Как это работает? | Квантовый компьютер . Компьютер квантовый как работает


Как это работает? | Квантовый компьютер — Рамблер/новости

Квантовый компьютер — это вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 80-х годов прошлого века. С тех пор была проделана колоссальная работа по созданию квантового компьютера. Однако полноценный универсальный квантовый компьютер все еще является гипотетическим устройством, возможность разработки которого связана с серьёзным развитием квантовой теории. К настоящему моменту были созданы единичные экспериментальные системы с алгоритмом небольшой сложности. Как же работает квантовый компьютер — об этом в сегодняшнем выпуске!

Основное отличие квантового компьютера от классического заключается в представлении информации. В обычных компьютерах, работающих на основе транзисторов и кремниевых чипов, для обработки информации используется бинарный код. Бит, как известно, имеет два базовых состояния — ноль и единицу, и может находиться только в одном из них. Что же касается квантового компьютера, то его работа основывается на принципе суперпозиции, а вместо битов используются квантовые биты, именуемые кубитами. У кубита также имеется два основных состояния: ноль и единица. Однако благодаря суперпозиции кубит может принимать значения, полученные путем их комбинирования, и находиться во всех этих состояниях одновременно. В этом заключается параллельность квантовых вычислений, то есть отсутствие необходимости перебирать все возможные варианты состояний системы. Кроме того, для описания точного состояния системы квантовому компьютеру не нужны огромные вычислительные мощности и объемы оперативной памяти, так как для расчета системы из 100 частиц достаточно лишь 100 кубитов, а не триллион триллионов бит.

Также стоит отметить, что изменение состояния определенного кубита в квантовом компьютере ведет к изменению состояния других частиц, что является еще одним отличием от обычного компьютера. И этим изменением можно управлять. Процесс работы квантового компьютера был предложен британским физиком-теоретиком Дэвидом Дойчем в 1995 году, когда он создал цепочку, способную выполнять любые вычисления на квантовом уровне. Согласно его схеме, для начала берется набор кубитов и записываются их начальные параметры. Затем выполняются необходимые преобразования с использованием логических операций и записывается полученное значение, которое и является результатом, выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования совершают логические блоки.

По словам ученых, квантовые компьютеры будут в миллионы раз мощнее нынешних. Уже сейчас описаны самые разнообразные алгоритмы работы квантового компьютера, и даже разрабатываются специальные языки программирования. По прогнозу исследователей Cisco Systems, полноценный рабочий квантовый компьютер появится к середине следующего десятилетия. Лидером в этой области является Япония: более 70% всех исследований приходится на эту страну.

Читайте также

news.rambler.ru

как он устроен — Оффтоп на DTF

Количество информации в мире возрастает ежегодно на 30%. Только за последние пять лет человечеством было произведено больше данных, чем за всю предшествующую историю. Появляются системы Интернета вещей, в которых каждый датчик отправляет и получает огромное количество данных ежесекундно, и, по прогнозам аналитиков, количество подключенных к Интернету вещей скоро превысит количество пользователей-людей. Эти колоссальные объемы информации необходимо где-то хранить и как-то обрабатывать.

Сейчас уже существуют суперкомпьютеры мощностью более 50 петафлопс (1 петафлопс =1 тыс. трлн операций в секунду). Однако рано или поздно мы упремся в физический предел возможной мощности процессоров. Конечно, суперкомпьютеры все еще смогут расти в размерах, но это не решение проблемы, поскольку и размеры когда-нибудь достигнут своих пределов. По мнению ученых, скоро закон Мура перестанет исполняться и человечеству понадобятся новые, значительно более мощные устройства и технологии обработки данных. Поэтому уже сейчас крупные ИТ-компании работают над созданием совершенно нового революционного типа компьютеров, мощности которых будут в сотни раз превосходить те, что мы имеем на сегодняшний день. Это — квантовый компьютер. Эксперты обещают, что благодаря ему, возможно, удастся найти лекарство от рака, моментально находить преступников, анализируя записи с камер, моделировать молекулы ДНК. Сейчас даже представить сложно, какие еще задачи он сможет решать.

Microsoft старается быть на передовой развития этой области, изучая ее уже на протяжении двадцати лет, ведь тот, кто первым создаст квантовый компьютер, получит неоспоримое конкурентное преимущество. Причем компания работает не только над созданием «железа», но также недавно представила язык программирования, который смогут использовать разработчики. На самом деле очень немногие люди могут похвастаться тем, что понимают принципы работы этого революционного устройства, для большинства из нас это нечто из разряда фантастики. Так что же он собой представляет?

Одной из важнейших частей компьютера, от которой напрямую зависит его мощность, является процессор, который, в свою очередь, состоит из огромного числа транзисторов. Транзисторы — это простейшие части системы, они чем-то похожи на переключатели и могут находиться только в двух положениях: либо «включен», либо «выключен». Именно из комбинаций этих положений складывается двоичный код, состоящий из нулей и единиц, на котором базируются все языки программирования.

Принцип работы транзисторов

Соответственно, чем мощнее компьютер, тем больше транзисторов необходимо для его работы. Производители постоянно уменьшают их размеры, стараясь уместить как можно большее число в процессоры. Например, в новом Xbox One X их миллиарды.

Миллионы транзисторов, работающих в каждом процессоре

Сейчас размер одного транзистора составляет 10 миллимикрон, то есть одну стотысячную миллиметра. Но однажды будет достигнут физический предел, меньше которого транзистор просто невозможно сделать. Для того чтобы избежать кризиса в развитии ИТ, ученые работают над созданием компьютера, который будет работать по совершенно другому принципу, — квантового. Транзисторы, из которых будет состоять квантовый компьютер, могут находиться одновременно в двух положениях: «включен» и «выключен» и, соответственно, сразу быть и единицей, и нулем, это называется «суперпозиция».

Суперпозиция, принцип работы квантового транзистора

Если мы возьмем 4 стандартных транзистора (бита), то они, работая вместе, могут создать 16 различных комбинаций единиц и нулей. По одной за раз.

Производительность стандартных транзисторов (битов)

Если же мы рассматриваем 4 квантовых транзистора (кубита), то они могут быть всеми 16 комбинациями одновременно. Это огромная экономия места и времени!

Производительность квантовых транзисторов (кубитов)

Но, конечно же, создать кубиты очень и очень сложно. Ученым приходится иметь дело с субатомными частицами, которые подчиняются законам квантовой механики, разрабатывать совершенно новый подход к программированию и языку.

Существуют различные типы кубитов. Эксперты Microsoft, например, работают над созданием топологических кубитов. Они невероятно хрупки и легко разрушаются от малейших звуковых волн или теплового излучения. Для стабильной работы им необходимо постоянно находиться при температуре –273°C. Однако у них есть и ряд преимуществ перед другими типами: информация, хранящаяся в них, практически не подвержена ошибкам, и, соответственно, квантовый компьютер, созданный на основе топологических кубитов, будет являться сверхнадежной системой.

Квантовый компьютер Microsoft состоит из трех основных уровней: первый уровень — собственно, квантовый компьютер, содержащий кубиты и постоянно находящийся при температуре, близкой к абсолютному нулю; следующий уровень — криогенный компьютер — это тоже совершенно новый тип компьютера, который управляет квантовым и работает при температуре –268°C; последний уровень — компьютер, за которым уже может работать человек, и управляющий всей системой. Подобные компьютеры будут в 100–300 раз превосходить по мощности самые продвинутые суперкомпьютеры, существующие сейчас.

Сегодня мир как никогда близко подошел к изобретению настоящего квантового компьютера: есть понимание принципа его работы, прототипы. И в тот момент, когда мощности обычных компьютеров для обработки всей существующей на Земле информации хватать перестанет, появится квантовый компьютер, знаменующий собой совсем новую эру цифровых технологий.

Источник:

https://naked-science.ru/article/column/kvantovyy-kompyuter-kak-ustroen

dtf.ru

Квантовый компьютер. Как это работает?

Квантовый компьютер — это вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 80-х годов прошлого века. С тех пор была проделана колоссальная работа по созданию квантового компьютера. Однако полноценный универсальный квантовый компьютер все еще является гипотетическим устройством, возможность разработки которого связана с серьёзным развитием квантовой теории. К настоящему моменту были созданы единичные экспериментальные системы с алгоритмом небольшой сложности.

Основное отличие квантового компьютера от классического заключается в представлении информации. В обычных компьютерах, работающих на основе транзисторов и кремниевых чипов, для обработки информации используется бинарный код. Бит, как известно, имеет два базовых состояния — ноль и единицу, и может находиться только в одном из них. Что же касается квантового компьютера, то его работа основывается на принципе суперпозиции, а вместо битов используются квантовые биты, именуемые кубитами. У кубита также имеется два основных состояния: ноль и единица. Однако благодаря суперпозиции кубит может принимать значения, полученные путем их комбинирования, и находиться во всех этих состояниях одновременно. В этом заключается параллельность квантовых вычислений, то есть отсутствие необходимости перебирать все возможные варианты состояний системы. Кроме того, для описания точного состояния системы квантовому компьютеру не нужны огромные вычислительные мощности и объемы оперативной памяти, так как для расчета системы из 100 частиц достаточно лишь 100 кубитов, а не триллион триллионов бит.

Также стоит отметить, что изменение состояния определенного кубита в квантовом компьютере ведет к изменению состояния других частиц, что является еще одним отличием от обычного компьютера. И этим изменением можно управлять. Процесс работы квантового компьютера был предложен британским физиком-теоретиком Дэвидом Дойчем в 1995 году, когда он создал цепочку, способную выполнять любые вычисления на квантовом уровне. Согласно его схеме, для начала берется набор кубитов и записываются их начальные параметры. Затем выполняются необходимые преобразования с использованием логических операций и записывается полученное значение, которое и является результатом, выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования совершают логические блоки.

По словам ученых, квантовые компьютеры будут в миллионы раз мощнее нынешних. Уже сейчас описаны самые разнообразные алгоритмы работы квантового компьютера, и даже разрабатываются специальные языки программирования. По прогнозу исследователей Cisco Systems, полноценный рабочий квантовый компьютер появится к середине следующего десятилетия. Лидером в этой области является Япония: более 70% всех исследований приходится на эту страну.

Ноя 30, 2017Геннадий

zhizninauka.info

Лента.co

   Читать оригинал публикации на naked-science.ru   

Специалисты предсказывают, что вскоре на смену обычным компьютерам придут квантовые, по мощности превосходящие современные вычислительные системы в несколько раз. Но что же из себя представляют квантовые компьютеры?  

По прогнозам экспертов уже совсем скоро, лет через 10, микросхемы в компьютерах достигнут атомных измерений. Представляется логичным, что грядет эпоха квантовых компьютеров, с помощью которых скорость вычислительных систем может повыситься на несколько порядков.

Идея квантовых компьютеров сравнительно нова: в 1981 году Пол Бениофф впервые теоретически описал принципы работы квантовой машины Тьюринга.

В 1930-х Алан Тьюринг впервые описал теоретическое устройство, представляющее собой бесконечную ленту, разделенную на маленькие ячейки. Каждая ячейка может содержать в себе символ 1 или 0, или же остается пустой.

Управляющее устройство перемещается по ленте, считывая символы и записывая новые. Из набора таких символов составляется программа, которую машина должна выполнить.

В квантовой машине Тьюринга, предложенной Бениоффом, принципы работы остаются теми же, с той разницей, что как лента, так и управляющее устройство находятся в квантовом состоянии.

Это значит, что символы на ленте могут быть не только 0 и 1, но и суперпозициями обоих чисел, т. е. 0 и 1 одновременно. Таким образом, если классическая машина Тьюринга способна одновременно исполнять лишь одно вычисление, то квантовая занимается несколькими вычислениями параллельно.

Сегодняшние компьютеры работают по тому же принципу, что и нормальные машины Тьюринга – с битами, которые находятся в одном из двух состояний: 0 или 1. У квантовых компьютеров таких ограничений нет: информация в них зашифрована в квантовых битах (кубитах), которые могут содержать суперпозиции обоих состояний.

Работа над частью квантового компьютера D-Wave  

©D-Wave Systems

Физическими системами, реализующими кубиты, могут быть атомы, ионы, фотоны или электроны, имеющие два квантовых состояния. Фактически, если сделать элементарные частицы носителями информации, с помощью них можно построить компьютерную память и процессоры нового поколения.

Благодаря суперпозиции кубитов квантовые компьютеры изначально рассчитаны на выполнение параллельных вычислений. Этот параллелизм, по мнению физика Дэвида Дойча, позволяет квантовым компьютерам выполнять одновременно миллионы вычислений, в то время, как современные процессоры работают лишь с одним единственным.

30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (триллион операций в секунду). Мощность современных настольных компьютеров измеряется всего лишь гигафлопсах (миллиард операций в секунду).

Другое важное квантовомеханическое явление, которое может быть задействовано в квантовых компьютерах, называется «запутанностью». Основная проблема считывания информации из  квантовых частиц заключается в том, что в процессе измерения они могут изменить свое состояние, причем совершенно непредсказуемым образом.

Фактически, если считать информацию с кубита, находящегося в состоянии суперпозиции, получим лишь 0 или 1, но никогда не оба числа одновременно. А это значит, что вместо квантового, мы будем иметь дело с нормальным классическим компьютером.

Чтобы решить эту проблему, ученые должны использовать такие измерения, которые не разрушают квантовую систему. Квантовая запутанность предоставляет потенциальное решение.

В квантовой физике, если приложить внешнюю силу к двум атомам, их можно «запутать» вместе таким образом, что один из атомов будет обладать свойствами другого. Это, в свою очередь, приведет к тому, что, например,  измеряя спин одного атома, его «запутанный» близнец сразу примет противоположный спин.

Такое свойство квантовых частиц позволяет физикам узнать значение кубита, не измеряя его непосредственно.

В один прекрасный день квантовые компьютеры могут заменить кремниевые чипы, подобно тому, как транзисторы пришли на смену вакуумным трубкам. Однако современные технологии пока еще не позволяют строить полноценные квантовые компьютеры.

Сборка процессора квантового компьютера D-Wave Two

Тем не менее, с каждым годом исследователи объявляют о новых достижениях в области квантовых технологий, и надежда, что когда-нибудь квантовые компьютеры смогут превзойти обычные, продолжает крепнуть.

1998

Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации.

2000

В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости.

2001

Демонстрация вычисления алгоритма Шора специалистами из IBM и Стэнфордского университета на 7-кубитном квантовом компьютере.

2005

В институте квантовой оптики и квантовой информации при Иннсбрукском университете впервые удалось создать кубайт (сочетание 8 кубитов) с помощью ионных ловушек.

2007

Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку.

С 2011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.

lenta.co

Как это работает? | Квантовый компьютер

Как это работает? | Квантовый компьютер

Квантовый компьютер — это вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 80-х годов прошлого века. С тех пор была проделана колоссальная работа по созданию квантового компьютера. Однако полноценный универсальный квантовый компьютер все еще является гипотетическим устройством, возможность разработки которого связана с серьёзным развитием квантовой теории. К настоящему моменту были созданы единичные экспериментальные системы с алгоритмом небольшой сложности. Как же работает квантовый компьютер — об этом в сегодняшнем выпуске!

Основное отличие квантового компьютера от классического заключается в представлении информации. В обычных компьютерах, работающих на основе транзисторов и кремниевых чипов, для обработки информации используется бинарный код. Бит, как известно, имеет два базовых состояния — ноль и единицу, и может находиться только в одном из них. Что же касается квантового компьютера, то его работа основывается на принципе суперпозиции, а вместо битов используются квантовые биты, именуемые кубитами. У кубита также имеется два основных состояния: ноль и единица. Однако благодаря суперпозиции кубит может принимать значения, полученные путем их комбинирования, и находиться во всех этих состояниях одновременно. В этом заключается параллельность квантовых вычислений, то есть отсутствие необходимости перебирать все возможные варианты состояний системы. Кроме того, для описания точного состояния системы квантовому компьютеру не нужны огромные вычислительные мощности и объемы оперативной памяти, так как для расчета системы из 100 частиц достаточно лишь 100 кубитов, а не триллион триллионов бит.

Как это работает? | Квантовый компьютер

Также стоит отметить, что изменение состояния определенного кубита в квантовом компьютере ведет к изменению состояния других частиц, что является еще одним отличием от обычного компьютера. И этим изменением можно управлять. Процесс работы квантового компьютера был предложен британским физиком-теоретиком Дэвидом Дойчем в 1995 году, когда он создал цепочку, способную выполнять любые вычисления на квантовом уровне. Согласно его схеме, для начала берется набор кубитов и записываются их начальные параметры. Затем выполняются необходимые преобразования с использованием логических операций и записывается полученное значение, которое и является результатом, выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования совершают логические блоки.

Как это работает? | Квантовый компьютер

По словам ученых, квантовые компьютеры будут в миллионы раз мощнее нынешних. Уже сейчас описаны самые разнообразные алгоритмы работы квантового компьютера, и даже разрабатываются специальные языки программирования. По прогнозу исследователей Cisco Systems, полноценный рабочий квантовый компьютер появится к середине следующего десятилетия. Лидером в этой области является Япония: более 70% всех исследований приходится на эту страну.

Источник

oshibka-reshenie.ru

Принцип работы квантового компьютера: spetsialny

Вы все привыкли к нашим компьютерам: утром читаем новости со смартфона, днем работаем с ноутбуком, а вечером смотрим фильмы на планшете. Все эти девайсы объединяет одно — кремниевый процессор, состоящий из миллиардов транзисторов. Принцип работы таких транзисторов достаточно прост — в зависимости от подведенного напряжения мы получаем на выходе другое напряжение, которое интерпретируется или как логический 0, или как логическая 1. Для того, чтобы проводить операции деления, есть битовый сдвиг — если у нас, к примеру, было число 1101, то после сдвига на 1 бит влево будет 01101, а если теперь сдвинуть его на 1 бит вправо — будет 01110. И основная проблема кроется в том, что для все того же деления может понадобиться несколько десятков таких операций. Да, с учетом того, что транзисторов миллиарды, такая операция занимает наносекунды, но вот если операций много — мы теряем на эти вычисления время.

Принцип работы квантовых компьютеров

Квантовый компьютер же предлагает совершенно другой способ вычислений. Начнем с определения:

Квантовый компьютер — вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных.

Понятнее явно не стало. Квантовая суперпозиция говорит нам о том, что система с какой-то долей вероятности существует во всех возможных для нее состояниях (при этом сумма всех вероятностей, разумеется, равна 100% или 1). Разберем это на примере. Информация в квантовых компьютерах хранится в кубитах — если обычные биты могут иметь состояние 0 или 1, то кубит может иметь состояние 0, 1, и 0 и 1 одновременно. Поэтому если мы имеем 3 кубита, к примеру 110, то это выражение в битах равносильно 000, 001, 010, 011, 100, 101, 110, 111.

Что это нам дает? Да все! К примеру, у нас есть циферный пароль из 4 символов. Как будет его взламывать обычный процессор? Простым перебором от 0000 до 9999. 9999 в двоичной системе имеет вид 10011100001111, то есть для его записи нам нужно 14 бит. Поэтому если мы имеем квантовый ПК с 14 кубитами — мы уже знаем пароль: ведь одно из возможных состояний такой системы и есть пароль! В результате все задачи, которые сейчас сутками считают даже суперкомпьютеры, на [Spoiler (click to open)]квантовых системах будут решаться моментально: нужно найти вещество с определенными свойствами? Не проблема, сделайте систему с таким же количеством кубитов, сколько у вас требований к веществу — и ответ уже будет у вас в кармане. Нужно создать ИИ (искусственный интеллект? Проще некуда: пока обычный ПК будет перебирать все комбинации, квантовый компьютер сработает молниеносно, выбрав лучший ответ.

Казалось бы, все здорово, но есть одна важная проблема — как нам узнать результат вычислений? С обычным ПК все просто — мы можем взять и считать его, напрямую подключившись к процессору: логические 0 и 1 там совершенно определенно интерпретируются как отсутствие и наличие заряда. Но вот с кубитами такое не пройдет — ведь в каждый момент времени он находится в произвольном состоянии. И тут нам на помощь приходит квантовая запутанность. Ее суть заключается в том, что можно получить пару частиц, которые связаны друг с другом (говоря научным языком — если, к примеру, проекция спина одной запутанной частицы отрицательна, то другой обязательно будет положительной). Как это выглядит на пальцах? Допустим, у нас есть две коробки, в которых лежит по бумажке. Мы разносим коробки на любое расстояние, открываем одну из них и видим, что бумажка в ней в горизонтальную полоску. Это автоматически означает, что другая бумажка будет в вертикальную полоску. Но вот проблема в том, что как только мы узнали состояние одной бумажки (или частицы), квантовая система рушится — неопределенность исчезает, кубиты превращаются в обычный биты.

Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц (где находятся их вторые «половинки» мы знаем). Мы проводим вычисления, и после этого «открываем коробку с бумажкой» — узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений. Так что для новых вычислений нужно снова создавать кубиты — просто «закрыть коробку с бумажкой» не получится — мы ведь уже знаем, что нарисовано на бумажке.

Возникает вопрос — раз квантовый компьютер может моментально подбирать любые пароли — как защитить информацию? Неужели с приходом таких устройств исчезнет конфиденциальность? Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным.

Домашний квантовый компьютер

Ну и последний вопрос — раз квантовые компьютеры такие классные, мощные и не взламываемые — почему мы ими не пользуемся? Проблема банальна — невозможность реализовать квантовую систему в обычных домашних условиях. Для того, чтобы кубит мог существовать в состоянии суперпозиции бесконечно долго, нужны крайне специфические условия: это полный вакуум (отсутствие других частиц), температура, максимально близкая к нулю по Кельвину (для сверхпроводимости), и полное отсутствие электромагнитного излучения (для отсутствия влияния на квантовую систему). Согласитесь, создать такие условия дома мягко говоря трудновато, а ведь малейшее отклонение приведет к тому, что состояние суперпозиции исчезнет, и результаты вычислений будут неверными. Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. В итоге самый максимум на данный день — это квантовые компьютеры с парой десятков кубитов.

Однако, есть квантовые компьютеры от D-Wave, которые имеют 1000 кубитов, но, вообще говоря, настоящими квантовыми компьютерами они не являются, ибо не используют принципы квантовой запутанности, поэтому они не могут работать по классическим квантовым алгоритмам:

Но все же такие устройства оказываются ощутимо (в тысячи раз) мощнее обычных ПК, что можно считать прорывом. Однако заменят пользовательские устройства они ох как не скоро — для начала нам нужно или научиться создавать условия для работы таких устройств дома, или же наоборот, «заставить» работать такие устройства в привычных нам условиях. Шаги во втором направлении уже были сделаны — в 2013 году был создан первый двухкубитный квантовый компьютер на алмазе с примесями, работающий при комнатной температуре. Однако увы — это всего лишь опытный образец, да и 2 кубита — маловато для вычислений. Так что ждать квантовых ПК еще очень и очень долго.

Источник

spetsialny.livejournal.com

Как работает квантовый компьютер | Игровые новости на Irongamers.ru

Главная страница » Игровые новости » Как работает квантовый компьютер

Обычные компьютеры вычисляют с использованием нулей и единиц. Квантовые компьютеры — только с вероятностью нулей и единиц. Именно поэтому они способны параллельно обрабатывать огромные объемы данных. Два квантово-механических явления, которые позволяют делать это, называются суперпозиция и запутанность.

Суперпозиция

Ион (кубит) может одновременно принимать определенные процентные доли двух значений «0» и «1» — например, 30% и 70%. При считывании результата в этом случае кубит с 70-процентной вероятностью имеет значение «1». Преимущество: квантовые компьютеры представляют одновременно несколько бинарных значений, хотя лишь с известной вероятностью.

Как работает квантовый компьютер

Запутанность

Несколько кубитов можно как бы «запереть» в общем для всех состоянии. В примере с тремя кубитами возможно любое сочетание всех возможных комбинаций от «000» до «111», которое также представляется лишь с известной вероятностью. Таким образом, как правило, не может быть чистого состояния «100» — оно имеет только более высокую вероятность, чем все остальные. Преимущество: N кубитов могут одновременно обрабатывать 2N значений, следовательно, при 10 кубитах их будет уже 1024.

Как работает квантовый компьютер

Управление

Чтобы вызывать квантовые явления суперпозиции и запутанности и удерживать их как можно дольше, систему необходимо оградить от внешних влияний. Для вычислений ион (кубит) управляется с помощью направленного лазерного импульса, который изменяет состояние всех запутанных кубитов.

Как работает квантовый компьютер

Расскажи друзьям:

irongamers.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики