяйство: тяговый двигатель, паровой трактор
  • Дорога: паровой вагон, паровой автобус, паровой трехколесный велосипед, паровой автомобиль
  • Конструкция: паровой каток, паровая лопата
  • Военные: паровой танк (гусеничный), паровой танк (колесный)
  • Космос: Паровая ракета

Во многих мобильных приложениях чаще используются двигатели внутреннего сгорания из-за их более высокого отношения мощности к весу, паровые двигатели используются, когда требуется более высокая эффективность, а вес менее важен.

История

Эолипил

История паровой машины восходит к первому веку нашей эры; первым зарегистрированным рудиментарным паровым двигателем был эолипил, описанный Героем Александрийским. В последующие века немногие известные двигатели были по существу экспериментальными устройствами, использовавшимися изобретателями для демонстрации свойств пара, например, рудиментарное устройство паровой турбины, описанное Таки ад-Дином 9.0716 [3] в 1551 году и Джованни Бранка [4] в 1629 году.

Первым практичным паровым «двигателем» был водяной насос, разработанный в 1698 году Томасом Савери. Оказалось, что он имеет только ограниченную высоту подъема и склонен к взрывам котлов, но он все же нашел применение в шахтах и ​​на насосных станциях.

Первый коммерчески успешный двигатель появился только в 1712 году. Включая технологии, открытые Савери и Денисом Папеном, атмосферный двигатель, изобретенный Томасом Ньюкоменом, проложил путь промышленной революции. Двигатель Ньюкомена был относительно неэффективен и в большинстве случаев использовался только для перекачки воды. В основном он использовался для осушения горных выработок на глубинах, которые до того были невозможны, а также для обеспечения многоразового водоснабжения для привода водяных колес на заводах, расположенных вдали от подходящей «головы».

Насосный двигатель Early Watt.

Следующий важный шаг был сделан, когда Джеймс Уатт разработал улучшенную версию двигателя Ньюкомена. Двигатель Уатта потреблял на 75 процентов меньше угля, чем двигатель Ньюкомена, и, следовательно, его эксплуатация была намного дешевле. Ватт продолжил разработку своего двигателя, модифицировав его, чтобы обеспечить вращательное движение, подходящее для привода заводского оборудования. Это позволило разместить фабрики вдали от рек и еще больше ускорило темпы промышленной революции.

Около 1800 года Ричард Тревитик представил двигатели, использующие пар высокого давления. Они были намного мощнее, чем предыдущие двигатели, и их можно было сделать достаточно маленькими для транспортных применений. После этого технологические разработки и усовершенствования производственных технологий (отчасти вызванные использованием парового двигателя в качестве источника энергии) привели к разработке более эффективных двигателей, которые могли быть меньше, быстрее или мощнее, в зависимости от предполагаемого применения.

Паровые двигатели оставались доминирующим источником энергии вплоть до двадцатого века, когда достижения в конструкции электродвигателей и двигателей внутреннего сгорания постепенно привели к замене подавляющего большинства поршневых паровых двигателей в коммерческом использовании и преобладанию паровых турбин. в производстве электроэнергии.

Основная работа простой поршневой паровой машины

  • Теплота получается из топлива, сжигаемого в закрытой топке
  • Тепло передается воде в котле под давлением, в результате чего вода кипит и превращается в насыщенный пар. Пар в состоянии насыщения всегда производится при температуре кипящей воды, которая, в свою очередь, зависит от давления пара на поверхности воды внутри котла.
  • Пар передается в блок двигателя, который использует его для толкания поршней, приводящих в действие механизмы
  • Использованный более холодный пар более низкого давления выбрасывается в атмосферу

Компоненты паровых машин

Паровая машина состоит из двух основных компонентов: котла или парогенератора и моторного агрегата, который сам по себе часто называют » паровой двигатель.» Два компонента могут быть объединены в единый блок или могут быть размещены на расстоянии друг от друга в различных конфигурациях.

Часто присутствуют другие компоненты; насосы (такие как инжектор) для подачи воды в котел во время работы, конденсаторы для рециркуляции воды и рекуперации скрытой теплоты парообразования, пароперегреватели для повышения температуры пара выше его точки насыщения и различные механизмы для увеличения тяга для топок. При использовании угля может быть включен цепной или шнековый механизм загрузки и его приводной двигатель или двигатель для перемещения топлива из бункера подачи (бункера) в топку.

Источник тепла

Теплота, необходимая для кипячения воды и подачи пара, может быть получена из различных источников, чаще всего от сжигания горючих материалов с соответствующей подачей воздуха в замкнутом пространстве (называемом по-разному камерой сгорания, топкой). В некоторых случаях источником тепла является ядерный реактор или геотермальная энергия.

Холодильник

Как и во всех тепловых двигателях, значительное количество отработанного тепла производится при относительно низкой температуре. Это должно быть утилизировано.

Простейшая охлаждающая мойка — просто выпустить пар в окружающую среду. Это часто используется на паровозах, но совершенно неэффективно. Для повышения эффективности можно использовать конденсационный аппарат паровоза.

Паровые турбины на электростанциях часто используют градирни, которые по сути являются одной из форм конденсатора.

Иногда «отработанное тепло» полезно само по себе, и в этих случаях можно получить очень высокий общий КПД; например, комбинированное производство тепла и электроэнергии использует отработанное тепло для централизованного теплоснабжения.

Бойлеры

Бойлеры — это сосуды под давлением, содержащие воду для кипячения, и какой-то механизм для передачи тепла воде для ее кипячения.

Два наиболее распространенных метода передачи тепла воде:

  1. Водотрубный котел – вода содержится в одной или нескольких трубах или течет по ним, окруженным горячими газами
  2. Жаротрубный котел — вода частично заполняет сосуд, ниже или внутри которого находится камера сгорания или топка и жаровые трубы, по которым проходят горячие газы

После превращения в пар некоторые котлы используют перегрев для дальнейшего повышения температуры пара. Это позволяет повысить эффективность.

Моторные агрегаты

Моторный агрегат получает пар высокого давления и температуры и выдает пар более низкого давления и температуры, используя как можно большую разницу в энергии пара для выполнения механической работы.

Двигатель часто называют «паровым двигателем». Они также будут работать на сжатом воздухе или другом газе.

Простое расширение

Это означает, что заряд пара работает в цилиндре только один раз. Затем оно выбрасывается прямо в атмосферу или в конденсатор, но оставшееся тепло может быть рекуперировано, если это необходимо для обогрева жилого помещения или для обеспечения теплой питательной воды для котла.

Стационарный двигатель двойного действия

Схематическая индикаторная диаграмма, показывающая четыре события двойного хода поршня

В большинстве возвратно-поступательных поршневых двигателей пар меняет направление потока при каждом ходе (противоток), входя и выходя из цилиндра одним и тем же порт. Полный цикл двигателя занимает один оборот кривошипа и два хода поршня; цикл также включает четыре события — впуск, расширение, выпуск, сжатие . Эти события контролируются клапанами, часто работающими внутри парового комода , примыкающего к цилиндру; клапаны распределяют пар, открывая и закрывая отверстия для пара , сообщающиеся с концом (концами) цилиндра, и приводятся в действие клапанным механизмом, которых существует много типов.
Простейшие клапанные механизмы дают события фиксированной продолжительности в течение цикла двигателя и часто заставляют двигатель вращаться только в одном направлении. Однако большинство из них имеют реверсивный механизм, который дополнительно может обеспечить средства для экономии пара по мере того, как скорость и импульс набираются за счет постепенного «укорочения отсечки» или, скорее, сокращения события впуска; это, в свою очередь, пропорционально удлиняет период расширения. Однако, поскольку один и тот же клапан обычно регулирует оба потока пара, короткое отключение при впуске неблагоприятно влияет на периоды выпуска и сжатия, которые в идеале всегда должны поддерживаться достаточно постоянными; если выхлоп слишком короткий, весь выхлопной пар не может эвакуировать цилиндр, забивая его и вызывая чрезмерное сжатие («отдача») .

В 1840-х и 50-х годах были попытки решить эту проблему с помощью различных запатентованных клапанных механизмов с отдельными регулируемыми отсечными клапанами, установленными на задней части главного золотникового клапана; последние обычно имели фиксированное или ограниченное отсечение. Комбинированная установка давала хорошее приближение к идеальным событиям за счет повышенного трения и износа, а механизм имел тенденцию к усложнению. Обычное компромиссное решение состояло в том, чтобы обеспечить притирку путем удлинения трущихся поверхностей клапана таким образом, чтобы перекрывать отверстие на стороне впуска, в результате чего сторона выпуска оставалась открытой в течение более длительного периода после отключения на впускная сторона произошла. С тех пор этот прием считается удовлетворительным для большинства целей и позволяет использовать более простые движения Стивенсона, Джоя и Вальшерта. Corliss, а позже и шестерни с тарельчатыми клапанами, имели отдельные впускные и выпускные клапаны, приводимые в действие механизмами отключения или кулачками, профилированными так, чтобы обеспечить идеальные события; большинство этих передач никогда не пользовались успехом за пределами стационарного рынка из-за различных других проблем, включая утечку и более тонкие механизмы. [5] [6]

Сжатие

Перед завершением фазы выпуска выпускная сторона клапана закрывается, перекрывая часть выхлопного пара внутри цилиндра. Это определяет фазу сжатия, когда образуется паровая подушка, против которой работает поршень, в то время как его скорость быстро уменьшается; кроме того, это устраняет скачки давления и температуры, которые в противном случае были бы вызваны внезапным поступлением пара высокого давления в начале следующего цикла.

Свинец

Вышеупомянутые эффекты дополнительно усиливаются за счет использования свинца : Как позже было обнаружено с двигателем внутреннего сгорания, с конца 1830-х годов было обнаружено, что выгодно продвигать фазу впуска, давая клапан так, чтобы впуск происходил незадолго до окончания такта выпуска, чтобы заполнить зазор , включающий порты и днища цилиндров (не являющийся частью рабочего объема поршня), до того, как пар начнет оказывать усилие на поршень. [7]

Комбинированные двигатели

При расширении пара в двигателе высокого давления его температура падает; поскольку из системы не выделяется тепло, это называется адиабатическим расширением и приводит к тому, что пар входит в цилиндр с высокой температурой и выходит с низкой температурой. Это вызывает цикл нагрева и охлаждения цилиндра при каждом такте, что является источником неэффективности.

Метод уменьшения величины этого нагрева и охлаждения был изобретен в 1804 году британским инженером Артуром Вульфом, который запатентовал свой Составной двигатель высокого давления Woolf в 1805. В составном двигателе пар высокого давления из котла расширяется в цилиндре высокого давления (ВД) и затем поступает в один или несколько последующих цилиндров более низкого давления (НД). Полное расширение пара теперь происходит в нескольких цилиндрах, и поскольку теперь в каждом цилиндре происходит меньшее расширение, пар теряет меньше тепла в каждом из них. Это уменьшает величину нагрева и охлаждения цилиндров, повышая КПД двигателя. Чтобы получить равную работу от пара более низкого давления, требуется больший объем цилиндра, поскольку этот пар занимает больший объем. Следовательно, диаметр цилиндра и часто ход поршня увеличиваются в цилиндрах низкого давления, что приводит к увеличению цилиндров.

Двойное расширение (обычно известное как соединение ) Двигатели расширяют пар в два этапа. Пары могут быть продублированы, или работа большого цилиндра НД может быть разделена с одним цилиндром высокого давления, выхлопным газом в один или другой, что дает 3-цилиндровую компоновку, в которой диаметры цилиндра и поршня примерно одинаковы, что упрощает балансировку возвратно-поступательных масс.

Двухцилиндровые соединения могут быть выполнены в виде:

  • Поперечные соединения — Цилиндры расположены рядом
  • Тандемные соединения — Цилиндры расположены встык, приводя в движение общий шатун
  • Угловые соединения — Цилиндры расположены V-образно (обычно под углом 90°) и приводят в движение общий кривошип

В двухцилиндровых соединениях, используемых на -цилиндры простые на 90° в противофазе друг с другом (четверные) .
Когда группа двойного расширения дублируется, образуя 4-цилиндровый компаунд, отдельные поршни в группе обычно уравновешиваются на 180°, а группы устанавливаются на 9°.0° друг к другу. В одном случае (первый тип компаунда Vauclain) поршни работали в одной фазе, приводя в движение общую крейцкопф и кривошип, снова установленные на 90 °, как в двухцилиндровом двигателе.
При компоновке с 3 цилиндрами кривошипы LP были либо установлены на 90 °, а один HP — на 135 ° по отношению к двум другим, или, в некоторых случаях, все три кривошипа были установлены на 120 °.

Принятие компаундирования было обычным для промышленных агрегатов, дорожных двигателей и почти универсальным для судовых двигателей после 1880 года; он не был повсеместно популярен в железнодорожных локомотивах, где его часто воспринимали как сложный. Частично это связано с суровыми условиями эксплуатации железных дорог и ограниченным пространством, предоставляемым габаритной шириной (особенно в Великобритании, где компаундирование никогда не было обычным явлением и не использовалось после 19 лет). 30). Однако, хотя и никогда в большинстве своем, он не был популярен во многих других странах. [5]

Двигатели с несколькими расширениями

Анимация упрощенного двигателя с тройным расширением.
Пар высокого давления (красный) поступает из котла и проходит через двигатель, выпускаясь в виде пара низкого давления (синий) в конденсатор.

Морской двигатель тройного расширения 1890-х годов, который приводил в движение SS Christopher Columbus .

Модель двигателя тройного расширения

SS Ukkopekka Паровая машина тройного расширения

Это логическое расширение составной машины (описанной выше) для разделения расширения на еще большее количество этапов для повышения эффективности. Результатом является модуль многократного расширения . В таких двигателях используются три или четыре ступени расширения, и они известны как двигатели с тройным расширением и с четырехкратным расширением соответственно. В этих двигателях используется ряд цилиндров двойного действия с постепенно увеличивающимся диаметром и/или ходом и, следовательно, объемом. Эти цилиндры предназначены для разделения работы на три или четыре, соответственно, равных порций для каждой ступени расширения. Как и в случае с двигателем двойного расширения, где пространство ограничено, для ступени низкого давления можно использовать два цилиндра меньшего размера с большим суммарным объемом. В двигателях с множественным расширением цилиндры обычно располагались в ряд, но использовались и другие схемы. В конце девятнадцатого века балансировочная «система» Ярроу-Шлика-Твиди использовалась на некоторых морских двигателях тройного расширения. Двигатели YST разделили ступени расширения низкого давления между двумя цилиндрами, по одному на каждом конце двигателя. Это позволило лучше сбалансировать коленчатый вал, в результате чего двигатель стал более плавным, быстро реагирующим и работал с меньшей вибрацией. Это сделало 4-цилиндровый двигатель тройного расширения популярным на больших пассажирских лайнерах (таких как олимпийский класс), но в конечном итоге был заменен турбиной практически без вибрации (см. Ниже).

На изображении справа показана анимация двигателя тройного расширения. Пар проходит через двигатель слева направо. Клапанная коробка для каждого из цилиндров находится слева от соответствующего цилиндра.

Разработка этого типа двигателя была важна для его использования на пароходах, так как путем отвода воды в конденсатор вода может быть повторно использована для питания котла, который не может использовать морскую воду. Наземные паровые машины могли исчерпать большую часть своего пара, поскольку питательная вода обычно была легко доступна. До и во время Второй мировой войны расширительный двигатель доминировал в морских приложениях, где не требовалась высокая скорость судна. Однако его заменила паровая турбина, изобретенная британцами, где требовалась скорость, например, на военных кораблях, таких как линкоры до дредноута, и океанских лайнерах. ГМС Дредноут 1905 года был первым крупным военным кораблем, на котором проверенная технология поршневого двигателя была заменена новой паровой турбиной того времени.

Прямоточный (или прямоточный) двигатель

Схематическая анимация прямоточного парового двигателя.
Тарельчатые клапаны управляются вращающимся вверху распределительным валом. Входит пар высокого давления, красный, и выхлопы, желтый.

Это предназначено для устранения трудностей, возникающих из-за упомянутого выше обычного противоточного цикла, который означает, что при каждом такте порт и стенки цилиндра будут охлаждаться проходящим выхлопным паром, в то время как более горячий входящий пар будет тратить часть своей энергии. при восстановлении рабочей температуры. Целью прямотока является устранение этого дефекта путем создания дополнительного порта, не закрытого поршнем в конце его половины хода, за счет чего пар течет только в одном направлении. Таким образом, термический КПД улучшается за счет постоянного температурного градиента вдоль канала цилиндра. Сообщается, что прямоточный двигатель с простым расширением обеспечивает эффективность, эквивалентную эффективности классических составных систем, с дополнительным преимуществом превосходной производительности при частичной нагрузке. Он также легко адаптируется к высокоскоростному использованию и был обычным способом привода электрогенераторов в конце девятнадцатого века, до появления паровой турбины.

Впускные клапаны могут приводиться в действие двойной кулачковой системой, фазирование и продолжительность которой можно контролировать; это позволяет регулировать высокий крутящий момент и мощность, когда это необходимо, с более ограниченным использованием пара и большим расширением для экономичного круиза.

Двигатели Uniflow выпускаются в одностороннем, двустороннем, простом и комбинированном исполнении. 4-кривошипные 8-цилиндровые двигатели Skinner с тандемным соединением [8] одностороннего действия приводят в движение два корабля Великих озер, которые все еще торгуются сегодня (2007 г.). Это Saint Mary’s Challenger, [9] , который в 2005 году завершил 100-летнюю непрерывную эксплуатацию в качестве моторного перевозчика (двигатель Skinner был установлен в 1950 году) и автомобильного парома SS Badger . [10]

В начале 1950-х годов двигатель Ultimax, 2-кривошипный 4-цилиндровый двигатель, аналогичный двигателю Скиннера, был разработан Эбнером Доблом для проекта автомобиля Paxton с тандемными оппозитными цилиндрами одностороннего действия, обеспечивающими эффективное двойное действие. . [11]

Турбинные двигатели

Ротор современной паровой турбины , используемой на электростанции.

Паровая турбина состоит из чередующегося ряда из одного или нескольких вращающихся дисков, установленных на приводном валу, роторов, и неподвижных дисков, закрепленных на корпусе турбины, статоров . Роторы имеют пропеллерное расположение лопастей на внешней кромке. Пар воздействует на эти лопасти, создавая вращательное движение. Статор состоит из аналогичного, но фиксированного ряда лопастей, которые служат для перенаправления потока пара на следующую ступень ротора. Паровая турбина часто выбрасывает воздух в поверхностный конденсатор, который создает вакуум. Ступени паровой турбины обычно устроены так, чтобы извлекать максимальную потенциальную работу из определенной скорости и давления пара, что приводит к ряду ступеней высокого и низкого давления переменного размера. Турбины эффективны только в том случае, если они вращаются с очень высокой скоростью, поэтому они обычно подключаются к редуктору для привода другого механизма, например корабельного гребного винта, с более низкой скоростью. Эта коробка передач может быть механической, но сегодня более распространено использование генератора переменного тока для производства электроэнергии, которая позже используется для привода электродвигателя. Ротор турбины также способен обеспечивать мощность при вращении только в одном направлении. Поэтому реверсивная ступень или редуктор обычно требуются там, где мощность требуется в противоположном направлении.

Паровые турбины создают прямую вращательную силу и поэтому не требуют рычажного механизма для преобразования возвратно-поступательного движения во вращательное. Таким образом, они создают более плавные вращательные усилия на выходном валу. Это способствует более низким требованиям к техническому обслуживанию и меньшему износу оборудования, которое они приводят в действие, по сравнению с сопоставимым поршневым двигателем.

Turbinia — первое судно с паровой турбиной

Паровые турбины в основном используются для выработки электроэнергии (около 80 процентов мирового производства электроэнергии производится с помощью паровых турбин) и, в меньшей степени, в качестве основного морского судна грузчики. В первом высокая скорость вращения является преимуществом, и в обоих случаях относительный объем не является недостатком; в последнем (впервые на Turbinia) очень желательны малый вес, высокая эффективность и высокая мощность.

Практически все атомные электростанции и некоторые атомные подводные лодки вырабатывают электроэнергию, нагревая воду для производства пара, который приводит в действие турбину, соединенную с электрическим генератором, для главной двигательной установки. Было изготовлено ограниченное количество паротурбинных железнодорожных локомотивов. Некоторые локомотивы с прямым приводом без конденсации добились определенного успеха для грузовых перевозок на дальние расстояния в Швеции, но не были повторены. В других местах, особенно в США, более совершенные конструкции с электрической трансмиссией были построены экспериментально, но не воспроизведены. Было обнаружено, что паровые турбины не идеально подходят для условий железной дороги, и эти локомотивы не смогли вытеснить классическую поршневую паровую установку так, как это сделали современные дизельные и электрические тяги.

Роторные паровые двигатели

Можно использовать механизм на основе беспоршневого роторного двигателя, такого как двигатель Ванкеля, вместо цилиндров и клапанного механизма обычного поршневого парового двигателя. Со времен Джеймса Ватта и до наших дней было спроектировано много таких двигателей, но относительно небольшое их количество было построено, и еще меньше было запущено в серийное производство; см. ссылку внизу статьи для более подробной информации. Основная проблема заключается в сложности герметизации роторов, чтобы сделать их паронепроницаемыми в условиях износа и теплового расширения; возникающая в результате утечка сделала их очень неэффективными. Отсутствие обширной работы или каких-либо средств контроля отсечки также является серьезной проблемой для многих таких конструкций.
К 1840-м годам стало ясно, что эта концепция имеет врожденные проблемы, и роторные двигатели вызывали насмешки в технической прессе. Однако появление на сцене электричества и очевидные преимущества приведения в действие динамо-машины непосредственно от высокоскоростного двигателя привели к некоторому возрождению интереса в 1880-х и 1891 гг.0s, и несколько проектов имели ограниченный успех.

Из нескольких моделей, которые были произведены в больших количествах, следует отметить работы компании Hult Brothers Rotary Steam Engine Company из Стокгольма, Швеция, и сферический двигатель башни Бошан. Двигатели башни использовались Великой Восточной железной дорогой для привода осветительных динамо-машин на своих локомотивах и Адмиралтейством для привода динамо-машин на борту кораблей Королевского флота. В конечном итоге в этих нишевых приложениях они были заменены паровыми турбинами.

Реактивный тип

Изобретенный австралийским инженером Аланом Бернсом и разработанный в Великобритании инженерами Pursuit Dynamics, этот подводный реактивный двигатель использует пар высокого давления для всасывания воды через впускное отверстие в передней части и выброса ее на высокой скорости через заднюю часть. Когда пар конденсируется в воде, создается ударная волна, которая фокусируется камерой и выбрасывает воду сзади. Чтобы повысить эффективность двигателя, двигатель всасывает воздух через вентиляционное отверстие перед паровой струей, что создает пузырьки воздуха и изменяет способ смешивания пара с водой.

В отличие от обычных паровых двигателей, здесь нет изнашиваемых движущихся частей, а выхлопная вода при испытаниях теплее всего на несколько градусов. Двигатель также может служить насосом и миксером. Этот тип системы упоминается компанией Pursuit Dynamics как «Технология PDX».

Ракетный тип

Эолипил представляет собой использование пара по принципу ракетной реакции, но не для прямого движения.

В более современные времена использование пара в ракетной технике было ограниченным, особенно для ракетных автомобилей. Техника проста по идее, просто наполните сосуд высокого давления горячей водой под высоким давлением и откройте клапан, ведущий к подходящему соплу. Падение давления немедленно вскипает часть воды, и пар выходит через сопло, создавая значительную движущую силу.

Можно ожидать, что вода в сосуде под давлением должна находиться под высоким давлением; но на практике сосуд под давлением имеет значительную массу, что снижает ускорение транспортного средства. Поэтому используется гораздо более низкое давление, что позволяет использовать более легкий сосуд высокого давления, что, в свою очередь, обеспечивает самую высокую конечную скорость.

Существуют даже спекулятивные планы межпланетного использования. Хотя паровые ракеты относительно неэффективны в использовании топлива, это вполне может не иметь значения, поскольку считается, что Солнечная система имеет чрезвычайно большие запасы водяного льда, который можно использовать в качестве топлива. Для извлечения этой воды и использования ее в межпланетных ракетах требуется на несколько порядков меньше оборудования, чем для расщепления ее на водород и кислород для обычных ракет. [12]

Контрольное оборудование

Из соображений безопасности почти все паровые машины оснащены механизмами контроля котла, такими как манометр и смотровое стекло для контроля уровня воды.

Преимущества

Сила паровой машины для современных целей заключается в ее способности преобразовывать тепло практически любого источника в механическую работу, в отличие от двигателя внутреннего сгорания.

Аналогичные преимущества имеются у другого типа двигателя внешнего сгорания, двигателя Стирлинга, который может обеспечить эффективную мощность (с усовершенствованными регенераторами и большими радиаторами) за счет гораздо более низкого отношения мощности к размеру/весу, чем даже современные паровые машины с компактными котлами. Эти двигатели Стирлинга серийно не производятся, хотя концепты многообещающие.

Паровозы особенно выгодны при работе на больших высотах, поскольку на них не оказывает неблагоприятного воздействия более низкое атмосферное давление. Это было случайно обнаружено, когда паровозы, работавшие на больших высотах в горах Южной Америки, были заменены дизель-электрическими агрегатами эквивалентной мощности на уровне моря. Их быстро заменили гораздо более мощные локомотивы, способные развивать достаточную мощность на большой высоте.

Для дорожных транспортных средств паровая тяга имеет преимущество, заключающееся в высоком крутящем моменте в стационарном состоянии, что устраняет необходимость в сцеплении и трансмиссии, хотя время запуска и достаточно компактная упаковка остаются проблемой.

В Швейцарии (Brienz Rothhorn) и Австрии (Schafberg Bahn) новые зубчатые паровозы оказались очень успешными. Они были разработаны на основе конструкции Swiss Locomotive and Machine Works (SLM) 1930-х годов, но со всеми возможными сегодняшними улучшениями, такими как роликовые подшипники, теплоизоляция, сжигание дизельного топлива, улучшенная внутренняя обтекаемость, управление одним человеком и так далее. Это привело к снижению расхода топлива на одного пассажира на 60 процентов и значительному снижению затрат на техническое обслуживание и погрузочно-разгрузочные работы. Экономические показатели сейчас аналогичны или лучше, чем у большинства современных дизельных или электрических систем. Кроме того, паровой поезд с такой же скоростью и грузоподъемностью на 50 процентов легче электрического или дизельного поезда, что, особенно на зубчатых железных дорогах, значительно снижает износ пути. Кроме того, новый паровой двигатель для гребного парохода на Женевском озере, Montreux, был спроектирован и построен как первая в мире полноразмерная корабельная паровая машина с электронным дистанционным управлением. [13] Паровая группа SLM в 2000 году создала компанию DLM, находящуюся в полной собственности, для разработки современных паровых двигателей и паровозов.

Безопасность

Паровые двигатели оснащены котлами и другими компонентами, которые представляют собой сосуды под давлением, содержащие большое количество потенциальной энергии. Паровые взрывы могли и в прошлом приводили к большим человеческим жертвам. Несмотря на то, что в разных странах могут существовать различия в стандартах, для минимизации или предотвращения таких случаев применяются строгие юридические нормы, испытания, обучение, осторожность при производстве, эксплуатации и сертификации.

Режимы отказа включают:

  • Избыточное давление котла
  • Недостаток воды в котле, вызывающий перегрев и выход из строя сосуда
  • Неисправность сосуда высокого давления котла из-за неправильной конструкции или технического обслуживания.
  • Утечка пара из трубопровода/котла, вызывающая ошпаривание

Паровые двигатели часто имеют два независимых механизма для предотвращения слишком высокого давления в котле; один может быть настроен пользователем, второй обычно проектируется как максимально отказоустойчивый.

Могут быть предусмотрены свинцовые пробки, так что при падении уровня воды свинец плавится и пар выходит, разгерметизируя котел. Это предотвращает перегрев котла вплоть до катастрофического разрушения конструкции.

КПД

КПД двигателя можно рассчитать путем деления выходной энергии механической работы, которую производит двигатель, на энергию, подводимую к двигателю при сгорании топлива.

Никакая тепловая машина не может быть более эффективной, чем цикл Карно, в котором тепло перемещается из высокотемпературного резервуара в низкотемпературный, а КПД зависит от разницы температур. Для наибольшей эффективности паровые машины должны работать при максимально возможной температуре пара (перегретый пар) и выделять отработанное тепло при минимально возможной температуре.

На практике паровая машина, выбрасывающая пар в атмосферу, обычно имеет КПД (включая котел) в диапазоне от 1 до 10 процентов, но с добавлением конденсатора и многократного расширения его можно значительно повысить до 25 процентов или выше.

Тепловая эффективность электростанции с промежуточным перегревом пара, экономайзером и т. д. достигает примерно 20-40 процентов. Также можно улавливать отработанное тепло с помощью когенерации, при которой отработанное тепло используется для отопления. Таким образом можно использовать до 85-90% входной энергии.

Современное применение

Хотя поршневой паровой двигатель больше не используется в коммерческих целях, различные компании изучают или используют потенциал двигателя в качестве альтернативы двигателям внутреннего сгорания.

Компания Energiprojekt AB в Швеции добилась успехов в использовании современных материалов для использования силы пара. КПД паровой машины Энергипроекта достигает 27-30% на двигателях высокого давления. Это одноступенчатый 5-цилиндровый двигатель (без компаунда) с перегретым паром и потребляет ок. 4 кг пара на кВтч. [14]

Патенты

Гарольд Холкрофт в своем патенте 7859 25 от ноября 1909 г .: Усовершенствования клапанных механизмов для двигателей, работающих от давления жидкости [Holcroft steamindex], как и Артуро Капротти: 170 877 Улучшения клапанных механизмов для двигатели на упругой жидкости. Опубликовано: 4 ноября 1921 г. Номер заявки: 12341/1920. Применено: 4 мая 1920 г.; 13261/1907. Усовершенствования паровых турбин и других первичных двигателей с эластичной жидкостью многократного расширения. Подано 7 июня 1907 (в Италии 7 июня 1906 г.). Опубликовано 7 августа 1908 г.

См. также

Паровой велосипед.

  • Хронология паровой энергии
  • Промышленная революция
  • Джеймс Уотт
  • Локомотив
  • Пар
  • Хронология паровой энергии
  • История паровой машины
  • Паровая турбина
  • Энергия пара во время промышленной революции
  • История паровых дорожных транспортных средств

Примечания

  1. ↑ Британская энциклопедия, Паровой двигатель. Проверено 7 октября 2008 г.
  2. Словарь английского языка американского наследия, , 4-е изд. (Бостон, Массачусетс: компания Houghton Mifflin, 2000, ISBN 9780618082308).
  3. ↑ Ахмад Ю. Хассан, Таки ад-Дин и арабское машиностроение (Алеппо, SY: Институт истории арабских наук, Университет Алеппо, 1976), 34–35.
  4. ↑ Университет Рочестера, Рост паровой машины, глава первая. Проверено 7 октября 2008 г.
  5. 5.0 5.1 Джон ван Римсдейк, Составные локомотивы (Пенрин, Великобритания: Atlantic Transport, 1994, ISBN 09613), 2-3.
  6. ↑ Джордж У. Карпентер, La locomotive à vapeur (Бат, Великобритания: Camden Miniature Steam Services, 2000, ISBN 0953652300), 56–72.
  7. ↑ А.М. Bell, Locomotives (Лондон, Великобритания: Virtue and Company, 1950), 61–63.
  8. ↑ Автомобильные паромы, двигатели Скиннера. Проверено 7 октября 2008 г.
  9. ↑ Джордж Уортон, Характеристика судна флота Великих озер — St. Челленджер Мэри, Boatnerd.com. Проверено 7 октября 2008 г.
  10. ↑ Макс Хэнли, Страница флота Великих озер, статья о судне — Барсук, Boatnerd.com. Проверено 7 октября 2008 г.
  11. ↑ Интернет-архив Калифорнии, отчет Paxton Engineering Division (2 из 3). Проверено 7 октября 2008 г.
  12. ↑ Топливо околоземных объектов, Домашняя страница. Проверено 7 октября 2008 г.
  13. ↑ Роджер Уоллер, Современный пар — экономичная и экологичная альтернатива дизельной тяге. Проверено 7 октября 2008 г.
  14. ↑ Energi Projekt, Как в нашей концепции создается тепло и электричество. Проверено 7 октября 2008 г.

Ссылки

Ссылки ISBN поддерживают NWE за счет реферальных сборов

  • Bray, Stan. 2005. Создание простых моделей паровых двигателей. Рамсбери, Великобритания: Кровуд. ISBN 1861267738.
  • Карпентер, Джордж В. и соавторы. 2000. Локомотив à vapeur. Бат, Великобритания: Camden Miniature Steam Services. ISBN 0953652300.
  • Римсдейк, Джон ван. 1994. Составные локомотивы. Пенрин, Великобритания: Атлантический транспорт. ISBN 09613.

Внешние ссылки

Все ссылки получены 3 января 2020 г.