Какие функции выполняет ядро процессора? Какие функции выполняет процессор в компьютере


Что такое процессор и для чего он нужен, тактовая частота процессора

Процессор — это «мозг» компьютера. Процессором называется устройство, способное обрабатывать программный код и определяющее основные функции компьютера по обработке информации.

Процессор выполняет основную работу в компьютере. Процессоры конструктивно могут выполняться как в виде одной большой интегральной микросхемы — чипа, так и в виде нескольких микросхем, блоков электронных плат н устройств.

В настоящее время микропроцессоры и процессоры вмещают в себя миллионы транзисторов и других элементов электронной логики и представляют собой сложнейшие высокотехнологичные электронные устройства.

Персональный компьютер содержит в своем составе довольно много различных процессоров. Каждое устройство, будь то видеокарта, системная шина или еще что-либо, обслуживается своим собственным процессором или процессорами. Однако архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную намять, и, что более важно, выполняющие объектный код программ. Такие процессоры принято называть центральными или главными процессорами (Central Point. Unit — CPU). На основе архитектуры центральных процессоров строится архитектура материнских плат и проектируется архитектура и конструкция компьютера.

Компьютеры с процессорами, поддерживающими систему команд Intel х86 (фирм Intel, AMD, Cyrix, Transmeta), на которых может исполнять операционная система Microsoft Windows, называются Wintel-компьютерами (от Windows и Intel).

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.

Каждый микропроцессор имеет определенное число элементов памяти, называемых регистрами, арифметико-логическое устройство (АЛУ) и устройство управления.

Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора. В АЛУ производится арифметическая н логическая обработка данных.

Устройство управления вырабатывает необходимые управляющие сигналы для внутренней работы микропроцессора и связи его с другой аппаратурой через внешние шины микропроцессора.

shkolo.ru

Виды процессоров. Что такое Кэш процессора? Функции процессора.

   Процессор (от англ.: Processor) — одна из основополагающих составляющих компьютера, функции которого состоят в реализации разнообразных математических подсчетов и синхронизация взаимодействия частей структуры компьютера. Процессоры есть как в обычных ПК, так и в разнообразных приборах, используемых в быту и промышленности, например, в современных стиральных машинах, устройствах печати и других. Кроме этого, так называемые, программные процессоры, к примеру, текстовый микропроцессор(англ.: word proccesor), представляющий из себя средство анализа текстов. В данной статье будут рассматриваться виды процессоров, некоторые их характеристики, основные функции.

Виды процессоров

Сегодня существует не один десяток видов процессоров, используемых для разрешения разных общих и узких целей.

Сегодняшний компьютер состоит из одного и более Центральных микропроцессоров и Графического микропроцессора. ЦП — особенно часто встречающееся название. Нередко под процессором понимается только Центральный микропроцессор. В англоговорящей среде цп обозначают, как CPU или Ctntral proccecing Unit, то есть в точном переводе — центральный блок обработки. Система, работающая с более чем одним центральным микропроцессором и использующее общее пространство адресов, является многопроцессорной.

Графический микропроцессор (ГП) в иностранной среде обозначен Graphics Proccesing Unit (GPU). Он имеет узкую специализацию, работает с графическими данными. Часто ЦП и ГП объединяют словом процессор, но в определенном контексте можно распознать вид процессора, о котором говорится.

Физический микропроцессор (Physics Processing Unit) необходим для арифметических операций при проектировании разнообразных физических моделей, таких как, например, динамические расчеты следствия взаимодействия тел.

Микропроцессор цифровых сигналов (Digital signal processor (DSP)) — специальный процессор, необходимый для работы с цифровым сигналом (как правило, в режиме реальном времени).

Сетевой микропроцессор (network processor)  — микропроцессор, который обычно располагается в сетевых устройствах, выполняет процедуры, необходимые при сетевой передаче данных. Обычно сетевой микропроцессор располагается в сетевых платах, коммутаторах и т.д.

Звуковые сигнальные микропроцессоры (Audio signal processor) применяются в ультрасовременной звуковой аппаратуре, они используются для работы со звуками и музыкой, к примеру, для имитации эха.

Что такое Кэш процессора?

кэш памятьКэш-память ( кэш процессора) — это оперативное запоминающее устройство (ОЗУ), с помощью которого компьютер может получить доступ к микропроцессору быстрее, чем к памяти RAM. Кэш процессора обычно интегрирован непосредственно в чип процессора или на отдельной микросхеме, которая имеет отдельную шину соединения с процессором.

Основной целью кэша процессора является хранение программных инструкций, на которые часто ссылается программное обеспечение во время работы. Быстрый доступ к этим инструкциям увеличивает общую скорость выполнения программы.

Когда микропроцессор обрабатывает данные, он проверяет сначала кэш-память; если он находит инструкции там (после предыдущего считывания данных), то не нужно делать более длительное считывание данных из основной памяти.

Большинство программ используют очень мало ресурсов, если они были открыты и работают в течение какого-то времени, главным образом потому, что часто используемые инструкции, как правило, кэшируются. Это объясняет, почему при измерениях производительность системы в компьютерах с медленным процессором, но большим КЭШем, как правило, больше, чем производительность системы в компьютерах с быстрым процессором, но с меньшим размером КЭШа.

Многоуровневое кэширование стало популярным в серверных и настольных процессорах, так как оно более эффективно. Чем  реже производится доступ к определенным инструкциям, тем ниже уровень кэша процессора, в который записывается эта инструкция.

Уровень 1 (L1) кэша работает  очень быстро, но относительно мал по объему данных, и, как правило, встроен в чип процессора (CPU).

Уровень 2 (L2) является более емким, чем L1; он может быть расположен на центральном процессоре или на отдельном чипе.

Уровень 3 (L3), кэш, как правило, специализированная память, которая работает, чтобы улучшить производительность L1 и L2.

Четыре основные функции центрального процессора

Процессор обрабатывает инструкции, которые он получает в процессе декодирования данных. При обработке этих данных, процессор выполняет четыре основных шага:

Выборка. Каждая команда сохраняется в памяти и имеет свой собственный адрес. Процессор запоминает этот адрес из программного счетчика, который отвечает за отслеживание того, какую инструкцию ЦП должен выполнить следующей.

Расшифровка. Все программы, которые должны быть выполнены, будут переведены на язык Ассемблер. Код Ассемблера выполнен в бинарных инструкциях, которые понятны процессору. Этот шаг называется декодированием.

Выполнение.  При выполнении инструкции, процессор может сделать одно из трех действий: передать инструкцию в АЛУ(арифметико-логическое устройство), переместить данные из одного места памяти в другое, или перейти к другому адресу.

Исполнение. Процессор должен передать результаты после выполнения инструкции, эти выходные данные записываются в память.

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

bakaraban.ru

Центральный процессор и его устройство :: SYL.ru

Процессор — это главная микросхема компьютера. Как правило, она также является одним из самых высокотехнологичных и дорогих компонентов ПК. Несмотря на то что процессор — отдельное устройство, он имеет в своей структуре большое количество компонентов, отвечающих за конкретную функцию. Какова их специфика?

Процессор: функции устройства и история появления

Компонент ПК, который сейчас принято именовать центральным процессором, характеризуется достаточно интересной историей происхождения. Поэтому, для того чтобы понять его специфику, полезно будет исследовать некоторые ключевые факты об эволюции его разработки. Устройство, которое современному пользователю известно как центральный процессор, является результатом многолетнего совершенствования технологий производства вычислительных микросхем.

Со временем менялось видение инженерами структуры процессора. В ЭВМ первого и второго поколения соответствующие компоненты состояли из большого количества раздельных блоков, очень несхожих по решаемым задачам. Начиная с третьего поколения компьютеров функции процессора начали рассматриваться в более узком контексте. Инженеры-конструкторы ЭВМ определили, что это должно быть распознавание и интерпретация машинных команд, занесение их в регистры, а также управление другими аппаратными компонентами ПК. Все эти функции стали объединяться в одном устройстве.

Микропроцессоры

По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.

Структура современных процессоров

Центральный процессор современного ПК, ноутбука или планшета представлен ядром — теперь уже нормой считается, что их несколько, кэш-памятью на различных уровнях, а также контроллерами: ОЗУ, системной шины. Производительность микросхемы соответствующего типа определяется ее ключевыми характеристиками. В какой совокупности они могут быть представлены?

Наиболее значимые характеристики центрального процессора на современных ПК таковы: тип микроархитектуры (обычно указывается в нанометрах), тактовая частота (в гигагерцах), объем кэш-памяти на каждом уровне (в мегабайтах), энергопотребление (в ваттах), а также наличие или отсутствие графического модуля.

Изучим специфику работы некоторых ключевых модулей центрального процессора подробнее. Начнем с ядра.

Ядро процессора

Центральный процессор современного ПК всегда имеет ядро. В нем содержатся ключевые функциональные блоки микросхемы, посредством которых она выполняет необходимые логические и арифметические функции. Как правило, они представлены в некоторой совокупности элементов. Так, устройство центрального процессора чаще всего предполагает наличие блоков, которые отвечают за решение следующих задач:

- выборка и декодирование инструкций;

- выборка данных;

- выполнение инструкций;

- сохранение результатов вычислений;

- работа с прерываниями.

Также структура микросхем соответствующего типа дополняется управляющим блоком, запоминающим устройством, счетчиком команд, а также набором регистров. Рассмотрим специфику работы соответствующих компонентов подробнее.

Ядро процессора: компоненты

В числе ключевых блоков в ядре центрального процессора — тот, что отвечает за считывание инструкций, которые прописываются в адресе, зафиксированном в счетчике команд. Как правило, в течение одного такта выполняется сразу несколько операций соответствующего типа. Общее количество инструкций, подлежащих считыванию, предопределяется показателем в блоках декодирования. Главный принцип здесь — чтобы при каждом такте отмеченные компоненты были максимально загружены. С целью обеспечения соответствия данному критерию в структуре процессора могут присутствовать вспомогательные аппаратные элементы.

В блоке декодирования обрабатываются инструкции, определяющие алгоритм работы микросхемы в ходе решения тех или иных задач. Обеспечение их функционирования — сложная задача, как считают многие IT-специалисты. Это обусловлено, в частности, тем, что длина инструкции не всегда четко определена. Современные процессоры обычно включают 2 или 4 блока, в которых осуществляется соответствующее декодирование.

Касательно компонентов, отвечающих за выборку данных — их основная задача заключается в обеспечении приема команд из кэш-памяти либо ОЗУ, которые необходимы для обеспечения выполнения инструкций. В ядрах современных процессоров обычно присутствует несколько блоков соответствующего типа.

Управляющие компоненты, присутствующие в микросхеме, также базируются на декодированных инструкциях. Они призваны осуществлять контроль над работой блоков, которые ответственны за выполнение инструкций, а также распределять задачи между ними, контролировать своевременное их выполнение. Управляющие компоненты относятся к категории важнейших в структуре микропроцессоров.

В ядрах микросхем соответствующего типа присутствуют также блоки, отвечающие за корректное выполнение инструкций. В их структуре присутствуют такие элементы, как арифметическое и логическое устройство, а также компонент, отвечающий за вычисления с плавающей точкой.

Есть в составе ядер процессоров блоки, которые контролируют обработку расширения наборов, что установлены для инструкций. Данные алгоритмы, дополняющие основные команды, используются для повышения интенсивности обработки данных, осуществления процедур шифрования или дешифрования файлов. Решение подобных задач требует введения в структуру ядра микросхемы дополнительных регистров, а также наборов инструкций. Современные процессоры включают обычно следующие расширения: MMX (предназначены для кодирования аудио- и видеофайлов), SSE (применяются при распараллеливании вычислений), ATA (задействуется с целью ускорения работы программ и снижения уровня энергопотребления ПК), 3DNow (расширение мультимедийных возможностей компьютера), AES (шифрование данных), а также многие другие стандарты.

В структуре ядер процессора обычно также присутствуют блоки, отвечающие за сохранение результатов в ОЗУ в соответствии с адресом, который содержится в инструкции.

Важное значение имеет компонент ядра, который контролирует работу микросхемы с прерываниями. Данная функция позволяет процессору обеспечивать стабильность работы программ в условиях многозадачности.

Работа центрального процессора также связана с задействованием регистров. Данные компоненты являются аналогом ОЗУ, однако доступ к ним осуществляется в несколько раз быстрее. Объем соответствующего ресурса небольшой — как правило, он не превышает килобайта. Регистры классифицируются на несколько разновидностей. Это могут быть компоненты общего назначения, которые задействуются при выполнении арифметических или логических вычислений. Есть регистры специального назначения, которые могут включать системные данные, используемые процессором в ходе работы.

В структуре ядра процессора также присутствуют различные вспомогательные компоненты. Какие, например? Это может быть датчик, отслеживающий то, какова текущая температура центрального процессора. Если ее показатели выше установленных норм, то микросхема может направить сигнал модулям, отвечающим за работу вентиляторов — и они начнут вращаться быстрее. Есть в структуре ядра предсказатель переходов — компонент, который призван определять, какие именно команды будут выполняться после завершения определенных циклов операций, совершаемых микросхемой. Пример другого важного компонента — счетчик команд. Данный модуль фиксирует адрес соответствующего алгоритма, который передается микросхеме в момент начала выполнения им того или иного такта.

Такова структура ядра, которое входит в центральный процессор компьютера. Изучим теперь подробнее некоторые ключевые характеристики микросхем соответствующего типа. А именно: техпроцесс, тактовая частота, объем кэш-памяти, а также энергопотребление.

Развитие компьютерной техники принято связывать с появлением по мере совершенствования вычислительных технологий новых поколений ЭВМ. При этом, не считая показателей производительности, одним из критериев отнесения компьютера к тому или иному поколению может считаться его абсолютный размер. Самые первые ЭВМ были сопоставимы по величине с многоэтажным домом. Компьютеры второго поколения были сопоставимы по величине, к примеру, с диваном или пианино. ЭВМ следующего уровня уже были вплотную приближены к тем, что привычны для нас сейчас. В свою очередь, современные ПК — это компьютеры четвертого поколения.

Собственно, к чему все это? Дело в том, что в ходе эволюции ЭВМ сформировалось неофициальное правило: чем более технологично устройство, тем меньшими габаритами при той же производительности, а то и при большей — оно обладает. Оно в полной мере действует и в отношении рассматриваемой характеристики центрального процессора, а именно, техпроцесса его изготовления. В данном случае имеет значение расстояние между единичными кремниевыми кристаллами, формирующими структуру микросхемы. Чем оно меньше — тем больше плотность соответствующих элементов, которые размещает на себе плата центрального процессора. Тем более производительным он, соответственно, может считаться. Современные процессоры выполняются по техпроцессу 90-14 нм. Данный показатель имеет тенденцию к постепенному уменьшению.

Тактовая частота

Тактовая частота центрального процессора — один из ключевых показателей его производительности. Она определяет то, сколько операций в секунду может совершать микросхема. Чем их больше — тем более производителен процессор и компьютер в целом. Можно отметить, что данный параметр характеризует, прежде всего, ядро как самостоятельный модуль центрального процессора. То есть, если соответствующих компонентов на микросхеме несколько, то каждое из них будет работать с отдельной частотой. Некоторые IT-специалисты считают допустимым суммировать данные характеристики по всем ядрам. Что это значит? Если, например, на процессоре установлено 4 ядра с частотой 1 ГГц, то суммарный показатель производительности ПК, если следовать этой методологии, будет составлять 4 ГГц.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора. Правда, его задействовать нужно осторожно.

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Объем кэш-памяти

Современные процессоры оснащены модулями кэш-памяти. Основное их предназначение — временное размещение данных, как правило, представленных совокупностью особых команд и алгоритмов — тех, что задействуются в работе микросхемы наиболее часто. Что это дает на практике? Прежде всего то, что загрузка центрального процессора может быть уменьшена за счет того, что те самые команды и алгоритмы будут находиться в оперативном доступе. Микросхема, получив из кэш-памяти готовые инструкции, не тратит время на их выработку с нуля. В итоге работа компьютера идет быстрее.

Главная характеристика кэш-памяти — объем. Чем он больше, тем, соответственно, вместительнее данный модуль с точки зрения расположения тех самых инструкций и алгоритмов, задействуемых процессором. Тем больше вероятность, что микросхема будет всякий раз находить среди них нужные для себя и работать быстрее. Кэш-память на современных процессорах делится чаще всего на три уровня. Первый работает на базе наиболее быстрых и высокотехнологичных микросхем, остальные — медленнее. Объем кэш-памяти первого уровня на современных процессорах составляет порядка 128-256 КБ, второго — 1-8 МБ, третьего — может превышать 20 МБ.

Энергопотребление

Другой значимый параметр микросхемы — энергопотребление. Питание центрального процессора может предполагать значительное расходование электроэнергии. Современные модели микросхем потребляют порядка 40-50 Вт. В некоторых случаях данный параметр имеет экономическое значение — например, если речь идет об оснащении больших предприятий несколькими сотнями или тысячами компьютеров. Но не менее значимым фактором энергопотребление выступает в части адаптации процессоров к использованию на мобильных устройствах — ноутбуках, планшетах, смартфонах. Чем соответствующий показатель меньше, тем дольше будет автономная работа девайса.

www.syl.ru

Функции процессора.

Минимальный набор операций, обеспечивающий решение любых задач называется алгоритмически полным. Алгоритмической полнотой обладаю многие системы, например система Поста:y:=0 ,y:=1,y?=0, Булева система:y:=a,y:=ab,y:=ab,y?=0

11.03.01 Лекция 5 Функции процессора

Функции процессора ограничиваются реализацией следующих процедур:

  1. Выборка команды из ОП и операндов, указанных в адресной части команды.

  2. Выполнение операции, заданной кодом операции, что сводится к выполнению: арифметических, логических операций, передачи команд на выполнение средствами ввода/вывода и формировании адреса следующей команды.

Обычно количество операций, реализуемых процессором, составляет от нескольких десятков, до 600-800 операций.

Программно реализуемые функции.

Используется четырехуровневая модель реализации функции:

4 Интерфейс ПП

3 Интерфейс ИС

2 Интерфейс ОС

1 ПАИ

ИПП

ИС

ОС

Аппаратура

ОС– это набор программных средств, обеспечивающих управление устройствами, программами, памятью, программами и так далее.

Обычно ОС реализует от нескольких сотен до нескольких тысяч макрокоманд, каждая их которых реализуется последовательностью команд. Управление командами сводится к поиску программы во внешней памяти, выделением области ОП для размещения программы, передачи сегментов программы в ОП и так далее, в том числе и инициирование программы. Тело ОС хранится во внешней памяти и только наиболее часто используемые программы, (макрооперации) размещаются в ОП. Инструментальная системаобслуживает программирование задач и управляет данными независимо от аппаратурных средств. Всостав инструментальной системывключены трансляторы, системы управления БД, табличная обработка данных. Инструментальная система (ИС) позволяет на основе программирования создавать любую программу, обеспечивающую функции любого должностного лица. Прикладные программы реализуют конечное назначение компьютера, то есть определяют состав и форму представления исходных данных и результатов.

2.Характеристики и классификация компьютера.

    1. Характеристики компьютера.

Основными являются следующие характеристики:

  1. ПАИ и интерфейсы прикладных программ.

  2. Быстродействие и производительность.

  3. Емкость памяти.

  4. Надежность.

  5. Стоимость.

Быстродействие определяется количеством операций, выполняемых за секунду процессором, памятью и так далее.

Производительность компьютеров оценивается временем решения совокупности задач..

Быстродействие и производительность – это характеристики вычислительной мощности компьютера.

Емкость память должна быть достаточна для размещения всей совокупности программ и данных. Память строится по многоуровневой схеме и емкость ОП наиболее существенно влияет на производительность компьютера.

Стоимость компьютера приблизительно составляет 10% от стоимости компьютера.

Надежность компьютера – это характеристика способности выполнять функции в течении заданного времени.

Работоспособность компьютера нарушается из – за отказа оборудования и программных средств.

Стоимость компьютера – это затраты на его приобретение, включающие в себя стоимость аппаратуры, программных средств, затраты на установку компьютера и передачу его в эксплуатацию.

Особенно важной является полная стоимость ПСВ, включающая в себя не только капиталовложения, но и эксплуатационные расходы (они обычно в 3-5 раз превышают капиталовложения).

    1. ПАИ и интерфейсы прикладных программ.

Возможности аппаратурных средств всегда ограничены и их характеризует ПАИ.

Совокупность средств аппаратуры компьютера, влияющих на разработку программ называют архитектурой компьютера.

ОС строится на основе программных средств, обслуживающих периферийные устройства, память и управляющих задач.

ОС интерфейс прикладных программ, то есть системных операторов, используется для выполнения операций.

Все операторы…..

Производительность компьютерного оборудования существенно зависит от интерфейса ПП. Наиболее широко используется интерфейс API(applicationprograminter) – устанавливает интерфейс, который используется для доступа любых ПП к функциям ОС. Один из наиболее известных:API–POSIX, определяющий международный стандарт дляUNIXинтерфейсов.

Интерфейс включает в себя около 1200 макроопераций, реализуемых UNIXОС.

API– независимый от технологии машинный интерфейс, чаще всего называемый интерфейсомMI. Этот интерфейс включает в себя все макрооперации операционной системы компьютераAS/400 (1987 год) работающего по двух ступенчатой системе построения программ:

  1. Генерация шаблонов программ.

  2. Генераций кодов программ.

Компьютер генерирует сначала из исходного текста шаблон программы, который применим при любом ПАИ. Потом транслятор по шаблону генерирует двоичный код программ, ориентированный на ПАИ, при этом и шаблон и двоичный код программы хранятся в памяти одновременно, как и другие программные объекты, называемые отлаживаемой программой. Если изменяется аппаратура, то создается специальный транслятор, который преобразует шаблон программы в новый двоичный код. Основной недостаток прикладных интерфейсов – это отсутствие гибкости.

    1. Быстродействие и производительность компьютера.

Оценка быстродействия и производительности компьютера сложная задача из-за отсутствия общепринятой меры вычислительной работы. Для оценки производительности используется система следующих показателей:

  1. Номинальное быстродействие.

  2. Комплексная производительность.

  3. Системная производительность.

  4. Индекс производительности.

Номинальное быстродействие (НБ) – это количество операций, выполняемых устройством за секунду. Если компьютер состоит из Nустройств, то НБ характеризуется:V=(V1…..VN)

V1…VN- среднее НБ устройств 1…N, входящих в состав компьютера.

Среднее быстродействие устройства вычисляется следующим образом: если устройство выполняет операции 1,…,Gза среднее время1 …G, то быстродействие:Vi=1/(pii) оп/с, гдеp1 …pG- вероятность появления операции в смеси операций, выполняемых устройством.

Процессор обычно используется для коммерческих и научно – технических расчетов (обработка целых чисел и ЧПЗ), поэтому быстродействие процессора принято характеризовать двумя значениями:

  1. Количество миллионов коротких операций, выполняемых за секунду (целочисленная арифметика). MIPS

  2. количество миллионов операций над ЧПЗ, выполняемых за секунду. MFLOPS

НБ процессора, точнее системы «процессор - ОП» зависит от следующих факторов:

  1. От быстродействия элементарной базы «процессор - ОП», то есть от времени переключения сигналов в интегральных схемах, то есть от минимального размера полупроводниковых элементов.

  2. Структурная организация процессора направлена на выполнение обработки потока команд над данными (конвейерная обработка).

  3. Архитектура компьютера, в первую очередь подсистемы команд процессора.

НБ характеризует только потенциальные возможности устройств, но не системную производительность.

Комплексная производительность.

Все устройства связаны с общими для них ресурсами. В этом случае, чтобы оценить влияние структурной организации компьютера на его производительность используются оценки комплексной производительности. Если комплексная производительность какого то устройства равна V0, тоViV0 гдеVi-НБ

Пример зависимости быстродействия процессора V1от интенсивности ввода/вывода2:

V1

2 слов/с

2’2”2

Таким образом комплексная производительность всегда меньше значений, определяемых номинальным быстродействием устройства.

Системная производительность.

СП –это количество вычислительной работы, выполняемой компьютером, работающим под управлением ОС за единицу времени.

СП принято определять для каждого конкретного применения (научно – технического, коммерческого и так далее) или на стандартных наборах задач и оценивать временем выполнения набора задач.

studfiles.net

Какие функции выполняет ядро процессора?

Компьютер состоит из множества различных деталей, каждая из которых выполняет свои определённые функции. Все вместе они обеспечивают стабильную работоспособность всей системы в целом. Многие говорят, что самым важным элементом является процессор, однако и он достаточно сложен. Говоря о его архитектуре, мы часто рассматриваем ядро процессора, так как именно оно определяет возможности.

Почему стоит рассматривать процессор, как один из важнейших элементов, особенно при сборке? Потому что во многом именно он определяет качественные и функциональные возможности компьютера как такового. Непосвящённому пользователю достаточно сложно разобраться во всех аспектах, даже после прочтения соответствующей литературы, а форумы и вовсе не дают однозначного ответа, потому что они заполнены спорами относительно того, какой бренд лучше - AMD или Intel. И порой в этих спорах ядро процессора и его функции и возможности не рассматриваются вовсе.

Если какие-то моменты, связанные непосредственно с эксплуатацией того или иного процессора, ещё можно узнать на форумах, то конкретные характеристики необходимо рассматривать самому. Производители всегда предоставляют такую информацию в подробностях, если, конечно, она скажет о чём-нибудь пользователю.

Характеристики процессора

Сейчас на рынке главенствуют многоядерные процессоры. Соответственно, ядро процессора, а точнее их совокупность, определяют в первую очередь производительность. Основной характеристикой считается частота работы процессора, т.е. его быстродействие и оперативность.

Продвинутые пользователи знают о возможностях разгона процессора, т.е. повышения его частоты. Практически у любой модели можно увеличить производительность, однако, не у всех она будет эффективной. Другими словами, если взять два процессора, работающие примерно на одинаковой частоте, то у них может быть разный разгонный потенциал. Следовательно, перспективы и возможности отличаются.

Как правило, основным ограничением становится температура ядра процессора, потому что при повышении частоты увеличивается нагрузка, он начинает нагреваться, а это уже губительно сказывается на его состоянии. При длительной работе в таком режиме ядро процессора начнёт разрушаться и выходить из строя, в конце концов, чип просто сгорит.

Впрочем, одной ориентироваться на одну только частоту неправильно - кэш и частота шины также оказывают важное влияние на возможности и итоговые характеристики. Процессор постоянно обрабатывает различную информацию, однако она поступает не напрямую, а хранится некоторое время в кэше - промежуточном звене между оперативной памятью и процессором. От скорости работы кэша очень часто зависит быстродействие системы. Частота шины определяет скорость обмена данными между процессором и материнской платой.

Количество ядер

Пресловутое количество ядер сейчас активно обсуждается, потому что одни говорят, что чем больше, тем лучше, другие наоборот утверждают, что лучше не торопиться с выбором процессора с большим количеством ядер.

Наиболее распространённым вариантов являются двуядерные модели. Такие чипы уже начали внедрять даже в мобильные аппараты, так что удивить кого-то сложно. Возникает вопрос, стоит ли переходить на четырёхядерные и более процессоры? Сейчас ситуация повторяется как и с внедрением первых многоядерных моделей - прирост производительности на деле оказывается не таким большим. Пользователи не знают, как отключить ядро процессора или заставить то или иное приложение использовать все возможности, потому что далеко не все приложения оптимизированы под такие модели. При этом прирост в цене достаточно существенный, но иногда стоит выбрать более простую, но и быструю и производительную модель, нежели гнаться за количеством ядер.

fb.ru

Какие функции выполняет центральный процессор компьютера?

1
  • Авто и мото
    • Автоспорт
    • Автострахование
    • Автомобили
    • Сервис, Обслуживание, Тюнинг
    • Сервис, уход и ремонт
    • Выбор автомобиля, мотоцикла
    • ГИБДД, Обучение, Права
    • Оформление авто-мото сделок
    • Прочие Авто-темы
  • ДОСУГ И РАЗВЛЕЧЕНИЯ
    • Искусство и развлечения
    • Концерты, Выставки, Спектакли
    • Кино, Театр
    • Живопись, Графика
    • Прочие искусства
    • Новости и общество
    • Светская жизнь и Шоубизнес
    • Политика
    • Общество
    • Общество, Политика, СМИ
    • Комнатные растения
    • Досуг, Развлечения
    • Игры без компьютера
    • Магия
    • Мистика, Эзотерика
    • Гадания
    • Сны
    • Гороскопы
    • Прочие предсказания
    • Прочие развлечения
    • Обработка видеозаписей
    • Обработка и печать фото
    • Прочее фото-видео
    • Фотография, Видеосъемка
    • Хобби
    • Юмор
  • Другое
    • Военная служба
    • Золотой фонд
    • Клубы, Дискотеки
    • Недвижимость, Ипотека
    • Прочее непознанное
    • Религия, Вера
    • Советы, Идеи
    • Идеи для подарков
    • товары и услуги
    • Прочие промтовары
    • Прочие услуги
    • Без рубрики
    • Бизнес
    • Финансы
  • здоровье и медицина
    • Здоровье
    • Беременность, Роды
    • Болезни, Лекарства
    • Врачи, Клиники, Страхование
    • Детское здоровье
    • Здоровый образ жизни
    • Красота и Здоровье
  • Eда и кулинария
    • Первые блюда
    • Вторые блюда
    • Готовим в …
    • Готовим детям
    • Десерты, Сладости, Выпечка
    • Закуски и Салаты
    • Консервирование
    • На скорую руку
    • Напитки
    • Покупка и выбор продуктов
    • Прочее кулинарное
    • Торжество, Праздник
  • Знакомства, любовь, отношения
    • Дружба
    • Знакомства
    • Любовь
    • Отношения
    • Прочие взаимоотношения
    • Прочие социальные темы
    • Расставания
    • Свадьба, Венчание, Брак
  • Компьютеры и интернет
    • Компьютеры
    • Веб-дизайн
    • Железо
    • Интернет
    • Реклама
    • Закуски и Салаты
    • Прочие проекты
    • Компьютеры, Связь
    • Билайн
    • Мобильная связь
    • Мобильные устройства
    • Покупки в Интернете
    • Программное обеспечение
    • Java
    • Готовим в …
    • Готовим детям
    • Десерты, Сладости, Выпечка
    • Закуски и Салаты
    • Консервирование
  • образование
    • Домашние задания
    • Школы
    • Архитектура, Скульптура
    • бизнес и финансы
    • Макроэкономика
    • Бухгалтерия, Аудит, Налоги
    • ВУЗы, Колледжи
    • Образование за рубежом
    • Гуманитарные науки
    • Естественные науки
    • Литература
    • Публикации и написание статей
    • Психология
    • Философия, непознанное
    • Философия
    • Лингвистика
    • Дополнительное образование
    • Самосовершенствование
    • Музыка
    • наука и техника
    • Технологии
    • Выбор, покупка аппаратуры
    • Техника
    • Прочее образование
    • Наука, Техника, Языки
    • Административное право
    • Уголовное право
    • Гражданское право
    • Финансовое право
    • Жилищное право
    • Конституционное право
    • Право социального обеспечения
    • Трудовое право
    • Прочие юридические вопросы
  • путешествия и туризм
    • Самостоятельный отдых
    • Путешествия
    • Вокруг света
    • ПМЖ, Недвижимость
    • Прочее о городах и странах
    • Дикая природа
    • Карты, Транспорт, GPS
    • Климат, Погода, Часовые пояса
    • Рестораны, Кафе, Бары
    • Отдых за рубежом
    • Охота и Рыбалка
    • Документы
    • Прочее туристическое
  • Работа и карьера
    • Обстановка на

woprosi.ru

Для чего предназначен процессор: описание, характеристики и применение

Пользователи компьютеров очень часто путают между собой такие два понятия как системный блок и процессор, называя первый – вторым. Это в корне неправильно. Сам процессор – это устройство, предназначенное для управления работой вычислительной машины по заранее заданной последовательности команд, которая называется программой, и для выполнения операций по обработке информации.

Кроме того, есть и другие устройства с похожим названием. Например, текстовый процессор предназначен для создания документов и их форматирования. К такому типу программ относится Microsoft Word.

для чего предназначен процессор

Что это такое?

А само устройство, являющееся мозгом компьютера, еще называют микропроцессором. Для чего предназначен процессор в компьютере? Это такая интегральная схема, которая управляет работой персонального компьютера. Создается такая схема на одном или нескольких кристаллах, сделанных из полупроводника при помощи очень сложной технологии, относящейся к сфере микроэлектроники.

Все то что может делать компьютер с информацией, определено системой команд самого процессора. Они входят в инструкции по управлению работой компьютера. Одна отдельно взятая команда – это одна операция, выполняемая вычислительной машиной. Например, выполнение арифметических действий, логических операций, определение последовательности команд для выполнения, передача информации из памяти одного устройства в память другого.

Таков краткий ответ на вопрос, для чего предназначен процессор.

Устройство процессор это устройство предназначенное для

Так как процессор – это устройство, предназначенное для обработки данных, он состоит из следующих элементов:

  • арифметико-логическое устройство;
  • устройство управления;
  • регистры памяти.

Устройство управления, как понятно из его названия, по заданной программе управляет всеми узлами компьютера. Оно извлекает каждую последующую команду из регистра, узнает из нее, какую операцию нужно выполнить, и в какой последовательности. Это своеобразный дирижер, управляющий целым оркестром. А музыкальной композицией служит как раз программа.

Составные части

текстовый процессор предназначен для

Арифметико-логическое устройство – это инструмент для вычислений, которое, следуя программам, выполняет операции, связанные с арифметикой и логикой.

Регистры являются внутренней памятью центрального процессора. Один регистр можно сравнить с черновиком, с помощью которого устройство производит расчеты и хранит их результаты. Каждый из регистров имеет свое собственно назначение.

Допустим, процессор должен сложить два каких-то числа. Для выполнения этой операции в первую очередь ему нужно взять из памяти первое слагаемое, потом - второе, сложить эти два значения, а сумму вновь переслать в оперативную память компьютера.

Ясно, что оба слагаемых и результат должны процессором где-то храниться. Для этой цели предназначена ячейка, входящая непосредственно в сам процессор, называемая аккумулятором или сумматором. Так как процессор предназначен для данных и их обработки, он должен понимать, из какой ячейки памяти нужно брать следующую команду. Это он узнает из другой своей внутренней ячейки, которая называется счетчиком. Команда, которая извлекается из оперативной памяти, размещается в еще одной ячейке – регистре команд. Из него результат выполненной команды можно перенести уже в оперативную память.

процессор предназначен для данных

Виды регистров

Регистры бывают нескольких видов. Они отличаются друг от друга видом операций, которые выполняют. Самые важные регистры обладают собственными названиями:

  • Счетчик команд – это регистр, содержащий адрес следующей команды, которую нужно выполнить. Он служит для автоматического выбора программы из набора связанных ячеек памяти.
  • Сумматор – принимает участие при выполнении всех операций.
  • Регистр команд. В нем хранится команда на тот период времени, который нужен для выполнения.

Шина данных

Процессор компьютера предназначен для работы с информацией. Все его устройства постоянно ею между собой обмениваются. А делают они это при помощи элемента, который называется внутренняя шина данных. В современных центральных процессорах есть и другие части, но необходимым минимумом является вышеописанный набор устройств.

Машинный цикл и его схема

Данный процесс, как правило, состоит из следующих шагов:

  • Выбирается команда из ячейки, адрес которой сохранен в регистре-счетчике. Его содержимое при этом увеличивается на значение длины этой команды.
  • Далее она отправляется в устройство управления, попадая в его регистр команд.
  • Адресное поле, принадлежащее команде, расшифровывается устройством управления.
  • Последнее дает сигнал, и данные считываются из оперативной памяти, попадая уже в арифметико-логическое устройство.
  • Устройством управления расшифровывается код выполняемой операции и в арифметико-логическое устройство подается сигнал о выполнении этого действия над данными, которые в таком случае называются операндами.
  • Результат выполнения операции может сохраниться в самом центральном процессоре или же передается в память, в случае, когда имеется адрес, по которому должен находиться результат.
  • Все вышеперечисленные шаги выполняются до тех пор, пока не будет дан стоповый сигнал.

процессор компьютера предназначен

Характеристики

Итак, для чего предназначен процессор, ясно: для выполнения команд из заданной программы. Для этого он обладает следующими характеристиками:

  1. Тактовая частота. Центральный процессор тесно связан с генератором частоты тактов, которым вырабатываются импульсы. Они синхронизируют между собой работу всех элементов компьютера. Равняется эта характеристика числу тактов за одну секунду. Один такт – это отрезок времени, находящийся между первым импульсом и вторым. Измеряется тактовая частота в мегагерцах.
  2. Разрядность. Это максимальное значение, отвечающее за число разрядов двоичного кода, образованного и передаваемого процессором в одно и то же время. Эта характеристика определена разрядностью его регистров.
  3. Адресное пространство. К нему относится тот диапазон адресов, к которым обращается процессор, применяя адресный код.

Благодаря вышесказанному можно четко определиться, для чего предназначен процессор. Это мозг компьютера, без которого он совершенно ни к чему не пригоден. Разве только для украшения интерьера.

fb.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики