Просто о сложном: что такое квантовый компьютер и зачем он нужен. Квантовый компьютер принцип работы


Квантовый компьютер. Принцип работы — журнал "Рутвет"

Содержание:

  1. Квантовый компьютер: принцип работы, из чего он сделан?
  2. Квантовый компьютер. Что это такое простыми словами?
  3. Самый мощный квантовый компьютер в мире
  4. Квантовый компьютер D-Wave

Такие машины просто необходимы сейчас в любой сфере: медицине, авиации, исследованиях космоса. В настоящее время разработкой ЭВМ на основе квантовой физики и вычислительных технологий. Основы работы такого вычислительного аппарата пока не доступны обычным пользователям и принимаются как нечто непостижимое. Ведь далеко не все знакомы с фотонными свойствами элементарных частиц и атомов. Чтобы хотя бы немного понять, как работает этот компьютер, нужно знать и понимать элементарные принципы квантовой механики. По большей мере эту когерентную ЭВМ разрабатывают для NASA.

Квантовый компьютер: принцип работы, из чего он сделан?

Обычная машина выполняет операции, используя классические биты, которые могут принимать значения 0 или 1. С другой стороны фотонный вычислительный аппарат использует когерентные биты или кубиты. Они могут принимать значения 1 и 0 одновременно. Именно это отдает такой вычислительной технике их превосходящую вычислительную мощь. Существует несколько типов исчислительных объектов, которые могут быть использованы в роли кубитов. 

  1. Фотон. 
  2. Ядро атома.  
  3. Электрон. 

У всех электронов есть магнитное поле, как правило, они похожи на маленькие магниты и это их свойство называется спином  (spin). Если их поместить в магнитное поле, они подстроятся под него так же, как это делает компасная стрелка. Это положение самой низкой энергии, так что мы можем назвать его нулем или нижним спином. Но можно перенаправить электрон в состояние «один» или в верхний спин. Но для этого необходима энергия. Если достать стекло из компаса, можно будет перенаправить стрелку в другом направлении, но для этого необходимо приложить силу. 

Есть две принадлежности: нижний и верхний спин, которые соответствуют классическим 1 и 0 соответственно. Но дело в том, что фотонные объекты могут находиться в двух положениях одновременно. Когда измеряется спин, он будет либо верхним, либо нижним. Но до измерения электрон будет существовать в, так называемой, квантовой суперпозиции, в которой эти коэффициенты указывают относительную вероятность нахождение электрона в том или ином состоянии. 

Довольно сложно представить, как это дает когерентным аппаратам их невероятную исчислительную мощь, не рассматривая взаимодействие двух кубитов. Теперь существует четыре возможных состояния этих электронов. В типичном примере двух бит нужно только два бита информации. Так что два qubit содержит в себе четыре вида информации. А значит, надо знать четыре числа, чтобы знать положение системы. А если взять три спина, то получится восемь разных положений, а в типичном варианте нужны будут три бита. Получается, что количество информации, содержащееся в N qubits, равно 2N типовых бит. Показательная функция говорит, что если, например, будет 300 кубитов, то придется создать сумасшедшее-сложные суперпозиции, где все 300 qubit будут связаны между собой. Тогда получается 2300 классических бит, а это равно количеству частиц во всей вселенной. Отсюда следует, что требуется создать логическую последовательность, которая даст возможность получить такой результат исчислений, который можно будет измерить. То есть состоящий только из стандартных принадлежностей. Получается, что когерентная машина это не замена обычным. Они быстрее только в вычислениях, где есть возможность использовать все доступные суперпозиции. А если Вы хотите просто посмотреть качественное видео, пообщаться в интернете или написать статью для работы, фотонная ЭВМ не даст Вам никаких приоритетов.

В этом видео описан процесс работы квантового компьютера. 

Квантовый компьютер. Что это такое простыми словами?

Если говорить простыми словами, то когерентная система рассчитана не на скорость исчисления, а на необходимое количество для достижения результатов, которое будет происходить за минимальную единицу времени. 

Работа классической ЭВМ основана на обработке информации с помощью кремниевых чипов и транзисторов. Они используют бинарный код, который в свою очередь состоит из единиц и нулей. Когерентная же машина работает на основании суперпозиции. Вместо битов применяются qubit. Это позволяет не только быстро, но и максимально точно вести расчеты. 

Самый мощный квантовый компьютер в мире

Какой же будет самая мощная фотонная исчислительная система? К примеру, если фотонная вычислительная машина имеет тридцати кубитную систему, то его мощность составит 10 триллионов вычислительных операций в секунду. В настоящее время самый мощный двух битный компьютер считает один миллиард операций в секунду.

Большая группа ученых из разных стран разработала план, согласно которому размеры фотонного аппарата будут близки к габаритам футбольного поля. Он и будет самым мощным в мире. Это будет некая конструкция из модулей, которая размещается в вакууме. Внутренность каждого модуля это ионизированные электрические поля. Именно с их помощью будут образовываться некие части схемы, которые будут выполнять простые логические действия. Образец такой фотонной исчислительной технике разрабатывается в Университете Сассекса в Англии. Ориентировочная стоимость на данный момент более 130 миллионов долларов. 

Квантовый компьютер D-Wave

Десять лет назад компания D-Wave представила первый в мире когерентный компьютер, который состоит из 16 кубитов. Каждый qubit в свою очередь состоит из кристалла ниобия, который помещен в катушку индуктивности. Электрический ток, который подается на катушку, образовывает магнитное поле. Далее оно изменяет принадлежность, в котором находится qubit. С помощью такой машины можно с легкостью выяснить, как синтетические лекарственные средства взаимодействуют с белками крови.Или появится возможность определить такое заболевание как рак на более раннем этапе. 

Как выбрать роутер: популярные модели и категории выбора.

Как сделать скриншот экрана: сохраняем данные на ноутбуке.

В этом видео преведены рассуждения на тему "Для чего нужен квантовый компьютер миру". Не забывайте оставлять свои замечания, вопросы и просто комментарии к статье. 

www.rutvet.ru

Квантовый компьютер - что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть  мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться  этой темой при просмотре  фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт  конфидециальной информации (компромата)  о деятельности спецслужб США,  хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше  лет. Квантовый же  компьютер  по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро  ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей.  Так вот, все пародоксы Энштейна, описывающие законы нашего мира   —  просто  невинный лепет пятилетнего ребенка по сравнению с тем,  что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально.  Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество —  это куча очень маленьких частиц — электронов?

Наши с Вами компьютеры работают по принципу или «Да» или «Нет».  Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе  «Нет», то это «Ноль». Вариант  значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте  ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду  появляется и исчезает  такой  вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора  и  вычислений Ваш компьютер обрабатывает  Ваши запросы в Яндексе, ищет нужные  до тех пор, пока не решит задачу и  путем исключения  не  докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка  — это тоже нули и единицы.

Представьте теперь  себе друзья на секунду модель нашей солнечной системы.  В центре Солнце, вокруг него  летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду  она уже  улетит на тридцать километров  дальше.

Так вот, модель атома то же планетарная, там атом  тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно.   И назвали  они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими  явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно  оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных  состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может  ОДНОВРЕМЕННО принимать все  возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы  для  математических вычислений были придуманы еще  математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от  квантового взлома и расшифровки данных.

А что сейчас ? А вот так выглядит квантовый процессор под микроскопом  на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как  некая «петля»,  в которой происходит нечто  для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер  51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается  большой прорыв в науке, когда  эти системы заработают. Вот фото человека, который  представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу  компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, — отмечает сооснователь Российского квантового центра Сергей Белоусов. — Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью — развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, — справедливо считает Джон Мартинес. — Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита — это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень  интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только  современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно  появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют  много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только  бы не подвел  человеков  свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат.  Пишите, если статья была интересной. Заходите чаще. До свидания!

Автор публикации

не в сети 8 часов

admin

0 Комментарии: 32Публикации: 149Регистрация: 04-09-2015

fast-wolker.ru

что такое квантовый компьютер и зачем он нужен — T&P

Мир на пороге очередной квантовой революции. Первый квантовый компьютер будет мгновенно решать задачи, на которые самое мощное современное устройство сейчас тратит годы. Какие это задачи? Кому выгодно, а кому угрожает массовое использование квантовых алгоритмов? Что такое суперпозиция кубитов, как люди научились находить оптимальное решение, не перебирая триллионы вариантов? Отвечаем на эти вопросы в рамках рубрики «Просто о сложном».

Евгений Глушков

Студент шестого курса МФТИ, инженер лаборатории искусственных квантовых систем, создатель и редактор ресурса Make It Quantum.

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями — квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки — квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Квантовый процессор на пяти кубитах от&nbs...

Квантовый процессор на пяти кубитах от IBM

Дальше — больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер — тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности — от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников — материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы — они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин — компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо — привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты — нули и единички, — то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно — кубиты). Сам кубит — вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу — уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств — лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью — разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

  • Первый российский кубит под электронным микроск...

    Первый российский кубит под электронным микроскопом

  • Квантовый процессор на девяти кубитах от&n...

    Квантовый процессор на девяти кубитах от Google

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете — пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело — теоретически придумать кубит, и совсем другое — воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита — нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи — все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Сотрудники лаборатории искусственных квантовых ...

Сотрудники лаборатории искусственных квантовых систем

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер — все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера — вопрос стратегической важности.

Не пропустите лекцию:

theoryandpractice.ru

Квантовый процессор: описание, принцип работы

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

процессор квантовый

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти это следствие самой идеи квантового компьютера – использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается задача: это птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере задачи решает не математик, вместо него работают законы физики.

квантовый процессор

Как это функционирует?

Основные строительные блоки нашего мира – квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально большое количество, поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

квантовый процессор принцип работы

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор – это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

квантовый процессор это

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель – достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик Ричард Фейнман предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов – суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

квантовый процессор описание

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

квантовый процессор россия

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки интерференционной картины таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые – отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

квантовый процессор intel

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это – альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

fb.ru

Принцип работы квантового компьютера

Наука не стоит на месте и, казалось бы, то, что считалось вчера мистикой сегодня неоспоримая реальность. Так и сейчас, мифы о параллельных мирах могут стать обычным фактом в дальнейшем. Считается, что к этому утверждению помогут прийти исследования в области создания квантового компьютера. Лидерство занимает Япония, более 70% всех исследований приходится на эту страну. Сущность этого открытия больше понятна тем, кто так или иначе связан с физикой. Но большинство из нас оканчивало среднюю школу, где в учебнике 11 класса раскрываются некоторые вопросы квантовой физики.

На грани возможности понимания

С чего все начиналось

Напомним, что начало положили два основных открытия, за которые их авторы удостоились Нобелевской премии. В 1918 году Макс Планк открыл квант, а Альберт Эйнштейн в 1921 году фотон. Идея создания квантового компьютера зародилась в 1980 году, когда было доказано об истинности квантовой теории. А идеи начали воплощаться в практику только в 1998 году. Массовые, и при этом достаточно результативные работы, проводятся только в последние 10 лет.

Основные принципы понятны, но с каждым шагом вперед возникает все больше проблем, разрешение которых занимает достаточно много времени, хотя этой проблемой занимается очень много лабораторий во всем мире. Требования к такому компьютеру очень большие, так как точность измерений должна быть очень высокой и нужно свести к минимуму количество внешних воздействий, каждое из которых будет искажать работу квантовой системы.

ЗАЧЕМ НУЖЕН КВАНТОВЫЙ КОМПЬЮТЕР?

На чем основана работа квантового компьютера

Все, в большей или меньшей степени, имеют понятие, как работает обычный компьютер. Смысл его заключается в использование двоичного кодирования, где наличие определенного значения напряжения принимается за 1, а отсутствие 0. Количество информации, выраженное 0 или 1, считается битом. Работа же квантового компьютера связана с понятием спина. Для кого физика ограничивается школьными знаниями, могут утверждать о существовании трех элементарных частицах и о наличии у них простых характеристик, как масса и заряд.

Но ученые-физики постоянно пополняют класс элементарных частиц и их характеристик, одним из которых является спин. И определенное направление спина частицы принимается за 1, а обратное ему за 0. Это схоже с устройством транзистора. Основной элемент будет уже называться квантовым битом или кубитом. В качестве него могут выступать фотоны, атомы, ионы, ядра атомов.

Главным условием здесь является наличие двух квантовых состояний. Изменение состояния определенного бита в обычном компьютере не ведет к изменению других, а вот в квантовом компьютере изменение одной введет к изменению состояния других частиц. Этим изменением можно управлять, и представьте, что таких частиц сотни.

Представьте только, во сколько раз возрастет производительность такой машины. Но создание целостного новейшего компьютера — это только гипотеза, предстоит большая работа физиков в той области квантовой механики, которая называется многочастичной. Первый мини квантовый компьютер состоял из 16 кубитов. В последнее время выпущены компьютеры с использованием 512 кубитов, но и они уже используются для повышения быстроты выполнения сложнейших операций вычисления. Quipper – язык разработанный специально для таких машин.

Как Работает Квантовый Компьютер?

Последовательность выполняемых операций

В создании компьютера нового поколения выделяют четыре направления, которые отличаются тем, что выступает в роли логических кубитов:

  1. направление спинов частиц, составляющих основу атома;
  2. наличие или отсутствие куперовской пары в установленном месте пространства;
  3. в каком состоянии находится внешний электрон;
  4. различные состояния фотона.

А теперь рассмотрим схему, по которой работает компьютер. Для начала берется какой-нибудь набор кубитов и записываются их начальные параметры. Выполняются преобразования с использованием логических операций, записывается полученное значение, являющееся результатом выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования составляют логические блоки. Такой процессор был предложен Д. Дойчем, который в 1995 году смог создать цепочку способную выполнять любые вычисления на квантовом уровне. Но такая система дает небольшие погрешности, которые можно немного уменьшить, увеличив количество операций задействованных в алгоритме.

Обработка супер огромных массивов данных

Как Работает Квантовый Компьютер?

Чего достигли

Пока разработаны только два типа квантовых компьютеров, но наука не стоит на месте. Работа обеих машин строится на квантовых явлениях:

  1. связано со сверхпроводимостью. При его нарушениях наблюдается квантование магнитного потока;
  2. основано на таком свойстве волновых функций как когерентность. Быстрота вычисления таких компьютеров увеличивается вдвое по сравнению с количеством кубитов.

Второй тип из рассмотренных считается приоритетным в области создания квантовых компьютеров.

Достижения различных стран.

Если вкратце, то достижения последних 10 лет значительные. Можно отметить созданный в Америке двухкубитный компьютер с программным обеспечением. Им же оказалось под силу выпуск двухкубитного компьютера с кристаллом алмаза. В роли кубитов применялось направление спина частиц азота, его составляющих: ядра и электрона. Чтобы обеспечить весомую защиту была разработана очень сложная система позволяющая давать результат с 95% точностью.

ICQT 2017. Джон Мартинис, Google: Квантовый компьютер: жизнь после закона Мура

Для чего все это нужно

Уже говорилось о создании квантовых компьютеров. Эти компьютеры не являются результатом того к чему стремились, но своего покупателя они нашли. Американская компания Lockheed Martin, специализирующаяся в области обороны заплатила 10 млн. долларов. Их приобретение способно находить ошибки сложнейшей программе, установленной на истребителе F-35. Google с помощью своего приобретения хочет запустить программы для машинного обучения.

Будущее

В разработке квантового компьютера очень заинтересованы крупные компании и государство. Оно приведет к новым открытиям в области разработки криптографического алгоритма. Будет это на руку государству или хакерам решит время. Но работа по созданию и распознаванию криптоключей будет выполняться моментально. Решатся много проблем, связанных с банковской картой.

Сообщения будут передаваться с огромной скоростью и не будет проблем связаться с любой точкой на земном шаре, а может даже за ее пределами.

Такой компьютер поможет сделать рывок в биологии, особенно в расшифровке генетического кода. Это приведет к разрешению многих медицинских проблем.

И, конечно же, приоткроет дверь в страну мистических тайн, параллельных миров.

Нас ждут сильнейшие потрясения. Все к чему мы привыкли, является только частью того мира, которому уже дали название Квантовой реальности. Выйти за рамки материального мира помогут физические процессы, которые и составляют принцип работы квантового компьютера.

www.13min.ru

Как это работает? | Квантовый компьютер

Квантовый компьютер — это вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 80-х годов прошлого века. С тех пор была проделана колоссальная работа по созданию квантового компьютера. Однако полноценный универсальный квантовый компьютер все еще является гипотетическим устройством, возможность разработки которого связана с серьёзным развитием квантовой теории. К настоящему моменту были созданы единичные экспериментальные системы с алгоритмом небольшой сложности. Как же работает квантовый компьютер — об этом в сегодняшнем выпуске!

Основное отличие квантового компьютера от классического заключается в представлении информации. В обычных компьютерах, работающих на основе транзисторов и кремниевых чипов, для обработки информации используется бинарный код. Бит, как известно, имеет два базовых состояния — ноль и единицу, и может находиться только в одном из них. Что же касается квантового компьютера, то его работа основывается на принципе суперпозиции, а вместо битов используются квантовые биты, именуемые кубитами. У кубита также имеется два основных состояния: ноль и единица. Однако благодаря суперпозиции кубит может принимать значения, полученные путем их комбинирования, и находиться во всех этих состояниях одновременно. В этом заключается параллельность квантовых вычислений, то есть отсутствие необходимости перебирать все возможные варианты состояний системы. Кроме того, для описания точного состояния системы квантовому компьютеру не нужны огромные вычислительные мощности и объемы оперативной памяти, так как для расчета системы из 100 частиц достаточно лишь 100 кубитов, а не триллион триллионов бит.

Также стоит отметить, что изменение состояния определенного кубита в квантовом компьютере ведет к изменению состояния других частиц, что является еще одним отличием от обычного компьютера. И этим изменением можно управлять. Процесс работы квантового компьютера был предложен британским физиком-теоретиком Дэвидом Дойчем в 1995 году, когда он создал цепочку, способную выполнять любые вычисления на квантовом уровне. Согласно его схеме, для начала берется набор кубитов и записываются их начальные параметры. Затем выполняются необходимые преобразования с использованием логических операций и записывается полученное значение, которое и является результатом, выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования совершают логические блоки.

По словам ученых, квантовые компьютеры будут в миллионы раз мощнее нынешних. Уже сейчас описаны самые разнообразные алгоритмы работы квантового компьютера, и даже разрабатываются специальные языки программирования. По прогнозу исследователей Cisco Systems, полноценный рабочий квантовый компьютер появится к середине следующего десятилетия. Лидером в этой области является Япония: более 70% всех исследований приходится на эту страну.

hi-news.ru

Квантовый компьютер принцип работы, квантовые алгоритмы — Electronic society

Время от времени мы видим шквал новостей о квантовых вычислениях. Этой теме уделяется очень много внимания: одна компания заявила, что у нее есть алгоритм шифрования, который вам скоро понадобится, так как квантовые компьютеры делают современные алгоритмы шифрования бесполезными.

У человека любознательного такие заявления вызывают вопросы. Что такое квантовые вычисления (рисунок 1)? Это реально? Если да, то как это работает? И как это связано с криптографией? Затем появляются более личные вопросы. Могут ли квантовые вычисления изменить мои методы проектирования? Должен ли я изучить этот материал?

Даже в визуализации художников квантовые вычислительные элементы не похожи ни на что из цифрового аппаратного мира.

Рисунок 1 – Визуализация квантовых вычислительных элементов

Оказывается, это не слишком простые вопросы для изучения. Соответствующая литература в основном относится к одному из двух жанров. Первый предназначен для широкой читательской аудитории и рассматривает квантовую механику как чертовщину: темная, возможно, опасная, и абсолютно не понятная. После чтения такой литературы довольно сложно сделать какие-либо выводы.

Второй жанр совершенно другой, но столь же «полезный», написанный экспертами, для того, чтобы произвести впечатление на других экспертов. Эта жанр характеризуется употреблением таких терминов как машина Тьюринга, имя Ричарда Фейнмана, Гильбертово пространство и преобразование Адамара, все вышеупомянутое и еще примерно 75 слов, за которыми следует путаница уравнений с незнакомой и необъяснимой терминологией. Конечно же, вы все хорошо помните, что означает |0>!

Три параллельные вселенные

Одной из причин, почему эта тема настолько сложна, является то, что квантовые вычисления охватывают три дисциплины с очень разной терминологией и интересами. Все началось с физиков-теоретиков. Еще в 1980 году физик Пол Бениофф (Paul Benioff) из Национальной Аргоннской лаборатории описал, как некоторые квантовомеханические эффекты могут быть использованы для реализации машины Тьюринга. Два года спустя известный физик Ричард Фейнман также поднял вопрос о компьютере с использованием квантового поведения.

Но идея была подхвачена совершенно другой группой: компьютерными специалистами и математиками. Взяв из физики основные идеи квантового бита (кубита) и обратимых унитарных преобразований (которые они называли квантовыми вентилями или кувентилями), компьютерные специалисты изучили, какие вычисления могли бы быть выполнены, если бы существовали идеальные кубиты и квантовые вентили. Они обнаружили случаи, когда такие предполагаемые компьютеры могли быть намного быстрее, чем обычные цифровые компьютеры.

Этот результат побудил физиков-экспериментаторов – третью группу – начать попытки по созданию физических устройств, которые могли бы быть приближенны к идеальным кубитам и квантовым вентилям. Это были долгие, ресурсоемкие исследования, которое до сих пор не доказали, что реально работающий квантовый компьютер физически возможен. Но такая возможность чрезвычайно обнадеживает.

Некоторые пояснения

Итак, что это за воображаемый компьютер, который нас интересует? Давайте сначала проясним некоторые недоразумения. Квантовый компьютер не является обычным компьютером, имитирующим квантовомеханические явления. Также это и не обычный цифровой компьютер, построенный из некоторых транзисторов (эпохи окончания закона Мура), настолько крошечных, что они хранят или переключают отдельные кванты энергии.

Вместо этого, квантовые компьютеры – это машины, основанные на уникальном поведении, описываемом квантовой механикой, и совершенно отличающимся от поведения классических систем. Одно из таких отличий – способность частицы или группы частиц в некотором отношении находиться только в двух дискретных квантовых базовых состояниях – назовем их 0 и 1. Мы обойдемся здесь без забавных скобок (обозначений принятых в квантовой теории – добавлено переводчиком) Примерами такого рода могут быть спин электрона, поляризация фотона или заряд квантовой точки.

Во-вторых, квантовые вычисления зависят от свойства суперпозиции – контринтуитивной способности частицы находиться в некоторой  комбинации обоих базовых состояниях 0 и 1 одновременно, до тех пор, пока не произведено измерение. Как только вы измеряете такое состояние, оно превращается в 0 или 1, и вся остальная информация исчезает. Квантовая механика правильно описывает такое комбинированное состояние как сумму двух базовых состояний, каждое из которых умножается на некоторый комплексный коэффициент. Полная величина этих коэффициентов всегда равна 1. Такое состояние можно представить как единичный вектор, начинающийся в начале координат и заканчивающийся где-то на сфере,  называемой сферой Блоха, которая приведена на рисунке 2. Ключевым моментом здесь является то, что квадрат (модуля – добавлено переводчиком) комплексного коэффициента для  базового состояния 0 представляет вероятность того, что в результате измерения кубит будет обнаружен  в  базовом состоянии 0, аналогично для  базового состояния 1. И когда вы производите измерение, вы всегда получите  или точно состояние 0, или точно состояние 1.

Рисунок 2 – Сфера Блоха – один из способов визуализации квантовой суперпозиции в кубите

Это (свойство суперпозиции – добавлено переводчиком) важно, потому что позволяет кубиту быть в обоих состояниях 0 и 1 одновременно. Следовательно, регистр, состоящий из n кубит, может одновременно «содержать» все возможные двоичные числа n бит длиной. Это позволяет квантовому компьютеру выполнять одну операцию не только с одним n-разрядным целым числом, но и со всеми возможными n-разрядными целыми числами сразу – очень существенный параллелизм по мере увеличения n.

В-третьих, квантовые вычисления зависят от способности квантового вентиля изменять эти коэффициенты и, следовательно, вероятность измерения какого-либо определенного числа – предсказуемым образом. Если вы начинаете с состояния, в котором все коэффициенты во всех кубитах равны, а затем измерите все кубиты в регистре, вы равновероятно найдете любую строку бит между строкой из одних нулей и строкой из одних единиц, включительно. Но запустив это начальное состояние через тщательно подобранную последовательность квантовых вентилей, квантовый компьютер может изменить эти коэффициенты так, что состояние, которое вы наиболее вероятно измерите на выходе, будет представлять собой результат некоторого вычисления, например, весьма вероятно, что вы измерите биты числа, которое является точным квадратом.

Компьютер на бумаге

Но какое отношение все это имеет к реальным вычислениям? Чтобы ответить на этот вопрос, мы должны перенести наше внимание с физиков-теоретиков на компьютерных специалистов и математиков. Чтобы получить практические результаты, мы должны иметь возможность перевести регистр кубитов в определенную суперпозицию состояний. Нам нужны квантовые вентили, возможно, провода и какие-то устройства вывода результатов.

Все это легко для компьютерных специалистов – они просто могут предположить, что эти идеи уже воплощены в реальной жизни. Однако им придется пойти на уступки квантовой механике. Чтобы не нарушить законы квантовой физики, компьютерные специалисты должны потребовать, чтобы квантовые вентили были обратимы – вы можете поместить результат на выход и получить правильные входные значения на входе. И они настаивают на том, чтобы квантовые вентили были унитарными преобразованиями. В соответствии с матричной алгеброй, это означает, что, когда вы пропускаете состояние кубита через квантовый вентиль, состояние, которое вы получите, даст при измерении либо 0, либо 1, а сумма вероятностей из квадратов (модулей – добавлено переводчиком) этих коэффициентов останется равной единице.

Обратите внимание, что эти квантовые вентили, даже в теории, очень не похожи на обычные логические элементы. Например, большинство булевых функций не обратимы. Невозможно вывести входные данные с логического элемента И-НЕ, если выход не будет равен 0. И, конечно, логические элементы работают только с единицами и нулями (состояниями 1 и 0), в то время как квантовые вентили работают, вращая вектор внутри сферы Блоха. На самом деле между ними не существует ничего общего кроме названия.

Компьютерные специалисты выяснили, что для эмуляции машины Тьюринга достаточно очень небольшого набора квантовых вентилей – всего лишь набор одновходовых квантовых вентилей и один двухвходовой квантовый вентиль. Наиболее часто используемым примером двухвходового квантового вентиля является «контролируемое НЕ» (Сontrolled NOT – CNOT). Эта обратимая функция либо переворачивает векторное состояние кубита, либо оставляет его неизменным, в зависимости от состояния второго кубита. Это скорее похоже на квантовую аналогию с «исключающим ИЛИ».

Возможные преимущества

Мы все еще не ответили на вопрос, как все это можно использовать. Ответ заключается в том, что если вы соедините подходящим образом достаточное количество квантовых вентилей вместе, и если вы можете приготовить входные кубиты представляющие все возможные числа в вашей области входных данных, тогда на выходе массива квантовых вентилей вы, теоретически, можете измерить биты, которые представляют значения некоторой полезной функции.

Приведем пример. В 1994 году математик Питер Шор, в Bell Labs, разработал алгоритм факторизации (разложения на простые сомножители – добавлено переводчиком) очень больших чисел с использованием квантовых подпрограмм. Такая факторизация является жизненно важной проблемой в прикладной математике, потому что не существует аналитического решения: единственный способ – метод проб и ошибок, и вы можете всего лишь сделать алгоритм быстрее, выбрав более искусным образом соответствующие пробные числа. Соответственно, когда вы делаете входное число очень большим, количество проб и ошибок становится огромным. Не случайно это является основой алгоритмов криптографии, подобных RSA. RSA и шифры на основе эллиптических кривых трудно взломать, особенно потому, что так трудно факторизовать огромные числа.

Алгоритм Шора объединил некоторые традиционные вычисления с двумя квантовыми функциями, которые непосредственно ускоряют алгоритм в части метода проб и ошибок, по сути, перебирая все возможные числа в одно и то же время, демонстрация работы алгоритма приведена на рисунке 3. Одна из этих квантовых функций выполняет модульное возведение в степень, а другая осуществляет квантовую версию быстрого преобразования Фурье (БПФ). По причинам, которые мог бы полюбить только математик, если бы мы ввели набор из n кубитов, подготовленных так, что вместе они представляют все возможные двоичные числа до длины n, то в квантовых вентилях различные состояния в суперпозиции взаимно компенсируют друг друга – подобно интерференции двух когерентных световых лучей – и мы остаемся с определенной структурой состояний в выходном регистре.

Рисунок 3 – Алгоритм Шора зависит от квантовых подпрограмм для модульного возведения в степень и операций БПФ. (рисунок предоставлен Tyson Williams)

Эта процедура не дает простой множитель – это лишь промежуточный шаг, который позволяет вычислить возможный простой множитель. Такое расчет выполняется путем измерения кубитов, – отметим, что здесь мы находимся в области возможности, но не точности, измерения наиболее вероятного состояния каждого кубита – а затем, чтобы убедиться в правильности результата, необходимо произвести множество обычных вычислений на обычном процессоре (CPU).

Все это может показаться безнадежно сложным и неосуществимым. Но способность квантового возведения в степень и квантового БПФ работать одновременно со всеми возможными степенями числа 2, чтобы найти наибольший простой множитель, делает алгоритм Шора быстрее, чем обычные вычисления для больших чисел, даже при использовании довольно медленных теоретических квантовых подпрограмм.

Алгоритм Шора являет собой яркий образец квантовых вычислений, потому что он одновременно не похож на обычные вычисления и потенциально чрезвычайно важен. Но он не одинок. Национальный институт стандартов и технологий США (NIST) поддерживает большую библиотеку алгоритмов квантовых вычислений в своем Зоопарке Квантовых Алгоритмов, по адресу math.nist.gov/quantum/zoo/.

Являются ли эти алгоритмы просто математическими упражнениями? Пока еще слишком рано это утверждать. Но на практике исследователи действительно создали лабораторные квантовые калькуляторы с несколькими рабочими кубитами. Эти машины успешно разложили на простые множители число 15 (впервые это было сделано в IBM в 2001 году), вполне ожидаемо получив в результате 3 и 5, а текущий мировой рекорд составляет число 21 (сделано объединенной командой из нескольких институтов в 2012 году). Так что для небольших чисел идея работает. Пригодность такого подхода для больших чисел можно будет проверить только в будущем на машинах с большим количеством кубитов. И это переносит вопрос в практическую плоскость.

Путь к реализации

Для создания работоспособных квантовых вычислительных устройств необходимо пройти ряд этапов реализации. Мы должны построить рабочие кубиты – не только пять, но тысячи. Мы должны организовать структуру из  квантовых вентилей и эквивалент проводов – если только мы не сможем заставить вентили действовать непосредственно на состояние во входном квантовом регистре. Все это сложные задачи, и график их решения непредсказуем.

К сожалению, проблемы связаны не столько с новизной проблем, сколько с законами квантовой механики и классической физики. Возможно, самая главная и наименее знакомая из них, называется декогеренцией. Роль кубит состоит в том, чтобы удерживать физический объект – например, ион, пакет фотонов или электрон — на месте, чтобы мы могли воздействовать на него и в конечном итоге измерять квантованную величину, такую как заряд или спин. Чтобы эта величина вела себя квантовым, а не классическим образом, мы должны иметь возможность ограничить ее состояние суперпозицией двух чистых базовых состояний, которые мы называли 0 и 1.

Но природа квантовых систем такова, что связывает их с вещами вокруг них, значительно увеличивая количество возможных базовых состояний. Физики называют такое размытие чистых состояний декогеренцией. Аналогией может быть когерентный лазерный луч в световоде, рассеивающийся на неоднородностях материала и размывающейся от суперпозиции двух мод в полностью некогерентный свет. Задачей создания физического кубита является как можно дольше предотвращать декогеренцию.

На деле это означает, что даже один кубит это сложный лабораторный инструмент, возможно, с использованием лазеров или высокочастотных радиопередатчиков, точно контролируемые электрические и магнитные поля, точные размеры, специальные материалы и, возможно, криогенное охлаждение. Его использование, по сути, является сложной экспериментальной процедурой. Даже при всех этих усилиях, сегодня это «как можно дольше» измеряется десятками микросекунд. Таким образом, у вас очень мало времени для выполнения квантовых вычислений, до того, как ваши кубиты потеряют свою согласованность. То есть, до того как информация исчезнет.

Сегодня эти ограничения исключают возможность больших квантовых регистров или проведения вычислений, для которых требуется более нескольких микросекунд. Тем не менее, в настоящее время в микроэлектронике ведутся исследования по созданию гораздо более обширных массивов кубитов и квантовых вентилей.

Однако сама эта работа несколько бессвязна, потому что пока нет определенности в отношении того, какое физическое явление использовать для хранения квантовых состояний. Существуют конструкции кубит, которые квантуют поляризацию фотонов, заряд электронов, захваченных квантовыми точками, чистый спин сверхохлажденных ионов в ловушке, заряд в устройстве, называемом трансмоном, и некоторые другие подходы.

Тип кубита, который вы выберете, естественно определит реализацию квантовых вентилей. Например, вы можете использовать взаимодействие радиоимпульсов с внутренними спинами в молекулах в ловушке или взаимодействие расщепителей пучков с фотонными модами в волноводах. Очевидно, что существо дела находится  глубоко в области экспериментальной физики. И, как уже упоминалось, реализация кубитов или квантовых вентилей требует использования большого количества различного оборудования, от цифровой логики до лазеров или радиопередатчиков, антенн и до криогенных охладителей.

Реализация кубит также зависит, от того каким образом измеряется состояние кубит. Вам может потребоваться сверхчувствительный фотометр или болометр, мост сопротивлений или какое-либо другое невероятно чувствительное устройство для измерения кубитов и перевода состояния суперпозиции в базовое состояние. И, кроме того, этот процесс измерения состояния кубит вызывает еще одну проблему, незнакомую традиционным вычислениям: получение неправильного ответа.

Сомнения

Существует два основных типа проблем с извлечением базового состояния из кубита. Во-первых, вы измеряете квантовую суперпозицию, а не классическую величину. Предполагая, что кубит остался когерентным, вы получите одно или другое из базовых состояний, но вы не можете заранее быть уверены какое именно из них вы получите: вы можете быть уверены только в том, что вероятность того, что вы получите определенное состояние, будет квадратом (модуля – добавлено переводчиком) коэффициента этого состояния в суперпозиции. Если вы измеряете кубит в точно таком же состоянии сто раз, вы получите распределение нулей и единиц, которое сходится к квадратам (модулей) коэффициентов.

Таким образом, вы не знаете, действительно ли то базовое состояние, которое вы измерили в некоторой  попытке, имеет наибольшую вероятность. После того, как вы считали квантовый выходной регистр, измерив биты, тем самым установив их все в базовые состояния – у вас есть три варианта. Вы можете усомниться, что у вас есть правильный ответ и продолжить дальше. Вы можете проверить традиционными вычислениями, как это делает алгоритм Шора, чтобы узнать, действительно ли число, которое вы считали, является правильным решением. Или же, вы можете повторить вычисление большое количество раз, последовательно или параллельно, и взять наиболее часто встречающийся результат. Также можно организовать свои вычисления таким образом, чтобы ответом было распределение вероятностей базовых состояний, а не конкретное двоичное число. В этом случае также необходимо повторение..

Это верно даже для теоретически совершенного квантового компьютера. Но в действительной реализации есть еще одна проблема: старый добрый классический шум. Даже если все идет хорошо, нет декогеренции кубитов, и вычисление предназначено для получения ответа с очень высокой вероятностью, вы все еще наблюдаете за кубитами, пытаясь измерить очень и очень маленькие физические величины. Шум все равно присутствует. Опять же, единственным решением является либо обнаружение ошибки путем дальнейших вычислений, либо выполнение вычислений столько раз, что вы готовы принять любую оставшуюся в результате этого неопределенность. Концепция гарантированного правильного ответа чужда самой сути квантовых вычислений.

Если все это не рисует розовую картину будущего квантовых вычислений, то к этому следует отнестись очень серьезно. Идут поиски наилучшего выбора для реализации  кубитов, хотя ответ может оказаться зависящим от алгоритма. Специалисты по микроэлектронике работают над миниатюризацией квантовых компонентов на основе новых материалов и структур, которые позволили бы создавать очень большие массивы квантовых вычислительных устройств, и которые могли бы массово производиться подобно чипам традиционных процессоров. Компьютерные специалисты разрабатывают прототипы ассемблеров и компиляторов, которые могут преобразовать алгоритм в расположение квантовых регистров и  квантовых вентилей в конкретной технологии.

Стоит ли оно того? Вот один факт. Шор подсчитал, что скромный гибридный, то есть квантовый плюс обычный, компьютер может взломать мощный алгоритм шифрования RSA быстрее, чем обычный компьютер может его зашифровать. Были получены аналогичные результаты для таких задач, как сортировка и распутывание других аналогичных сложных математических задач. Итак, в этой области присутствует достаточно перспектив, чтобы исследователи не теряли энтузиазм. Но было бы неплохо увидеть все это еще при жизни.

esociety.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики