Радиальный двигатель: Radial engine — Wikipedia

Содержание

Музей авиационных двигателей на МАРЗ, июнь 2020 года ч1: радиальные.

На МАРЗе есть небольшая коллекция авиационных двигателей. В предбаннике одного из цехов собраны экземпляры в основном советской поры, но не только. Эту коллекцию я и хочу показать. В этой части мы посмотрим на радиальные двигатели.

Музей авиационных двигателей на МАРЗ.

Начнем пожалуй с АШ-62ИР. Этот двигатель стоит на всех Ан-2, поэтому и сейчас завод занимается их капитальным ремонтом. АШ-62ИР — радиальный 9-цилиндровый двигатель, разработанный в ОКБ А. Д. Швецова в 1938 году для транспортной и гражданской авиации. До сих пор эксплуатируется на самолётах Ан-2. Двигатель серийно производился в СССР и России более 50 лет. Являлся дальнейшим развитием двигателя М-25. Первоначальное название М-62ИР. С 1944 — АШ-62ИР.

Табличка с описанием двигателя.

Вид со стороны противопожарной перегородки.

А на стене за двигателем висит четырехлопастной ВИШ от Ан-2.

Заводская табличка. До 15 серии двигатель строили на Воронежском механическом заводе, а начиная с 16 серии (к которой и относится этот двигатель) все права на двигатель и самолет Ан-2 были переданы Польше.

Знакомый всем любителям Як-52, Як-18Т и пилотажным самолетам Сухого двигатель М-14П. М-14 — советский авиационный поршневой радиальный двигатель воздушного охлаждения. Применялся на многих типах лёгких самолётов и вертолётов во второй половине XX века.

Табличка с описанием двигателя.

Двигатель был разработан в 1947 году в ОКБ-478 ЗМКБ «Прогресс» им. академика А. Г. Ивченко на базе АИ-10. Главный конструктор И. М. Веденеев. В мае 1948 году АИ-14 прошел государственные стендовые испытания, развив максимальную мощность 240 л. с..
Первые серийные двигатели, получившие индекс АИ-14Р, выпущены в 1950 году на Воронежском механическом заводе. Применялся на самолетах Як-12, Як-18, Ан-14, PZL-104 Wilga и др. Мощность двигателя была 260 л. с. В 1952 году в ОКБ-478 создается вертолетная модификация АИ-14В для вертолета Ка-15.
В 1960 году запущены в серию форсированные двигатели АИ-14ВФ мощностью 280 л. с. (для вертолетов Ка-15М и Ка-18) и АИ-14РФ мощностью 300 л. с. (для самолетов Як-18ПМ и Ан-14А). С 1969 года самолеты Ан-14А комплектовались двигателями АИ-14ЧР, отличавшиеся от АИ-14РФ введением чрезвычайного режима, на котором мощность кратковременно повышалась до 350 л. с..
В 1959 году работы над двигателем были переданы в «ОКБ Моторостроения», организованном при Воронежском механическом заводе. Индекс двигателей, разработанных в этом КБ, заменен на М-14. В 1964 году в «ОКБ Моторостроения» был разработан двигатель М-14В26 для вертолёта Ка-26. В 1974 году в серийное производство передан двигатель М-14П мощностью 360 л. с., ставший базовым для целой гаммы двигателей М-14Х, М-14ПФ, М-14В26В, М-14Р, М-14В26В1, М-14ПТ, М-14ПТ-2.

Лицензионная версия АИ-14Р производилась в Польше предприятием WSK-Kalisz с 1956 по 2007 год. В начале 1960 годов чехословацкая компания AVIA начала производство модифицированной версии АИ-14 под обозначением M462, позже M462RF. M462 работал на сельскохозяйственном самолете Z-37 и развивал мощность 315 л. с. Примерно в то же время в Китае был выпущен двигатель HS6, китайская версия АИ-14П, а в 1965 году HS6A, версия с увеличенной до 268 л. с. мощностью.
В 1983 году в Румынии был создан завод авиационных двигателей и редукторов, где начали производство двигателей М-14П и М-14В26. Ныне это компания под названием MOTORSTAR S.R.L. На 2019 год она продолжает выпуск двигателей М-14П и собственной модификации М-14Д.
В 1994 году серийное производство в России было приостановлено.
На 2018 год современные модификации двигателей М-14 разрабатывает и производит «Опытно-конструкторское бюро моторостроения». Решением Министерства промышленности и торговли Российской Федерации за ООО «Опытно-конструкторское бюро моторостроения» закреплены права разработчика и изготовителя авиационных поршневых двигателей М-14ПФ, М-14Р, М-14В26В1.

А это видимо АИ-14 (М-14) учебное пособие?

Редуктор.

Можно рассмотреть конструкцию всех наиболее важных узлов.

Фото 22.

Но никаких табличек с наименованием или заводским номером.

Для любознательных сняты крышки клапанных коробок.

А что это за 9 цилиндровый радиальный двигатель? Как подсказал Павел Николаевич Ненастьев, это двигатель с японского учебного самолета. Самолет японцы бросили на Курилах, его никто не сбивал, просто сгнил в морском климате.

С двухлопастным винтом…

С характерной крышкой редуктора.

И системой внешнего запуска на винта.

Вот она.

АИ-14РА — двигатель для самолёта PZL-104 Wilga

Крупнее

Табличка с описанием двигателя.

Объём 10,1 л
Мощность 260 л.с. на взлётном режиме
Степень сжатия 5,9
Диаметр цилиндров 105 мм
Ход поршня 130 мм
Количество цилиндров 9
Компрессор приводной, одноступенчатый, центробежный
Топливная система карбюраторная
Система охлаждения воздушная
Размеры
Диаметр 985 мм
Сухой вес 200 кг

Двигатель М-14В26 — вертолётный мощностью 325 л. с. Отличается коническим редуктором и муфтой сцепления. Устанавливался на Ка-15, Ка-18, Ка-26.

Табличка с описанием двигателя.

Заводская табличка двигателя.

И со специальным вентилятором для принудительного охлаждения.

Двигатель АИ-26ГРФ от вертолета Ми-1.

Двигатель АИ-26 создан в конце 1940 годов специально для первого советского массового вертолета Ми-1. Практически представляет собой «половинку» (один ряд цилиндров) двигателя АШ-82 без системы наддува. Главный конструктор — А. Г. Ивченко. Предприятие, производившее этот двигатель, в разные годы имело различные обозначения, в настоящее время — Мотор Сич. Всего было изготовлено более 4000 двигателей АИ-26 различных модификаций.

Табличка с описанием двигателя.

Фото 47.

Заводская табличка.

Двигатель АШ-82ФНВ (он же АШ-82В) — модификация для многоцелевого вертолёта Ми-4, заменившего Ми-1.

Табличка с описанием двигателя.

АШ-82 (М-82) — советский авиационный радиальный поршневой двигатель внутреннего сгорания, созданный под руководством А. Д. Швецова. Представляет собой двухрядную конструкцию с использованием элементов двигателя М-62 с уменьшением числа цилиндров с 9 до 7 и уменьшением хода поршня, что привело к уменьшению диаметра двигателя, что благоприятно повлияло на снижение лобового сопротивления самолетов. Модифицированный вариант данного двигателя стал первым серийным советским авиационным двигателем с инжекторной системой подачи топлива, а также стал основой для целого семейства двигателей. Всего было построено более 70 000 двигателей данного семейства.

Общий вид двигателя.

Тыльная сторона.

Поршневой двигатель М-62 был разработан конструктором А.Д.Швецовым. М-62 устанавливался на истребители И-15, И-16, И-153. Выпускался в больших количествах начиная с 1938 года. В 1940 году для транспортной и гражданской авиации был создан мотор АШ-62ИР (М-62ИР).

Табличка с описанием двигателя.

Общий вид. Интересно узнать, где его нашли и на каком самолете он стоял.

Судя по всему такой двигатель восстановлению не подлежит.

Заводская табличка.

И еще одна, виден год постройки: 1942…

И заглянем в цилиндр.

Здесь же стоит иностранный радиальный двигатель Bristol Pegasus XVIII. Такие двигатели стояли например на Vickers Wellington B Mk IC.

Он тоже не комплектный и работать больше не будет…

Тыльная сторона.

Клапана.

Крупнее

Мощность двигателя 965 лс, а сухой вес 504 кг. Объем 28.7 литра.

И еще один исторический иностранный двигатель BMW-132T. Такие двигатели стояли на Ju-52 P4+CH.

Табличка с описанием двигателя.

Цилиндр.

Общий вид с винтом.

Общие виды…

И переходим к паре двигателей М-3. М-3 был разработан в Воронеже. Они просто убрали у М-14 шесть цилиндров и редуктор. Построили порядка 200 двигателей, но в силу ряда отрицательных качеств, они не нашли применения и большинство послужило для комплектации М-14….

Первая табличка с описанием не имеет ничего общего с этими двигателями:-))) Такие двигатели ставили на самолет Леший… Это тот, который в дожде не летел без снижения:-))) По словам спецов двигатель М-3 полное дерьмо, особенно по вибрациям…

Заводская табличка.

Цилиндр как на М-14

Общий вид. Места под другие цилиндры просто закрыты.

Зато здесь есть такие вот загородочки.

Тыльная сторона.

Второй М-3

Теперь правильная табличка с описанием двигателя.

Заводская табличка.

Цилиндр.

Общий вид.

Фото 100.

Общий вид двух двигателей М-3.

Основная часть коллекции на входе в цех.

И уже в цеху радиальный двигатель М-11. Это М-11ФР, он мощнее обычного М-11, устанавливался на Як18, первый Як-12. .. Как новый… M-11 — авиационный двигатель, серийно выпускавшийся в СССР, в многочисленных модификациях, с 1929 по 1952 год, а в эксплуатации до 1959 года. Первый авиадвигатель собственной советской разработки, пошедший в серию. Разработан конструкторским бюро Государственного авиазавода № 4 («Мотор») в рамках конкурса на лучшую конструкцию мотора для учебных самолетов номинальной мощностью 100 л. с., объявленного в 1923 году. Главным инженером завода (по другим источникам — начальником КБ) в это время был А. Д. Швецов. Сам Швецов, хотя и был премирован, не приписывал себе авторства.

Табличка с описанием двигателя.

Заводская табличка закрашена.

Крупнее

Цилиндр.

С выхлопным патрубком.

Общий вид.

Фото 117.

Крупнее

Еще один М-11, но это уже М-11Д, 100 л/с с открытыми клапанами, запускался валенком, устанавливася на По-2, АИРы и т.п.

Табличка с описанием двигателя.

Табличка

Цилиндр с клапанами.

Общий вид двигателя

В тепле, у батареи…

Фото 125.

Скоро в коллекции появится после ремонта и М-11ФР2, ещё более мощный. Он как и М-11ФР имеет воздушный запуск.

И посмотрим на общие виды коллекции:

Фото 19.

Фото 20.

С другой стороны.

Радиальный двигатель принцип работы

Главная » Блог » Радиальный двигатель принцип работы

Радиальные двигатели | Двигатель прогресса

March 23, 2010

Раз уж наш блог начал рассказывать про различные типы двигателей, мы не могли не пройти мимо необычных типов ДВС и невероятных машинах, которые на них ездят. Обычный, поршневой двигатель внутреннего сгорания известен всем – коленчатый вал, его двигают от 1 до 16 (редко до 32) поршней, которые перемещаются в цилиндрах вверх-вниз. В цилиндры подается смесь воздуха и топлива (бензина, керосина, ДТ, водорода и проч.). Происходит быстрое сгорание, с большим коэффициэнтом расширения – поршень двигается вниз и толкает коленчатый вал.

Двигатели такого типа бывают рядными (L-образными) или не рядными, когда цилиндры стоят под углом друг к другу (V и W- образные). Последний тип – двухэтажный и применяется редко.

Какие же еще есть ДВС? Об одном из них мы хотели бы рассказать в этой статье.

Радиальные двигатели.

Краткая история радиальных двигателей.

Первый радиальный двигатель был создан в 1901 году Чарльзом Мэнли. Он был 5-ти цилиндровым и с водным охлаждением. От был сделан из одной из ротационных машина Стивена Бэлзера, для самолета Аэродрома Лэнгли. Мощность перового радиального двигателя составила 52 л.с. (39 кВт) при 950 об/мин.

В 1903-1904 гг Иаковах Эллехэммере  посторил первый в мире 3-х цилиндровый радиальный двигатель с воздушным охлаждением. Позже, в 1907 году он он постотоил более мощный 5-ти цилиндровый двигатель, а в 1908 – 1909 годах он разарабатывал уже 6-ти цилиндровый двухрядный радиальный двигатель. В последствии радиальные или звездообразные двигатели получили широкое применение в авиации из-за своей надежности, малых габаритов и возмощности эффективного применения воздушного охлаждения.

Принцип действия.

В отличие от рядных двигателей, цилиндры радиального двигателя расположены в виде звезды, радиально расходясь во все стороны от центра. Таким образом каждый цилиндр отделен от остальных и доступен для ремонта и обслуживания. Также такая конструкция хорошо пригодна для воздушного охлаждения, поэтому подавляющее большинство таких двигателей выпускается именно с воздушным охлаждением. Минимальное количество цилиндров для образования радиального двигателя – три, если взять два, то это уже либо V-образный, либо оппозитник, двигатель, в котором цилиндры расположены напротив друг друга, на одной линии. Внутри радиального двигателя, по центру находится коленчатый вал с одним коленом и противовесом. К нему крепится ведущий шатун, к которому уже непосредтсвенно крепяться все остальные, ведомые шатуны. Это принципиальное отличие кривошипно-шатунного механизма обусловлено самой конструкцией дигателя – длинный коленвал было бы просто некуда девать.

Звездообразные двигатели бывают двух и четырехтактными, последние обычно имеют нечетное количество цилиндров, позволяющее пускать искру через один цилиндр. В доказательство наших слов приводим видео демонстрационной модели 7-ми цилиндрового двигателя. Обратите внимание на искры зажигания. Двухтактные радиальные двигатели ставились на многие легкие самолеты и их заводили резким поворотом винта. Кждый цилиндр обычно имеет два клапана, которые приводятся в движение через спицы, которые в свою очередь толкает распределительный диск, связаный с коленчатым валом. Анимация в autodesk inventor – здесь все очень хорошо видно

Единственным недостатком радиального двигателя является возможность протекания маста в цилиндры, что приводит к гидроудару и разрыву нижних цилиндров при попытке завода двигателя. Но в современных двигателях эти шансы минимизированы. Выхлопная система таких двигателей также радиальна, но, как правило, трубы разводятся на две стороны. Варианты, когда цилиндров четное количество, тогда нередко каждый из цилиндров имеет свою выхлопную трубу.

Изготовление звездообразных двигателей

До сих пор радиальные двигатели ставят на самолеты и даже на вертолеты. Все таки возможность обходится без жидкостного охлаждения подкупает, да и технология отработанная годами не позволяет отказаться от этого типа ДВС в авиастроении. Также такие двигатели ставят на легкие лодки и на небольшие катера, перемещающиеся с помошью воздушного винта. В таком случае моторный отсек ограничивают сеткой.

Одним из производителей радиальных двигателей сегодня является Австралийская компания Rotec Engeneering.  Вот видео изготовления 150-сильного мотора R3600

Альтернативное применение

Но наш блог любит рассказывать о невероятных применениях всего, что можно. Вот и сейчас мы е обойдет стороной эту возможность и покажем несколько интересных фотографий и видео, найденных нами на просторах интернета. Например некотрые умельцв ставят радиальные двигатели на мотоциклы.

7 цилиндров 110 л/с Rotec Engeneering R2800

Общий вид

Такой же Rotec Engeneering R2800 только установленный впрофиль

И видео с этим мотоциклом:

R2800 собственной персоной. Кликабельно

И хорошо еще если на обычное место. Существуют например и вот такие варианты. “Двигатель в колесе”

Правда непонятно как к этому двигателя подается бензин. Те, кто не увлекается мотоциклами берут зарубежные аналоги запорожцев и делают с ними следующее:

В общем применений радиальных двигателей великое множество. Это отличные, плавные, мощные, простые в устройстве, ремонте и эксплуатации двигатели, которые прослужат еще очень долго.

Авиационный поршневой двигатель. Устройство и принцип работы.

Оппозитный авиационный поршневой двигатель. Как уже говорилось ранее, поршневые двигатели в авиации переживают свое очередное возрождение. Помимо звездообразных двигателей нашли свое применение в авиастроении и оппозитные двигателя. Их часто устанавливают на легкие спортивные самолеты небольших размеров, так как их мощности вполне достаточно для полета на высоких скоростях. В современной авиации существует несколько типов оппозитных двигателей, а именно: 1) Двигатель по типу боксер (Subaru). В нем поршни противоположных цилиндров двигаются равноудаленно друг к другу. Это означает что в определенный момент один цилиндр будет располагаться в верхней мертвой точке, а противоположный – в нижней мертвой точке. 2) Двигатель с устройством OPOC. Еще до недавнего времени эти двигателя имели очень низкий спрос. Но сейчас ситуация несколько поменялась. Двигатель OPOC имеет весьма сложную систему. В нем один коленчатый вал приводят в движение два поршня, которые располагаются в противоположных цилиндрах.

3) Оппозитный двигатель по типу советского 5ТДФ. В нем поршни двигаются навстречу друг к другу и работают попарно в одном цилиндре. Когда оба поршня достигают верхней мертвой точки, в расстояние между ними впрыскивается топливо. Благодаря такой конструкции этот двигатель может работать на различных видах топлива, начиная от керосина и заканчивая бензином. Мощность оппозитных двигателей увеличивают установкой на него турбонаддува, би-турбо или твин-турбо. Также её можно повысить при применении в производстве Н-образных шатунов или кованных поршней.

Плюсы и минусы оппозитного поршневого двигателя. К недостаткам оппозитного двигателя относят прежде всего высокий расход топлива и моторного масла. Особенно это касается второго. В этом двигателе необходимо регулярно производить замену масла иначе он быстро приходит в непригодность. Показатели расхода топлива и масла по сравнению с другими поршневыми авиационными двигателями самые большие и могут превышать в процентном соотношении более чем на 50%.Главным плюсом оппозитных двигателей является компактность, что позволяет устанавливать их на самолеты малых размеров. При таких габаритах мощности этих двигателей вполне достаточно даже для спортивных самолетов.

Современные поршневые авиационные двигатели. Современный авиационный поршневой двигатель претерпел значительные изменения по сравнению со своими первенцами. Сегодня это весьма сложные устройства, которые оснащают большим количеством дополнительных механизмов, агрегатов, обслуживающих систем и приборов. Благодаря им удалось снизить общий вес двигателя и увеличить его мощность, что позволило их использовать в легкой и спортивной авиации. Сегодня их главным показателем стало соотношение удельной мощности к весу самого агрегата и в среднем оно дотягивает до отметки в 0,5 кг/л. с.

Наверх

Поршневой авиационный двигатель.

Сегодня начинаем серию статей о конкретных типах авиационных двигателей. Первый движок, который удостоится нашего внимания – это поршневой авиационный двигатель. Он имеет полное право быть первым, потому что он – ровесник современной авиации. Один из первых самолетов, поднявшихся в воздух был Флайер-1 братьев Райт (я думаю вы читали об этом здесь :-)). И на нем стоял поршневой двигатель авторской разработки, работавший на бензине.

Долгое время этот тип движка оставался единственным, и только в 40-е годы 20-го века началось внедрение двигателя совсем иного принципа действия. Это был турбореактивный двигатель. Из-за чего это произошло читайте тут. Однако поршневой движок, хоть и утратил свои позиции, но со сцены не сошел, и теперь в связи с достаточно интенсивным развитием так называемой малой авиации (или же авиации общего назначения) он просто получил второе рождение. Что же из себя представляет авиационный поршневой двигатель?

Работа двигателя внутреннего сгорания (тот же рядный поршневой двигатель).

Как всегда :-)… В принципиальном плане ничего сложного (ТРД значительно сложнее :-)). По сути дела – это обычный двигатель внутреннего сгорания (ДВС), такой же, как на наших с вами автомобилях. Кто забыл, что такое ДВС, в двух словах напомню. Это, попросту говоря, полый цилиндр, в который вставлен цилиндр сплошной, меньший по высоте (это и есть поршень). В пространство над поршнем в нужный момент подается смесь из топлива (обычно это бензин) и воздуха. Эта смесь воспламеняется от искры (от специальной электрической свечи) и сгорает. Добавлю, что воспламенение может происходить и без искры, в результате сжатия. Так работает всем известный дизельный двигатель. В результате сгорания получаются газы высокого давления и температуры, которые давят на поршень и заставляют его двигаться. Вот это самое движение и есть суть всего вопроса. Далее оно передается через специальные механизмы в нужное нам место. Если это автомобиль, значит на его колеса, а если это самолет, то на его воздушный винт. Таких цилиндров может быть несколько, точнее даже много :-). От 4-х до 24-х. Такое количество цилиндров обеспечивает достаточную мощность и устойчивость работы двигателя.

Еще одна схема работы одного ряда цилиндров.

Конечно авиационный поршневой двигатель только принципиально похож на обычный ДВС. На самом деле здесь обязательно присутствует авиационная специфика. Двигатель самолета выполнен из более совершенных и качественных материалов, более надежен. При той же массе, он значительно мощнее автомобильного. Обычно может работать в перевернутом положении, ведь для самолета (особенно истребителя или спортивного) пилотаж – обычное дело, а автомобилю это, естественно, не нужно.

Двигатель М-17, поршневой, рядный, V-образный. Устанавливался на самолеты ТБ-3 (конец30-хгодов 20 в.)

Двигатель М-17 на крыле ТБ-3.

Поршневые двигатели могут различаться как по количеству цилиндров, так и по их расположению. Бывают рядные двигатели (цилиндры в ряд) и радиальные (звездообразные). Рядные двигатели могут быть однорядные, двухрядные, V-образные и т.д. В звездообразных цилиндры расположены по окружности (в виде звезды) и бывает их обычно от пяти до девяти (в ряду). Эти двигатели, кстати, тоже могут быть многорядными, когда цилиндры блоками стоят друг за другом. Рядные двигатели обычно имеют жидкостное охлаждение (как в автомашине :-), они и по виду больше похожи на автомобильные), а радиальные – воздушное. Они обдуваются набегающим потоком воздуха и цилиндры, как правило, имеют ребра для лучшего теплосъема.

Двигатель АШ-82, радиальный, двухрядный. Устанавливался на самолеты ЛА-5, ПЕ-2.

Самолет ЛА-5 с двигателем АШ-82.

Авиационные поршневые двигатели часто имеют такую особенность, как высотность. То есть с увеличением высоты, когда плотность и давление воздуха падают, они могут работать без потери мощности. Подвод топливно-воздушной смеси может осуществляться двумя способами. Здесь полная аналогия с автомашиной. Либо смесь готовится в специальном агрегате, называемом карбюратором и потом подается в цилиндры (карбюраторные двигатели), либо топливо непосредственно впрыскивается в каждый цилиндр в соответствии с количеством поступающего туда же воздуха. На автомобилях такого типа двигатели часто обзывают «инжекторными».

Современный поршневой радиальный двигатель ROTEC R2800.

Более мощный R3600 (большее количество цилиндров).

В отличие от обычного автомобильного ДВС, для самолетного поршневого движка не нужны громоздкие (ну и, естественно, тяжелые :-)) передаточные механизмы от поршней к колесам. Все эти оси, мосты, шестерни. Для самолета ведь вес очень важен. Здесь движение от поршня сразу через шатун передается на главный коленчатый вал, а на нем уже стоит вторая важная часть самолета с поршневым двигателем – воздушный винт. Винт – это, так сказать, самостоятельная (и очень важная) единица. В нашем случае он является «движителем» самолета, и от его корректной работы зависит качество полета. Винт – это не часть двигателя, но работают они в тесном сотрудничестве :-). Винт всегда подбирается или проектируется и рассчитывается под конкретный двигатель, либо же они создаются одновременно, так сказать комплектом :-).

Радиальный двигатель М-14П. Устанавливается на спортивные СУ-26, ЯК-55.

СУ-26 с двигателем М-14П.

Принцип работы винта – это достаточно серьезный ( и не менее интересный :-)) вопрос, поэтому я решил выделить его в отдельную статью, а сейчас пока вернемся к «железу».

Я уже говорил, что сейчас поршневой авиационный двигатель опять «набирает обороты». Правда состав авиации использующей эти двигатели теперь другой. Соответственно изменился и состав применяемых двигателей. Тяжелые и громоздкие рядные движки практически отошли в прошлое. Современный поршневой двигатель (чаще всего) – радиальный с количеством цилиндров 7-9, с хорошей топливной автоматикой с электронным управлением. Один из типичных представителей этого класса, например, двигатель ROTEC 2800 для легких самолетов, создан и производится в Австралии (между прочим выходцами из России :-)). Однако о рядных двигателях тоже не забывают. Таков, например, ROTAX-912. Так же хорошо известен двигатель отечественного производства М-14П, который устанавливается на спортивные самолеты ЯК-55 и СУ-26.

Двигатель Rotax-912, рядный. Устанавливается на легкие спортивные самолеты Sports-Star Max

Спортивный самолет Sport-Star Max c двигателем Rotax-912.

Существует практика применения дизельных двигателей ( как разновидность поршневых) в авиации, еще со времен войны. Однако широко этот двигатель пока не применяется из-за существующих проблем в разработке, в частности в области надежности. Но работы все равно ведутся, особенно в свете грядущего дефицита нефтепродуктов.

Поршневой авиационный двигатель вообще еще рано списывать со счетов :-). Ведь, как известно, новое – это хорошо забытое старое… Время покажет…

No related posts.

Звездообразный авиационный двигатель АШ-62

Поршневой двигатель воздушного охлаждения М-62 разработан в ОКБ А. Д.Швецова в 1933 году. За основу был взят американский двигатель Wright «Cyclone» R-1820 F3. В конструкции применён ряд оригинальных решений: двухдемпферный коленчатый вал, элестичная шестерня газораспределения, боковое уплотнение главного шатуна, фланкирование зуба неподвижной шестерни редуктора (на АШ-62ИР). Серийное производство организовано в 1937 году на заводе № 19 в Перми, позже — на Воронежском механическом заводе. М-62 (АШ-62) представляет собой поршневой, 9-цилиндровый, однорядный, звездообразный двигатель. Охлаждение воздушное. Карбюратор типа АКМ-62ИРА оснащён автоматической регулировкой высотного газа. Запуск двигателя осуществляется от электростартера РИМ-У-24ИР или вручную путём раскрутки маховика стартера. Вал двигателя вращается по часовой стрелке, если смотреть со стороны задней крышки картера. В качестве топлива используется авиационный бензин марки Б-70 (Б-91). Топливо подаётся топливным насосом типа БНК-12БК. Зажигание осуществляется от магнето типа БСМ-9. Для смазки применяется моторное масло марок МК-22, МС-20. Двигатель АШ-62ИР снабжён планетарным редуктором со степенью редукции 11:16. Двигатель АШ-62ИР стал самой массовой модификацией М-62: всего было построено более 3500 моторов. Начиная с 1942 года, АШ-62ИР стал единственной модификацией М-62, находящейся к тому времени в производстве. Двигатель имел 12 серий и достиг ресурса в 600 часов. Модификация АШ-62ИР выпускалась по лицензии в Китае (HS5) — не менее 2600 экз. и в Польше (ASz-62) — 25106 экз. До сих пор эксплуатируется на самолёте Ан-2. Мотор серийно производился в СССР и России более 50 лет. Модификации двигателя: • М-62 (АШ-62) — базовый. Применялся на самолётах И-153, И-16 (типы 18 и 27), И-207, КОР-2 (Бе-4), Р-10 (ХАИ-5), ХАИ-52. • АШ-62ИР — редукторный. Разработан в 1938 году. Применялся на Ан-2, Ли-2, ГСТ, ПС-35, БШ-1. • АШ-62М — доработанный. Применялся на Ан-2М. • М-62Р — высотный. Отличался 2 турбокомпрессорами ТК-19. • HS-5 — китайский вариант АШ-62ИР. Выпускается на авиаремонтном заводе в Сучжоу. Изготовлено не менее 2600 двигателей. • ASz-62 — польский вариант, выпущено 25106 двигателей. Технические характеристики: • Длина, мм: 1328 • Диаметр, мм: 1380 • Количество цилиндров: 9 • Рабочий объем цилиндров, л: 29,87 • Степень сжатия: 6,4 • Сухой вес, кг: 560 • Мощность на взлетном режиме, л.с.: 1000 • Мощность у земли, л.с.: 820 • Мощность на высоте 1500 м, л.с.: 840 • Удельный расход топлива, г/(л.с. час), -эксплуатационный: 260-290 -земной номинальный: 280-300 -высотный номинальный: 280-300 -взлетной мощности: не менее 300 Частота вращения, об/мин: 2200 • Расход масла: 4% от расхода топлива • Турбонаддув: крыльчатый нагнетатель Плюсы и минусы радиального поршневого двигателя. К единственному недостатку таких двигателей относят возможность попадания масла в нижние цилиндры двигателя при стоянке самолета. Это может привести к мгновенному гидроудару и соответственно к поломке всего кривошипно-шатунного механизма. Чтобы избежать подобного срача, перед запуском двигателя, постоянно необходимо проверять нижние цилиндры на отсутствие в них масла. Из плюсов радиального двигателя стоит отметить его сравнительно небольшие размеры, простоту в эксплуатации и приличную мощность (часто устанавливают на спортивные самолеты).

Общий вид с внутренней стороны Общий вид с внутренней стороны Вид сбоку. Сверху Карбюратор типа АКМ-62ИРА Еще один ракурс. Бензонасос снят, вместо него черная заглушка Карбюратор типа АКМ-62ИРА

Антипробуксовочная система (TCS) — это опция, которая часто встречается на автомобилях с антиблокировочной системой (ABS). Контроль тяги — это, по сути, «дополнительная» функция ABS, которая улучшает сцепление, когда автомобиль ускоряется на мокрой и… Керамическое покрытие представляет собой жидкий полимер, который наносится вручную на внешнюю поверхность автомобиля. Покрытие химически связывается с заводской краской автомобиля, создавая защитный слой. Керамическ… Двигатель 1968 куб.см имеет диаметр цилиндров и рабочий ход 81,0 х 95,5 мм, а степень сжатия — 16,2: 1. Выходная мощность составляет 150 л.с. при 3500 об/мин и 236 Нм крутящего момента между 1750 и 3000 об/мин. Осно… Дизельный двигатель 2.0L EA288 развивает мощность 150 л.с. (112 кВт) — это на 10 л.с. больше по сравнению с предшественником. Техническими целями разработки нового дизельного двигателя EA288 на базе MDB были сокращение выбросов CO2; комфорт; и уменьш…
Мощность, которую развивает двигатель, в значительной степени зависит от того, сколько воздуха он может втянуть. Чем больше рабочий объем двигателя, тем больше воздуха и тем больше топлива может сгореть. Теоретически, увеличение оборотов вдвое удваив… Меня недавно попросили взглянуть на двигатель грузовика Скания. Как обычно, получение всей информации является ключом к любой диагностике и, самое главное, пониманию того, как работает система. Этот конкретный движок был совместно разработан Scania и… Поставщики дизельных топливных форсунок ведут технологическую дуэль, чтобы завоевать нишу, поскольку каждый год ужесточаются требования по выбросам. … Предполагается, что в объектив угодил мул Туссана следующего поколения. На рынок новый кроссовер должен выйти после 2020 года….

Смотрите также

  • Как проверить тахометр на работоспособность
  • Какой насос выбрать для автомобиля
  • Сульфатация пластин аккумулятора как устранить
  • Бронепленка для стекла
  • Индекс шин расшифровка таблица
  • Фары калина устройство
  • Шумопоглотитель для авто
  • Кенгурятник на ваз
  • Ездить на машине просто
  • Новый малибу шевроле
  • Шпильки для колесных дисков

Сложные по конструкции двигатели: обзор и описание

Назад в прошлое: экскурсия по двигателям.

Открыв капот автомобиля сегодня, вы наверняка встретите знакомый кусок металла. Но в истории автопромышленности было немало попыток предложить миру что-то другое. Мы собрали для вас необычные конструкции двигателей, которые были выпущены за долгую историю развития автомира.

 

Смотрите также: Почему автомобили называются седанами, лимузинами и хэтчбеками

 

Как же удивителен автомир! Вы посмотрите, как изменились автомобили за последние 50 лет. Но изменения можно увидеть не только во внешности и в салоне. Наибольшее количество преобразований, конечно, коснулось двигателя, коробки передач и подвески. Сегодня мы хотим поговорить о самых удивительных силовых агрегатах, которые выпускались (а некоторые выпускаются до сих пор) за долгую историю автопромышленности. Но независимо от того, снят двигатель с производства или по-прежнему выпускается, все силовые агрегаты, которые мы собрали в нашем обзоре, подчеркивают удивительную инженерную мысль, присутствующую в том или ином моторе, которая нужна для развития автомобиля в целом. Итак, вот все необычные двигатели в порядке их появления в мире:

 

Одноцилиндровый двигатель

Используется: с 1885 года

Одноцилиндровый двигатель внутреннего сгорания относится к самому первому автомобилю в мире, который был выпущен в 1885 году. Речь идет об автомобиле Benz Patent-Motorwagen (на фото). 

 

Это транспортное средство было оснащено четырехтактным мотором объемом 954 куб. см. Двигатель был установлен под сиденьем пассажира и выдавал менее 1 л. с.

 

Тем не менее благодаря простой конструкции мотор было легко производить и модернизировать. В итоге новые версии мотора быстро выросли в мощности до 2 л. с. Одноцилиндровые двигатели применялись с тех пор во многих легковых и экономичных автомобилях.

 

Используется: с 1889 года

Двигатель V-twin предлагает множество привлекательных черт для использования в автомобиле. Он компактный и легкий, поскольку большинство из них производилось на основе мотоциклетных блоков. Первым автомобилем, где начали использовать V-образный мотор, был Stahlradwagen Daimler (на фото). Но сначала этот силовой агрегат не получил большую популярность, и только в 1920-х годах эта конструкция моторов привлекла внимание, когда такие компании, как GN и Morgan, начали создавать спортивные автомобили.

 

Кстати, вы не поверите, но подобная конструкция мотора до сих пор производится компанией Morgan для транспортных средств Three-wheeler. Мощность современного V-twin двигателя составляет 82 л. с., которые достигаются за счет 2,0-литрового объема. 

 

Двигатель V4

Используется: с 1887 года

 

На протяжении многих лет двигатель V4 не завоевал доверия у автопроизводителей. Этот мотор имеет не очень хорошую репутацию, после того как компания Ford испытала проблемы с этой конструкцией двигателей, устанавливаемых на американские автомобили в 1960-х и 1970-х годах.

 

Хотя его компактные размеры и неотъемлемая плавность работы должны были сделать этот мотор идеальным для использования в автомобилях различных классов. Первый двигатель V4 появился в далеком 1897 году на автомобилях компании Émile Mors. 

 

Самым же большим двигателем V4 в истории автопромышленности стал силовой агрегат Grand Prix V4, который использовался в 1907 году в машине Дж. Уолтера Кристи. Объем мотора в этом транспортном средстве был гигантским и составлял 19 981 куб. см.

 

Также V-образные четырехцилиндровые двигатели использовались компанией Lancia в моделях Appia и Fulvia. С этой конструкцией мотора экспериментировала и компания Porsche в своем спорткаре 919 Le Mans. 

 

Рядный восьмицилиндровый двигатель

Используется: с 1919 года

 

Как и многие другие двигатели, стоявшие на ранних автомобилях, «прямая восьмерка» была впервые разработана для самолетов. Мощность, количество цилиндров, аэродинамическая форма этого мотора делали его идеальным для этого вида воздушного транспорта. В автомобилях же этот двигатель начал использоваться в Isotta Fraschini. Затем восьмицилиндровый мотор появился в автомобилях компании Leyland Motors (1920 год). Но популяризировала его компания Bugatti, которая начала продавать автомобили не только в Европе, но и в США. Так о рядном моторе узнал весь мир. 

 

Автомобили Bugatti (на фото) с этим мотором также долгое время доминировали в различных гонках, становясь победителями в таких соревнованиях, как Indianapolis 500, в турнирах Grand Prix и в Bonneville Salt Flats.

 

Рядный 12-цилиндровый двигатель 

Используется: с 1920 года

 

С самого начала появления мощного 12-цилиндрового двигателя автопроизводители сразу поняли, что его можно использовать в роскошных автомобилях. Например, этот мотор в рамках эксперимента был установлен на автомобиль Packard (на фото).

 

Объем мотора составлял 7238 куб. см.  

 

Двигатель W12

Используется: с 1927 года

 

Несмотря на то что W12 двигатель популяризировала компания Bentley, появились они еще в далеком 1920 году. Мотор разработали Джон Кобб и Малькольм Кэмпбелл из компании Land Speed ​​Record. Он получил название Napier Lion aero W12.

 

Но идея мотора в последующем не получила распространение в автопромышленности. И только в 1990 году этот двигатель появился на болиде Life F35 Grand Prix. Однако его признали недостаточно надежным. 

Затем компания Audi решила использовать W12 двигатель на своей концепции Avus. В последующем W12 мотор стали ставить на различные автомобили VW Group. 

 

Двигатель V16

Используется: с 1929 года

 

Компания Maserati стала первой в автомире, кто использовал на своих автомобилях блок двигателя конфигурации V16. Впервые этот странный двигатель установили на модель Tipo V4. Затем компания Alfa Romeo установила его на Tipo 162. Также этот мотор использовала компания Auto Union при создании 490-сильного автомобиля для участия в гонках.

 

Во время Второй мировой войны с V16 двигателем экспериментировала компания BRM (на фото). Этот автомобиль оснащался 1,5-литровым двигателем мощностью 600 л. с. Но проблемы с системой наддува показали, что этот мотор недостаточно надежный. 

 

Звездообразный, или радиальный двигатель

Используется: с 1935 года

 

Легкость и простота конструкции радиального двигателя позволяли использовать его не только в самолетах, но и в танках. Однако размер звездообразных двигателей и конструкция клапанов делали этот силовой агрегат менее привлекательным для применения в автопромышленности. Поэтому этот мотор пришел в автопромышленность лишь в 1935 году. Так, этими двигателями были оснащены некоторые болиды, принимающие участие в Гран-при Monaco Trossi (на фото).

 

Двухтактный радиальный двигатель с воздушным охлаждением использовал наддув и оснащался двумя рядами цилиндров (по 8 шт.).

 

Мощность мотора составляла 250 л. с. Это не так впечатляет, с учетом того, что объем мотора был 4,0 литра.

 

Этот силовой агрегат оказался проблемным: он часто перегревался. Также были проблемы с автомобилем, на который устанавливался этот тяжелый двигатель. Дело в том, что 75% веса автомобиля с радиальным мотором было сосредоточено над передней осью, что приводило к недостаточной поворачиваемости машины. 

 

Оппозитный 12-ти цилиндровый двигатель Flat-12 

Используется: с 1946 года

 

В 1947 году Фердинанд Порше придумал оппозитный 1,5-литровый двигатель для Cisitalia (на фото), предназначавшийся для спортивного автомобиля, участвующего в гонках. Этим автомобилем должен был стать Porsche 360. Но в итоге он так и не вышел на трассу.

 

Смотрите также: 10 автомобилей с самыми ужасными и ненадежными двигателями

 

В 1964 году компания Ferrari забрала эстафету по разработке этого типа двигателей себе, установив его на болид Формулы-1 Ferrari 1512. Однако когда в конце 1970-х годов появились крылатые болиды, требующие вентиляции с воздушным потоком, широкая плоская форма двигателей Flat препятствовала воздушному потоку и компания Ferrari приняла решение больше не использовать мотор в болидах F1.

 

Оснащались этим двигателем и Ferrari 312T, которые помогли Ferrari стать чемпионами Формулы-1 в 70-х годах. Двигатели Flat-12 также были и в серийных моделях: Berlinetta Boxer и Testarossa. 

 

Газотурбинный двигатель в автомобиле

Используется: с 1950 года

 

Впервые газотурбинный двигатель в автомобиле, как это ни удивительно, использовала консервативная британская компания Rover на модели Jet 1 (на фото). После окончания Второй мировой войны в этой технологии в автопромышленности компания Rover была лидером. Первый газотурбинный мотор был установлен на шасси Р4. Автомобиль с 0-100 км/час разгонялся за 14 секунд. Первый мотор мог разгонять автомобиль до 145 км/час.

 

Далее модернизация мотора позволила разработчикам довести его мощность до 230 л. с., подняв максимальную скорость до 245 км/ч. 

 

Компании General Motors и Chrysler также делали попытки в создании автомобильных газотурбинных двигателей и даже оснащали ими некоторые спортивные автомобили для участия в гонках в Ле-Мане и Формуле-1. Но в итоге американцы так и не смогли продвинуть эту идею дальше.

 

Сегодня газотурбинные моторы чаще всего используются в танках и другой военной технике. 

 

Линейный трехцилиндровый двигатель

Используется: с 1953 года

 

Линейный трехцилиндровый двигатель впервые появился в 1950-х годах, когда компании DKW (на фото) и Saab начали использовать их в своих новых моделях. Правда, в то время эксперты не оценили модель трехцилиндрового двигателя, посчитав его очень скоромным. Это сегодня такие двигатели на вес золота благодаря легкому весу, эффективности и т. п.

 

Сейчас трехцилиндровые моторы устанавливаются на многие модели. Популяризацию этих моторов в 21 веке начали в автомире компании Ford и Volkswagen.

 

Двигатель BRM h26

 

Используется: с 1966 года

 

В 1966 году британская команда Формулы-1 British Racing Motors представила странный новый мотор для своего болида, который назывался BRM h26. Конструкция мотора, по сути, представляла два плоских восьмицилиндровых двигателя, установленных друг над другом. Каждый из них оснащался отдельным коленвалом, к которым были присоединены шестерни, что делало всю конструкцию очень тяжелой.

 

Этот мотор устанавливался на Lotus 43 (на фото), за рулем которого сидел Джим Кларко, ставший в 1966 году победителем Гран-при США. Однако это была единственная победа болида с двигателем h26. Вскоре разработка этого мотора прекратилась в пользу более прогрессивного двигателя V12. 

 

Роторный двигатель

Используется: с 1967 года

 

Компания Mazda с самого начала была привязана к роторным двигателям. Так, многие известные автомобили Mazda использовали в своей конструкции роторные моторы.

 

Но роторный двигатель создала не компания Mazda. Его автор – немецкий инженер Феликс Ванкель, который работал в компании NSU. Уже после изобретения роторного двигателя компания NSU была куплена компанией Mazda. Вот откуда у японцев технологии роторных силовых агрегатов.

 

Кстати, на основе роторных моторов на свет появилась Mazda Cosmo 110S (на фото), на основе которых японцы основали линию спортивных автомобилей. 

 

Оппозитный восьмицилиндровый двигатель

Используется: с 1968 года

 

Оппозитный восьмицилиндровый двигатель уже давно популярен на самолетах. Да, оппозитные моторы дороги, но плавность их хода перечеркивает этот минус. Впервые оппозитный мотор появился на Porsche 908. Этот автомобиль был построен для спортивных гонок. Объем 3 литра, мощность 355 л. с.

Это был неудачный опыт. 

 

Двигатель V5

Используется: с 1983 года

 

Когда начинают говорить о двигателях V5, то, как правило, сразу вспоминают четвертое поколение Volkswagen Golf и Volkswagen Bora, в некоторых модификациях которых использовался этот вид силовых агрегатов. Впервые этот мотор VW применила на модели Passat в 1997 году. Мощность двигателя составляла 148 л. с. Этот мотор стал альтернативой для мощного V6 и недостаточно мощного четырехцилиндрового рядного мотора.

 

Но, несмотря на инновационность, эти моторы встретили настороженно.

 

Смотрите также: Самые мощные 3-х цилиндровые автомобильные двигатели

 

Впервые подобные двигатели начала применять компания General Motors, которая разрабатывала дизельный V5. Однако до серийного выпуска GM дело так и не дошло. 

 

Двигатель W16 

Используется: с 1995 года

 

Обычно, когда говорят о двигателях W16, сразу вспоминают компанию Bugatti, которая оснащала свои спорткары Veyron этим мотором, который затем перешел и на новый суперкар Chiron. Но первым, кто сделал мотор W16, стал француз Рамон Хименес, построивший суперкар с таким невероятным двигателем (на фото). 

 

Француз объединил четыре мотоциклетных двигателя Yamaha 1000cc. Двигатель оснащался двумя коленвалами и 80 клапанами. Мощность мотора составляла 560 л. с.

 

Bugatti же пошла еще дальше, создав мотор W16 для спорткара Veyron, мощность которого составляет от 1000 до 1200 л. с. Спорткар же Chiron, который пришел на смену Veyron, имеет мощность 1500 л. с.

 

Двигатель W8

Используется: с 2001 года

 

Возможно, этот мотор и оказался технологическим тупиком, но двигатель Volkswagen W8 все равно является довольно- таки интригующим. Он соединяет в себе два узкоугольных мотора V4 с одним общим коленчатым валом, что позволяет восьмицилиндровому двигателю занимать пространство, которое, например, занимает обычный двигатель V6.

 

Больше цилиндров дают большую мощность, крутящий момент и плавность хода. Например, этот двигатель устанавливался в 4,0-литровый Volkswagen Passat W8. Но эта модификация автомобиля не стала популярной. Всего было продано 11 000 автомобилей с двигателем W8.

Вентилятор радиальный, BURAN 200, правосторонний, двухполюсный двигатель

Мы осуществляем доставку товаров по всей России. Наши пункты выдачи расположены более, чем в 165 городах:

Абакан

655002, Республика Хакасия, г. Абакан, ул. Хлебная, д. 30
Телефон: 8(3902) 305-081
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Адлер (ДЛ) без Акции

г. Сочи, Адлерский р-н, Гастелло ул., 23а
Телефон: + 7 (862) 296-80-86
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Аксай

346720, Ростовская обл, Аксайский р-н, Аксай г, Авиаторов ул, дом № 5
Телефон: 8(863) 307-89-95
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Алматы

Альметьевск

Альметьевск г, ул. Полевая, д.1В, с.5
Телефон: 8(8553) 369-265
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ангарск (без Акции)

Ангарск г, 215-й кв-л, корпус 2
Телефон: 8(3955) 66-12-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Апатиты (ДЛ) без Акции

г. Апатиты, ул. Сосновая, 4
Телефон: + 7 (81555) 425-05
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Арзамас

г. Арзамас, ул. Заготзерно, д.1/2
Телефон: 8(83147) 29-0-61
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Армавир

Армавир г, Мичурина ул., дом № 7
Телефон: 8(86137) 638-08
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Артем (Без Акции)

692756, Приморский край, г. Артем, ул. Фрунзе, д.21, с.8
Телефон: 8(423) 279-01-72
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Архангельск

163045, г. Архангельск, Талажское шоссе, д.4, с1
Телефон: 8(8182) 639-000
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Астана

Астрахань

414057, Астраханская обл, Астрахань г, Рождественского ул, дом № 17, корпус Р
Телефон: 8(8512) 20-1191
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ачинск (ДЛ) без Акции

Ачинск, ул. Льва Толстого, 49
Телефон: + 7 (391) 513-62-92
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Балаково

413843, Саратовская обл, г. Балаково, ул. Саратовское шоссе, д. 16/2
Телефон: 8(8453) 531-343
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Барнаул (без Акции)

656049, Алтайский край, Барнаул г., Чернышевского ул., дом № 293А
Телефон: 8(3852) 256-699
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Батайск

346750, Ростовская обл, Азовский р-н, Койсуг п, М. Горького ул, дом № 701, корпус Г
Телефон: 8(86354) 2-32-96
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Белгород

308000, Белгородская обл, г. Белгород, Кирпичный тупик, д.2А, к.3
Телефон: 8(4722) 402-078
График работы: Пн-Пт: с 08:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Березники

618419, Пермский край, Березники г, Большевистская ул, дом № 8
Телефон: 8(3424) 29-92-65
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Бийск (без Акции)

659303, Алтайский край, Бийск г, ул. Петра Мерлина, д.63 к.2 (заезд с ул. Василия Шадрина)
Телефон: 8(3854) 555-800, 8(3854) 323-540
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Благовещенск (Без Акции)

675000, Амурская область, Благовещенский р-н, Благовещенск г, Калинина ул, дом № 126
Телефон: 8(4162) 66-11-11
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Бор

606440, Нижегородская обл, Бор г. , Октябрьская ул., дом № 4
Телефон: 8(831) 216-00-84
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Борисоглебск

360445, Воронежская обл, Борисоглебский р-н, Борисоглебск г, Матросовская ул., дом № 162
Телефон: 8(473) 204-50-1 2
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Боровичи (ДЛ) без Акции

Боровичи, Окуловская ул., 4 58.388031,33.85638
Телефон: + 7 (81664) 9-00-79
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Братск (Без Акции)

665717, Иркутская обл, Братск г, Южная ул., дом № 14, корпус 10
Телефон: 8(3953) 34-80-50
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Брянск

241014, Брянская обл, Брянск г, Марии Расковой ул, дом № 25
Телефон: 8(4832) 59-00-13
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Буденновск

356800, Ставропольский край, Буденновский р-н, Буденновск г, Промышленная ул. , дом № 2
Телефон: 8(86559) 551-06
График работы: Пн-Пт: с 08:00 до 17:00, Сб: с 09:00 до 15:00, Вс: Выходной

Великие Луки (ДЛ) без Акции

Великие Луки. ул. Глинки, 52А
Телефон: + 7 (8115) 34-70-07
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Великий Новгород

173003, Новгородская обл, Великий Новгород г, Базовый пер, дом № 13
Телефон: 8(8162) 502-600
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Владивосток (Без Акции)

Приморский край, г. Владивосток, Командорская улица, 11с11
Телефон: 8(423) 279-05-47
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Владикавказ

Северная Осетия — Алания Респ, Владикавказ г, Ставропольская ул, дом № 2Б
Телефон: 8(8672) 333-012
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Владимир

600026, Владимирская обл, Владимир г, Гастелло ул, дом № 8
Телефон: 8(4922) 222-125
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Волгоград

400048, Волгоградская обл, Волгоград г, Землячки ул. , дом № 16
Телефон: 8(8442) 78-00-48, 8(8442) 26-22-45
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Волгодонск

г. Волгодонск, Романовское шоссе, 1Д
Телефон: 8(8639) 29-12-75
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Волжский

404130, Волгоградская обл, Волжский г, 6 Автодорога ул., дом № 31В
Телефон: 8(8443) 201-630
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Вологда

160002, Вологодская обл, Вологда г, Вологда, ул. Ильюшина, д. 9 Б
Телефон: 8(8172) 264-400
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Воронеж

394033, Воронежская обл, Воронеж г., Землячки ул., дом № 15
Телефон: 8(473) 233-31-14
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Воскресенск (ДЛ) без Акции

Воскресенск, ул. Советская, 2Ж
Телефон: + 7 (495) 775-55-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Выборг

г. Выборг, Ленинградское, ш. 110, лит. А
Телефон: 8(81378) 708-28
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Гатчина (ДЛ) без Акции

Гатчинский р-н, пос. Пригородный, Вырицкое ш., 2
Телефон: + 7 (812) 448-88-88
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Георгиевск

357808, Ставропольский край, Георгиевский район, станица Незлобная, ул. Ленина, 505
Телефон: 8(86522) 57-28-1
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

д. Грибки (МО, без Акции)

Дзержинск

Дмитров (без Акции)

г. Дмитров, ул. 2-я Левонабережная, влад. №20 (без Акции)
Телефон: 8(496) 222-72-57
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Екатеринбург

620138, Свердловская обл, Екатеринбург г., Чистопольская ул., дом № 6
Телефон: 8(343) 317-93-20, 8(343) 386-19-81
График работы: Пн-Пт: с 09:00 до 21:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Ессентуки

357625, Ставропольский край, Ессентуки г, Пятигорская ул, дом № 135
Телефон: 8(87934) 48-708
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Зеленодольск 

420000, Татарстан Респ, Зеленодольский р-н, Зеленодольск г, Новостроительная улица, 2/4
Телефон: 8(843) 204-13-55
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Иваново

153021, Ивановская обл, г. Иваново, ул. Парижской Коммуны, д. 84
Телефон: 8(4932) 260-330
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ижевск

426006, г. Ижевск, ул. Новоажимова, д. 25
Телефон: 8(3412) 333-235
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Иркутск (Без Акции)

664020, Иркутская обл, г.Иркутск, ул. Новаторов, д.1
Телефон: 8(3952) 799-227
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Йошкар-Ола

424000, Марий Эл Респ, Йошкар-Ола г, Строителей ул, дом № 99Б
Телефон: 8(8362) 49-50-01
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Казань

420054, Татарстан Респ, Казань г., Тихорецкая ул, дом № 19
Телефон: 8(843) 211-12-12
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Калининград

236038, Калининградская обл, Калининград г, Пригородная ул, д.18-20
Телефон: 8(4012) 65-88-00
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Калуга

Калужская обл, Калуга г, Параллельная ул. , дом № 11, корпус 22
Телефон: 8(4842) 922-027
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Каменск-Урал-кий

623401, Свердловская обл, Каменск-Уральский г., Карла Маркса ул., дом № 99
Телефон: 8(3439) 540-020
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Каменск-Шах-кий

347800, Ростовская обл, Каменск-Шахтинский г, Гаражная ул, дом № 16/15,16/16,16/17
Телефон: 8(86365) 2-24-99
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Камышин (ДЛ) без Акции

Камышин, Петровская ул., 36
Телефон: + 7 (84457) 37-090
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Кемерово (без Акции)

650055, Кемеровская обл, Кемерово г, Кузнецкий пр-кт, дом № 91
Телефон: 8(3842) 457-484
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Керчь (без Акции)

298302, г. Керчь, ул. Шлагбаумская, д.49/2 (без Акции)
ТЕЛЕФОН 8(36561) 77-761
EMAIL Kerch-fr@pecom. ru
График работы: Пн-Пт: 9.00-18.00, Сб.: 9.00-15.00, Вс — выходной

Кинешма

155805, Ивановская обл, Кинешемский р-н, Кинешма г, Вичугская ул., дом № 150
Телефон: 8(4932) 260-292
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Киров

610014, г. Киров, ул. Щорса, д. 70А/5
Телефон: 8(8332) 203-777
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Кисловодск

г. Кисловодск, ул. Фоменко, д. 136A
Телефон: 8(804) 333-37-44
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Клин (ДЛ) без Акции

Клин, Ленинградское ш., вл. 12
Телефон: + 7 (495) 775-55-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Ковров

601903, Владимирская область, г. Ковров, ул. Волго-Донская, д. 46
Телефон: 8(49232) 6-97-72
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Коломна (п. Радужный)

140483, Московская обл, Коломенский р-н, Радужный п, дом № 47Б
Телефон: 8(496) 610-12-31
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Колпино (ДЛ) без Акции

Колпино, пос. Тельмана, Красноборская дорога, 2
Телефон: + 7 (812) 448-88-88
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Комсомольск-на-Амуре (Без Акции)

681000, г. Комсомольск-на-Амуре, ул. Красная, д. 4 стр. 2
Телефон: 8(4217) 24-20-40
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Кореновск

Краснодарский край, г. Кореновск, ул. Маршала Тимошенко, д.1
ТЕЛЕФОН 8(861) 212-06-56
EMAIL [email protected]
График работы: Пн-Пт: 9.00-18.00, Сб.: 10.00-16.00, Вс — выходной

Кострома

156019, Костромская обл, Костромской р-н, Кострома г, Деминская ул, д.2Б
Телефон: 8(4942) 520-800
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Котлас (ДЛ) без Акции

Котлас, Новая Ветка ул., 3, стр. 1
Телефон: + 7 (81837) 9-11-89
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Краснодар

350072, г. Краснодар, ул. Автомобильная, д. 3
Телефон: 8(861) 212-53-43
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 09:00 до 16:00, Вс: с 10:00 до 14:00

Красноярск (Без Акции)

660015, Красноярский край, Емельяновский район, п. Солонцы, проспект Котельникова, д. 9Б
Телефон: 8(391) 204-00-44
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Кропоткин

352396, Краснодарский край, Кавказский р-н, г. Кропоткин, ул. Московская, д. 273/1
Телефон: 8(861) 205-64-42
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Кузнецк

442530, Пензенская обл, Кузнецкий р-н, Кузнецк г, Алексеевское шоссе д.5
Телефон: 8(84157) 355-48
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Курган (без Акции)

640007, Курганская обл, Курган г, Омская ул, дом № 146
Телефон: 8(3522) 222-319
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Курск

305023, г. Курск, ул. Литовская, д. 2С
Телефон: 8(4712) 770-999
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Лесосибирск (Без Акции)

Ливны (ДЛ) без Акции

Ливны, ул. Индустриальная, 2Д
Телефон: + 7 (48677) 4-19-26
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Липецк

398902, Липецкая обл, Липецк г, Ангарская ул., дом № 30
Телефон: 8(4742) 522-006
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Магадан (Без Акции)

685030, Магаданская обл, Магадан г, Пролетарская ул, дом № 96, корпус А
Телефон: 8(4132) 204-233
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Магнитогорск

455000, г. Магнитогорск, ул. Энергетиков 2/1
Телефон: 8(3519) 490-167
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Майкоп

385006, Адыгея Респ, Майкоп г, Промышленная ул, дом № 58ж
Телефон: 8(8772) 21-00-96
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Махачкала (ДЛ) без Акции

Махачкала, Индустриальный пер. , 11
Телефон: + 7 (8722) 98-90-96
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 09:00 до 16:00, Вс: Выходной

Миасс

456300, Челябинская обл, Миасс, Академика Павлова, дом № 12
Телефон: 8(3513) 289-604
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Мурманск

183034, Мурманская обл, Мурманск г, Домостроительная ул, дом № 16/1
Телефон: 8(8152) 215-350
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 09:00 до 16:00, Вс: с 09:00 до 16:00

Муром

602205, Владимирская обл, Муром г, Владимирское ш, дом № 5
Телефон: 8(49234) 7-62-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Наб-ные Челны

423800, г. Набережные Челны, ул. Хлебный проезд, д. 28
Телефон: 8(8552) 475-555
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Нальчик

360000, Кабардино-Балкарская Респ, Нальчик г, Кузнечный пер, дом № 5
Телефон: 8(8662) 22-99-23
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Невинномысск

357114, Ставропольский край, Невинномыск, Пятигорское шоссе, дом № 7
Телефон: 8(86554) 9-53-72
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Нефтекамск

452680, Башкортостан Респ, Нефтекамск г, Высоковольтная ул, дом № 2
Телефон: 8(34783) 700-61
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Нефтеюганск (без Акции)

г. Нефтеюганск, Пионерная промзона, Проезд 5П, стр.17А
Телефон: 8(3463) 200-887
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Нижневартовск (Без Акции)

628600, Ханты-Мансийский Автономный округ — Югра АО, Нижневартовск г., Индустриальная ул., дом № 38
Телефон: 8(3466) 251-303
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Нижнекамск

423575, Татарстан Респ, Нижнекамский р-н, Нижнекамский р-н, Нижнекамск, Ахтубинская ул, дом № 12
Телефон: 8(8555) 245-504
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Нижний Новгород

г. Нижний Новгород, ул. Вторчермета, д.1к2 (Заезд с Базового проезда)
Телефон: 8(831) 215-13-00
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 09:00 до 15:00, Вс: с 09:00 до 15:00

Нижний Тагил

620000, Свердловская обл, Нижний Тагил г., Восточное ш., дом № 17
Телефон: 8(3435) 963-838
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Новокузнецк (без Акции)

654063, Кемеровская обл, Новокузнецк г, Рудокопровая ул, дом № 30, корпус А
Телефон: 8(3843) 991-939
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Новомосковск (ДЛ) без Акции

Новомосковск, Первомайская ул. , 83, лит. С
Телефон: + 7 (48762) 9-73-37
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Новороссийск

353991, г. Новороссийск, п. Кирилловка, ул. 3-я Промышленная, д. 6
Телефон: 8(8617) 306-373
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Новосибирск (Без Акции)

г. Новосибирск, ул. Большая д. 280
Телефон: 8(383) 362-25-25, 8(383) 209-60-10
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Новочебоксарск

429950, Чувашская Республика — Чувашия, Новочебоксарск г, Строителей ул, дом № 33А/1
Телефон: 8(8352) 237-999
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Новочеркасск

346400, Ростовская обл., г. Новочеркасск, ул. Трамвайная, д. 7/9
Телефон: 8(8635) 27-71-99
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ногинск (ДЛ) без Акции

Ногинск, Электростальское ш., 1а
Телефон: + 7 (495) 775-55-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 11:00 до 16:00, Вс: Выходной

Ноябрьск (Без Акции)

629811, Ямало-Ненецкий АО, г. Ноябрьск, промзона, 3-ый проезд, панель 10.
Телефон: 8(3496) 458-041
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Норильск (без Акции)

Красноярский край, г. Норильск, Ленинский проспект, д. 7
Телефон: 8(3919) 45-05-00
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Обнинск

г. Обнинск, Киевское шоссе, д. 5А
Телефон: 8(48439) 9-70-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Октябрьский

452615, Башкортостан Респ, Октябрьский г., Космонавтов ул., дом № 63, корпус 2
Телефон: 8 (347) 677-07-55
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Омск (без Акции)

644076, Омская обл, Омск г, Космический пр-кт, дом № 109, корпус 1
Телефон: 8(3812) 433-900
График работы: Пн-Пт: с 08:30 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Оренбург

г. Оренбург, Шарлыкское шоссе, д.12 корп. 1
Телефон: 8(3532) 374-636
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 14:00

Орехово-Зуево

г. Орехово-Зуево, ул. Урицкого, д. 98, стр. 1
Телефон: 8(496)413-69-35
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Орск

Оренбургская область, г. Орск, пр-т Мира,12 Б (по Орскому шоссе, в районе ООО «ОрскВодоканал»)
Телефон: 8(3537) 341-342
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Пенза

440023, Пензенская обл., Пенза г., Измайлова, дом № 13
Телефон: 8(8412) 233-398
График работы: Пн-Пт: с 08:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Первоуральск (без Акции)

Пермь

614065, г. Пермь, ул. Промышленная, д. 123
Телефон: 8(342) 257-63-63
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 14:00

Петрозаводск

185031, республика Карелия, Петрозаводск г, Зайцева ул, дом № 65, корпус 4
Телефон: 8(8142) 599-499
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Петропавловск-Камчатский (Без Акции)

683023, Камчатский край, г. Петропавловск-Камчатский, ул. Вулканная, д. 59/3
Телефон: 8(4152) 30-53-33
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Прокопьевск (без Акции)

653024, г. Прокопьевск, ул. Гайдара, д. 45
Телефон: 8(3846) 682-090
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Псков

180006, Псковская обл, Псков г, Леона Поземского ул., дом № 110Д
Телефон: 8(8112) 296-369
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Пятигорск

357528, Ставропольский край, г. Пятигорск, ул. Егоршина, д.6 с.1
Телефон: 8(8793) 317-585
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 09:00 до 15:00, Вс: с 10:00 до 15:00

Россошь

396650, Воронежская обл, Россошанский р-н, Россошь г, Мира ул, дом № 201
Телефон: 8(47396) 660-25
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Ростов-на-Дону

344090, г. Ростов-на-Дону, ул. Доватора, д. 148
Телефон: 8(863) 307-80-68
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Рубцовск (без Акции)

658219, Алтайский край, Рубцовск г, Кооперативный проезд, дом № 1
Телефон: 8(38525) 56-441
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Рыбинск

152900, Ярославская обл, Рыбинск г., Ярославский тракт, дом № 52
Телефон: 8(4855) 239-119
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Рязань

г. Рязань, 195 км Окружной дороги
Телефон: 8(4912) 466-244
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Самара

443052, г. Самара, ул. Земеца, д. 32, литер 354
Телефон: 8(846) 201-60-33
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Санкт-Петербург

196626, г. Санкт-Петербург, ул. Якорная, д. 17, литер Ш
Телефон: 8(812) 494-88-88, 8(812) 458-09-02
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Саранск

430030, Респ. Мордовия, г. Саранск, ул. Строительная, д. 18А, стр.2
Телефон: 8(8342) 223-796
График работы: Пн-Пт: с 08:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Саратов

г. Саратов, ул. Соколовая гора, д. 5
Телефон: 8(8452) 754-075
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Севастополь

299014, Севастополь г., Фиолентовское шоссе, дом № 1/5
Телефон: 8(8692) 539-666
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Северодвинск

164500, Архангельская обл, Северодвинск г, Беломорский пр-кт, дом № 3, корпус 1
Телефон: 8(8184) 921-520, 8(8184) 548-860
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Сергиев Посад (Без Акции)

141304, Московская область, г. Сергиев Посад, ул. Фабричная, д.7
Телефон: 8(49654) 90-765
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Серов (ДЛ) без Акции

Серов, ул. Нахабина, 3Б
Телефон: 8 800 100–8000, с мобильного 0520
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Серпухов

142214, Московская обл., г. Серпухов, Северное шоссе, д. 2
Телефон: 8(496) 776-31-16
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Симферополь

295022, республика Крым, Симферополь г., ул. Глинки, дом № 67Г/1
Телефон: 8 (365) 278-83-81
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Славянск-на-Кубани

353563, Краснодарский край, Славянский р-н, г. Славянск-на-Кубани, ул. Промышленная ул, д. 2/1
Телефон: 8(86146) 32-0-55
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Смоленск

214012, Смоленская обл, Смоленск г., Старо-Комендантская ул., дом № 2
Телефон: +7 (4812) 268 078
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Солнечногорск (ДЛ) без Акции

Солнечногорск, Красная ул. , 161
Телефон: + 7 (495) 775-55-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Сочи

354340, Краснодарский край, Сочи г, Гастелло ул, дом № 23А
Телефон: 8(862) 225-8-869
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ставрополь

355035, Ставропольский край, Ставрополь г, 2-я промышленная улица, дом № 33
Телефон: 8(8652) 990-999
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Старый Оскол

309508, Белгородская обл, Старый Оскол г, Заводская ул, дом № 1А
Телефон: 8(4725) 390-515
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Стерлитамак

452680, Башкортостан Респ, Стерлитамак г, Элеваторная ул, дом № 19
Телефон: 8(3473) 339-873
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ступино (ДЛ) без Акции

Ступино, Ул. Транспортная, 16, к. 2
Телефон: + 7 (495) 775-55-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: Выходной, Вс: Выходной

Сургут (Без Акции)

Ханты-Мансийский Автономный округ — Югра АО, г. Сургут, ул. Аграрная, д. 3
Телефон: 8(3462) 77-91-06
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Сызрань

Самарская область, г. Сызрань, ул. Шеврохромовская, д. 26
Телефон: 8(8464) 361-036
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Сыктывкар

Республика Коми, г. Сыктывкар, ул. Лесопарковая, 21/3
Телефон: 8(8212) 239-229
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Таганрог

Ростовская область, г. Таганрог, Поляковское шоссе, 22
Телефон: 8(8634) 430-900
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Тамбов

Тамбовская область, г. Тамбов, ул. Кавалерийская, 13А
Телефон: 8(4752) 42-70-10
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Тверь

г.Тверь, Московское шоссе, д. 18, стр. 1
Телефон: 8(4822) 784-959
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Тольятти

Самарская область, г. Тольятти, ул. Базовая, 1,стр. 20
Телефон: 8(8482) 949-394
График работы: Пн-Пт: с 08:00 до 20:00, Сб: с 10:00 до 16:00, Вс: Выходной

Томилино (ДЛ) без Акции

Московская обл., Люберецкий р-н., рп Октябрьский, ул. Ленина, 47
Телефон: + 7 (495) 775-55-30
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 11:00 до 16:00, Вс: Выходной

Томск (без Акции)

Томская область г. Томск, ул. Пролетарская, д. 38В, стр. 1
Телефон: 8(3822) 283-338
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Туапсе

Краснодарский край, Туапсинский район, г. Туапсе, ул. Калараша 20г (база Партнер)
Телефон: 8(86167)779-02
График работы: Пн-Пт: с 08:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Тула

г. Тула, ул. Чмутова, д. 158 В
Телефон: 8(4872) 740-113
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Тюмень (без Акции)

Тюменская область, г. Тюмень, ул. Одесская, д.1, стр. 8
Телефон: 8(3452) 695-252, 8(3452) 65-80-01
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Улан-Удэ (Без Акции)

670045, Бурятия Респ, Улан-Удэ г, Ботаническая ул, дом № 38, корпус 2
Телефон: 8(3012) 204-161
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ульяновск

433000, г. Ульяновск, Московское шоссе, д. 9А корп. 2
Телефон: 8(8422) 790-719
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Уссурийск (Без Акции)

692524, Приморский край, г. Уссурийск, Резервная ул, д.31
Телефон: 8(4234)231-550
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Уфа

450039, Башкортостан Респ, Уфа г, Сельская Богородская ул., д. 57
Телефон: 8(347) 292-39-39, 8(347) 293-41-22
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Ухта (ДЛ) без Акции

Ухта, ул. Строительная, 13
Телефон: + 7 (8216) 79-57-97
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 09:00 до 16:00, Вс: Выходной

Феодосия (без Акции)

Хабаровск (Без Акции)

680022, Хабаровский край, г. Хабаровск, ул. Тихоокеанская, 73Г/2
Телефон: 8(4212) 789-961
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ханты-Мансийск ДЛ без Акции

Ханты-Мансийск, Объездная ул. , 3
Телефон: + 7 (3467) 39-39-53
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 09:00 до 15:00, Вс: Выходной

Чебоксары

428024, Чувашская Республика — Чувашия, г.Чебоксары, ул. Гаражный проезд, 3, Лит. В, В1
Телефон: 8(8352) 239-292
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Челябинск

454081, Челябинская обл, Челябинск г., Северный Луч, д. 1А.
Телефон: 8(351) 220-03-31
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 14:00

Череповец

162612, Вологодская обл, Череповец г, Красная ул, дом № 4Г
Телефон: 8(8202) 490-449
График работы: Пн-Пт: с 09:00 до 20:00, Сб: с 10:00 до 16:00, Вс: с 10:00 до 16:00

Чита (Без Акции)

672003, Забайкальский край, Чита г., Туринская ул., дом № 1Б
Телефон: 8(3022) 284-160
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Шахты

346513, Ростовская обл, Шахты г, Газетный пер, дом № 4Г
Телефон: 8(8636) 279-353
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Электросталь

142001, Московская обл, Электросталь г. , Рабочая ул, дом № 35А
Телефон: 8(499) 670-05-07
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Элиста

Энгельс

413121, Саратовская область, г. Энгельс, ул. Промышленная д.3
Телефон: 8(8453) 530-536
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Южно-Сахалинск (без Акции)

693000, Сахалинская область, г. Южно-Сахалинск, ул. Железнодорожная, д. 170Б/1
Телефон: 8(4242) 490-540
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ялта (Без Акции)

298609, Республика Крым, г. Ялта, Дарсановский пер., д. 10
Телефон: 8 (3654) 773-757
График работы: Пн-Пт: с 09:00 до 18:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ярославль

150044, Ярославская обл., г. Ярославль, ул. Базовая, д. 2
Телефон: 8(4852) 670-780
График работы: Пн-Пт: с 09:00 до 19:00, Сб: с 10:00 до 16:00, Вс: Выходной

Ротативный двигатель. Чумазый вояка :-)…

Истребитель Sopwith Camel F. 1 с двигателем Clerget 9B.

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.

Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас :-)) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.

На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.

Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.

Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.

По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Работа ротативного двигателя.

Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки :-).

Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).

Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Ротативный двигатель Félix Millet на мотоцикле.

Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.

В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.

Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.

Практически одновременно с ним работал американский инженер  Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

Открытый картер двигателя Le Rhône 9J.

По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».

Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?

Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.

Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.

Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый — это моделирование его работы на компьютере. Во втором показана работа «внутренностей» двигателя Le Rhône.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Ротативный двигатель Gnome 7 Omega.

В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Двигатель Gnome Monosoupape.

Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» 🙂 имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был безкарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Подвод топлива в цилиндр Gnome Monosoupape. Crank Case — картер, Ports — подводящие отверстия.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели :-)) и управлялся только отключением зажигания (об этом чуть ниже :-)).

Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель Le Rhone 9C.

Ротативный двигатель Le Rhone 9J.

Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.

Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать :-)) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.

Истребитель Fokker E.I с двигателем Oberursel U.0 .

Германский двухрядный Oberursel U.III, копия Gnome 14 Lambda-Lambda.

Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни :-)…

Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина :-)) со своим известным движком Clerget 9B.

Двигатель Clerget 9B.

Двигатель Clerget 9B на истребителе Sopwith 1½ Strutter.

Истребитель Sopwith 1 1/2 Strutter с двигателем Clerget 9B.

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR. 2 для истребителей Sopwith 7F.1 Snipe.

На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель Bentley BR1.

Ротативный двигатель Bentley BR2.

Истребитель Sopwith 7F.1 Snipe с двигателем Bentley BR.2 .

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют 🙂 (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно :-)) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулироват подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите :-)) газа.

У ротативного двигателя все не так просто :-). Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан («bloctube») . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая :-)), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро :-).

Пример защитных капотов на двигателе (защита от масла двигатель Gnome 7 Lambda ) на самолете Sopwith Tabloid.

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели :-).

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Схема топливо- и маслопитания ротативного двигателя Gnome 7 Omega.

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно :-)) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Пример замасливания (темные пятна) двигателя Gnome 7 Omega полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики :-). Масло, сгоревшее и несовсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики – люди мужественные :-). Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно :-)…

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен :-).

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.

Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B .

Истребитель Sopwith Camel F.1 (реплика).

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости :-). Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» :-). Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .

Основным и достойным противником для Sopwith Camel F.1 был немецкий триплан Fokker Dr.I с двигателем Oberursel UR.II (полный аналог французского Le Rhône 9J). На таком воевал Барон Ма́нфред А́льбрехт фон Рихтго́фен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Триплан Fokker Dr. I

Германский двигатель Oberursel-UR-2. Копия Le Rhône 9J.

Истребитель-триплан Fokker Dr.I (современная реплика, правда двигатель у нее не ротативный).

Fokker DR1, современная реплика с настоящим ротативным двигателем.

Триплан Fokker Dr.I незадолго до гибели «Красного Барона».

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность – вес – надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким 🙂 (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости ( ρV2/2, где ρ – плотность воздуха, V – скорость потока). То есть если скорость просто растет, то сопротивление растет в квадрате (примерно :-)).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III ). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Биротативный двигатель Siemens-Halske Sh.III .

Истребитель Siemens-Schuckert D.IV .

Истребитель Siemens-Schuckert D.IV в берлинском музее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе Siemens-Schuckert D.IV , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров.

Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Недостатков у них, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям :-), ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя – радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

На этом заканчиваю :-). В заключение как всегда кое-какое интересное видео. Первый ролик — запуск восстановленного двигателя Гном 1918 года выпуска. Далее три ролика о работе двигателя и полетах восстановленного Sopwith Camel F.1, а также Fokker Dr.I  (на заднем плане :-)). Интересного вам просмотра и до встречи…

P.S. Один из моих читателей (Александр) совершенно справедливо указал мне на то, что в ролике, где вместе с Сопвичем летает современная реплика германского триплана, движок у этого триплана не ротативный. Абсолютно верно. Я, увлекшись Сопвичем, не обратил на это внимание :-). Прошу прощения у читателей и помещаю ролик (и фото), где в полете современная реплика Фоккера с настоящим ротативным движком. Самолет здесь классно показан :-)…

Фотографии кликабельны.

This entry was posted in АВИАЦИОННЫЕ ДВИГАТЕЛИ, ИСТОРИЯ АВИАЦИИ and tagged ротативный двигатель. Bookmark the permalink.

Значение, Определение, Предложения . Что такое радиальный двигатель

  • Онлайн-переводчик
  • Грамматика
  • Видео уроки
  • Учебники
  • Лексика
  • Специалистам
  • Английский для туристов
  • Рефераты
  • Тесты
  • Диалоги
  • Английские словари
  • Статьи
  • Биографии
  • Обратная связь
  • О проекте

Примеры

Значение слова «РАДИАЛЬНЫЙ»

Направленный, расположенный по радиусу, лучевой.

Смотреть все значения слова РАДИАЛЬНЫЙ

Значение слова «ДВИГАТЕЛЬ»

Машина, превращающая какой-н. вид энергии в механическую работу, приводящая в движение что-н..

Смотреть все значения слова ДВИГАТЕЛЬ

Предложения с «радиальный двигатель»

Поскольку в этой конструкции использовался радиальный двигатель,он не мог конкурировать с рядным двигателем Bf 109, когда было уже слишком мало Daimler-Benz DB 601s.

Таким образом, с самого начала было решено использовать 18-цилиндровый радиальный двигатель Bristol Centaurus в качестве альтернативы двигателям с жидкостным охлаждением, которые также были предложены.

В 1901 году Мэнли сконструировал пятицилиндровый радиальный двигатель с водяным охлаждением, переделанный в один из роторных двигателей Стивена Бальцера, для аэродромного самолета Лэнгли.

Анзани был осведомлен о весовой стоимости противовеса в конфигурации вентилятора, и к декабрю 1909 года у него был симметричный 120° трехцилиндровый радиальный двигатель.

В результате этого предпочтения итальянский авиастроитель Macchi Aeronautica был вынужден полагаться на стареющий радиальный двигатель Fiat A. 74 для питания своего истребителя C. 200.

Самолет был переоборудован на надежный Mitsubishi MK8P Kinsei 62, 14-цилиндровый двухрядный радиальный двигатель, как и Yokosuka D4Y3 Model 33.

Он был восстановлен, чтобы представлять собой радиальный двигатель D4Y3, используя американский двигатель Pratt & Whitney R-1830.

Как только появился радиальный двигатель BMW 801, Bf 109F, Werknummer 5608, позывной D-ITXP был преобразован в BMW 801 A-0.

В 1911 году с помощью Чарльза Хинка Робинсон сконструировал радиальный двигатель мощностью 60 лошадиных сил для своего моноплана.

Porsche предпочитал 4-цилиндровый плоский двигатель, но Zündapp использовал 5-цилиндровый радиальный двигатель с водяным охлаждением.

Одним из французских двухместных разведывательных самолетов, используемых как французскими, так и американскими ВВС, был радиальный двигатель Salmson 2 A. 2.

Другие результаты

Самыми горячими точками на любом двигателе с воздушным охлаждением являются головки цилиндров, расположенные по окружности радиального двигателя.

Из-за дороговизны и нехватки подлинных роторных двигателей большинство пригодных к полету реплик питаются радиальным двигателем Warner Scarab или Continental R-670.

Первоначально радиальные двигатели имели один ряд цилиндров, но по мере увеличения размеров двигателей возникла необходимость добавления дополнительных рядов.

С 1905 по 1915 год Алессандро Анзани построил ряд трехцилиндровых вентиляторных и радиальных двигателей, один из которых приводил в действие межканальный полет Луи Блерио 1909 года.

Самолет G-1 обладал более мощным вооружением и, как и более ранний R-1, использовал пару радиальных двигателей BMW 801 мощностью 1700 л. с., G-1 использовал более позднюю версию BMW 801G-2.

Из-за первоначальных задержек в производстве двигателей Macchi прибегла к завершению некоторых самолетов C. 202 в качестве C. 200, работающих на радиальных двигателях Fiat.

Большой диаметр радиальных двигателей в танках М4 увеличивал высоту корпуса.

Известно, что по меньшей мере пять уцелевших самолетов Fw 190A с радиальным двигателем были приписаны к крылу JG 5 Люфтваффе в Хердле, Норвегия.

Siemens-Halske Sh 14 был семицилиндровым радиальным двигателем воздушного охлаждения для самолетов, произведенных в Германии в 1920-х и 1930-х годах.

Первый опытный образец, получивший обозначение СХ-1 и оснащенный радиальным двигателем Швецова АШ-21, взлетел 31 августа 1947 года.

Поршневые двигатели в самолетах имеют три основных варианта, радиальный, рядный и плоский или горизонтально-оппозитный двигатель.

Радиальные авиационные двигатели обеспечивали большее соотношение мощности и веса и были более надежными, чем обычные рядные двигатели транспортных средств, доступные в то время.

Все эти танки имели установленные сзади радиальные авиационные двигатели Континентального воздушного охлаждения и передний привод звездочек.

Armstrong Siddeley Tiger-британский 14-цилиндровый радиальный авиационный двигатель воздушного охлаждения, разработанный Армстронгом Сиддели в 1930-х годах из их двигателя Jaguar.

Роторный двигатель Бальцера был позже преобразован в статический радиальный режим помощником Лэнгли Чарльзом М. Мэнли, создав знаменитый двигатель Мэнли-Бальцера.

Двигатель будет либо бристольским Геркулесом радиальным, либо Мерлином.

Он был похож по концепции на более поздний радиальный, главным отличием было то, что винт был прикреплен болтами к двигателю, а коленчатый вал-к корпусу самолета.

Однако интерес министерства авиации возник лишь после того, как был представлен проект 14-цилиндрового радиального двигателя BMW 139 с воздушным охлаждением.

Дальнейшее развитие Р-43 продолжилось в виде облегченной версии с использованием радиального двигателя Pratt & Whitney R-2180.


На данной странице приводится толкование (значение) фразы / выражения «радиальный двигатель», а также синонимы, антонимы и предложения, при наличии их в нашей базе данных.
Мы стремимся сделать толковый словарь English-Grammar.Biz, в том числе и толкование фразы / выражения «радиальный двигатель», максимально корректным и информативным. Если у вас есть предложения или замечания по поводу корректности определения «радиальный двигатель», просим написать нам в разделе «Обратная связь».

радиальных двигателей в автомобилях. Кто сказал, что это невозможно?

Если бы вас попросили перечислить наиболее распространенные типы двигателей в автомобилях, вы бы, наверное, ответили: рядный, оппозитный, V-образный и на этом закончили. И вы были бы правы на самом деле, так как это самые распространенные типы двигателей в отрасли. Некоторые могут даже упомянуть роторные двигатели или электрические двигатели, но это, вероятно, все. Несмотря на то, что внутри этих типов двигателей существует множество конфигураций, есть странный тип двигателя, который очень редко используется в автомобилях. И речь идет не о крупных производителях, а скорее о заядлых энтузиастах и ​​безумцах, устанавливающих в автомобили радиальные двигатели!

Пример радиального двигателя, используемого в самолетах.

Радиальные двигатели были впервые разработаны в самом начале 20 века. Первые задокументированные радиальные двигатели датируются 1901 годом. Концепция довольно проста; вместо того, чтобы цилиндры и поршни располагались по прямой линии или напротив друг друга, цилиндры распределялись вокруг центрального коленчатого вала по кругу. Полные технические детали объясняются здесь для тех, кто хочет знать. Радиальные двигатели могут варьироваться от 3 цилиндров на одном ряду до 42 цилиндров, смещенных на несколько рядов. Самыми большими преимуществами таких двигателей являются относительно простая конструкция, плавная работа и тот факт, что они могут выдерживать удары. Есть бесчисленное множество историй о том, как ранние летчики-истребители благополучно возвращались домой с двигателями с поврежденными цилиндрами и еще чем-то.

Радиальный двигатель в движении

Хотя этот тип двигателя используется в основном в авиации, особенно до появления реактивных двигателей, радиальный двигатель используется не только в самолетах. На протяжении всей истории были танки, лодки и даже странные автомобили или мотоциклы, оснащенные звездообразным двигателем. Как и более типичные типы двигателей, радиальный двигатель может иметь воздушное или водяное охлаждение. Lycoming XR-775-3 был одним из самых больших когда-либо построенных радиальных двигателей. Этот гигантский двигатель имеет 36 цилиндров, общий рабочий объем 127 литров, и производит 5000 лошадиных сил. Я не хотел бы быть тем, кто платит за топливо на этом!

McDonnell Douglas C-47 Skytrain с 4 14-цилиндровыми радиальными двигателями Pratt & Whitney R-1830-90C.

Бомбардировщик Boeing B-17 Flying Fortress времен Второй мировой войны с 4 9-цилиндровыми звездообразными двигателями Wright R1820 Cyclone.

Теперь, поскольку это Уголок Бензиновых Голов, и мы сосредоточимся преимущественно на автомобилях, давайте посмотрим на некоторые из автомобилей, оснащенных радиальным двигателем. Но будьте осторожны, эти автомобили абсолютно дикие!

Автомобиль Гран-при Монако-Тросси 1935 года

Мы вновь обращаемся к миру гонок Гран-при в 1930 лет в Италии за эту захватывающую историю. У Аугусто Камилло Пьетро Монако возникла идея разработать автомобиль Гран-при для топ-класса 750 кг. В партнерстве с другом и инженером Джулио Аймини он отправился искать финансирование для автомобиля и приступить к разработке дизайна. В то время нередко обращались к двигателям, использовавшимся в ранних самолетах, и переделывали их для гонок, особенно для установления мировых рекордов наземной скорости.

При финансовой и механической поддержке босса FIAT Джованни Аньелли дуэт приступил к разработке автомобиля. Был сконструирован крайне нетрадиционный двигатель, по крайней мере, для автомобиля: двухтактный 16-цилиндровый радиальный двигатель с двойным наддувом и воздушным охлаждением. Два ряда по 8 цилиндров были установлены друг за другом, а поршни делили камеру сгорания. Этот сложный двигатель был легким, но все же способным производить огромную мощность (в то время).

Устав от технических проблем, Джованни Аньелли в какой-то момент отказался от проекта, и дуэт снова остался один. Вскоре после этого им удалось привлечь на борт графа Карло Феличе Тросси, богатого аристократа с долгой историей гоночных автомобилей, самолетов и моторных лодок, а также бывшего президента Scuderia Ferrari.

Аугусто Камилло Пьетро Монако в клетчатом жилете и граф Карло Феличе Тросси, сидящий в машине – изображение получено из Интернета (авторское право; Автомобильный музей, Турин – Карло Бисканетти ди Руффиа)

В конце концов, все сошлось, и Monaco-Trossi прошла через все этапы, ведущие к Гран-при Италии 1935 года в Монце. Машина была быстрой, очень быстрой, но только по проливу, к сожалению. Проблема заключалась в том, что двигатель и коробка передач были установлены так далеко вперед, что из-за этого автомобиль был очень тяжелым. Баланс был нарушен, и в результате автомобиль имел недостаточную поворачиваемость на каждом повороте, а очень легкая задняя часть становилась опасно неустойчивой при торможении. С этой идеей машина была снята с Гран-при Италии, а команда Monaco-Trossi прекратила свою деятельность. Автомобиль пережил Вторую мировую войну и сейчас выставлен в Museo dell’Automobile в Турине, Италия.

Граф Карло Феличе Тросси

DriveTribe предоставляет более подробную информацию о радиальном автомобиле Гран-при Монако-Тросси.

Пикап Plymouth 1939 года

Эта машина, вероятно, самая интеллектуальная вещь, которую мы когда-либо показывали в Уголке Бензопилы, и что-то, что каждый раз поражает меня, потому что это чертовски безумно. Это пикап Plymouth Radial Air 1939 года выпуска, построенный Гэри Корнсом, владельцем свалки и механиком из Энглвуда, штат Колорадо. Это дурацкая комбинация классического американского пикапа с большим старым авиадвигателем, торчащим спереди.

Идея пришла от Гэри Корнса и его сыновей Эрика и Адама и их любви к авиации. Как владельцы свалки и автомагазина, трое мужчин имели доступ ко всем видам запчастей от всех видов транспортных средств. Грузовик поступил от заказчика и стоил всего несколько сотен долларов, а двигатель был взят от вышедшего из употребления гидросамолета. На самом деле это 12,4-литровый 7-цилиндровый звездообразный двигатель Jacobs начала 1950-х годов мощностью около 300 л.с.

Он подробно обсуждался и в конце концов показывался на короткое время в эпизоде ​​«Гараж Джея Лено»;

Это действительно очаровательная машина, какой бы далекой она ни была. Было построено специальное трубчатое шасси, так как донорский двигатель немного тяжелее оригинального. Тело было разодрано, порублено и склепано обратно в виде голого металла. Перенаправить мощность с того, что обычно было бы пропеллером, на колеса было непростой задачей. От двигателя до колес в нем используются детали Chevrolet, Ford и изготовленные на заказ детали. Одна из самых поразительных вещей — стоковый круглый выхлоп, который торчит сбоку грузовика.

Интерьер грузовика очень вдохновлен авиацией, с работающими двойными органами управления для рулевого управления и вождения и кожаными стальными ковшеобразными сиденьями. Когда дело доходит до реального вождения, это имеет очень ограниченный диапазон по двум причинам. Он очень быстро нагревается и поглощает топливо, как будто завтра не наступит. Так что это больше грузовик для шоу, чем для повседневного использования, но вы, наверное, уже догадались. На самом деле он поставляется с винтажным буксиром самолета в похожем стиле, который также показан в видео Джея Лено.

Подробнее о сборке этого зловещего грузовика можно узнать на MotorTrend.com

Porsche 356 Outlaw от Emory Motorsports и Radial Motion

Одно дело заменить оригинальный двигатель на радиальный. Совсем другое дело, как свидетельствует Монако-Тросси, разработать с нуля новый звездообразный двигатель и установить его на автомобиль. Но именно это и сделала инжиниринговая компания Radial Motion из Австралии. В сотрудничестве с Bespoke Engineering компания Radial Motion разработала концепцию модульного радиального трехцилиндрового двигателя.

Изначально не предназначался для использования в автомобилях, так как изначально разрабатывался как авиационный двигатель. Понимая потенциал двигателя, подходящего не только для самолетов, но и для автомобилей, команде нужен был испытательный стенд, чтобы увидеть, как он работает. Он оказался в Porsche 356, построенном Emory Motorsports, а также в других транспортных средствах, включая VW Beetle и трайк.

В настоящее время доступны два типа: 2,0-литровая или 2,1-литровая безнаддувная модель мощностью от 200 до 210 лошадиных сил. Будучи компактным и легким двигателем, он легко может быть установлен в нестандартный автомобиль, особенно на базе платформы Volkswagen. Сюда входят VW Beetle, фургон Kombi и, конечно же, Porsche 356 Outlaw, который вы видите здесь.

Концепция «Outlaw» Porsche, которая означает, что автомобиль был значительно модернизирован механически и эстетически, принадлежит Роду Эмори из Emory Motorsports. Эта компания, базирующаяся в Калифорнии, специализируется на восстановлении и модернизации старинных автомобилей Porsche и отвечает за полную реставрацию оригинального Porsche 356/2-63 «Gmund SL» 1951 года выпуска, первого автомобиля Porsche, когда-либо поступившего на рынок. Гонка «24 часа Ле-Мана».

Но это не значит, что каждый Outlaw Porsche построен ими, как ясно показывает этот проект. Porsche 356 с радиальным двигателем, который вы видите здесь, на самом деле построен и принадлежит Рону Гудману из Exclusive Body Werks в Австралии. Как и другие, Exclusive Body Werks строит, восстанавливает и гоняет дорогие автомобили, часто старинные, по всему миру. Компания также предлагает автомобили, изготовленные по индивидуальному заказу, например, радиальный Porsche 356, который, мягко говоря, ОЧЕНЬ классный проект!

Двигатель Radial Motion является модульным, что означает, что обслуживание должно быть достаточно простым, а детали можно легко заменять при необходимости. В настоящее время Radial Motion разрабатывает версию с наддувом (то есть с турбонаддувом или наддувом) и даже говорит о версиях с 6, 9 и 12 цилиндрами. Если вы хотите построить свой собственный Outlaw Porsche и у вас есть бюджет около 25 000 долларов США только на двигатель, я настоятельно рекомендую вам подумать об этом! Есть что-то прикольное в этих двух нижних цилиндрах, высовывающихся из-под заднего бампера. Вы непременно будете выделяться на таких мероприятиях, как Luftgekühlt или Porsche Rennsport Reunion.

Дополнительная информация доступна на Silodrome и, конечно же, на Radial Motion.

Мотоцикл Megola 1922 года

В видео Jay Leno’s Garage о пикапе Plymouth 1939 года он также упоминает принадлежащий ему мотоцикл с радиальным двигателем, установленным на переднем колесе. Итак, в качестве небольшого «биса», вот клип.

Он известен как Megola и был построен в Германии в 1922 году. 5-цилиндровый радиальный двигатель, установленный на переднем колесе, имеет минимальную мощность и выдает всего около 14 лошадиных сил. Он приводит в движение переднее колесо и не похож ни на что другое в мотоциклах, которые я когда-либо слышал.

И, как описывает Джей Лено в видео выше, это ответ на инженерный вопрос, который никто не задавал. Если вам нужна дополнительная информация, я рекомендую прочитать эту статью от Silodrome.

Как работают радиальные двигатели? – MechStuff

Радиальные двигатели широко использовались во время Второй мировой войны.
Повышение эффективности и мощности было насущной потребностью того времени. Имея много преимуществ перед роторными двигателями, использовавшимися в Первой мировой войне, радиальные двигатели отлично зарекомендовали себя для самолетов.

Радиальные двигатели:-

Радиальные двигатели Двигатели внутреннего сгорания такие же, как расположение поршень-цилиндр, за исключением одного изменения – поршень в цилиндрах расходится (колеблется/возвратно-поступательно) наружу от центрального картера (как ободья шина). Радиальные двигатели также называют «Звездными двигателями» , поскольку они напоминают форму звезды, если смотреть спереди. Радиальная конфигурация очень часто использовалась для авиационных двигателей до появления газотурбинных двигателей.

История :-

Компания C.M. Manly сконструировала 5-цилиндровый радиальный двигатель с водяным охлаждением в 1901 году – преобразование роторного двигателя для аэродромного самолета. Машина оказалась неудачной, но двигатель Мэнли-Бальцера (позже в 1903 г.) указал путь к высокомощным и маловесным авиационным двигателям.

Детали:-

Поршень – Поршень используется для передачи силы расширения газов на механическое вращение коленчатого вала через шатун. Поршень может сделать это, потому что он плотно закреплен внутри цилиндра с помощью поршневых колец, чтобы минимизировать зазор между цилиндром и поршнем!
Коленчатый вал – Коленчатый вал – это деталь, способная преобразовывать возвратно-поступательное движение во вращательное.
Шатун – Шатун передает движение от поршня к коленчатому валу, который действует как плечо рычага.
Впускной и выпускной клапаны – Позволяет подавать свежий воздух с топливом и выводить отработавшую топливно-воздушную смесь из цилиндра.
Шарнирный шатун в сборе – Узел соединяет все шатуны поршней в единую деталь, так как цилиндры компланарны (обсуждается позже).
Свеча зажигания – Свеча зажигания подает электрический ток в камеру сгорания, который воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.

Работа радиальных двигателей: —

Анимация радиального двигателя, состоящего из 5 цилиндров. Радиальные двигатели

работают так же, как и любые другие четырехтактные двигатели. Они оба имеют схожие детали, но их конструкция и дизайн различны. Каждый цилиндр имеет такт впуска, сжатия, рабочий и выпускной такт.
Если вы рассматриваете приведенный выше двигатель, состоящий из 5 цилиндров, с нумерацией верхней части как 1 и вращающейся по часовой стрелке, то порядок работы будет 1-3-5-2-4 и снова 1 !
Ничего сложного для понимания, порядок воспламенения и открытие/закрытие клапанов отрегулированы таким образом, что текущий рабочий ход напрямую помогает сжать следующий цилиндр для воспламенения, делая движение более равномерным.

Почему нечетное количество цилиндров?

Для более плавной работы двигателя необходимо обеспечить постоянную мощность. Для производства постоянной мощности используется нечетное количество цилиндров, так что может быть достигнут любой другой порядок работы поршня.
Если бы использовалось четное количество цилиндров, равновременный цикл зажигания был бы невозможен. [Источник]

Как впускной и выпускной клапаны открываются и закрываются в определенное время хода?
В отличие от двигателей, используемых в автомобилях и мотоциклах, оси цилиндров лежат в одной плоскости , поэтому типичный распределительный вал не может использоваться для управления впускными и выпускными клапанами, а один и тот же коленчатый вал не может использоваться для передачи мощности.
Вместо этого поршни соединены с коленчатым валом с помощью узла главного и шарнирно-сочлененного стержня .   Я знаю, что это довольно сложно представить, особенно то, о чем мы никогда не слышали, поэтому я включил анимацию 🙂 !

Узел штока, который управляет синхронизацией впускных и выпускных клапанов.

В радиальных двигателях обычно используются тарельчатые клапаны, расположенные над цилиндрами . Эти клапаны приводятся в движение толкателями, которые управляются кулачковой пластиной, которая вращается в направлении, противоположном направлению вращения коленчатого вала.
Кулачок медленно вращается с помощью зубчатого механизма.

Преимущества:-

  • Более плавная работа:- Радиальные двигатели отлично вырабатывают постоянную мощность (вклад каждого поршня), как обсуждалось ранее. Эта консистенция помогает двигателю работать более плавно.
  • Надежнее и проще в обслуживании:- Все благодаря простой конструкции, которая делает его менее уязвимым к повреждениям, а также значительно облегчает работу обслуживающего персонала во время рутинных проверок.
  • Стоимость: — Детали радиальных двигателей, затраты на ремонт и техническое обслуживание невелики. Более дешевый вариант приветствуется с завязанными глазами в дорогой сфере деятельности.

Недостатки :-

  • Сопротивление :- Так как во время полета цилиндры явно подвергаются воздействию воздушного потока, сопротивление значительно возрастает.
  • Видимость :- Пилот может испытывать проблемы с видимостью из-за огромных одиночных двигателей, расположенных в носовой части самолета.
  • Установка :- Труднее обеспечить достаточное количество охлаждающего воздуха при установке двигателя под землей.

Газовые турбины ИЛИ широко известные как реактивные двигатели завоевали рынок, поскольку они были гораздо более мощными, эффективными и легкими, чем радиальные двигатели.
Чтобы узнать больше о газовых турбинах/реактивных двигателях, прочитайте одну из моих предыдущих статей, в которой я подробно рассказал о работе реактивные двигатели !
Я также написал статью о типах реактивных двигателей (в ней куча анимаций… вы должны попробовать 😉 )

3-цилиндровый компактный радиальный двигатель Radial Motion

В мире подражателей, три модели Radial Motion -Цилиндровый компактный радиальный двигатель выделяется из толпы. Radial Motion и Bespoke Engineering занимаются разработкой своего трехцилиндрового радиального двигателя с 2017 года, и то, чему они научились за это время, хорошо видно. Первоначально разработанный для использования в авиации, двигатель Radial Motion так же удобен в работе на уровне земли и в ряде приложений для автоспорта. Фактически, сегодня компания имеет варианты трехцилиндрового радиального двигателя как с водяным, так и с воздушным охлаждением, и работает над рядом планов на будущее, основанных на этой платформе двигателя.

Компания Radial Motion, расположенная в г. Лонсдейл, Южная Австралия, Австралия, занимается разработкой двигателей от концепции до продукта и специализируется на инновационных разработках для авиации и специальных автомобильных приложений. Radial Motion была создана в сотрудничестве с Bespoke Engineering, инновационной инжиниринговой компанией, которая предоставляет решения для различных отраслей промышленности и специализируется на разработке и производстве прототипов. Radial Motion обладает обширными возможностями в области промышленного дизайна, быстрого прототипирования, тестирования и разработки продукции, а также производства в больших масштабах.

Компанией руководят Ник Мебберсон, Луи Берк и Скотт Пирс, а радиальный двигатель был разработан собственными силами дизайнерами и инженерами с учетом потребностей конечного пользователя, что сделало его простым, модульным и со сменными частями.

Вдохновленный рассветом авиации и созданный с использованием современных технологий, радиальный двигатель отличается надежностью и производительностью благодаря своей простой прочной конструкции, которую можно модифицировать и настраивать для обеспечения достаточной мощности.

Трехцилиндровый компактный радиальный двигатель Radial Motion представляет собой четырехтактный газовый двигатель с радиальной конфигурацией 120°. Легкие и компактные двигатели объемом 2,0 л и 2,1 л сочетают в себе производительность и надежность с уникальным внешним видом и эмоциональным звуком выхлопа. Двигатель имеет общий кривошип и тройные распределительные валы с зубчатым приводом, приводящие в действие верхний клапанный механизм через толкатели. Каждая головка содержит два клапана: 2-дюймовый впускной и 1,5-дюймовый выпускной. Двигатель способен выдерживать высокое давление в цилиндрах, что делает его хорошо подходящим для турбонаддува и наддува.

Для автоспорта высокая мощность, малый вес и тонкий профиль радиального двигателя обеспечивают мгновенные преимущества. Использование легкодоступных стандартных компонентов, таких как поршни, шатуны и клапаны, делает ремонт и техническое обслуживание простым и доступным.

Хотя радиальный двигатель Radial Motion черпает вдохновение из славных дней ранней авиации, он включает в себя значительные усовершенствования. В отличие от авиационных двигателей, выпущенных в 1920-х годах, в двигателе с радиальным движением не используется популярная в то время сложная компоновка стержня ведущий/ведомый.

Вместо этого обычная шейка, подобная используемой в двигателях V-twin, обеспечивает компактную конструкцию. Размер двигателя такой же, как у двигателя VW Type 1 (Beetle), и он сохраняет дорожный просвет этого двигателя, предлагая улучшенное распределение веса.

Легкий доступ к распределительным валам и внутренним деталям без разборки двигателя, а другие внутренние детали доступны по всему миру. Radial Motion тесно сотрудничала с Келфордом, чтобы разработать специальный клапанный механизм, который поможет разогнать двигатель до 10 000 об/мин. Двигатель имеет диаметр цилиндра и ход поршня 99 мм x 86,5 мм (2,0 л) и 101,6 мм x 86,5 мм (2,1 л). Общий рабочий объем составляет 1998 куб. см для 2,0-литрового и 2104 куб. см для 2,1-литрового.

Радиальный двигатель оснащен чугунными гильзами, имеет двойную катушку/двухискровую систему зажигания с электронным управлением, имеет одиночную систему впуска дроссельной заслонки, которая может быть инжекторной или карбюраторной, имеет систему смазки с сухим картером и отдельными насосами продувки головки цилиндров. , и имеет головки цилиндров и стволы с водяным охлаждением, но также доступен в варианте с воздушным / масляным охлаждением.

Первый клиентский двигатель с воздушным охлаждением был установлен на Porsche 356 Outlaw, построенном известным поклонником Porsche Роном Гудманом. Тем не менее, Radial Motion также поставила свой двигатель на отреставрированный супербаг 1972 года по прозвищу «зомбаг», отреставрированный комбинированный фургон «почта» 1973 года, трехколесный мотоцикл и еще один двигатель, работающий на динамометрическом стенде с водяным тормозом.

Двигатели Radial Motion без наддува могут производить 100 л.с. на литр, и двигатели могут поддерживать высокие уровни наддува. Компания предлагает эти двигатели в виде готовых к работе агрегатов, прошедших перед поставкой динамометрические испытания. Они доступны в нескольких настраиваемых конфигурациях.

Они могут поставить двигатель в карбюраторной форме с тремя отдельными карбюраторами Mikuni и одним комплектом троса дроссельной заслонки. Эта установка идеально подходит для аналоговых автомобилей и тех, кто ищет простоту и аутентичность того времени. Зажигание в этом случае запрограммировано в модуле управления зажиганием, который управляет системой зажигания с несколькими катушками.

Если вам нужна система впрыска топлива, у Radial Motion есть и такая возможность. На самом деле, прямой впрыск в паре с отдельными дроссельными заслонками или общей камерой является наиболее распространенной установкой, которую предлагает Radial Motion. Каждый корпус дроссельной заслонки оснащен электронным оборудованием и управляется системой управления двигателем MoTec, которая также контролирует зажигание.

Трехцилиндровый двигатель может быть оснащен встроенным компактным генератором переменного тока, установленным на передней части коленчатого вала, или обычным мощным генератором переменного тока с ременным приводом, установленным рядом с шкивом коленчатого вала. Он поставляется с защитным кожухом ремня для самолетов и гонок по бездорожью. В системах с водяными насосами используется внешний электрический водяной насос. Коробки отбора мощности также доступны через муфты сцепления или муфты прямого привода.

В автомобильной технике двигатель Radial Motion предлагает ряд явных преимуществ по сравнению с обычными существующими двигателями. Благодаря компактным размерам и небольшому общему весу распределение веса может быть улучшено в большинстве случаев без ущерба для дорожного просвета, а отдельные цилиндры позволяют уменьшить размеры системы охлаждения.

Кроме того, эти радиальные двигатели идеально подходят для различных наземных и авиационных применений в условиях обороны. Модульная конструкция и доступность компонентов упрощают техническое обслуживание в любой точке мира, а высокая надежность гарантирует безотказную работу продукта. Двигатель подходит для гибридных приложений, а также для тяжелого топлива и биотоплива.

Глядя в будущее, Radial Motion и Bespoke Engineering в настоящее время разрабатывают версию с шестицилиндровым двигателем объемом 4,0 л. Модульная конструкция продукта подходит для девяти- и 12-цилиндровых двигателей для различных применений. Radial Motion также изучает решения для двигателей оборонного, промышленного, морского и гражданского назначения, включая двигатели в конфигурациях V2, V4 и V6, использующие дизельное топливо, газ, реактивное топливо и гибридные варианты.

Хотя двигатели Radial Motion вдохновлены прошлым, компания определенно нацелена на будущее. Они планируют стать всемирно признанным производителем двигателей, производящим 1000 двигателей в год, и их трехцилиндровый компактный радиальный двигатель является отличной отправной точкой.

Двигатель недели спонсируется PennGrade Motor Oil , Elring – Das Original и Scat Crankshafts . Если у вас есть двигатель, который вы хотели бы выделить в этой серии, отправьте электронное письмо  Engine Builder  Редактор, Грег Джонс, [email protected]

Ода радиалу

The Radial. Должен признаться, что испытываю некоторую страсть к этим специальным авиационным механическим устройствам, изрыгающим дым. Двигатель всегда является сердцем любого самолета, но радиальная часть, кажется, даже больше, она определяет самолет, будь то профиль для размещения лобовой области, постоянные утечки масла (или, как мы говорим, метят свою территорию!) или путь. он начинается с облаков дыма и его характерного звука.

В истории авиации существовало две точки зрения на конструкцию двигателя — рядный или круговой — и существовало множество вариаций на эти две темы. В круглой школе роторный двигатель был ранним стандартом, в котором коленчатый вал был прикреплен болтами к планеру, и именно двигатель вращался, к которому был прикреплен воздушный винт. Это имело много преимуществ, включая сам двигатель, действовавший как маховик, вместо того, чтобы добавлять его массу, а также охлаждающий эффект вращения двигателя, даже когда он находился на земле. Однако были и недостатки, в том числе гироскопические эффекты при управлении (пилотам-стажерам Sopwith Camel не разрешалось поворачивать направо, если первоначально они не находились на высоте более 1000 футов) и ограничение максимальной мощности этих конструкций. Bentley BR2 (используемый в Sopwith Snipe), возможно, представляет собой вершину развития роторных двигателей, достигая пика в 245 л.с.

 

Рядный двигатель, которому более 100 лет назад отдавали предпочтение братья Райт, которые спроектировали и построили свой собственный двигатель, часто должен был иметь водяное охлаждение, потому что для этой цели было трудно направить достаточный поток воздуха вокруг цилиндров. Горизонтально-оппозитным двигателям 1940-х и 50-х годов удалось избавиться от необходимости водяного охлаждения, но, как известно конструкторам и операторам, конструкция дефлектора и капота — это что-то вроде черного искусства, позволяющего добиться одинаковой температуры переднего и заднего цилиндров.

Преемником роторного стал радиальный, в котором двигатель закреплен, а гребной винт приводится в движение коленчатым валом через чудесное устройство главного шатуна и коренной шейки, причем каждый из других подчиненных шатунов (шатунов) вносит свой вклад в целое усилие. Стоит взглянуть на анимации, демонстрирующие эту интригующую хореографию, казалось бы, нелогичной конструкции. Это мгновенно решило проблемы с управлением, а также сняло ограничения мощности. Были и другие преимущества, такие как масло больше не попадало в воздушный поток и, следовательно, обратно на пилота. Смазка, часто представляющая собой касторовое масло, могла вызвать проблемы с пищеварением у летного экипажа! Поскольку большинство роторных двигателей, как правило, использовали систему смазки с полными потерями, потребление масла и, следовательно, ограничения полета также были улучшены.

Несмотря на то, что расход масла был значительно меньше, чем у роторного двигателя, использование и, следовательно, необходимость пополнения были факторами в некоторых сценариях. Например, профили патрулирования и праздношатания Skyraider означали, что для его миссий продолжительностью до десяти часов требовался очень большой масляный бак на 36 галлонов, и именно масло, а не топливо, могло быть ограничивающим фактором. На поршневых авиалайнерах 1950-х годов бортинженеры должны были не только управлять двигателями, часто корректируя смеси, но и следить за расходом масла и перекачивать масло из резервного бака в соответствующий двигатель.

 

Правила проектирования четырехтактного двигателя требуют, чтобы радиальный двигатель имел нечетное число цилиндров. Луи Блерио использовал все 24 л.с. трехцилиндрового двигателя Anzani, чтобы пересечь Ла-Манш в 1909 году, образец которого в коллекции Шаттлворта считается старейшим летным авиадвигателем в мире. Такие двигатели, как Warner Scarab и Kinner, популярные во время бума личных самолетов перед Второй мировой войной, имеют пять цилиндров и развивают мощность до 160 л. кривизна земли вылет лезть!

Вездесущий Pratt and Whitney Wasp выдает до 600 л. с. благодаря своим девяти двигателям, и это был мой первый опыт знакомства с радиальными двигателями в Гарварде. Окончательным девятицилиндровым радиальным двигателем является Wright Cyclone (производящий 1425 л.с.), который имел большой успех в Летающей крепости, и многие экипажи обязаны своей жизнью способности этого двигателя выдерживать повреждения, но продолжать работать в течение нескольких часов. В конечном итоге он также был успешно использован в учебно-тренировочном Т-28. Он был задуман как замена учебно-тренировочному Harvard, но оснащен «маломощным» радиальным двигателем мощностью 800 л.

Циклон Райта вдохнул в самолет новую жизнь, побывав в активной эксплуатации. Однако это не предел для радиальных двигателей, так как конструкторы добавили еще один ряд цилиндров сзади для создания многорядных конфигураций. Было разработано до четырех рядных двигателей, но охлаждение задних цилиндров становится все более сложной задачей. Были даже конструкции с одиннадцатью цилиндрами в каждом ряду, но этот уровень сложности не имел большого успеха.

 

Одним из ограничений мощности радиальной концепции является клапанный механизм, и еще одной попыткой решить эту проблему был золотниковый клапан, концепция столь же захватывающая и сложная, как радиальные главный и подчиненный шатуны. Элегантный дизайн, но требующий высокого уровня инженерной точности для создания и, как известно, сложный в обслуживании. Это окончательное развитие радиального двигателя, возможно, характерно для двухрядного 18-цилиндрового двигателя Bristol Centaurus, развивающего мощность около 3000 л.с. в самой мощной версии. Это можно увидеть на примере Hawker Sea Fury, лучшего британского поршневого истребителя, где Centaurus развивает мощность 2480 л.с.

Самым главным отличием предполетной подготовки радиального двигателя является ритуал «протаскивания». Эта процедура необходима, так как масло может стекать в нижние цилиндры и, если его не очистить, может привести к гидравлическому заклиниванию, которое может погнуть шатун, что в конечном итоге приведет к отказу двигателя. Протягивание винта в нормальном направлении работы удаляет это масло. Хороший совет — протянуть винт через столько лопастей, сколько имеется цилиндров, плюс один.

Необходимо внимательно следить за требуемым усилием, так как из-за большого количества масла, вызывающего блокировку, может быть нанесен ущерб из-за рычага, который может быть применен. В этих случаях необходимо снять нижние свечи зажигания, чтобы дать маслу стечь перед попыткой запуска. На очень больших радиальных двигателях очистка масла достигается за счет включения двигателя стартером, который имеет муфту для ограничения усилия в случае блокировки. Тем не менее, всегда будет оставаться небольшое количество масла, чтобы вызвать характерный дымный запуск!

 

Хорошим примером начального процесса является Гарвард. После того, как процесс прокачки был выполнен в рамках предпусковых проверок, которые включают в себя настройку дроссельной заслонки и смеси, необходимо включить виляющий насос для создания давления в топливопроводе. Затем требуется заливка двигателя, обычно для этого требуется от четырех до шести выстрелов заливного плунжера (каждый двигатель немного отличается), при этом все еще используется качающийся насос для поддержания давления топлива. Затем, когда еще одна порция прайма готова к использованию, необходимо включить стартер. На Harvards использовались различные системы стартера, включая инерционные маховики и картридж Коффмана, но теперь на большинство из них устанавливается электрический стартер. Это управляется либо защищенным переключателем, либо переключателем на подножке перед ручкой. Последнее, по крайней мере, освобождает руку. Удерживая палку назад (нужна еще одна рука!) Стартер включается, и после прохождения пяти лезвий магазины включаются.

Во время процесса необходимо поддерживать давление топлива с помощью виляющего насоса и закачивать еще одну порцию заправки, если двигатель дает сбои. Поскольку у большинства пилотов только две руки, одну из них можно освободить, удерживая ручку назад, зацепив ее ногой. В это время на ум часто приходит термин «однорукая бумажная вешалка»! Положение дроссельной заслонки очень важно как для обеспечения запуска, так и для сведения к минимуму обратного возгорания. По этой причине следует избегать слишком высоких настроек дроссельной заслонки, и это еще больше усугубляется, если двигатель был остановлен (как и должно быть в конце полета) с винтом, установленным на грубую настройку. Это удаляет масло из механизма винта, но, к сожалению, означает, что есть большая нагрузка, препятствующая запуску холодного двигателя.

Поскольку запуск двигателя продолжается, качающийся насос и подкачивающий насос все еще необходимо использовать по мере необходимости, пока двигатель не начнет работать плавно, все время наблюдая за пламенем от обратного огня или чрезмерной подкачки. Проворачивание стартера следует продолжать, чтобы пламя засосало в двигатель.

 

Когда клубы дыма проносятся над кабиной, а избыток масла в цилиндрах сгорает, характерный радиальный грохот обеспечивает слуховое наслаждение, являющееся частью удовольствия от работы радиального двигателя. Обычные проверки после запуска выполняются, но из-за большего количества масла, используемого в радиальном двигателе, обычно требуется длительный период для его надлежащего прогрева.

Работа с двигателем должна соответствовать обычной передовой практике с плавными входами с важным дополнительным фактором; никогда не позволяйте пропеллеру управлять двигателем, т. е. не уменьшайте мощность ниже точки, при которой воздушный поток толкает винт, вращая двигатель. Это связано с тем, что вход для подачи масла в коренную шейку спроектирован так, чтобы быть в стороне от стороны, находящейся под нагрузкой, когда двигатель приводит в движение гребной винт. В случае реверса поток масла сильно затруднен на коренной шейке, что никогда не бывает хорошо для любого двигателя.

Из-за большой лобовой площади радиальные летательные аппараты, как правило, имеют более длинные пропеллеры, как и роторные, чтобы обеспечить более чистый воздушный поток. Однако из-за более высоких оборотов радиального винта те, у кого винты без редуктора, достигают высоких скоростей на концах винтов, а в случае Harvard наконечники становятся сверхзвуковыми при скорости более 2200 об / мин, что придает им характерный звук винта.

 

Вторая мировая война стала вершиной развития поршневых авиационных двигателей, когда Великобритания изначально использовала двойную стратегию: рядные двигатели для истребителей и радиальные двигатели для бомбардировщиков. Для этого был ряд технических и логистических причин, но в конечном итоге Мерлин (а позже и Грифон) доминировали.

В бою радиальный двигатель по-прежнему имел явное преимущество, получая боевые повреждения и выдерживая их. Двигатель с водяным охлаждением часто работал всего несколько минут после удара, и частым результатом отказа было возгорание. Тем не менее, радиальные двигатели имеют замечательную историю серьезных повреждений, но продолжают работать в течение длительного времени. Радиалы продолжали работать, даже потеряв полные цилиндры или все их масло. В последнем случае, пока мощность не будет снижена, двигатель будет продолжать работать, возможно, до часа, при этом белый металл основного подшипника обеспечивает достаточную смазку.

Во время дневных налетов ВВС США было бесчисленное количество примеров, когда сильно поврежденные радиальные самолеты продержались достаточно долго, чтобы дать шанс их экипажам. В гражданском мире после Второй мировой войны были примеры коммерческих операций с несколькими двигателями, когда радиальный двигатель получил серьезные повреждения, но экипаж не знал об этом, пока они не заметили неисправный цилиндр, пробивший капот двигателя.

Итак, радиальный двигатель обладает прекрасным характером, богатой историей и замечательной выносливостью, но с ним нужно правильно обращаться. Что-то, что нужно помнить, когда вы уклоняетесь от масла, которое оно пролило на пол ангара, или когда оно с грохотом проносится мимо!

 

Radial Motion – производство легких и мощных радиальных двигателей в Южной Австралии

ENGINE INNOVATORS

Radial Motion – это концепт-продукт для двигателей, специализирующийся на инновационных конструкциях для конкретных применений.

Наш флагманский компактный радиальный двигатель — доступная мечта для энтузиастов автоспорта, автостроителей и любителей машин с индивидуальностью. Кликните сюда, чтобы узнать больше.

Первоначально разработанный увлеченными инженерами-механиками для использования в авиации, двигатель Radial Motion отличается надежностью, простотой и высокой производительностью, а также обеспечивает эмоциональный звук выхлопа продукта с потрясающей визуальной привлекательностью. В мире подражателей компактные радиальные двигатели Radial Motion стоят особняком.

В дополнение к нашей линейке радиальных двигателей мы активно изучаем новые инновационные конструкции двигателей. У нас есть полностью оборудованный динамометрический стенд Froude с водяным тормозом, а также возможность проектировать, тестировать и производить силовые установки в соответствии со строгими критериями в различных отраслевых условиях.

Текущие концепции дизайна, изучаемые в Radial Motion, включают модульный набор двигателей V2, V4 и V6, а также малосерийные индивидуальные решения для двигателей для оборонных приложений. Изучаются варианты дизельного, бензинового, гибридного и реактивного топлива, а также необычные конструкции кривошипов.

ПРОИЗВОДИТЕЛЬНОСТЬ
 

В атмосферном исполнении двигатели Radial Motion могут производить до 100 л.с. на литр, в зависимости от желаемого уровня настройки. Двигатели предлагают широкие возможности для турбонаддува или наддува для достижения более высоких уровней мощности.

ЭСТЕТИКА
 

Выражая визуальную привлекательность традиционных радиальных двигателей прошлых времен, продукт Radial Motion является чистым и лаконичным, с уникальной симметрией.

Нота двигателя тройки 120° уникальна и характерна, она придает изюминку любой сборке.

 

ПРОСТОТА ОБСЛУЖИВАНИЯ
 

В соответствии с нашей философией «мечты о доступной цене» все продукты Radial Motion удобны в использовании и просты в эксплуатации. Восстановить легко, а двигатели имеют длительные интервалы обслуживания из-за их надежной природы.

 

Основатель Radial Motion Ник Мебберсон глубоко увлечен машинами. В этом короткометражном фильме он рассказывает о том, как страсть всей его жизни привела к разработке собственного авиационного двигателя, установке его в старый Volkswagen и участию в гонках на асфальте.

Только что сошедший с диностенда, наш компактный радиальный двигатель отправляется в путешествие на мотодельтаплане и встречается с дальним родственником в виде биплана Боинг.

РАДИАЛЬНОЕ ДВИЖЕНИЕ В СРЕДЕ

 

DUCK & WHALE

 

Дикие звезды Aero 356 Рона Гудмана на этой впечатляющей фотографии на обложке 18-го выпуска культурного журнала Duck & Whale Porsche.

Нажмите здесь, чтобы заказать экземпляр: https://duckandwhale.com.au/collections/back-issues/products/duck-whale-magazine-issue-18

ЖУРНАЛ CLASSIC PORSCHE

 

Декабрьский выпуск 2021 г. журнала Classic Porsche Magazine есть техническая статья о двигателе Radial Motion.

Щелкните здесь, чтобы заказать копию: https://shop. kelsey.co.uk/issue/View/issue/CPO081

SILODROME

Silodrome покрыла Aero 356 еще в июле, а 16 октября часть о мотоцикле-рекордсмене наземной скорости, построенном Sheppard Motorcycles и Kennedy Motorcycles.

Нажмите на изображение, чтобы прочитать статью.

ЖУРНАЛ CLASSIC PORSCHE

 

Aero 356 Porsche с двигателем Radial Motion Рона Гудмана занимает пять страниц в выпуске британского издания Classic Porsche за октябрь 2021 года.

Нажмите на изображение, чтобы прочитать статью.

АВСТРАЛИЙСКИЙ СПОРТИВНЫЙ ПИЛОТ
 

Двигатель Radial Motion получил отличную рецензию в выпуске австралийского журнала Sport Pilot Magazine за декабрь 2020 года. Нажмите на изображение, чтобы прочитать его онлайн — перейдите на страницу 64.

 

АВСТРАЛИЙСКИЙ

 

Эта статья была опубликована в национальной газете The Australian 22 июня 2021 года. Она включает интервью с нашим управляющим директором Ником Мебберсоном. а также Рон Гудман, у которого на его невероятном Aero 356 Outlaw Porsche установлен особый двигатель Radial Motion. Нажмите на изображение, чтобы увеличить и прочитать статью.

SILODROME TOP 21

 

В 2021 году Silodrome дважды покрывал Radial Motion, включая дикий Aero 356 Рона Гудмана и скоростной мотоцикл Salt Monkeys. Они начали 2022 год со списка своих 21 лучших автомобилей 2021 года, и Aero 356 гордо занимает первое место в списке!

Примечательно, что наземный скоростной мотоцикл также вошел в список 21 лучших мотоциклов 2021 года по версии журнала Silodrome!

Нажмите на изображение, чтобы прочитать статью.

ABC РАДИО АДЕЛАИДА

 

Ведущий ABC Radio Adelaide Спенс Денни посетил нас 22 июня 2021 года и поговорил с нашим управляющим директором Ником Мебберсоном о наших двигателях и нашей талантливой молодой команде.

Нажмите кнопку воспроизведения ниже, чтобы прослушать интервью (5 минут).

SILODROME

 

Компания Silodrome рассказала о радиальном движении в этой статье от 1 июля 2021 года. Компания Silodrome, на которую подписано более 500 000 человек на Facebook, была основана австралийцем и обращается к международной аудитории.

Нажмите на изображение, чтобы прочитать статью.

ENGINE BUILDER

 

Компания Radial Motion получила награду «Двигатель недели» в журнале Engine Builder от 29 июня 2021 года. и энтузиастов.

Нажмите на изображение, чтобы прочитать статью.

ГАЛЕРЕЯ ИЗОБРАЖЕНИЙ
 

Используйте стрелки влево и вправо для прокрутки галереи.

Связаться с США

25 Aldershot Road Lonsdale, Южная Австралия

Австралия 5160

Bristol Hydra 16-цилиндровый Radial Aircraft Engine

By William Pearce

В 1930 г., Bristol Ainplane Ainplane Ainplane стал на Conteplate The Worndation The Bristol. авиационных двигателей. Их отделом двигателей руководил Рой Федден, плодовитый конструктор авиационных двигателей. В то время Bristol производил свой девятицилиндровый однорядный радиальный двигатель Mercury мощностью 510 л. с. (380 кВт) и рабочим объемом 1519 куб.у.е. в (24,9 л). Двигатель Mercury постоянно совершенствовался для увеличения его мощности. Однако для получения большей мощности при том же базовом размере двигателя Федден понял, что необходим второй ряд цилиндров.

Bristol Hydra представлял собой странный радиальный двигатель с двумя рядами восьми цилиндров. Двигатель страдал от вибрации из-за отсутствия опоры коленчатого вала. Обратите внимание на двойные верхние распределительные валы для каждой пары переднего и заднего цилиндров.

Компания Fedden and Bristol оценила не менее 28 конструкций двигателей, чтобы определить наилучший путь развития многорядного двигателя. В то же время Федден исследовал переход на использование золотниковых клапанов, но их разработка в Бристоле только началась. В многорядном двигателе по-прежнему будут использоваться тарельчатые клапаны. В конце 1931 для разработки был выбран 16-цилиндровый двигатель с воздушным охлаждением. Этот двигатель назывался Double Octagon или Hydra.

Bristol Hydra была спроектирована Фрэнком Оунером в 1932 году под руководством Феддена. Радиальный двигатель был очень необычен тем, что имел четное количество цилиндров на каждый ряд. Почти все четырехтактные радиальные двигатели имеют нечетное количество цилиндров в ряду, так что каждый второй цилиндр может срабатывать при вращении коленчатого вала. Кроме того, ряды цилиндров Hydra не располагались в шахматном порядке — первый и второй ряды располагались прямо на одной линии. Название «Двойной восьмиугольник» представляло собой конфигурацию двигателя, в которой восемь цилиндров в каждом из двух рядов двигателя образовывали восьмиугольник. Название «Гидра» двигателю дали из-за его многочисленных «головок» (цилиндров).

Разрез Гидры, созданный Брайаном Перкинсом на основе рисунка, найденного в бристольских архивах. Цифры на чертеже относятся к числу зубьев шестерни. Обратите внимание на неподдерживаемую центральную часть коленчатого вала, соединяющую переднюю и заднюю части коленчатого вала. (Рисунок Брэйна Перкинса через Историческое общество авиационных двигателей)

В отличие от традиционного радиального двигателя, конструкция Hydra напоминала четыре двигателя V-4, установленные на общий картер и использующие общий коленчатый вал. Фактически, испытательный двигатель V-4 был построен для усовершенствования конструкции цилиндра и клапанного механизма Hydra, прежде чем будет построен полный двигатель. Секции цилиндров В-4 устанавливались на 90-градусные интервалы вокруг картера, а их цилиндры имели угол крена 45 градусов. В этой конфигурации все ряды цилиндров располагались с интервалом в 45 градусов. Секции цилиндров V-4 имели выпускные отверстия, расположенные на внешних сторонах, а их впускные отверстия располагались в V-образной части каждой секции цилиндра V-4. Два впускных коллектора с питанием от нагнетателя подавали воздух к V-образному валу каждой секции цилиндра V-4, причем каждый коллектор обслуживал один передний и задний цилиндр. Нагнетатель двигателя вращался со скоростью, более чем в четыре раза превышающей скорость коленчатого вала.

Гидра использовала алюминиевый цилиндр с ребрами охлаждения. Стальной ствол выровнялся внутри цилиндра. Каждый цилиндр имел один впускной и один выпускной клапан. Каждый передний и задний цилиндры составляли пару, и каждая пара цилиндров имела отдельные верхние распределительные валы, которые непосредственно приводили в действие впускные и выпускные клапаны. В задней части пары цилиндров выпускной распределительный вал приводился в движение через конические шестерни вертикальным валом, который приводился в движение от коленчатого вала с помощью набора шестерен. Короткий поперечный вал отходит от выпускного распределительного вала для привода впускного распределительного вала. В каждом цилиндре было по две свечи зажигания.

Гидра, вид спереди и сбоку. Обратите внимание на выхлопные патрубки, немного выступающие над цилиндрами.

Коленчатый вал двигателя собран из трех частей. Центральная часть соединялась с передней и задней секциями четырьмя стяжными болтами. Коленчатый вал имел только два коренных подшипника и не имел центральной опоры. Использовались цельные главные шатуны. Редуктор с конической передачей в передней части двигателя снизил скорость вращения винта в 0,42 раза по сравнению с коленчатым валом. Относительно высокий уровень редуктора был необходим из-за высокой рабочей скорости двигателя.

Гидра имела диаметр цилиндра и ход поршня 5,0 дюймов (127 мм). Полный рабочий объем двигателя составлял 1571 куб. Дюйм (25,7 л). Hydra имела степень сжатия 6: 1 и производила 870 л.с. (649 кВт) на топливе с октановым числом 75. Сообщается, что на топливе с октановым числом 87 двигатель развивал мощность 1020 л.с. (761 кВт). Выходная мощность достигалась при 3620 об / мин, что является очень высокой скоростью для радиального двигателя. Двигатель имел диаметр 46,5 дюймов (1,18 м), длину 57 дюймов (1,45 м) и весил примерно 1500 фунтов (680 кг). С необычной конфигурацией цилиндров Hydra имела следующий порядок работы цилиндров: 1F, 2F, 7R, 4F, 1R, 6F, 3R, 8F, 5R, 6R, 3F, 8R, 5F, 2R, 7F и 4R.

Двигатель Hydra, установленный на подошве Hawker Harrier. Обратите внимание на недоумение в двигателе. Винт с четырьмя лопастями испытательного клуба был приспособлен для наземных испытаний.

Испытательный двигатель Hydra V-4 прошел испытания в середине 1932 года и в итоге выдал около 190 л.с. (142 кВт) без проблем с охлаждением. Полный 16-цилиндровый Hydra был впервые запущен в 1933 году. Позже в том же году двигатель был установлен на единственном прототипе биплана-бомбардировщика Hawker Harrier, J8325. Конфигурация двигателя упростила установку, а впускные клапаны были перекрыты, чтобы улучшить поток охлаждающего воздуха.

«Харриер» с двигателем «Гидра» столкнулся с некоторыми утечками масла и проблемами с зажиганием, но главная проблема заключалась в чрезмерной вибрации двигателя. Отсутствие центрального коренного подшипника на коленчатом валу вызывало проблемы с вибрацией, которые могли быть довольно серьезными на определенных оборотах. Короткий ход двигателя в сочетании с коротким коленчатым валом дали конструкторам ложную надежду на то, что центральный коренной подшипник не понадобится. Для устранения проблем с вибрацией потребовалась модернизация двигателя.

«Харриер» с двигателем «Гидра» с полностью закрытым капотом и трехлопастным винтом. В этой конфигурации самолет летал в течение 1933, но проблемы с вибрацией двигателя на критических оборотах ограничили испытания.

К 1934 году мощность Mercury приблизилась к уровню 800 л.с. (597 кВт), а новый девятицилиндровый Pegasus объемом 1753 куб. дюймов (28,7 л) показывал все признаки того, что 900 л.с. (671 кВт) уже не за горами. Кроме того, двигатель Perseus с золотниковым клапаном объемом 1519 куб. Дюймов (24,9 л) оказался надежным и производил около 700 л.с. (522 кВт), и разрабатывались более амбициозные двигатели с золотниковым клапаном. Вместо того, чтобы продолжать работу над Hydra и ее двухвосьмиугольной конфигурацией, Bristol решила развивать существующие серийные двигатели, а также сосредоточить внимание на новых двигателях с золотниковыми клапанами.

Проект двигателя Hydra полностью финансировался Bristol, хотя Федден пытался заручиться поддержкой Министерства авиации. Было построено всего два двигателя Bristol Hydra; примечательно, что оба, как сообщается, все еще существуют. Один из них находится в Центре наследия сэра Роя Феддена, бристольском отделении Фонда наследия Rolls-Royce, в Бристоле, Соединенное Королевство. Другой двигатель хранится в лондонском музее Королевских ВВС, расположенном на старом аэродроме Хендон.

Сохранившийся двигатель Bristol Hydra, хранящийся в Бристольском отделении Rolls-Royce Heritage Trust. Обратите внимание на обширное оребрение на алюминиевых цилиндрах. (Изображение Брэйна Перкинса предоставлено Историческим обществом авиационных двигателей)

Источники:
Федден – жизнь сэра Роя Феддена Билл Ганстон (1998)
Британские поршневые авиадвигатели и их самолеты Правительство и авиадвигатель Джорджа Булмана под редакцией Майка Нила (2002)
– «Моя жена называет это навязчивой идеей!!!! Часть 2: Bristol Hydra», Брайан Перкинс Измеритель крутящего момента, том 4, номер 2 (весна 2005 г.