Устройство процессора и его основные характеристики. Размеры процессора компьютера
Основные характеристики процессора
Производительность центрального процессора зависит от показателей разрядности, частоты и особенностей архитектуры процессора. От этой интегральной величины зависит работа ЭВМ в целом, а значит, при выборе придется обратить внимание на все характеристики процессора. Процессор должен обладать достаточной производительностью для решения определенных задач.
Производители процессоров
На рынке процессоров два крупных, лидирующих производителя: Intel и AMD. Характеристики процессоров у разных производителей различны. Многое зависит от совершенства технологий, использованных материалов, компоновки и других нюансов.
Тактовая частота процессора
Тактовая частота указывает скорость работы процессора в герцах (ГГц) – количество рабочих операций в секунду. Тактовая частота процессора подразделяется на внутреннюю и внешнюю. Да, эта характеристика процессора значительно влияет на скорость работы вашего ПК, но производительность зависит не только он неё.
- Внутренняя тактовая частота обозначает темп, с которым процессор обрабатывает внутренние команды. Чем выше показатель – тем быстрее внешняя тактовая частота.
- Внешняя тактовая частота определяет, с какой скоростью процессор обращается к оперативной памяти.
Разрядность процессора
Разрядность представляет собой предельное количество разрядов двоичного числа, над которым единовременно может производиться машинная операция передачи информации. Чем больше разрядность, тем выше производительность процессора. Сейчас большинство процессоров имеют разрядность в 64 бита и поддерживают от 4 гигабайт ОЗУ. Это одна из основных характеристик процессора, но далеко не единственная, при выборе нужно руководствоваться не только ей.
Размерность технологического процесса
Определяет размеры транзистора (толщину и длину затвора). Частота работы кристалла определяется частотой переключений транзисторов (из закрытого состояния в открытое). Если меньше размер, значит меньше площадь, а значит и выделение тепла. Размерность технологического процесса измеряется в нанометрах, чем меньше этот показатель, тем лучше.
Сокет или разъем
Гнездовой или щелевой разъем, предназначен для интеграции чипа ЦП в схему материнской платы. Каждый разъем допускает установку только определенного типа процессоров, сверьте сокет выбранного процессора с вашей материнской платой, она должна ему соответствовать.
Тип гнездового разъема:
- PGA (Pin Grid Array) – корпус квадратной или прямоугольной формы, штырьковые контакты.
- BGA (Ball Grid Array) – шарики припоя.
- LGA (Land Grid Array) – контактные площадки.
Кэш-память процессора
Кэш-память процессора является одной из ключевых характеристик, на которую стоит обратить внимание при выборе. Кэш-память – массив сверхскоростной энергозависимой ОЗУ. Является буфером, в котором хранятся данные, с которыми процессор взаимодействует чаще или взаимодействовал в процессе последних операций. Благодаря этому уменьшается количество обращений процессора к основной памяти. Этот вид памяти делится на три уровня: L1, L2, L3. Каждый из уровней отличается по размеру памяти и скорости, и задачи ускорения у них отличаются. L1 — самый маленький и быстрый, L3 — самый большой и медленный. Чем больше объем кэш-памяти, тем лучше. К каждому уровню процессор обращается поочередно (от меньшего к большему), пока не обнаружит в одном из них нужную информацию. Если ничего не найдено, обращается к оперативной памяти.
Энергопотребление и тепловыделение
Чем выше энергопотребление процессора, тем выше его тепловыделение. Нужно позаботиться о достаточном охлаждении.
TDP (Thermal Design Power) – параметр, указывающий на то количество тепла, которое способна отвести охлаждающая система от определенного процессора при наибольшей нагрузке. Значение представлено в ваттах при максимальной температуре корпуса процессора.
ACP (Average CPU Power) – средняя мощность процессора, показывающая энергопотребление процессора при конкретных задачах.
Значение параметра ACP на практике всегда ниже TDP.
Рабочая температура процессора
Наивысший показатель температуры поверхности процессора, при котором возможна нормальная работа (54-100 °С). Этот показатель зависит от нагрузки на процессор и от качества отвода тепла. При превышении предела компьютер либо перезагрузится, либо просто отключится. Это очень важная характеристика процессора, которая напрямую влияет на выбор типа охлаждения.
Множитель и системная шина
Эти параметры необходимы скорее тем, кто со временем планирует разогнать свой камень. Front Side Bus – частота системной шины материнской платы. Тактовая частота процессора является произведением частоты FSB на множитель процессора. У большинства процессоров заблокирован разгон по множителю, поэтому приходится разгонять по шине. Стоит ознакомиться с этой характеристикой процессора более детально, если вы через какой-то промежуток времени захотите увеличить производительность программным способом, без апгрейда железа.
Встроенное графическое ядро
Процессор может быть оснащен графическим ядром, отвечающим за вывод изображения на ваш монитор. В последние годы, встроенные видеокарты такого рода хорошо оптимизированы и без проблем тянут основной пакет программ и большинство игр на средних или минимальных настройках. Для работы в офисных приложениях и серфинга в интернете, просмотра Full HD видео и игры на средних настройках такой видеокарты вполне достаточно, и это Intel.
Что касается процессоров от компании AMD, их встроенные графические процессоры более производительные, что делает процессоры от AMD приоритетнее для любителей игровых приложений, желающих сэкономить на покупке дискретной видеокарты.
Количество ядер (потоков)
Многоядерность одна из важнейших характеристик центрального процессора, но в последнее время ей уделяют слишком много внимания. Да, сейчас уже нужно постараться, чтобы найти рабочие одноядерные процессоры, они себя благополучно изжили. На замену одноядерным пришли процессоры с 2, 4 и 8 ядрами.
Если 2 и 4-ядерные вошли в обиход очень быстро, процессоры с 8 ядрами пока не так востребованы. Для использования офисных приложений и серфинга в интернете достаточно 2 ядер, 4 ядра требуются для САПР и графических приложений, которым просто необходимо работать в несколько потоков.
Что касается 8 ядер, очень мало программ поддерживают так много потоков, а значит, такой процессор для большинства приложений просто бесполезен. Обычно, чем меньше потоков, тем больше тактовая частота. Из этого следует, что если программа, адаптированная под 4 ядра, а не под 8, на 8-ядерном процессе она будет работать медленнее. Но этот процессор отличное решение для тех, кому необходимо работать сразу в большом количестве требовательных программ одновременно. Равномерно распределив нагрузку по ядрам процессора можно наслаждаться отличной производительностью во всех необходимых программ.
В большинстве процессоров количество физических ядер соответствует количеству потоков: 8 ядер – 8 потоков. Но есть процессоры, где благодаря Hyper-Threading, к примеру, 4-ядерный процессор может обрабатывать 8 потоков одновременно.
Заключение
Из статьи вы узнали о существующих характеристиках центральных процессоров, теперь вы в курсе, на что нужно обратить внимание при выборе. Если информация в статье больше не актуальна, сообщите об этом в комментариях, тогда мы обновим или дополним информацию в статье.
cpu-control.ru
Как выбрать процессор для компьютера.
Качество и скорость функционирования персонального компьютера, а также его производительность во многом зависят от процессора. Это становится отчетливо понятно, когда ПК отказывается справляться с теми задачами, которые ставит перед ним пользователь. Выход только один – апгрейдить свой компьютер и искать новый, более производительный и современный процессор. Чтобы покупка не оказалось бесполезной, необходимо отчетливо себе представлять, как выбрать процессор и какими параметрами он должен обладать, чтобы справляться с конкретными задачами. Подобные проблемы становятся и перед теми, кто решил собственноручно собрать себе машину. Попробуем максимально коротко и емко ответить на все вопросы, а также изучить современный рынок и определить лучшие процессоры 2018 года.
Как выбрать процессор для компьютера в 2018 году?
Главный предмет споров при выборе процессора – это производитель. На данный момент на рынке конкурируют две компании – AMD и Intel. Споры по поводу того, чья продукция лучше, напоминают вечные дискуссии о iOS и Android, или Canon и Nikon. Поклонники той или иной системы готовы без устали доказывать свою точку зрения, между самими же компаниями постоянно идет «гонка вооружений», поэтому однозначно ответить, какие процессоры лучше, AMD или Intel, невозможно. Кто-то когда-то сказал, что это, как вопрос религии или даже дело привычки.
Мы еще вернемся к вопросу производителя, попробуем разобраться более подробно в их предложениях, но пока отметим, что при выборе процессора все же внимание стоит обращать на его архитектуру, количество ядер, тактовую частоту, объем кэш-памяти и прочие параметры.
Сокет процессора, или Тип разъема
Процессор устанавливается в специальное гнездо на материнской плате, поэтому тип разъема (socket) у них должен совпадать. Разные типы разъемов несовместимы между собой – система, собранная подобным образом, работать не будет. Производители материнских плат указывают, с какими процессорами совместима та или иная модель. Информация доступна в инструкции к материнской плате или на официальных сайтах. Если собираете компьютер сами, то не берите устаревшую материнскую плату: через пару лет, когда захочется провести апгрейд ПК, придется покупать не только новый процессор, но и новую материнскую плату.
Различных видов сокетов насчитывают до 30 видов, многие из них уже считаются устаревшими.
Процессоры Intel сейчас выпускаются с такими сокетами:
- LGA1150 – разъем для простеньких процессоров со встроенной графикой начального уровня. Это решение для домашних и офисных компьютеров, которые необходимы для выполнения простых задач, типа серфинг в интернете, работа с офисными программами и просмотр видео. Разъем медленно и уверенно уходит с рынка, такие системы очень скоро сложно будет апгрейдить;
- LGA1151 – наиболее популярный на данный момент тип разъема, может быть использован для сборки ПК, подходящего для любого рода задач;
- LGA2011-v3 – тип разъема, который используется для сборки мощный игровых компьютеров или же компьютеров, на которых будут запускаться серьезные профессиональные программы.
Для процессоров AMD актуальны такие сокеты:
- FM2/FM2+ – недорогие простые процессоры, которые подойдут для сборки обычных офисных систем и простейших игровых ПК;
- AM3+ – один из наиболее распространенных сокетов, на его основе можно собирать системы любой мощности, вплоть до наиболее продвинутых игровых компьютеров;
- AM4 – сокет для самых производительных процессоров, которые используют для сборки профессиональных и игровых ПК;
- AM1 – сокет для самых простых процессоров.
Сокеты LGA1155, LGA775AM3, LGA2011, AM2/+ считаются устаревшими.
Количество ядер и потоков
Ядро процесса – это его сердце, мозг и душа. Первый многоядерный процессор представила миру компания Intel, но до сих пор существует мнение, что идея была украдена у AMD. Не будем ворошить былое – главное, что сегодня одноядерных процессоров уже не найти. Остается разобраться, сколько ядер действительно необходимо.
Если немного упростить, то можно прийти к таким выводам:
- 2 ядра – вариант для компьютера, который будет использоваться для работы с базовым набором офисных программ, запуска браузера и просмотра видео;
- 4 ядра – вариант как для офисного использования, так и для запуска средних игрушек. Все зависит от частоты и архитектуры;
- 6, 8 и 10 ядер – мощные компьютеры для запуска 3D программ и самых современных и требовательных игр. Хороший вариант для геймера.
Учтите, что есть программы, которые не могут распределять нагрузку по ядрам, и они будут работать быстрее на 2-ядерном процессоре с более высокой тактовой частотой, чем на 4-ядерном, но с меньшей частотой.
Обратите внимание, что есть процессоры с виртуальными дополнительными ядрами. Особая технология (Hyper-Threading у Intel, или SMT у AMD) позволяет клонировать каждое физическое ядро, поэтому количество потоков обработки данных не всегда равняется количеству ядер. Если вам говорят о восьмипоточном процессоре, то у него может быть 4 или 8 реальных ядер.
Частота процессора
Многие пользователи наивно полагают, что чем выше тактовая частота, тем лучше и быстрее будет работать компьютер. Это не совсем так, точнее так, но при определенных условиях. Давайте разбираться.
Тактовой частотой называют количество операций, которое процессор выполняет в секунду. Следовательно, чем выше частота, тем быстрее работают «мозги», а процессор с частотой 3,5 ГГц будет предпочтительнее, чем процессор 2,8 ГГц, к примеру. Это, действительно, так, если речь идет о процессорах одной линейки, где использованы одинаковые ядра.
Производительность зависит не только от частоты, но и от архитектуры процессора и объема кэша, поэтому ориентироваться только лишь на частоту не стоит, но в пределах одной линейки это значимый фактор.
Техпроцесс
Техпроцессом определяется размер транзисторов на процессоре и расстояние между ними. Для нанесения на кремниевую подложку проводников, изоляторов и прочих элементов используется метод фотолитографии. Разрешающая способность используемого оборудования формирует определенный техпроцесс и влияет на размеры транзисторов и расстояние между ними.
Техпроцесс измеряется в нм и чем он меньше, тем больше элементов можно разместить на одной и той же площади. На данный момент самые современный процессоры имеют техпроцесс 14 нм.
Этот параметр очень косвенно влияет на производительность. Гораздо более существенно он отражается на нагреве процессора. Усовершенствование технологий позволяет каждый раз выпускать процессор с меньшим техпроцессом, они меньше греются. Если сравнить процессор старого поколения и новый с одинаковой производительностью, то новый будет меньше греться. Так как в новых моделях производительность повышается, то греются старые и новые «камни» приблизительно одинаково. Таким образом, уменьшение техпроцесса позволяет производителям создавать все более быстрые и производительные процессоры, не повышая степень их нагрева.
Кэш-память
Кэш-память – это встроенная сверхскоростная память, которая помогает хранить и обрабатывать данные между ядрами, оперативной памятью и прочими шинами. По сути, это связующее звено между оперативной памятью и процессором. Благодаря этому буферу можно быстро получать доступ к часто используемым данным. В современных процессорах кэш имеет несколько уровней (как правило, три, реже – два). Чем больше объем памяти на них, тем быстрее будет работать «камень», но это снова-таки справедливо лишь для процессоров одной линейки.
Память по уровням распределяется неравномерно:
- L1 – это кэш первого уровня, его объем минимальный (8-128 Кб), зато скорость наиболее высокая. Частота обычно достигает уровня частоты процессора;
- L2 – кэш второго уровня, больше по объему (от 128 Кб), чем первый, но медленнее, чем он;
- L3 – наиболее емкий, но самый медленный кэш. С другой стороны, даже кэш третьего уровня по скорости опережает оперативную память
Если вам необходимо выбрать процессор для игрового компьютера или для запуска мощных профессиональных программ с высокими требованиями к графике, то лучше брать процессор с максимально возможным объемом памяти третьего уровня (параметр обычно колеблется от 2 до 20 Мб). Эту устоявшуюся истину в последнее время разрушают тесты новых процессоров, которые показывают, что на производительность в играх кэш-память уже практически не влияет. Впрочем, списывать со счетов этот параметр не стоит – хороший объем кэш-памяти ускорит архивацию данных и запись данных с флэш-памяти на жесткий диск.
Интегрированное графическое ядро
Совершенствование технологии производства позволило размещать внутри процессора различные микросхемы, в т.ч. графическое ядро. Главное преимущество подобного решения – отсутствие необходимости отдельно покупать видеокарту. Встраивают в процессор, как правило, достаточно средненькие по возможностям видеокарты, поэтому модели с интегрированным графическим ядром подойдут пользователям, для которых графические возможности вторичны. Это бюджетные процессоры для офисной среды, но видео из интернета, большинство неспецифических программ, обычные игрушки и даже 3D игры начального уровня они потянут.
Если ваша цель – собрать мощный игровой компьютер, то лучше брать процессор без встроенного графического ядра и потом докупать мощную видеокарту. С учетом того, что стоит таковая немало, и многим приходится на нее еще некоторые время копить, то процессор со встроенной видеокартой может быть полезен и в этом случае.
Что такое разрядность процессора, и так ли она важна?
Разрядность процессора показывает, какое количество бит может обработать компьютер за один такт. Этот параметр влияет на производительность. На данный момент чаще всего используются процессоры на 32 и 64 бита, есть и 128-битные процессоры, но их сегмент пока сильно ограничен.
Всегда ли 64-битный процессор лучше 32-битного, и в чем отличия? Если в процессоре 2 ядра, а оперативной памяти используется 2-3 ГБ, то разницу вы не почувствуете. 64-битный процессор при использовании многоядерных процессоров позволяет заметно прибавить производительность при запуске 64-битных приложений. Справедливости ради стоит отметить, что увеличение производительности можно будет заметить не всегда.
Главное преимущественное отличие 64-битных процессоров – это возможность работать с оперативной памятью на 4 ГБ и более. Если у вас в компьютере стоят планки оперативки даже на 8 ГБ, 32-битный процессор будет видеть и использовать только 3,75 ГБ из них.
Тепловыделение
Чем более мощный процессор, тем больше он греется. Хорошо, что совершенствование техпроцесса позволяет значительно снизить нагрев. Сегодня для оценки тепловыделения используется величина TDP, Вт. Чем меньше значение, тем меньше тепловыделение. В портативных компьютерах все хорошо просчитано, установлено и работает без дополнительного охлаждения. Если же необходимо собрать очень мощный компьютер, то без встроенного в процессор кулера (такие модели маркируются как BOX, без кулера – OEM) вряд ли получится обойтись.
Если TDP системы 60 Вт и меньше, то может использовать даже комплектная или самая простая система охлаждения. При тепловыделении до 95 Вт лучше брать качественные вентиляторы среднего формата – комплектный не справится. При TDP 125 Вт и более не обойтись без башенного кулера с несколькими медными трубками.
Разблокированный множитель
Если вы собираетесь разгонять процессор, то убедитесь, что это возможно сделать штатными способами. Важно, чтобы функция изменения множителя поддерживалась и материнской платой.
AMD или Intel – что лучше?
Объективного ответа на этот вопрос нет и быть не может. На эту тему создано тысячи страниц в интернете, споры порой превращаются в скандалы с использованием нецензурной брани – так пользователи защищают продукцию любимого производителя. Зачастую все эти споры напоминают попытки выяснить, что лучше, ананас или сосиска – единого мнения тут быть не может.
В каких-то сегментах лучше AMD, в каких-то – Intel, но часто даже эти мнения субъективны, так что при выборе полагайтесь чисто на свое субъективное мнение – мы вам мешать не будем. Ну, а для тех, кто со своим субъективным мнением еще не определился, приведем несколько фактов.
Конкуренция между двумя лидерами бешеная, но считается, что Intel выпускает более производительные процессоры, за которыми AMD не угнаться, а AMD, в свою очередь, предлагает лучшие бюджетные решения. Но и это мнение слишком обобщенное, так как и у Intel есть неплохие недорогие процессоры, а AMD предлагает неплохие топовые решения. По долговечности и надежности продукция обеих компаний на равных.
Чтобы принять решение, какой процессор лучше, AMD или Intel, необходимо четко определить для себя цели и ответить на вопрос, для чего собирается компьютер. Причем количество ядер и частота не всегда определяют производительность – все дело в совершенно разной архитектуре. Поэтому используйте специальные сайты, где можно посмотреть результаты тестов, сравнить с аналогами и увидеть, с какими задачами лучше всего справляется тот или иной процессор.
Мы понимаем, что затрагиваем очень тонкую и спорную тему, но все же, поговорим об общих преимуществах процессоров двух компаний.
Преимущества процессоров Intel:
- высокая производительность и быстродействие. Работа с оперативной памятью оптимизирована лучше, чем у AMD;
- большое количество игр и программ, которые оптимизированы именно под Intel;
- кэш-память второго и третьего уровня зачастую работает на более высоких скоростях, чем на процессорах AMD;
- более низкое энергопотребление.
Недостатки процессоров Intel:
- более высокая цена;
- по многозадачности уступают процессорам AMD, несмотря на то, что при работе с одним процессом выигрывают;
- сильная привязка к конкретным сокетам, поэтому при покупке нового процесса придется, скорее всего, менять и материнскую плату.
Недавно произошел настоящий скандал. В процессорах от Intel была выявлена уязвимость, которая позволяет сторонним зловредным программам получить доступ к структуре защищенной части памяти ядра и обнаруживать место хранения конфиденциальной информации. Наши пароли, сообщения, фотографии и данные платежных карт могут быть считаны и использованы злоумышленниками. Устранение этой неисправности и экстренное обновление операционной системы замедлят компьютеры на 20-30%. Пока компания старалась решить конфликт, обнаружилось, что подобная уязвимость есть и в процессорах от AMD.
Преимущества процессоров от AMD:
- доступная цена, поэтому многие признают процессоры производителя лучшими по соотношению цена/качество;
- многозадачность;
- мультиплатформенность;
- современные процессоры компании отличаются хорошим потенциалом разгона, так что в плане производительности догоняют Intel.
Недостатки процессоров от AMD:
- более высокое энергопотребление;
- под AMD написано и адаптировано меньше приложений, а те, что изначально были заточены под Intel, на AMD работают хуже;
- более низкая производительность в играх, но это как раз-таки предмет споров;
- скорость кэша второго и третьего уровня ниже, чем у Intel.
Лучшие процессоры 2018 года
Короли производительности, процессоры Intel представлены в разных ценовых категориях. В бюджетной сфере это линейки Celeron и Pentium. Кстати, по производительности они превосходят аналогичные по стоимости процессоры AMD, но уступают им во многозадачности. Для игровых ПК начального уровня и мультимедийных компьютеров подойдут процессоры Core i3, для более мощных — Core i5, для самых мощных игровых — Core i7.
Core i7-7700K
Несмотря на существование более производительных Core i7-6950X, Intel Core i7-7820X, Intel Core i9-7900X и некоторых других, наиболее сбалансированным по цене и качеству можно считать Core i7-7700K. Частота 4,2-4,7 ГГц, в запасе 4 ядра, есть встроенная видеокарта, но для топовых игр ее не хватит, зато с запуском видео в самом высоким разрешении она справится легко. Цена около 400$.
Core i7-6950X Extreme Edition
Стоит неприлично дорого (около 1700$), оснащен 10 ядрами, получил 25 Мб кэша третьего уровня, имеет частоту 3 ГГц, поддерживает технологию Hyper-Threading. Мощь и сила! Впрочем, для сборки игрового компьютера возможностей процессора будет даже многовато. Это решение только для тех, кто использует очень специфические и сильно требовательные программы, и то найти подходящее решение можно и подешевле.
Core i5-7500
Если игровой ПК собрать хочется, а бюджет на покупку процессора скромный, то Core i5-7500 за 200$ — неплохое решение. Производительность, кэш-память третьего уровня (6 Мб против 8 Мб) почти не уступают Core i7-7700K, а при наличии хорошей видеокарты процессор справиться с любой игрой. Есть встроенное графическое ядро, поддерживающее видео с разрешением 4К. 4 ядра работают с частотой 3,4-3,8 ГГц.
Core i3-7100
Два ядра, четыре потока, частота 3,9 ГГц и невысокое энергопотребление в сочетании с доступной ценой (110-170$) делает этот процессор народным любимцем. Пользователи отмечают, что при использовании достаточного количества оперативной и графической памяти этот процессор может потянуть даже те игры, где в требованиях указаны Core i5 и Core i7.
Pentium G4560
В процессоре 2 ядра, но 4 потока, частота 3,5 ГГц. Стоимость около 70$, поэтому если необходимо собрать недорогой игровой ПК, то это неплохой вариант. Сравнивать его с более дорогими решениями нельзя, но при наличии соответствующей видеокарты современные игры на минимальных настройках он потянет, более старые и менее требовательные игры будут вообще летать.
Pentium Haswell
Неплохой вариант для офисного ПК. Тут 2 ядра, интегрированный графический процессор, частота 2,3-3,6 ГГц. Объем кэша третьего уровня – 3 Мб. Тепловыделение небольшое. Стоимость около 85$.
Celeron Skylake
Простенький недорогой процессор для компьютеров, предназначенных для работы с документами, браузером и просмотром видео. Основные характеристики: 2 ядра, частота 2,6-2,9 ГГц, кэш третьего уровня 2 Мб, минимальное тепловыделение, есть графическое ядро. Стоимость 45$.
Лучшие процессоры AMD 2018
Линейка бюджетных процессоров — Sempron, Athlon, Phenom, А4 и А6. А8 и А10 можно использовать для мультимедиа и несложных игр, серия FX – для игровых компьютеров среднего класса, а Ryzen – это топовые процессоры. Приобрести процессоры AMD можно на сайте: вниманию потенциальных покупателей представлены все современные разработки компании AMD, а также фотоснимки моделей, детальные перечни характеристик, краткие описания и руководства по эксплуатации. Чтобы вам было проще, мы выбрали несколько наиболее интересных моделей, подходящих для разных задач.
Ryzen Threadripper 1920X
Почетное первое место достается процессору из флагманской серии Ryzen – Threadripper 1920X. 12-ядерный «зверь» с тактовой частотой 3,5-4 ГГц попросту не мог остаться за пределами нашего рейтинга. Невероятные 24 потока позволяют максимально эффективно использовать производительную мощность персонального компьютера. Процессор оснащен памятью DDR4 (4 канала) с функцией коррекции ошибок, что гарантирует чрезвычайно высокую скорость передачи данных. Стоимость около 990$.
Ryzen 7 1800X
Второе место тоже достается представителю Ryzen – 7 1800X. От лидера этот процессор отличается отсутствием технологии виртуализации, количеством ядер (их у Ryzen 7 восемь) и, соответственно, потоков (16), а также каналов оперативной памяти. Есть поддержка разблокированного множителя. Данная модель отлично подходит для геймеров – она «тянет» 3D-игры и программы для моделирования даже на максимальных настройках. Стоит около 480$.
Ryzen 5 1600X
В тройке лидеров также оказывается Ryzen 5 1600X – сильный соперник конкурирующего семейства Core i5. Его характеристики – это, прежде всего, 6 ядер/12 потоков, разъем Socket AM4 и два канала оперативной памяти. Частотность – 3,6 ГГц с возможностью разгона до 4 ГГц. Есть поддержка разблокированного множителя. Стоит около 260$.
AMD A10-7860K
На четвертом месте – производительный 4-ядерный процессор, предназначенный для домашних ПК, а также использования в офисах. Модель с интегрированной графикой. Тактовая частота – 3,6 ГГц. Отлично справляется с запуском игр в онлайн-режиме (средние настройки) с хорошим быстродействием и без перегрева аппаратного ПО. Цена около 100$.
AMD FX-6300
Неплохая альтернатива производительным решения от Intel. Процессор работает с 6 ядрами, имеет разблокированный множитель, тактовую частоту 3,5 ГГц с возможностью разгона до 4,1 ГГц. Сокет — Socket AM3+. Производительность хорошая, подходит для игр и требовательных приложений, встроенного графического ядра нет. Стоимость около 85$.
Athlon X4 880K
Замыкает ТОП модель из семейства Athlon 880K – 4-ядерный процессор для домашних ПК. Тактовая частота модели – 4,0-4,2 ГГц. В комплекте с видеокартой Radeon Athlon 880K выдает отличную производительность и демонстрирует все положительные качества продукции AMD. Стоимость 84$.
Есть и более бюджетное решение из этой серии. Athlon X4 860K работает на 4 ядрах, частоте 3,7 ГГц, но здесь нет интегрированного графического ядра. Стоимость 45$.
Писать еще можно очень много, долго приводить аргументы, спорить, тестировать и размышлять. Мы же на этом закругляемся, и оставляем вас наедине со своими мыслями.
источник: http://www.tehnoprosto.ru/kak-vybrat-processor-dlya-kompyutera-top-14-luchshix-processorov-2018/
www.ennera.ru
Компьютеры и комплектующие - Как выбрать материнскую плату? Пошаговая инструкция.
Мнение о том, с чего начинается компьютер, у каждого пользователя своё. Кто-то предпочитает строить систему "вокруг" монитора, подбирая комплектующие таким образом, чтобы они выдавали комфортную производительность в нужном разрешении экрана. Кто-то ставит во главу угла производительность видеокарты, выбирая сначала нужную модель графического ускорителя, а затем - блок питания подходящей мощности и корпус с достаточным охлаждением. Наконец, для кого-то важнее всего высочайшая скорость работы с данными, и компьютер по сути собирается вокруг центрального процессора и пары RAID-массивов из SSD и жёстких дисков.
Но когда с моделью наиболее приоритетных устройств пользователь уже определился, приходится выбирать то, что позволит собрать их в единую систему, соответствующую изначальным представлениям пользователя о внешнем виде и характеристиках ПК.
И, как вы уже догадались, речь сегодня пойдёт о выборе материнской платы.
На что не нужно обращать внимание при выборе.
Производитель платы.
Проектированием и производством материнских плат занимается весьма большое количество компаний, причем не все из них представлены в ассортименте ДНС. Причем наиболее именитые вендоры уже знакомы вам по видеокартам и другим компьютерным комплектующим. ASUS, Gigabyte и MSI - "большая тройка", из продукции которой чаще всего и приходится выбирать пользователям.
Впрочем, есть еще и AsRock (кстати, дочерняя компания ASUS), Zotac (выпускает, например, весьма интересные решения для систем формата mini-ITX), также платы для своих процессоров выпускает компания Intel (правда, силами Foxconn), а местами встречается продукция экзотических брендов типа Biostar.
Отметим, что такого оголтелого фанатизма, как в сегменте процессоров или видеокарт, вокруг полок с материнскими платами не наблюдается. И всё же...
Рекомендация №1: Так называемая "репутация производителя" - это лишь искусственный термин, не имеющий под собой никакой основы. У каждого производителя есть удачные и неудачные модели, и более того: материнские платы одного производителя, но для разных платформ могут обладать разным комплексом характеристик. И заслуги одних плат на характеристики других никак не влияют.
Кроме того, зачастую платы разных вендоров, выпущенные для одной платформы и предлагающиеся за одну цену, могут обладать совсем разным набором характеристик. Поэтому иногда, не поддавшись увещеваниям маркетологов, вы можете получить приятный бонус в виде большего количества портов USB, поддержки редких интерфейсов, более эффективного охлаждения или иных плюсов.
"Игровая" или "не игровая" плата.
В каталоге ДНС материнские платы условно разделены на сегменты "игровых" и "неигровых".
Парадокс в том, что производительность системы в играх от материнской платы не зависит. Вообще. От неё может зависеть эффективность разгона центрального процессора, если такая функция доступна - это отдельный разговор. Но если исключить из внимания разгон - один и тот же набор из процессора, видеокарты и двух-четырёх планок памяти выдаст одинаковую производительность, будучи установлен в топовую материнскую плату или в одну из младших моделей.
Почему? Потому что производительность в играх определяют именно они.
Рекомендация №2: Если вы планируете разгон процессора - обращайте внимание на количество фаз в системе питания платы, эффективность её охлаждения, стабильность напряжений в разгоне и возможности БИОС. Да, без вдумчивого и долгого чтения обзоров здесь не обойтись, но и результат выбора может вас немало порадовать. Опять же, к позиционированию платы как "игровой/не игровой" и даже к её ценнику эти характеристики отношения не имеют.
Если же разгон не планируется вовсе - выбирайте плату, исходя из более важных для вас характеристик: количеству и типу периферийных разъемов, числу слотов под модули памяти, форм-фактору, разъемам для подключения корпусных вентиляторов и так далее.
Что вам ДЕЙСТВИТЕЛЬНО важно иметь ввиду.
Форм-фактор платы
Казалось бы, не самый серьезный аспект, однако начинать лучше именно с него. Согласитесь, ведь мало радости, если вы выберете самую подходящую плату, а она попросту не войдет в корпус?
Кроме того, благодаря различным стандартам материнских плат, персональный компьютер сегодня можно собрать в чём угодно. Вовсе не обязательно покупать громоздкий корпус формата midi-Tower, если вам нужна компактная система, которая разместится в нише стола. И уж совсем не обязательно ставить подобный "ящик" рядом с телевизором, если компактные платы форматов mini-ITX или mini-STX можно "поселить" в маленьком низкопрофильном корпусе, стилизованном под мультимедиа-проигрыватель!
И не стоит думать, что маленькие системы - это всегда ограниченная производительность. Сегодня в компактном корпусе можно собрать и мощную игровую систему, причем благодаря современным корпусам, кулерам и энергоэффективности нынешних процессоров перегрев ей даже не грозит.
Но вернёмся к сути. Итак, какие форм-факторы материнских плат представлены в каталоге ДНС?
E-ATX. Размер платы - 305х330 мм. В этом формате представлены преимущественно платы под топовые платформы: Socket TR4, LGA 2011-3 и LGA 2066. С ними всё просто: это флагманские модели с наилучшим оснащением и передовыми технологиями. Единственный явный недостаток - не все корпуса позволяют установить такую плату. Но, если вы решились на приобретение одной из этих платформ - выбор подходящего корпуса вряд ли вызовет какие-то затруднения.
Standard-ATX. Или, как чаще всего он называется - АТХ. Размеры платы - 305х244 мм, но некоторые вендоры в целях экономии могут делать платы короче. Этот формат является фактическим стандартом для домашних, офисных и профессиональных ПК, выбор плат в нём неописуемо огромен, и можно найти любые сочетания функционала, оснащения и цены. Минус - опять же, габариты. Проблемы с совместимостью практически исключены, но собрать по-настоящему компактную систему с платой такого формата не выйдет.
Micro-ATX. Также распространен вариант mATX. Размеры платы согласно стандарту - 244х244 мм, но в реальности остаются на совести вендора. Усечённая в высоту версия стандарта ATX - как правило, сокращение размеров достигается за счет количества слотов PCI-e. Исторически воспринимается как бюджетный вариант, но на деле, помимо действительно дешевых материнских плат, способен предложить и платы с широкими возможностями для мультимедиа, и платы для разгона процессоров и мощных геймерских ПК.
Mini-ITX. Размер платы согласно стандарту - 170х170 мм. Вариант для сборки компактных систем, причем может послужить как основой для переносного настольного ПК, так и для мультимедийной системы в корпусе, стилизованном под видеомагнитофон или DVD-плеер. Отличительная особенность - использование стандартных слотов под оперативную память и в целом близкая к типовой компоновка, что заметно упрощает (и удешевляет!) сборку системы.
Mini-STX. Размер платы по стандарту - 140х140 мм. Ещё более компактный вариант, подходящий для встраиваемых систем и ультракомпактных ПК. В отличие от mini-ITX, здесь уже используются модули памяти от ноутбуков и, как правило, внешние БП. Формат, с одной стороны, позволяет больше экспериментировать с различными вариантами сборки ПК, но с другой - удорожает этот процесс и ограничивает производительность. Помимо прочего, на платах этого формата отсутствует разъем под внешнюю видеокарту.
Рекомендация №3: Размеры материнской платы определяют размеры корпуса, а следовательно - и итоговое место ПК в вашей квартире или доме. Но не определяют его итоговую производительность. Если вам действительно необходим большой корпус для установки большого количества накопителей или двух игровых видеокарт - "мельчить" при выборе материнской платы не имеет смысла. Если компактность для вас не приципиальна - это уже вопросы вашего вкуса, здесь нельзя давать какие-то однозначные рекомендации.
Если же вы несколько ограничены по площади или, например, часто переезжаете, то здоровенный железный ящик станет скорее помехой. В этом случае лучше обратиться к более компактным форматам. Причём не стоит думать, что они как-то ограничат вас в плане скорости ПК в играх или в работе.
Сокет
Сокет - это гнездо для установки центрального процессора. Собственно, это и есть важнейшая характеристика материнской платы, ведь именно она определяет, процессоры какого поколения вы сможете установить, а значит - и какую производительность получите в итоге.
Стоит отметить, что за редкими исключениями материнские платы рассчитаны на работу только с одним поколением процессоров. Так, как бы вам ни хотелось сэкономить на апгрейде, установить процессор под сокет LGA 1150 в материнскую плату с сокетом LGA 1155 не выйдет. Равно как и нельзя установить процессор под сокет LGA 1151 в плату с сокетом LGA 1150, а процессор под сокет LGA 1151_v2 - в материнскую плату с LGA 1151.
Поскольку производителей процессоров для пользовательских ПК всего два, то и материнские платы делятся прежде всего на две категории: под процессоры AMD и Intel.
Сокеты AMD:
Socket AM1 - платформа для младших линеек APU, отличающихся скромной производительностью, но высокой энергоэффективностью и неплохими мультимедийными возможностями. По сути - чуть более функциональный аналог Intel Atom и их производных. Несовместима ни с одним другим сокетом AMD.
Socket AM4 - новая универсальная платформа для массового сегмента, объединяющая в себе как процессоры Ryzen, так и новые APU. В силу своей универсальности, а также широкого выбора совместимых процессоров, может послужить основой для абсолютно любой системы: от домашнего мультимедийного ПК до мощной игровой машины или даже рабочей станции.
Socket TR4 - платформа для топовых процессоров Ryzen Threadripper, предлагающих до 16 вычислительных ядер и 32 потоков, 44 линии PCI-e и четырёхканальный контроллер памяти. Подходящий вариант для любых задач, где требуется вычислительная мощь процессора и подключение большого количества скоростной периферии. Иначе говоря - для мощных рабочих станций. В домашних задачах и играх весь функционал этой платформы востребован не будет.
Сокеты Intel:
LGA 1151_v2. Актуальная платформа для массового сегмента, которую ни в коем случае (!!!) нельзя путать с предшествующей LGA 1151. В отличие от неё, предлагает процессоры с актуальным количеством ядер: до 6 физических и 12 виртуальных потоков, и соответствует требованиям современных игр и прочих задач.
LGA 2011-3. Недавно топовая платформа Intel для компьютерных энтузиастов и профессиональных пользователей, ныне списанная в тираж. На смену ей пришла LGA 2066, и новых процессоров под LGA 2011-3 больше не будет. Однако, сочетание цены и функционала некоторых уже существующих моделей делает их не менее интересным вариантом для покупки.
LGA 2066. Новая топовая платформа, предлагающая процессоры с большим количеством ядер, нежели LGA 2011-3, и с более актуальной архитектурой. Как и Socket TR4, может стать подходящей основой для мощной рабочей станции, в домашнем же сегменте менее востребована.
Особняком стоят материнские платы с интегрированным процессором. Сокет как таковой здесь отсутствует - процессор распаивается прямо на плате и является с ней одним целым. Как правило, такие платформы обладают ограниченной производительностью, но выдающейся энергоэффективностью. Их использование оправдано для специфических задач: например, для сборки домашнего файлового сервера, установки ПК в машину или ряда производственных нужд. Безусловно, возможно использовать такие платформы и дома, но там предпочтительнее иметь возможности полноценного апгрейда, которых платы с распаянным процессором лишены.
Рекомендация №4: Сокет материнской платы определяет то, какие процессоры в неё можно установить в момент покупки, и какие - при дальнейшем апгрейде. Поэтому вполне очевидно, что на сокет нужно обращать внимание в самую первую очередь. Разумеется, если вы выбираете материнскую плату под уже имеющийся процессор - тут рекомендации не нужны. Но если собирается новый ПК - материнская плата, во-первых, должна поддерживать процессоры самого актуального на данный момент поколения, а во-вторых, производительность этих процессоров должна соответствовать поставленным перед ПК задачам.
Чипсет
Набор микросхем, обеспечивающий взаимодействие центрального процессора, накопителей данных, устройств ввода/вывода и прочих элементов ПК. В силу того, что на современных платформах контроллеры оперативной памяти, шины PCI-express и прочие ответственные узлы "переехали" с материнской платы в центральный процессор, чипсет не влияет на производительность. А вот функционал материнской платы зависит в первую очередь именно от него.
Современные чипсеты фактически отличаются друг от друга лишь количеством и типом поддерживаемых интерфейсов для подключения жестких дисков и портов USB. На платформах Intel добавляется еще один параметр - возможность официального разгона процессоров. Вместе с тем, модель чипсета - это способ четко ранжировать платы по сегментам рынка.
Чипсеты начального уровня закономерно встречаются только в бюджетных материнских платах. Эти устройства неплохо проявят себя в офисах, или домашних ПК не самых требовательных пользователей, но не стоит искать среди этих устройств плату с богатым оснащением или хорошими возможностями разгона.
Спектр плат, основанных на чипсетах среднего уровня гораздо шире: среди них можно найти и неплохие оверклокерские платы для платформ AMD, и хорошо оснащенные девайсы для платформ Intel.
Старшими чипсетами оснащаются, как правило, топовые модели материнских плат, среди которых есть и модели, рассчитанные на энтузиастов разгона, и устройства класса "всё в одном", обладающие широчайшим набором интерфейсов. Чаще всего именно эти платы позволяют организовать системы SLI или Crossfire с двумя видеокартами в полноценном режиме "16+16 линий", именно у этих плат больше всего разъемов для подключения скоростных SSD и жёстких дисков, и наконец, именно в этих устройствах можно найти встроенные адаптеры wi-fi и bluetooth.
Рекомендация №5: Чипсет не влияет на производительность, но как правило, позволяет четко определить позиционирование и функционал платы. Если вы не рассматриваете разгон процессора - гоняться за топовыми моделями не стоит. Причем речь здесь не только про платформы Intel - для обычной работы процессоров AMD Ryzen и APU Bristol Ridge/Raven Ridge хватает плат на бюджетном чипсете AMD A320.
Однако, если вы планируете разгонять процессор, подключать много скоростной периферии или строить SLI/Crossfire системы - следует обратить внимание на старшие модели чипсетов. Кроме того, поскольку именно топовые материнские платы традиционно отличаются лучшим оснащением, есть вероятность найти среди них модели со встроенными модулями wi-fi и bluetooth, а также другими полезными для вас моментами.
Совместимость с процессором
Как правило, если у материнской платы и процессора один сокет, это означает, что они совместимы. Тем не менее, из каждого правила есть исключения. Так, не каждая плата под LGA 775 поддерживает процессоры Wolfdale и Yorkfield, не каждая плата с сокетом AM3+ поддерживает процессоры Piledriver, и не каждая плата под LGA 1155 поддерживает процессоры Ivy Bridge без дополнительных манипуляций, и так далее.
Рекомендация №6: Прежде, чем идти в магазин за новой материнской платой, посетите страницу этой модели на сайте производителя и посмотрите список совместимых процессоров. Это совершенно несложно и даже не займет много времени. А вот возврат платы в магазин или обновление БИОС в сервис-центре - займут. Более того - услуга обновления биос в сервис-центре - платная. И есть ли смысл платить за неё, если те же деньги можно было просто добавить к бюджету и купить более подходящую материнку?
Количество слотов памяти
Оперативная память - тот элемент ПК, на который вы долго можете не обращать внимания, пока в один прекрасный момент её не перестанет хватать. И очень хорошо, если в этот момент у вас будут возможности увеличить объем памяти. Ведь если в ПК есть свободные слоты - достаточно лишь докупить соответствующее количество модулей и использовать компьютер дальше.
А вот если все слоты заняты - вам придется продавать имеющиеся планки памяти, теряя в цене, а потом покупать планки большего объема, что в совокупности выйдет в гораздо большие деньги, да и времени отнимет немало... а согласитесь, время можно потратить с гораздо большей пользой!
Рекомендация №7: Экономить, покупая материнскую плату всего с двумя слотами оперативки, стоит лишь тогда, когда вы твёрдо уверены, что ПК должен максимально долго прожить без апгрейда и быть заменен целиком. В противном случае вы попадете в описанную выше ситуацию и пробьете дыру в семейном бюджете.
"Золотой стандарт" в этом отношении - плата с 4 слотами памяти. Так, если вы соберете ПК с двумя планками памяти по 8 гигабайт каждая, то в будущем, при нехватке памяти достаточно будет лишь добавить ещё две планки по 8 гигабайт, что будет вполне бюджетно.
Платы с 8 слотами памяти ожидаемо относятся к платформам LGA 2011 и LGA 2011-3. С ними всё проще: там объем памяти обусловлен задачами, под которые собирается система, и используется сразу и полностью.
Количество интерфейсных разъемов
Поскольку, собирая ПК, вы уже примерно представляете себе, какие комплектующие и какое количество периферии вы будете использовать, стоит предусмотреть, чтобы плата позволяла подключить всё необходимое без нагромождения переходников и разветвителей. Это лишь поначалу кажется, что на здесь можно сэкономить, но на деле всевозможные USB-хабы, внешние адаптеры и прочие посторонние части здорово усложняют жизнь.
Итак, что желательно предусмотреть?
Количество и тип разъемов USB на задней панели. Увлекаться здесь не стоит, тем более что эти порты используются преимущественно для подключения клавиатуры, мыши, графического планшета и другой стационарной периферии. И тем не менее, желательно иметь с тыльной стороны ПК как минимум четыре, а лучше - шесть разъемов соответствующего типа.
Также желательно, чтобы хотя бы два из них относились к стандарту 3.0 - скоростная периферия типа переносных жёстких дисков скажет вам спасибо.
Не обязательно, но не лишним будет и наличие портов USB 3.1. На сегодня это экзотика, но в обозримом будущем стандарт имеет все шансы стать повсеместным, так почему бы не предусмотреть его сразу?
Выбрав подходящую на первый взгляд плату, поинтересуйтесь на сайте производителя или в сервисе "помощь эксперта" на сайте ДНС, есть ли у ней возможность вывода портов USB на переднюю панель корпуса. Это сейчас вам кажется не самым важным, но поверьте - ворочать системник с места на место, чтобы подключить флэшку или кабель от фотоаппарата / смартфона в порт с тыльной стороны вам надоест очень быстро. А удлинители - это лишний беспорядок на столе. И к тому же, они любят за этот самый стол падать.
Важно обратить внимание также на количество и тип разъемов SATA. Следует обращать внимание на платы, поддерживающие самую скоростную на данный момент версию - SATA 6 Гбит/с. Это не потребует переплаты - разъемы такого типа встречаются даже на совершенно бюджетных устройствах. Но один или два разъема такого типа очень хорошо скажутся на скорости работы SSD.
Наличие разъемов типа SATA Express сегодня не обязательно, но будет неплохим заделом на будущее, когда скоростные SSD с таким разъемом получат большее распространение.
В некоторых случаях неплохим бонусом окажется наличие встроенного адаптера wi-fi. Для мультимедийных ПК, живущих в гостиной под телевизором, это вообще практически необходимость, да и для большого ящика с отдельным столом может оказаться не лишним. Всё-таки с распространением смартфонов и планшетов локальные сети в домах и квартирах чаще всего реализуются именно через wi-fi: удобнее поставить один роутер / точку доступа, к которой будут подключаться разом все устройства, чем дырявить стены, прокладывая кабель.
Большинству владельцев достаточно самой простой аудиосистемы, но если у вас дома установлено нечто, отличающееся от схемы "две колонки, один сабвуфер", обратите внимание и на этот момент. Платы, позволяющие подключить системы объемного звучания типа 5.1 или 7.1, смогут серьёзно улучшить звук в фильмах и играх. Хотя самым требовательным аудиофилам, разумеется, не обойтись без дискретной звуковой карты.
Если уж речь зашла о дискретных адаптерах - оцените сразу количество, тип и расположение слотов PCI-express. Тут никакого секрета нет - всё видно на фотографиях товара. Для игрового ПК в большинстве случаев хватит одного разъема x16, поскольку одной топовой видеокарты более чем достаточно для игр в актуальных разрешениях. Платы с двумя слотами x16 нужны в том случае, если предполагается строить SLI/Crossfire, но здесь нужно убедиться, что слоты могут работать в режие "8+8" или "16+16 линий". В режиме "16+4" SLI просто не заработает, а геймплей при использовании "неполноценного" Crossfire будет далёк от комфортного.
Платы с тремя и более разъемами PCI-e x16 необходимы только в случае использования каких-либо редких и узкоспециализированных плат расширения. Установка же в систему более двух видеокарт лишена смысла. К тому же, в последних поколениях (GeForce 1000) видеокарт даже Nvidia официально отказалась от поддержки SLI из более чем двух ускорителей (вернее, поддержка 3-way SLI есть в бенчмарках, а в нескольких играх включается неофициальным способом...).
Более полезным будет наличие на плате разъемов PCI-e x1: если вам потребуется альтернативная звуковая или сетевая карта, либо дискретный контроллер каких-либо интерфейсов, отсутствующих на материнской плате - скорее всего, эти устройства будут использовать именно интерфейс x1.
Поддержка устаревшего интерфейса PCI на сегодняшний день для рядового ПК не обязательна, но если вы используете в работе какие-то редкие контроллеры или платы расширения - стоит предусмотреть и её.
Кроме того, следует оценить и количество разъемов для подключения корпусных вентиляторов. Конечно, сегодняшнее железо обладает преимущественно спокойным нравом, настоящих печек среди видеокарт и процессоров уже не найдёшь. И всё же, было бы неплохо, если бы плата позволяла подключить все корпусные вертушки и управлять их оборотами без лишних переходников и реобасов.
Рекомендация №8: Безусловно, иногда во главе угла стоит экономия, и на многие моменты приходится закрывать глаза, лишь бы быстрее собрать ПК и уложится в бюджет. И тем не менее, чем лучше будет оснащена ваша материнская плата - тем удобнее будет эксплуатация ПК. Причем, опять же, не обязательно брать именно топовые версии - иногда даже бюджетные модели способны предложить интересный набор интерфейсов и разъемов, достаточно лишь тщательно подойти к выбору.
Возможности разгона
Если вы рассматриваете материнскую плату под платформу, позволяющую разгонять центральные процессоры - согласитесь, было бы неплохо выбрать ту, которая позволит достичь больших значений и как результат - получить большую производительность. Немного тщательного анализа в этом случае может окупиться многократно, а пренебрежение к информации - наоборот, привести к бесполезным тратам.
Рекомендация №9: Выбирая "оверклокерскую" материнскую плату - ориентируйтесь прежде всего на обзоры на авторитетных ресурсах. Разумеется, следует помнить, что в разгоне всё зависит от возможностей конкретного экземпляра процессора, но если у нескольких авторов на нескольких источниках одна плата позволила добиться большей частоты, чем её аналоги - это явный сигнал к покупке.
Критерии и варианты выбора:
Согласно сказанному выше, материнские платы из каталога DNS можно ранжировать следующим образом:
Для неттопа в кастомном корпусе, домашнего файлового сервера, CarPC или мультимедийного ПК начального уровня подойдут материнские платы формата mini-ITX под сокет AM1, либо варианты с распаянными на плате процессорами AMD или Intel. От этих платформ не стоит ждать огромной вычислительной производительности, но свои несложные задачи они решают легко и без лишних затрат энергии.
Для домашнего мультимедийного ПК, живущего в гостиной и маскирующегося под видеомагнитофон или музыкальный центр, лучше всего подойдут компактные платы под сокет АМ4, имеющие цифровые интерфейсы для вывода видео. APU для этих задач гораздо более предпочтительны, нежели комбинация из ЦПУ и дискретной видеокарты: когда процессор и видео живут под одной крышкой, компьютер можно сделать меньше, а нагрев будет ниже. Последнее для компактной системы даже более актуально, нежели для игровой машины.
Станет ли ваш ПК офисным инструментом, универсальным домашним помощником, топовой игровой машиной или рабочей станцией за разумные деньги - зависит в первую очередь от выбранного процессора. Но выбирать необходимо из двух вариантов: либо socket AM4, либо LGA 1151_v2. При этом для игровой машины стоит обращать внимание в первую очередь на платы, поддерживающие разгон процессора - возможность прибавить системе прыти будет вовсе не лишней.
Для исключительно офисного ПК, вероятно, более подходящим выбором будут бюджетные платы на LGA 1151_v2, не поддерживающие разгон, но имеющие видеовыходы под встроенную в процессор графику. Дискретные видеокарты на большинстве офисных рабочих мест по понятным причинам не нужны, да и графика в APU под сокет АМ4 чересчур производительна для этих целей.
Для топовой рабочей станции придется выбирать материнскую плату либо под сокет TR4, либо под LGA 2066. Выбор в данном случае будет обусловлен только тем, какая из платформ проявит себя лучше в профессиональных задачах, функционал же и оснащённость самих плат, относящихся к топовому сегменту, находятся на примерно сопоставимом уровне.
30 ноября 2016 г. 09:37146481
22club.dns-shop.ru
Устройство процессора — основные характеристики процессора
Приветствую вас уважаемые читатели. Сегодня я решил рассказать Вам о центральном мозге любого компьютера - процессоре.Из статьи вы узнаете про устройство процессора и его основные характеристики.Данная статья будет первой в цикле публикаций про центральный процессор компьютера. Те, кто подпишутся на обновления блога, наверняка первыми узнают, о следующих публикациях про процессор и гарантировано узнают, на что обращать внимание при выборе процессора для своего ПК.
Центральный процессор компьютера
Центральный процессор (ЦП; также центральное процессорное устройство - ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство; разг. — проц, камень) — это электронный блок, схема, исполняющая инструкции (код) программ, главная часть аппаратного обеспечения компьютера. Процессор можно сравнить с мозгом человека. Он управляет другими частями компьютера и обрабатывает большие объемы информации. На рынке производства процессоров уже давно лидируют 2 компании. Это Intel и AMD. Есть конечно и другие, но они не дотягивают пока до лидеров.
Устройство процессора
Из чего состоит процессор? Внешне процессор представляет собой плату (чип) с большим количеством контактов. Размером где то 7х7 см. Сторона, где нет контактов плоская. Казалось бы, просто кусок какого то металла с примесью пластика. На самом деле это высокотехнологичный продукт, внутри которого находятся миллионы транзисторов, имеющих сложнейшую микроструктуру.
Процесс изготовления процессоров
Основным материалом для изготовления процессоров является кремний. Кремний очищается и уже потом из него создают кристалл определенной формы, который в дальнейшем служит основой микропроцессора. Далее на этот кристалл, через специальные маски поочередно наносятся слои проводников, изоляторов и полупроводников т.е. транзисторов. Ширина таких транзисторов исчисляется в десятках нанометров (нм), тогда как толщина человеческого волоса 50 000 нм. Чем больше транзисторов удается нанести, тем мощнее процессор. Современные супер мощные процессоры содержат до 1 млрд транзисторов. Данный метод нанесения называется литографией.Дальше кристалл помещается на текстолит, на обратную сторону которого выводятся контакты для подсоединения к материнской плате.
Архитектура процессора
Процессоры год от года эволюционируют. Совершенствуются технологии производства, а также внутренняя структура процессора. Изменяется количество входящих транзисторов, других элементов и конечно же их свойства, то есть меняется архитектура. Процессоры изготовленные по одинаковым принципам называют процессорами одной архитектуры. На данный момент существует несколько архитектур:
- Архитектура фон Неймана. Данная архитектура была придумана Джоном фон Нейманом еще в далеком 1946 году. Большинство современных процессоров для ПК используют последовательную обработку данных, изобретённую Джоном фон Нейманом.В данной архитектуре данные и инструкции хранятся в одной и той же памяти.
- Конвейерная архитектура — была придумана для повышения быстродействия процессора, но и в ней есть факторы, которые её замедляют. Отличие данной архитектуры в том, что для исполнения каждой команды выполняется определенное количество однотипных операций.
- Суперскалярная архитектура способна исполнять несколько операций за один такт процессора путём увеличения исполнительных устроств. Но увеличение количества исполнительных устройств изически не безгранично. Именно это является фактором ограничивающим производительность таких процессоров.
- CISC-процессоры 3 архитектура, где используются сложные наборы команд. Например: процессоры семейства x86. Но правда в современных процессорах с CISC (Complex Instruction Set Computer) архитектурой перед исполнением, усложнённые команды разбиваются на более простые микрооперации, которые уже обрабатываются RISK ядром.
- RISC-процессоры. Reduced Instruction Set Computer — упрощенные наборы команд. Здесь используются команды с фиксированной длиной. Упрощённые команды должны сократить задержки между условным и безусловным переходом. Также, процессоры с данной архитектурой отличаются меньшим энергопотреблением и соответственно меньшим тепловыделением.
- MISC-процессоры. Minimum Instruction Set Computer — процессы используют минимальный набор команд. Практически это эволюционировавшие RISC процессоры.
- VLIW-процессоры. Very long instruction word — очень длинное командное слово. Отличительной чертой данной архитектуры является то, что исполнительными устройствами управляет планировщик (отводится короткое время), а управлением вычислительных устройств занимается компилятор (отводится значительно больше времени).
- Многоядерные процессоры. Это одни из самых распиаренных процессоров. Основаны на том, что используются два и более вычислительных ядра на одном или нескольких кристаллах в одном корпусе.
- Кэширование — это использование очень быстрой кэш памяти, где хранятся копии блоков информаци из оперативной памяти, которые вероятнее всего в ближайшее время могут понадобиться. Кэш память имеет 3 уровня, которые обозначаются L1, L2 и L3 (от англ. L — Level). Наиболее быстродействующей является кэш память 1 уровня, но при этом она имеет и наименьший объём памяти. 2 и 3 последовательно и медленнее и объёмом соответственно больше. Кэш память 3 уровня наиболее медленная, но все же в разы быстрее ОЗУ.
- Гарвардская архитектура. От архитектуры фон Неймана она отличается тем, что данные хранятся в разной памяти
- Параллельная архитектура. Главным недостатком Архитектуры фон Неймана было то, что она является последовательной, то есть для обработки данных либо команды требовалось каждый его байт пропустить церез центральный процессор, даже если над всеми байтами необходимо было провести идентичные операции. Процессоры с параллельной архитектурой позволяют преодолеть данный недостаток. Такие процессоры используются в основном в суперкомпьютерах.
Основные характеристики процессора
- Количество ядер процессора. Данная характеристика процессора является чуть ли не самой главной в наше время. Многоядерные процессоры как я уже писал выше имеют два или более вычислительных ядра на одном кристалле или в одном корпусе. Чем больше ядер тем производительнее процессор. Многоядерность — это одно из перспективных направлений развития процессоров. Есть уже прототипы 100 ядерных процессоров.
- Размер кэша 2 и 3 уровня. Кэш память 3 уровня быстрее чем оперативная память в разы, не говоря уже о кэш памяти 2 уровня. Объём кэш памяти L1 практически одинакова на всех профессорах. А вот от объема кэш памяти 2 и 3 уровня зависит очень сильно производительность процессоров. Чем больше кэш память процессора, тем лучше.
- Тактовая частота процессора. Данная характеристика процессора определяет количество операций выполняемых им за одну секунду. Значит чем выше трактовая частота тем производительнее проц.Скорость шины процессора. Данный показатель характеризует скорость обмена данными процессора с остальными устройствами через материнскую плату. Измеряется в мегагерцах.
- Количество потоков. Все современные процессоры имеют потоки. Эта технология называется Hyper Treading (англ. hyper-treading — гиперпоточность). Обозначается обычно как HT. Данная технология позволяет включить в работу бездействующие (простаивающие) ресурсы процессора. За счет этого увеличивается производительность процессора при некоторых рабочих нагрузках.
- Энергопотребление процессоров или TDP. Termal Design Point - это показатель потребления энергии, а также тепловыделения процессора. TDP измеряется в Ваттах (Вт). "Холодными" считаются процессоры с TDP до 100 Вт. Холодные процессоры легче всего разогнать, то есть с помощью определенных изменений настроек системы увеличивается производительность процессора на 10-30%. Проблему с "горячими" процессорами можно легко решить установкой мощной системы охлаждения. Тепловыделение и энергопотребление процессора зависят от техпроцесса, количества ядер и тактовой частоты процессора. С TDP тесно связано понятие "рабочая температура процессора". Это максимальная температура кристалла процессора, при которой он способен нормально работать. Обычно это 85 °С
- Тип и максимальная скорость поддерживаемой ОЗУ. Современные процессоры поддерживает оперативную память типа DDR4. Но появилась такая память совсем недавно. Самой распространенной пока является все таки память DDR3
- Встроенное видеоядро и его производительность. Современные топ процессоры, помимо вычислительных ядер имеют свои встроенные графические ядра, выполняющие роль видеокарты, мощности которой хватает чтоб смотреть фильмы и играть в слабые (в плане графики) игры.
Вот, пожалуй все, что я хотел Вам рассказать про устройство процессора. Статья получилась объемной, а главное содержательной. Про отдельно взятые характеристики процессора мы еще поговорим отдельно в следующих публикациях. Советую вам закинуть сайт в закладки либо подписаться на обновления по электронной почте.С уважением команда проекта pc-assistent.ru
pc-assistent.ru
Характеристики центрального процессора
Процессор является очень высокотехнологичным устройством, он по праву считается «мозгом» любого компьютера. В одной из предыдущих статей мы с вами подробно рассмотрели устройство центрального процессора (CPU) компьютера. Но, как и любой другой компонент, центральный процессор имеет множество параметров. И сегодня я предлагаю в подробностях рассмотреть характеристики центрального процессора.
Техпроцесс
Итак, техпроцесс. Современные процессоры состоят из огромного числа транзисторов, размещенных на маленьком кремниевом кристалле. Чем больше транзисторов — тем мощнее в итоге получается процессор. Высокой плотности монтажа удается достичь за счет многослойной структуры готового кристалла процессора. Процесс очень напоминает фотолитографию (когда проявляют фотопленку, свет проходит через негатив и создает изображение на фотобумаге).
Современные технологии позволяют создавать транзисторы размером всего 22 нанометра и даже меньше! Для сравнения, толщина человеческого волоса около 50000 нм. Со временем техпроцесс будет только уменьшаться, что позволит создавать еще более мощные ЦП, такая тенденция прослеживается уже сейчас. Чем меньше техпроцесс, тем больше транзисторов можно разместить на одном кристалле, и тем мощнее в итоге будет процессор, вот так.
Архитектура
Архитектура напрямую определяет внутреннюю конструкцию процессора (схему кристалла). В рамках одной архитектуры процессоры могут иметь различные характеристики: кэш (об этом ниже), техпроцесс и т.д. Обычно о таких процессорах (с одной архитектурой, но разными характеристиками) говорят, что они имеют разные ядра. По сложившейся традиции компании-производители ЦП дают ядрам различные имена, чтобы было проще ориентироваться.
Примечательно, что компания Intel в качестве названия своих разработок использует географические названия мест (гор, городов, рек), которые находятся неподалеку от места производства. А вот за AMD такого замечено не было...
Например, cpu микроархитектуры Intel Core выпускались с разными ядрами: Conroe, Merom, Kentsfield, Wolfdale, Yorkfield и др. Ядро микропроцессора определяет его 3 важнейшие характеристики: тактовую частоту, частоту шины FSB и сокет (разъем). Кроме того, сами ядра могут многократно дорабатываться, это называется «ревизии» (степпинги). В процессе таких доработок исправляются недоработки или слабые места в конструкции, уменьшается тепловыделение и энергопотребление.
Ядра
Количество вычислительных ядер — еще одна характеристика, чем оно больше, тем, соответственно, лучше. Все существующие компании-производители процессоров уже давно пошли по пути увеличения количества ядер, размещенных на одном кристалле. На сегодняшний день уже трудно найти модели с количеством ядер менее двух. Многоядерность — как способ повышения производительности признана самым перспективным направлением развития процессоров.
Однако, важно понимать, что эффективность (производительность) работы ядер различных моделей ЦП может существенно отличаться. К тому же, далеко не все существующие на сегодняшний день приложения (особенно старые) оптимизированы для работы с множеством ядер, и по умолчанию могут использовать лишь какое-то одно из них. А поскольку у многих многоядерных cpu тактовая частота каждого ядра меньше, чем у одноядерных моделей, то в таких приложениях даже может наблюдаться снижение производительности.
Впрочем, в большинстве случаев эта проблема легко решается, путем установки специальной программы (CPU control, например), которая позволяет принудительно задействовать все или несколько конкретных ядер, которые вы вольны выбирать сами. К слову, у меня был такой случай, когда некая «Nfs Undercover», казалось бы — 2008 года (когда у многих уже были двухъядерные модели CPU), отказывалась работать со всеми 4 ядрами моего intel core 2 quad q8400 и использовала лишь одно из них, но эта программа все исправила.
Прежде чем продолжить, хотелось бы немного рассказать об основных производителях центральных микропроцессоров. Их, как ни странно, всего 2 — Intel и Amd (прямо как левая и правая палочка «Twix»). И хотя этим двум гигантам по разным оценкам принадлежит порядка 92% всех произведенных на сегодняшний день процессоров, доли этих компаний на рынке совсем не равные, как это может показаться — Intel принадлежит около 75-80%. Остальные 8% продукции — узкоспециализированные ЦП, как, например, для мобильных устройств.
В последнее время доля AMD на рынке микропроцессоров возросла и продолжает расти, за счет игровых приставок Xbox One и PlayStation 4 — где успешно применяются их CPU.
Раз уж мы заговорили про ядра, то будет не лишним упомянуть про такое понятие, как — «многопоточность». Количество ядер процессора и количество потоков не обязательно должно совпадать. Так, например, знаменитый микропроцессор Intel Core i7 с технологией «Hyper-Threading» имеет на «борту» 4 ядра, однако работает в 8 потоков — что дает ему очень хорошую производительность, даже большую, нежели у некоторых 6-ядерных конкурентов.
Многопоточность, в случае с современными 4-ядерными cpu это 8 потоков, позволяет условно разделить обработку приложения на 2 части, то есть обе части приложения выполняются всеми ядрами одновременно (параллельно, если хотите). Такая технология позволяет ощутимо увеличить производительность в некоторых специфичных приложениях, которые «заточены», или другими словами, оптимизированы для этой технологии.
В случае со старыми приложениями, либо просто не оптимизированными для многопоточности, может наблюдаться обратный эффект — снижение производительности. Поэтому в BIOS материнской платы предусмотрена функция отключения гиперпоточности у процессора тогда, когда вам это будет необходимо. Многопоточность будет очень полезна при рендеринге видео или архивации большого объема данных.
Частота CPU
Тактовая частота процессора — количество операций (тактов) в единицу времени, а конкретнее — в секунду. Этот параметр идет «рука об руку» с другой не менее важной характеристикой — частотой шины FSB, о которой речь пойдет чуть ниже, и напрямую от нее зависит. Чем выше частота ЦП — тем он производительней, однако, подобная зависимость прослеживается только в рамках одной «линейки» (или по-другому — модельного ряда, как, например, все cpu intel core 2 quad), поскольку кроме тактовой частоты на производительность влияют ряд других параметров.
Частота шины FSB. Эта шина представляет из себя набор сигнальных линий, по которым данные поступают в микропроцессор, а также выходят из него. Частота этой шины пропорциональна тактовой частоте процессора, а именно — чем выше частота шины, тем более высокой может быть частота процессора в итоге. К слову, некоторые начинающие (и не только) оверклокеры используют этот прием, а именно — поднимают частоту шины FSB («разгоняют» ее), увеличивая тем самым тактовую частоту процессора.
Существует несколько направлений «разгона» процессора компьютера, можно разгонять «по шине», «по множителю», «по напряжению» и т.д.. Разгон «по шине» чреват тем, что одновременно с процессором «разгоняется» и некоторое другое железо компьютера, включая оперативную память, которая может перестать работать при превышении порога максимальной рабочей частоты памяти. Также, если специально не фиксировать в биосе PCI разъемы, то могут «заглючить» видеокарта, sata (жесткие диски) и сетевая карта.
Кэш
Поскольку процессор очень «тесно» общается с ОЗУ, иногда он может простаивать, ожидая данные из нее. Кэш-память — это блок очень быстрой оперативной памяти, который расположен прямо на ядре процессора. Она выступает в роли буфера между ОЗУ и самим процессором, мгновенно записывая и отдавая информацию ему. Существует несколько «уровней» такой памяти: кэш первого уровня L1, L2 и L3. Кэш-память первого уровня считается самой быстрой и по скорости выигрывает у обычной ОЗУ.
Следствием применения кэш-памяти является увеличение быстродействия. Чем больше объем кэша любого уровня — тем лучше. Однако кэш-память первого уровня L1, как правило, обладает небольшим объемом (по современным меркам) — всего до 128 кб. Кэш-память второго уровня L2 выполняет все те же операции, что и L1, однако, обладает худшим быстродействием, но большим объемом (до 16 мб).
В случае с многоядерными процессорами размер кэша первого уровня указывается только для одного ядра. Для кэш-памяти второго уровня указывается суммарный объем.
Чем больше размер кэша, тем больше данных в него можно записать, однако тем медленнее процессор их оттуда будет «доставать». Поэтому и придумали разделение по уровням. Думаю, вы уже догадались, что кэш L3 будет иметь самый большой объем из всех и самое худшее быстродействие. Но по факту, кэш L3 встречается далеко не во всех процессорах, а только в самых мощных дорогих решениях, а также в серверных версиях, где он действительно нужен. Большинство же процессоров имеют только два уровня кэша, коих, впрочем, хватает.
Тепловыделение
TDP (Вт) — показатель, характеризующий тепловыделение (нагрев) процессора во время его работы. По TPD можно косвенно судить об энергопотреблении cpu, но не стоит их приравнивать друг к другу, как это довольно часто бывает, ведь потребляемая мощность процессора тоже измеряется в «Вт». Но процессор не может выделять в виде тепла столько же энергии, сколько к нему подвели, и уж тем более — отдавать больше энергии, то есть вырабатывать ее. Поэтому TDP всегда будет меньше на несколько Ватт.
В случае с мои процессором (core quad q8400) TDP составляет 95 Вт, а энергопотребление — 136 Вт. На величину TDP очень сильно влияет техпроцесс и частота ядра процессора (в меньшей степени). Чем больше техпроцесс (нм), тем сильнее будет греться процессор. То же самое актуально и для частоты. TDP нужен еще для того, чтобы оценить — какой мощности кулер необходимо установить в систему, чтобы обеспечить эффективное охлаждение.
Учтите, что разные производители по разному определяют величину TDP, поэтому сравнение уместно только в рамках одного производителя процессоров.
Видеокарта в процессоре
Кроме обычных нескольких ядер в некоторых моделях процессоров иногда можно встретить еще одно «ядро», отвечающее только за вывод изображения на монитор, то есть — миниатюрная «видеокарта», расположенная прямо внутри ЦП. Как правило, ими оснащаются все «топовые» процессоры и большинство процессоров среднего ценового сегмента.
Конечно, производительность таких видео-ядер не идет ни в какое сравнение с полноценными видеокартами, однако для серфинга в интернете и просмотра фильмов вполне сгодится. Ими обычно комплектуются офисные компьютеры различных организаций, ноутбуки и нетбуки, что позволяет сэкономить на приобретении отдельной дискретной (полноценной) видеокарты.
Прослеживается и такая связь: обычно, чем дороже процессор, тем более производительное видео-ядро в нем установлено. В самых мощных моделях (core i7, например) мощность графического ядра настолько высока, что позволяет играть в современные игры на средних, средне-низких настройках графики, что по уровню вполне соответствует некоторым бюджетным видеокартам.
При всем этом, в процессе построения картинки у процессора отбирается часть вычислительной мощности и резервируется некоторый объем ОЗУ в качестве видеопамяти.
Сокет
Socket cpu представляет из себя разъем (гнездо) на материнской плате компьютера, в который и устанавливается процессор. Соответственно — это «гнездо» должно быть рассчитано на установку в него процессора определенных размеров (длины, ширины) с определенным количеством контактов на нижней части. Если вы планируете сделать апгрейд своего компьютера (поставить более мощный процессор), обязательно посмотрите какие вообще микропроцессоры поддерживает ваша материнская плата.
Подробнее о том, что такое сокет процессора уже упоминалось ранее, поэтому останавливаться на этом здесь подробно не будем. В той же статье мельком упоминалось, что сокет, помимо всего прочего, влияет на тип оперативной памяти (ddr2 или ddr3), который можно установить в материнскую плату. Например, ранее повсеместно применяемый сокет LGA 775 поддерживал только ОЗУ типа ddr2. В общем, разные сокеты соответствуют разным типам процессоров.
Компания AMD делает сокеты с длительной «поддержкой», иными словами, каждое новое поколение их процессоров не всегда требует перехода на другой сокет. С Intel дела обстоят с точностью наоборот — почти каждое новое поколение процессоров выпускается под совершенно другой сокет, из-за чего неизбежно приходится менять еще и материнскую плату.
K
Наличие этой буквы в названии процессора говорит о присутствии разгонного потенциала, то есть, иными словами, в таком процессоре уже с завода идет разблокированный множитель. Это позволяет «разогнать» ЦП без поднятия частоты FSB шины, а лишь за счет выбора коэффициента умножения (множителя). В большинстве cpu (не K) множитель заблокирован на уровне ядра. В моделях K-серии вы вольны сами выбирать значение множителя через BIOS компьютера, тем самым разгоняя ТОЛЬКО процессор, а не все остальное железо.
pc-information-guide.ru
CPU и характеристики процессора. - Компьютерные советы и хитрости
Центральный процессор
ЦП обрабатывает все инструкции, которые он получает от аппаратного и программного обеспечения, запущенного на компьютере.
Примечание
Некоторые неопытные пользователи компьютера могут неправильно называть системный блок и иногда монитор процессором, что в корне не верно.
Процессор помещается в специальное гнездо для центрального процессора на материнской плате, называемое сокетом. Процессоры нагреваются до высоких температур и поэтому снабжаются системами охлаждения и покрыты термопроводящей пастой, чтобы поддерживать рабочую температуру и стабильную работу CPU.
Чип центрального процессора обычно бывает в форме квадрата или прямоугольника и имеет один скошенный угол или выемки по бокам для правильной ориентации процессора в сокете на материнской плате. На основании чипа располагаются сотни контактных ножек, каждая из которых вставляется в соответствующее отверстие в гнезде. Однако Intel и AMD также экспериментировали с сокетами, которые были намного более крупными и располагались в разных местах на материнской плате. Кроме того, за эти годы были выпущены десятки различных типов сокетов на материнских платах. Каждый сокет поддерживает только определенные типы процессоров, и у каждого из которых собственное расположение и количество контактных ножек. В последние годы компания Intel отказалась от наличия контактных ножек на самих процессорах, они перекочевали в сокет на материнскую плату.
История центрального процессора
ЦП был впервые разработан в Intel в начале 1970-х годов с помощью Теда Хоффа и других. Первый процессор, выпущенный Intel, был 4004, он на картинке справа.
Компоненты и характеристики процессора
Основными компонентами CPU являются — ALU (Арифметико-логическое устройство), которое выполняет математические, логические и арифметические операции и CU (Блок управления), который управляет всеми операциями процессора.
В процессе развития компьютерных процессоров существенно изменились характеристики процесоров: увеличилась скорость (тактовая частота) и возможности процессора. Например, первым микропроцессором был Intel 4004, который был выпущен 15 ноября 1971 года, и имел 2,300 транзисторов и выполнил 60,000 операций в секунду. Современные же процессоры Intel, такие как на картинке, содержат сотни миллионов транзисторов и выполняют миллиарды операций в секунду.
Типы центральных процессоров
В прошлом, для идентификации компьютерных процессоров использовали числа в названии, которые напрямую указывали на такую характеристику процессора как быстродействие. Например, процессор Intel 80486 (486) был быстрее, чем 80386 (386) процессор. После введения процессора Intel Pentium (который технически был бы 80586), все центральные процессоры начинали использовать имена, такие как Athlon, Duron, Pentium и Celeron и т. д..
Сегодня, в дополнение к различным именам ЦП, в названии указывается также различная архитектура (32-разрядная и 64-разрядная). Ниже список большинства центральных процессоров для домашних или офисных компьютеров.
Примечание
существуют разные версии для некоторых из этих типов ЦП.
Процессоры AMD
- K6-2
- K6-III
- Athlon
- Duron
- Athlon XP
- Sempron
- Mobile Athlon 64
- Athlon XP-M
- Athlon 64 FX
- Turion 64
- Athlon 64 X2
- Turion 64 X2
- Phenom FX
- Phenom X4
- Phenom X3
- Athlon 6-series
- Athlon 4-series
- Athlon X2
- Phenom II
- Athlon II
- E2 series
- A4 series
- A6 series
- A8 series
- A10 series
Процессоры Intel
- 4004
- 8080
- 8086
- 8087
- 8088
- 80286 (286)
- 80386 (386)
- 80486 (486)
- Pentium
- Pentium MMX
- Pentium Pro
- Pentium II
- Celeron
- Pentium III
- Pentium M
- Celeron M
- Pentium 4
- Mobile Pentium 4-M
- Pentium D
- Pentium Extreme Edition
- Core Duo
- Core 2 Duo
- Core 2 Quad
- Core i3
- Core i5
- Core i7
Серия AMD Opteron и серия Intel Itanium и Xeon — центральные процессоры, используемые в серверах и высокопроизводительных рабочих станциях.
Некоторые мобильные устройства, как смартфоны и планшеты, используют центральные процессоры ARM. Эти центральные процессоры меньше в размере, требуют меньшего количества питания и вырабатывают меньше тепла.
komp.site
Особенности характеристик процессора или основные параметры CPU
Зная характеристики процессора, можно разложить его по полочкам и адекватно оценить вычислительную производительность будущей системы. Именно поэтому, очень важно хорошо разбираться во всех основных характеристиках процессоров.
Данная статья будет вводным материалом, где будут перечислены все основные параметры CPU с кратким описанием каждого. Для более подробного ознакомления с какой-либо характеристикой, Вам просто необходимо будет перейти по нужным ссылкам, где в отдельных статьях будет подробно расписано про каждый из пунктов.
Сразу оговорюсь: некоторым расскажу, а некоторым напомню, одно простое правило комплексности характеристик. То есть, к выводам относительно производительности того, или иного процессора нельзя подходить с точки зрения лишь одной характеристики. К примеру, утверждение «лучше тот процессор, у которого частота больше», уже не работает в силу появления понятия многоядерности и других факторов. Точно так же, нельзя выбирать процессор по количеству ядер, ведь есть и другие не менее важные критерии. Так что, настоятельно рекомендую смотреть на все характеристики, и оценивать процессор по всем параметрам сразу. Итак, давайте, пожалуй, больше конкретики, поэтому подъезжаем к конкретным основным характеристикам процессоров.
1. Многоядерность процессора
Эта характеристика, последние несколько лет, является одной из наиболее важных в сфере центральных процессоров, но не решающей, как я уже упоминал выше. Уже давно прошла эра одноядерных процессоров, поэтому сейчас стоит выбирать многоядерные процессоры (одноядерные еще надо постараться найти). Соответственно, количество ядер нужно подбирать, под конкретные задачи. К примеру, для простеньких задач в виде офисных приложений и сёрфинга в интернете, двухъядерного процессора хватит более чем полностью.
А вот для таких задач как профессиональная работа с графикой, понадобится процессор с 4 или 8 ядрами – многое решает конкретная модель процессора и специфика задач. Прочитать подробно о самих принципах многоядерности вы можете в полной статье.
Читать статью: Многоядерность процессоров
2. Техпроцесс процесора
Техпроцесс производства напрямую не влияет на производительность процессора при выполнении задач, но и тут есть одно «но». Увеличение тактовой частоты или любые другие архитектурные изменения, невозможны без вноса изменений в текущий техпроцесс, так как в пределах одного семейства процессоров на одном техпроцессе, запас на наращивание тактовой частоты ограничен. В 2011-2012 годах были выпущены процессоры с техпроцессом 22нм, и всё идёт к уменьшению данных показателей. По сути 22 нм - это ширина базы транзисторов, на которых преимущественно построены процессоры. Логичен тот факт, что чем меньше будет ширина базы транзистора, то тем больше их можно будет «впихнуть» на кристалл, а значит - производительность процессора увеличится. На данный момент процессоры AMD имеют в своем распоряжении техпроцесс 32нм, интел - 22 нм.
Читать статью: Техпроцесс процессоров
3. Тактовая частота процессора
Наиболее известная характеристика процессоров – это тактовая частота. Частотой процессора определяется количество производимых вычислений в единицу времени и от неё напрямую зависит производительность процессора. Частота современных центральных процессоров колеблется от 1 до 4 ГГц, но не стоит смотреть только на тактовую частоту процессора, следует обращать внимание и на другие параметры. Безусловно частота процессора до сих пор является важным параметром, рекомендую почитать полную статью по данной характеристике.
Читать статью: Тактовая частота процесора
4. Объём кэш-памяти
Кэш современных процессоров значительно поддает им производительности. Кэш – это сверхбыстрая энергозависимая память, которая позволяет процессору быстро получить доступ к определённым данным, которые часто используются.
Различают кэш-память нескольких уровней:
- кэш первого уровня является самым быстрым, но при этом его размер очень ограничен;
- кэш второго уровня чуть медленнее, но при этом немного больше по объёму.
- также и с кэш-памятью третьего уровня, которая немного медленнее кэша первого и второго уровня, но всё равно значительно быстрее оперативной памяти. Сейчас размер кэш-памяти третьего уровня достигает 12-16 Мбайт и более. Ограниченность объёма кэш-памяти проявляется в её дороговизне из-за сложного процесса производства.
Читать статью: Кэш-память процессора
5. Сокет процессора
Сокетом, является разъём на материнской плате, в который устанавливается сам процессор. Опять же, сокет не является прямой характеристикой процессора, но данный фактор настолько важен, что мы не можем о нем не вспомнить. Очень важно, чтобы сокет процессора и сокет материнской платы совпадали, ибо процессор который позиционируется под сокет LGA 1155, никак не будет работать на материнской плате с сокетом LGA 775, об этом нужно помнить, и всегда при подборе комплектующих сверять данные параметры. Настоятельно рекомендую ознакомиться с полной статьей о сокетах процессоров.
Читать статью: Сокет процессора
Пока что это всё, некоторые другие характеристики, по мере написания подробных статей, будут добавлены в ближайшем будущем. Но вы можете ознакомится и с другими материалами, которые относяться к компьютерным процессоррам, например, как наносить термопасту на процессор.
we-it.net