Как СОЗНАНИЕ управляет материей. Квантовая физика создатель
Квантовая физика: как сознание управляет материей
С точки зрения квантовой физики, наше физическое тело под воздействием нашего разума способно совершить квантовый скачок из одного биологического возраста в другой, не проходя через все промежуточные возрасты
Квантовая физика радикально изменила наши представления о мире. Согласно квантовой физике мы можем влиять своим сознанием на процесс омоложения!
Почему это возможно? С точки зрения квантовой физики, наша действительность – источник чистых потенциальных возможностей, источник сырья, из которого состоит наше тело, наш разум и вся Вселенная.Универсальное энергетическое и информационное поле никогда не перестает изменяться и преобразовываться, каждую секунду превращаясь во что-то новое.
В 20 веке, во время физических экспериментов с субатомарными частицами и фотонами, было обнаружено, что факт наблюдения за течением эксперимента изменяет его результаты. То, на что мы фокусируем наше внимание — может реагировать.
Этот факт подтверждает классический эксперимент, который каждый раз удивляет ученых. Он повторялся во многих лабораториях и всегда получались одни и те же результаты.
Для этого опыта приготовили источник света и экран с двумя щелями. В качестве источника света использовалось устройство, которое «выстреливало» фотонами в виде однократных импульсов.
За ходом эксперимента велось наблюдение. После окончания опыта, на фотобумаге, которая находилась за щелями были видны две вертикальные полоски. Это следы фотонов, которые проходили сквозь щели и засвечивали фотобумагу.
Когда этот эксперимент повторяли в автоматическом режиме, без участия человека, то картина на фотобумаге изменялась:
Если исследователь включал прибор и уходил, и через 20 минут фотобумага проявлялась, то на ней обнаруживалось не две, а множество вертикальных полосок. Это были следы излучения. Но рисунок был другим.
Структура следа на фотобумаге напоминала след от волны, которая проходила сквозь щели.
Свет может проявлять свойства волны или частицы.
В результате простого факта наблюдения волна исчезает и превращается в частицы. Если не вести наблюдение, то на фотобумаге проявляется след волны. Этот физический феномен получил название «Эффект Наблюдателя».
Эти же результаты были получены и с другими частицами. Эксперименты повторялись многократно, но каждый раз они удивляли ученых. Так было обнаружено, чтона квантовом уровне материя реагирует на внимание человека. Это было новым в физике.
По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.
Материя состоит из сконцентрированной энергии — это фундаментальное открытие физики 20 века.
В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.
Для любых видов взаимодействий необходим частотный резонанс.
Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.
Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, — то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.
Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность — это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики — это творения поля.
Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?
Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:
«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.
МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ
На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.
Согласно представлениям теоретической физики — Вселенная напоминает матрешку, которая состоит из множества матрешек — слоев. Это варианты вселенных — параллельные миры. Те, что расположены рядом — очень похожи. Но чем дальше слои друг от друга слои - тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.
Все возникает из пустоты. Все находится в движении. Предметы — иллюзия. Материя состоит из энергии. Все создается мыслью.
Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами.
Все в мире наполнено энергией.
Вселенная реагирует на мысль.
Энергия следует за вниманием.
То, на чем ты фокусируешь свое внимание, начинает изменяться.
Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.
Наше тело – это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой.
Импульсы разума постоянно, каждую секунду придают телу новые формы для приспособления к меняющимся требованиям жизни.
econet.ru
Квантовая физика, Сознание управляет материей, мысли материальны
Квантовая физика радикально изменила наши представления о мире. Согласно квантовой физике мы можем влиять своим сознанием на процесс омоложения!
Почему это возможно? С точки зрения квантовой физики, наша действительность – источник чистых потенциальных возможностей, источник сырья, из которого состоит наше тело, наш разум и вся Вселенная.Универсальное энергетическое и информационное поле никогда не перестает изменяться и преобразовываться, каждую секунду превращаясь во что-то новое.
В 20 веке, во время физических экспериментов с субатомарными частицами и фотонами, было обнаружено, что факт наблюдения за течением эксперимента изменяет его результаты. То, на что мы фокусируем наше внимание — может реагировать.
Этот факт подтверждает классический эксперимент, который каждый раз удивляет ученых. Он повторялся во многих лабораториях и всегда получались одни и те же результаты.
Для этого опыта приготовили источник света и экран с двумя щелями. В качестве источника света использовалось устройство, которое «выстреливало» фотонами в виде однократных импульсов.
За ходом эксперимента велось наблюдение. После окончания опыта, на фотобумаге, которая находилась за щелями были видны две вертикальные полоски. Это следы фотонов, которые проходили сквозь щели и засвечивали фотобумагу.
Когда этот эксперимент повторяли в автоматическом режиме, без участия человека, то картина на фотобумаге изменялась:
Если исследователь включал прибор и уходил, и через 20 минут фотобумага проявлялась, то на ней обнаруживалось не две, а множество вертикальных полосок. Это были следы излучения. Но рисунок был другим.
Структура следа на фотобумаге напоминала след от волны, которая проходила сквозь щели.
Свет может проявлять свойства волны или частицы.
В результате простого факта наблюдения волна исчезает и превращается в частицы. Если не вести наблюдение, то на фотобумаге проявляется след волны. Этот физический феномен получил название «Эффект Наблюдателя».
Эти же результаты были получены и с другими частицами. Эксперименты повторялись многократно, но каждый раз они удивляли ученых. Так было обнаружено, чтона квантовом уровне материя реагирует на внимание человека. Это было новым в физике.
По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.
Материя состоит из сконцентрированной энергии — это фундаментальное открытие физики 20 века.
В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.
Для любых видов взаимодействий необходим частотный резонанс.
Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.
Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, — то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.
Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность — это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики — это творения поля.
Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?
Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:
«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.
МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ
На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.
Согласно представлениям теоретической физики — Вселенная напоминает матрешку, которая состоит из множества матрешек — слоев. Это варианты вселенных — параллельные миры. Те, что расположены рядом — очень похожи. Но чем дальше слои друг от друга слои – тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.
Все возникает из пустоты. Все находится в движении. Предметы — иллюзия. Материя состоит из энергии. Все создается мыслью.
Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами.
Все в мире наполнено энергией.
Вселенная реагирует на мысль.
Энергия следует за вниманием.
То, на чем ты фокусируешь свое внимание, начинает изменяться.
Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.
Наше тело – это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой.
Импульсы разума постоянно, каждую секунду придают телу новые формы для приспособления к меняющимся требованиям жизни.
С тоски зрения квантовой физики, наше физическое тело под воздействием нашего разума способно совершить квантовый скачок из одного биологического возраста в другой, не проходя через все промежуточные возрасты
КВАНТОВАЯ ФИЗИКА
Менский Михаил БОРИСОВИЧ — доктор физико-математических наук, профессор, главный научный сотрудник Физического института им. Лебедева РАН.
“Если понять, что мы действительно приближаемся к глобальному кризису, то для спасения человечества большинство людей должно перейти к новому сознанию, альтруистическому. В этом, собственно, и заключается спасение мира.»
— В настоящее время мы живем в ложном, постоянно ускоряющемся мире, когда сознание человека не успевает адекватно воспринимать происходящее и реагировать на него. Скажите, пожалуйста, с точки зрения концепции сознания в контексте квантовой механики можно ли объяснить все эти ускоряющиеся процессы?
Психология человека играет большую роль. В контексте психологии очень важно, разумеется, понимать, что такое человеческое сознание. И здесь совершенно неожиданно оказалось, что новое слово может сказать квантовая механика или квантовая теория в целом, так как она позволяет взглянуть на сознание совсем не так, как это кажется единственно возможным, если мы не пользуемся концепцией квантовой механики.
Oчень важные аспекты сознания кажутся настолько странными, что многие люди считают, будто они вообще противоречат естественным наукам. Необычные свойства сознания, которые обычно называются мистическими, объясняются тем, что наш мир на самом деле квантовый.
Квантовый подход к феномену сознания, объяснение с точки зрения квантовой механики того, что такое сознание, не новы. Новым этот подход кажется потому, что лишь в последнее время его стали интенсивно изучать и развивать, хотя впервые он был предложен почти тогда же, когда произошло становление квантовой механики. Но только сейчас мы готовы к тому, чтобы осваивать наследие Юнга и Паули. Парадокс Эйнштейна-Подольского-Розена и теорема Белла показывают, что квантовый мир отличается от того, что мы себе представляем, если используем классическую физику, и каким он предстает нашей интуиции, и отличия эти радикальны. И теорема Белла, и парадокс Эйнштейна-Подольского-Розена это показывают. Особенно, если опираться на опыты Аспека.
Но как описать этот мир, чтобы учесть, не потерять, его квантовые свойства? В этом помогает интерпретация Хью Эверетта. В ней предполагается, что отличие квантового мира от классического можно описать следующим образом: квантовый мир многолик — у него много классических лиц или классических проекций. Таким образом, если посмотреть на квантовый мир с одной стороны, мы увидим одну классическую картину, если с другой – будет совершенно иная классическая картина.
Может ли быть, например, что сейчас небо, скажем, светлое – это одна картинка нашего мира, и небо в тучах – это другая картинка. А может ли быть состояние, которое включает в себя оба эти аспекта, то есть, является их суперпозицией? С точки зрения классической физики это бессмысленно, но поскольку наш мир квантовый, то это возможно.
– Что такое квантовая концепция сознания? Может ли человек, опираясь на эти знания, по-новому научиться воспринимать происходящие события?
Необходимо отметить два основных свойства сознания, которые удается объяснить в рамках концепции Эверетта: первое – сверхинтуиция, и второе — управление субъективной реальностью. Очень странные свойства, потому что, например, сверхинтуиция – это получение информации “ниоткуда”(не из привычных источников от ред.), то есть, получение такой информации о нашем мире, которую в сознательном состоянии получить нельзя.
В сознательном состоянии мы видим только одну классическую картинку мира и не способны видеть одновременно две. А на самом деле существует не только две, а огромное количество картинок, и они лишь в совокупности описывают квантовый мир полностью. Понятно, что из такой «базы данных», которая состоит из огромного количества классических картин, информации можно получить гораздо больше. А когда мы видим только одну картину, то есть, остаемся в сознательном состоянии, этой информации просто нет.
Так вот, сверхинтуиция – это способность проникнуть в квантовый мир как целое и получить информацию из всех классических картинок одновременно. А если мы мыслим в рамках одной картинки, в рамках одного классического мира, то нам кажется, что эта информация — ниоткуда, так как в этом «единственном» классическом мире этой информации нет и быть не может. Но, тем не мене, мы её получаем, потому что наш мир квантовый.
Как эту информацию получить? Физика указывает на то, что это возможно. Но представители некоторых восточных религий или восточных философий (например, йоги, буддисты и т.д.), давно научились это делать.
Это могут делать люди, прошедшие специальный психологический тренинг. И главным пунктом в этой тренировке является отключение нашего обыденного сознания, которое позволяет видеть окружающий мир в привычных образах (зрительных, тактильных, вкусовых и так далее) и поддерживать привычное мышление.
Необходимо отключить процессы привычного мышления, как бы сделать свое сознание пустым, и тогда возникает проникновение в квантовый мир. На самом деле, возможность проникновения в квантовый мир существует всегда, но яркая статическая картинка, которую мы видим перед собой, закрывает для нас «дверь» в квантовый мир, как целое, она не позволяет увидеть другие классические картинки. А вот если мы отключим свое сознание, тогда мы «увидим» другие картинки (сам механизм, позволяющий этого добиться – это психологическая практика.
Оказывается, в квантовом мире неизбежно должна быть информация помимо той, которую мы видим в своем сознательном состоянии. Эверетт допускает, что и макроскопически различимые состояния могут быть в суперпозиции. Что это значит? Значит, нельзя сказать, что мозг находится в том состоянии, которому соответствует первая картинка, или что он находится в состоянии, которому соответствует вторая картинка. Нет, он находится в суперпозиции, соответствующей обеим картинкам. На самом деле, в реальности их бесконечно много.
Для меня, для моего сознания, для моего восприятия другие люди – это внешние объекты, это часть того мира, который по отношению ко мне является внешним. Но вот, если мы всю цепочку проанализируем, перейдем к квантовому описанию всего этого, то придем к тому, что «на самом деле», то есть, в полном описании квантового состояния мира я как часть мира и весь мир — одно целое и неделимое. Сложно отследить логику на словах, но и все другие наблюдатели тоже, как часть мира, неотделимы друг от друга.
Таким образом, в состоянии, когда обычное сознание погашено, но вместо этого возникает доступ ко всем альтернативным классическим состояниям, то есть, к квантовому миру целиком, действительно, мир и я – это одно целое.
И здесь физика нас неожиданно приводит к очень давней философской концепции: «Микрокосм: весь мир внутри человека». Философия давно пришла к этому выводу, а физика приходит к этому довольно сложным путем. Но приходит к тому же самому. И это очень интересно.
-Если мир в восприятии условен, то почему все переживают кризис, и достаточно болезненно? Ведь все определяет желание(сознание в котором находится человек от ред.) человека…
Если исключить из рассмотрения человека, а взять просто обычную природу, включая живую природу: животных, растения и т.д. — то, как говорит религия, «всем управляет Бог». А когда возник человек, то он, в религиозной терминологии, «согрешил» и взял управление на себя, решив, что он сам может определить, где добро, где зло, вместо того, чтобы пассивно подчиняться Богу, который ему укажет, что хорошо, что плохо.
На самом деле в этом есть глубокая правда: в природе всё находится в равновесии. Если, скажем, животные поедают друг друга, то это только потому, что именно в этом состоит равновесие, то есть, для того, чтобы всё живое жило, необходимо, чтобы какие-то особи умирали, в частности, и за счет такого насилия. Но в этом равновесном мире, в мире природы, нет зла во имя зла или во имя себя лично. Скажем, если одно животное убивает другое, чтобы получить пропитание, то это понятно – ему нужно жить. Но оно никогда не убивает просто потому, что убить приятно – этого нет в природе. А среди людей появилось это, так сказать, зло, которое характерно для человека.
Если, скажем, волк убивает зайца, в каком-то смысле это для зайцев даже добро, так как известно, что волки убивают слабых животных, таким образом, выживают сильные зайцы, и тем самым улучшается популяция зайцев. В каком-то смысле это добро даже для зайцев, как ни странно.
А вот человек перестал руководствоваться этим принципом абсолютного добра — добра с точки зрения всего живого. Он руководствуется какими-то более узкими интересами: в предельном случае для него существуют «только его интересы», в более широком смысле — «интересы его семьи или его нации». Это всё равно очень узкие интересы. Подход является слишком ограниченным даже тогда, когда говорят об интересах всех людей, но при этом разрушают экологию, так что при этом страдает жизнь как таковая, то есть, всё живое, рассматриваемое как целое.
Переход к альтруистической идеологии, к альтруистическим принципам, когда принимаются во внимание интересы всего живого — это на самом деле насущная проблема человечества, и без этого оно не выживет. Оно выживет еще некоторое время, но в принципе, такой переход неизбежен.
Очень многое сейчас указывает на то, что человечество идет постепенно к глобальному кризису, который может привести мир к гибели. И если ничто не изменится, то этот кризис неизбежен.
Что же должно измениться, чтобы кризиса не было?Некоторые мыслители давно поняли, что должно измениться сознание людей. Сознание, то есть (я использую термин в данном случае в более широком смысле) принципы, которыми руководствуются люди, должно стать другими – альтруистическими. Вопрос только в том, как это сделать.
И вот здесь, как раз, квантовая концепция сознания может сказать нечто новое. Будем отталкиваться от того, что если всё останется в нынешнем состоянии, а сознание большинства людей, как и прежде — индивидуалистическим, то кризис неизбежен. Почему? Причина очень проста: материальные, технологические, технические средства качественно растут, а человеческие принципы остаются прежними, то есть, люди направляют эти огромные средства, которые иногда теперь оказываются в распоряжении даже отдельного индивида, на свое личное благо, а значит — во вред экологии и человечеству. Именно это приводит к кризису. Значит, чтобы не допустить кризис, нужно изменить сознание людей.
– Как люди могут перейти к альтруистическому сознанию?
Квантовая концепция сознания говорит о том, что человек обладает способностью к сверхинтуиции, то есть, он может увидеть то, что в обычной жизни не видит. Для этого ему погрузиться в такое состояние, в котором он просматривает все альтернативы. Тогда, как бы спонтанно, ниоткуда, ему приходит озарение, и это озарение. Это и есть абсолютная истина, и ошибки тут быть не может.
Разумеется, это справедливо и в моральных вопросах. Задаваясь вопросами о добре и зле, о том, что хорошо и что плохо, и погружаясь в такое состояние, человек познает истину: он найдет правильные ответы на эти вопросы, и, в какой-то мере, это поможет ему сделать правильный выбор.
Если понять, что мы действительно приближаемся к глобальному кризису, то для спасения человечества большинство людей должно перейти к новому сознанию, альтруистическому. В этом, собственно, и заключается спасение мира.
Человек должен внести свой посильный вклад в то, чтобы мир стал лучше, но не вся ответственность лежит на нём, и не вся ответственность лежит на других людях, потому что сама природа устроена так, что реализуется «лучший из миров». В этом, если говорить очень кратко, состоит принцип жизни, сама суть того, что такое жизнь с точки зрения квантовой физики. Мне не хотелось бы в этой беседе говорить подробно на эту тему, но, в некотором смысле, принцип жизни подразумевает нечто, что в религии понимается под словом «бог».
Рассмотрим «эвереттовские сценарии», то есть цепочки альтернатив, по одной для каждого момента времени. Жизнь — это совокупность сценариев с хорошим концом. Поэтому, если человек принадлежит «потоку жизни», то он принадлежит к одному из тех сценариев, которые, в общем, ведут к добру. Конечно, какие-то из них отклонятся и придут ко злу, но от человека зависит, чтобы он увидел именно те сценарии, которые ведут к добру. Само же существование этих хороших сценариев гарантировано.
– Как можно объяснить влияние людей друг на друга с точки зрения «Квантовой концепции сознания»?
До сих пор я рассуждал в терминах: я (человек) и окружающий мир. В окружающий мир включены, в частности, и другие люди, но это всё — вне меня. А что нам мешает, на самом деле, нескольких людей объединить и рассматривать их вместе, а всё остальное — как внешний мир? – Ничто не мешает. И в принципе, иногда эта концепция будет правильной, продуктивной. Она полезна, например, в том случае, если между людьми существуют очень глубокие связи — связи, заработанные в течение жизни: эти люди очень тесно общались между собой, объединены общими взглядами, действиями и так далее, — то есть, они единомышленники не по своим интересам, а по внутренним критериям. Тогда их можно рассматривать как своего рода сверх-организм, то есть, рассматривать не только индивидуально каждого (индивидуальности тоже будут), но и как некую общность. Теперь можно говорить о сознании этой общности людей. Всё, что я говорил до сих пор, приложимо уже к нескольким людям в целом.
Например, очень хорошая, дружная семья будет таким сверх-организмом; но это может относиться и к более широким общностям людей.
Можно, например, рассмотреть в качестве примера сверх-организмов сообщества буддистов, которые иногда устраивают общие молебны – собираются в большом количестве в какой-то местности и молятся за то, чтобы в этой местности был мир, чтобы прекратилась война. Считается, что это влияет на умиротворение. Это не обязательно неизбежно приводит к умиротворению, но это улучшает ситуацию.
– Почему человек, выбирая из двух альтернатив (добро и зло), в итоге выбирает «зло», и, собственно, оказывается в мире, в котором правит «зло» (эгоизм)?
Нам не повезло, мы живем в неблагоприятное для нашей страны время, и поэтому кажется, что слишком часто человек выбирает зло. Почему он его выбирает? По очень простой причине. Ему кажется, что выбрать зло для него выгодно, и в каком-то смысле это верно: выбирая зло, он получает преимущество мгновенно, сейчас, на короткое время, хотя, если посмотреть длительную перспективу, может быть, это обернется для него как раз неблагоприятными последствиями.
В таких государствах, которые имеют больший опыт рационального общественного устройства, в которых лучше организовано общество, люди более широко смотрят на мир, на свою судьбу. Они понимают, что если они нарушат порядок, ну, предположим, нарушат закон и получат преимущества сейчас для себя, то это не значит, что другие будут этот закон соблюдать. Если я его нарушаю, значит, существует большая вероятность, что другие тоже нарушают. А это для меня невыгодно. Невыгодно, чтобы все нарушали закон. Поэтому я тоже его не нарушаю.
Помните, всего лишь изменяя свое сознание – мы вместе изменяем мир!
a-chirkov.ru
КВАНТОВАЯ МЕХАНИКА. ИНОЙ ВЗГЛЯД | Наука и жизнь
1. Мысленный эксперимент по измерению компонент спина (собственного количества движения) электрона с помощью некоего устройства - "черного ящика".
2. Последовательное измерение двух компонент спина. Измеряется "горизонтальный" спин электрона (слева), потом "вертикальный" спин (справа), потом снова "горизонтальный" (внизу).
3А. Электроны с "правым" спином после прохождения через "вертикальный" ящик движутся в двух направлениях: вверх и вниз.
3Б. В том же эксперименте на пути одного из двух пучков поставим некую поглощающую поверхность. Далее в измерениях участвует лишь половина электронов, и на выходе половина их имеет "левый" спин, а половина - "правый".
4. Состояние любого объекта микромира описывает так называемая волновая функция.
5. Мысленный эксперимент Эрвина Шредингера.
6. Эксперимент, предложенный Д. Бомом и Я. Аароновым в 1959 году, должен был показать, что магнитное поле, недоступное для частицы, влияет на ее состояние.
‹
›
Чтобы понять, какие трудности испытывает современная квантовая механика, нужно вспомнить, чем она отличается от классической, ньютоновской механики. Ньютон создал общую картину мира, в которой механика выступала как универсальный закон движения материальных точек или частиц - маленьких комочков материи. Из этих частиц можно было построить любые объекты. Казалось, что механика Ньютона способна теоретически объяснить все природные явления. Однако в конце прошлого века выяснилось, что классическая механика неспособна объяснить законы теплового излучения нагретых тел. Этот, казалось бы, частный вопрос привел к необходимости пересмотреть физические теории и потребовал новых идей.
В 1900 году появилась работа немецкого физика Макса Планка, в которой эти новые идеи и появились. Планк предположил, что излучение происходит порциями, квантами. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант - фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.
В 1924 году французский физик Луи де Бройль выдвинул достаточно "безумную" идею, предположив, что все без исключения частицы - электроны, протоны и целые атомы обладают волновыми свойствами. Год спустя Эйнштейн отозвался об этой работе: "Хотя кажется, что ее писал сумасшедший, написана она солидно", а в 1929 году де Бройль получил за нее Нобелевскую премию...
На первый взгляд, повседневный опыт гипотезу де Бройля отвергает: в окружающих нас предметах ничего "волнового" как будто нет. Расчеты, однако, показывают, что длина дебройлевской волны электрона, ускоренно го до энергии 100 электрон-вольт, равна 10-8 сантиметра. Эту волну нетрудно обнаружить экспериментально, пропустив поток электронов сквозь кристалл. На кристаллической решетке произойдет дифракция их волн и возникнет характерная полосатая картинка. А у пылинки массой 0,001 грамма при той же скорости длина волны де Бройля будет в 1024 раз меньше, и обнаружить ее никакими средствами нельзя.
Волны де Бройля непохожи на механические волны - распространяющиеся в пространстве колебания материи. Они характеризуют вероятность обнаружить частицу в данной точке пространства. Любая частица оказывается как бы "размазанной" в пространстве, и существует отличная от нуля вероятность обнаружить ее где угодно. Классическим примером вероятностного описания объектов микромира служит опыт по дифракции электронов на двух щелях. Прошедший через щель электрон регистрируется на фотопластинке или на экране в виде пятнышка. Каждый электрон может пройти либо через правую щель, либо через левую совершенно случайным образом. Когда пятнышек становится очень много, на экране возникает дифракционная картина. Почернение экрана оказывается пропорциональным вероятности появления электрона в данном месте.
Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений - волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта?
Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира.
Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, что, пожалуй, наиболее странно, поведение таких физических объектов, как "измерительный прибор", или "наблюдатель", не описывается фундаментальными законами, справедливыми для прочих физических систем.
Впервые к таким выводам пришли сами основоположники квантовой теории - Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Позднее данная точка зрения, получившая название Копенгагенской интерпретации квантовой механики, была принята в теоретической физике в качестве официальной, что и нашло свое отражение во всех стандартных учебниках.
Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.
Чтобы лучше представить себе всю сложность описания квантовых явлений, проведем несколько мысленных экспериментов по измерению спина (собственного момента количества движения) электрона. Мысленных потому, что создать измерительный прибор, позволяющий точно измерять обе компоненты спина, пока что не удалось никому. Столь же безуспешными оказываются попытки предсказать, какие именно электроны поменяют свой спин в ходе описанного эксперимента, а какие нет.
Эти эксперименты включают в себя измерение двух компонент спина, которые условно будем называть "вертикальным" и "горизонтальным" спинами. Каждая из компонент в свою очередь может принимать одно из значений, которые мы также условно назовем "верхним" и "нижним", "правым" и "левым" спинами соответственно. Измерение основано на пространственном разделении частиц с разными спинами. Приборы, осуществляющие разделение, можно представить себе как некие "черные ящики" двух типов - "горизонтальный" и "вертикальный" (рис. 1). Известно, что разные компоненты спина свободной частицы совершенно независимы (физики говорят - не коррелируют между собой). Однако в ходе измерения одной компоненты значение другой может измениться, причем совершенно неконтролируемым образом (2).
Пытаясь объяснить полученные результаты, традиционная квантовая теория пришла к выводу, что необходимо полностью отказаться от детерминистского, то есть полностью определяющего состояние
объекта, описания явлений микромира. Поведение электронов подчиняется принципу неопределенности, согласно которому компоненты спина не могут быть точно измерены одновременно.
Продолжим наши мысленные эксперименты. Будем теперь не только расщеплять пучки электронов, но и заставим их отражаться от неких поверхностей, пересекаться и снова соединяться в один пучок в специальном "черном ящике" (3).
Результаты этих экспериментов противоречат обычной логике. Действительно, рассмотрим поведение какого-либо электрона в случае, когда поглощающая стенка отсутствует (3 А). Куда он будет двигаться? Допустим, что вниз. Тогда, если первоначально электрон имел "правый" спин, он так и останется правым до конца эксперимента. Однако, применив к этому электрону результаты другого эксперимента (3 Б), мы увидим, что его "горизонтальный" спин на выходе должен быть в половине случаев "правым", а в половине - "левым". Явное противоречие. Мог ли электрон пойти вверх? Нет, по той же самой причине. Быть может, он двигался не вниз, не вверх, а как-то по-другому? Но, перекрыв верхний и нижний маршруты поглощающими стенками, мы на выходе не получим вообще ничего. Остается предположить, что электрон может двигаться сразу по двум направлениям. Тогда, имея возможность фиксировать его положение в разные моменты времени, в половине случаев мы находили бы его на пути вверх, а в половине - на пути вниз. Ситуация достаточно парадоксальная: материальная частица не может ни раздваиваться, ни "прыгать" с одной траектории на другую.
Что говорит в данном случае традиционная квантовая теория? Она просто объявляет все рассмотренные ситуации невозможными, а саму постановку вопроса об определенном направлении движения электрона (и соответственно о направлении его спина) - некорректной. Проявление квантовой природы электрона в том и заключается, что ответа на данный вопрос в принципе не существует. Состояние электрона представляет собой суперпозицию, то есть сумму двух состояний, каждое из которых имеет определенное значение "вертикального" спина. Понятие о суперпозиции - один из основополагающих принципов квантовой механики, с помощью которого вот уже более семидесяти лет удается успешно объяснять и предсказывать поведение всех известных квантовых систем.
Для математического описания состояний квантовых объектов используется волновая функция, которая в случае одной частицы просто определяет ее координаты. Квадрат волновой функции равен вероятности обнаружить частицу в данной точке пространства. Таким образом, если частица находится в некой области А, ее волновая функция равна нулю всюду, за исключением этой области. Аналогично частица, локализованная в области Б, имеет волновую функцию, отличную от нуля только в Б. Если же состояние частицы оказывается суперпозицией пребывания ее в А и Б, то волновая функция, описывающая такое состояние, отлична от нуля в обеих областях пространства и равна нулю всюду вне их. Однако, если мы поставим эксперимент по определению положения такой частицы, каждое измерение будет давать нам только одно значение: в половине случаев мы обнаружим частицу в области А, а в половине - в Б ( 4). Это означает, что при взаимодействии частицы с окружением, когда фиксируется только одно из состояний частицы, ее волновая функция как бы коллапсирует, "схлопывается" в точку.
Одно из основных утверждений квантовой механики заключается в том, что физические объекты полностью описываются их волновыми функциями. Таким образом, весь смысл законов физики сводится к предсказанию изменений волновых функций во времени. Эти законы делятся на две категории в зависимости от того, предоставлена ли система самой себе или же она находится под непосредственным наблюдением и в ней производятся измерения.
В первом случае мы имеем дело с линейными дифференциальными "уравнениями движения", уравнениями детерминистскими, которые полностью описывают состояние микрочастиц. Следовательно, зная волновую функцию частицы в какой-то момент времени, можно точно предсказать поведение частицы в любой последующий момент. Однако при попытке предсказать результаты измерений каких-либо свойств той же частицы нам придется иметь дело уже с совершенно другими законами - чисто вероятностными.
Возникает естественный вопрос: как отличить условия применимости той или другой группы законов? Создатели квантовой механики указывают на необходимость четкого разделения всех физических процессов на "измерения" и "собственно физические процессы", то есть на "наблюдателей" и "наблюдаемых", или, по философской терминологии, на субъект и объект. Однако отличие между этими категориями носит не принципиальный, а чисто относительный характер. Тем самым, по мнению многих физиков и философов, квантовая теория в такой интерпретации становится неоднозначной, теряет свою объективность и фундаментальность. "Проблема измерения" стала основным камнем преткновения в квантовой механике. Ситуация несколько напоминает знаменитую апорию Зенона "Куча". Одно зерно - явно не куча, а тысяча (или, если угодно, миллион) - куча. Два зерна - тоже не куча, а 999 (или 999999) - куча. Эта цепочка рассуждений приводит к некоему количеству зерен, при котором понятия "куча - не куча" станут неопределенными. Они будут зависеть от субъективной оценки наблюдателя, то есть от способа измерений, хотя бы и на глаз.
Все окружающие нас макроскопические тела предполагаются точечными (или протяженными) объектами с фиксированными координатами, которые подчиняются законам классической механики. Но это означает, что классическое описание можно продолжить вплоть до самых малых частиц. С другой стороны, идя со стороны микромира, следует включать в волновое описание объекты все большего размера вплоть до Вселенной в целом. Граница между макро- и микромиром не определена, и попытки ее обозначить приводят к парадоксу. Наиболее четко указывает на него так называемая "задача о кошке Шредингера" - мысленный эксперимент, предложенный Эрвином Шредингером в 1935 году (5).
В закрытом ящике сидит кошка. Там же находятся флакон с ядом, источник излучения и счетчик заряженных частиц, подсоединенный к устройству, разбивающему флакон в момент регистрации частицы. Если яд разольется, кошка погибнет. Зарегистрировал счетчик частицу или нет, мы не можем знать в принципе: законы квантовой механики подчиняются законам вероятности. И с этой точки зрения, пока счетчик не произвел измерения, он находится в суперпозиции двух состояний - "регистрация - нерегистрация". Но тогда в этот момент и кошка оказывается в суперпозиции состояний жизни и смерти.
В действительности, конечно, реального парадокса здесь быть не может. Регистрация частицы - процесс необратимый. Он сопровождается коллапсом волновой функции, вслед за чем срабатывает механизм, разбивающий флакон. Однако ортодоксальная квантовая механика не рассматривает необратимых явлений. Парадокс, возникающий в полном согласии с ее законами, наглядно показывает, что между квантовым микромиром и классическим макромиром имеется некая промежуточная область, в которой квантовая механика не работает.
Итак, несмотря на несомненные успехи квантовой механики в объяснении экспериментальных фактов, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений. Одной из наиболее смелых альтернатив квантовой механики и стала теория, предложенная Дэвидом Бомом.
Задавшись целью построить теорию, свободную от принципа неопределенности, Бом предложил считать микрочастицу материальной точкой, способной занимать точное положение в пространстве. Ее волновая функция получает статус не характеристики вероятности, а вполне реального физического объекта, некоего квантовомеханического поля, оказывающего мгновенное силовое воздействие. В свете этой интерпретации, например, "парадокс Эйнштейна-Подольского-Розена" (см. "Наука и жизнь" № 5, 1998 г.) перестает быть парадоксом. Все законы, управляющие физическими процессами, становятся строго детерминистскими и имеют вид линейных дифференциальных уравнений. Одна группа уравнений описывает изменение волновых функций во времени, другая - их воздействие на соответствующие частицы. Законы применимы ко всем физическим объектам без исключения - и к "наблюдателям", и к "наблюдаемым".
Таким образом, если в какой-то момент известны положение всех частиц во Вселенной и полная волновая функция каждой, то в принципе можно точно рассчитать положение частиц и их волновые функции в любой последующий момент времени. Следовательно, ни о какой случайности в физических процессах не может быть и речи. Другое дело, что мы никогда не сможем обладать всей информацией, необходимой для точных вычислений, да и сами расчеты оказываются непреодолимо сложными. Принципиальное незнание многих параметров системы приводит к тому, что на практике мы всегда оперируем некими усредненными величинами. Именно это "незнание", по мнению Бома, заставляет нас прибегать к вероятностным законам при описании явлений в микромире (подобная ситуация возникает и в классической статистической механике, например в термодинамике, которая имеет дело с огромным количеством молекул). Теория Бома предусматривает определенные правила усреднения неизвестных параметров и вычисления вероятностей.
Вернемся к экспериментам с электронами, изображенным на рис. 3 А и Б. Теория Бома дает им следующее объяснение. Направление движения электрона на выходе из "вертикального ящика" полностью определяется исходными условиями - начальным положением электрона и его волновой функцией. В то время как электрон движется либо вверх, либо вниз, его волновая функция, как это следует из дифференциальных уравнений движения, расщепится и станет распространяться сразу в двух направлениях. Таким образом, одна часть волновой функции окажется "пустой", то есть будет распространяться отдельно от электрона. Отразившись от стенок, обе части волновой функции воссоединятся в "черном ящике", и при этом электрон получит информацию о том участке пути, где его не было. Содержание этой информации, например о препятствии на пути "пустой" волновой функции, может оказать существенное воздействие на свойства электрона. Это и снимает логическое противоречие между результатами экспериментов, изображенных на рисунке. Необходимо отметить одно любопытное свойство "пустых" волновых функций: будучи реальными, они тем не менее никак не влияют на посторонние объекты и не могут быть зарегистрированы измерительными приборами. А на "свой" электрон "пустая" волновая функция оказывает силовое воздействие независимо от расстояния, причем воздействие это передается мгновенно.
Попытки "исправить" квантовую механику или объяснить возникающие в ней противоречия предпринимали многие исследователи. Построить детерминистскую теорию микромира, например, пытался де Бройль, который был согласен с Эйнштейном, что "Бог не играет в кости". А видный отечественный теоретик Д. И. Блохинцев считал, что особенности квантовой механики проистекают из-за невозможности изолировать частицу от окружающего мира. При любой температуре выше абсолютного нуля тела излучают и поглощают электромаг нитные волны. С позиций квантовой механики это означает, что их положение непрерывно "измеряется", вызывая коллапс волновых функций. "С этой точки зрения никаких изолированных, предоставленных самим себе "свободных" частиц не существует, - писал Блохинцев. - Возможно, что в этой связи частиц и cреды и скрывается природа той невозможности изолировать частицу, которая проявляется в аппарате квантовой механики".
И все-таки - почему же интепретация квантовой механики, предложенная Бомом, до сих пор не получила должного признания в научном мире? И как объяснить почти повсеместное господство традиционной теории, несмотря на все ее парадоксы и "темные места"?
Долгое время новую теорию не хотели рассматривать всерьез на основании того, что в предсказании исхода конкретных экспериментов она полностью совпадает с квантовой механикой, не приводя к существен но новым результатам. Вернер Гейзенберг, например, считал, что "для любого опыта его (Бома) результаты совпадают с копенгагенской интерпретацией. Отсюда первое следствие: интерпретацию Бома нельзя опровергнуть экспериментом..." Некоторые считают теорию ошибочной, так как в ней преимущественная роль отводится положению частицы в пространстве. По их мнению, это противоречит физической реальности, ибо явления в квантовом мире принципиально не могут быть описаны детерминистскими законами. Существует немало и других, не менее спорных аргументов против теории Бома, которые сами требуют серьезных доказательств. Во всяком случае, ее пока что действительно никому не удалось полностью опровергнуть. Более того - работу над ее совершенствованием продолжают многие, в том числе отечественные, исследователи.
www.nkj.ru
Kvant. Планк — PhysBook
Васильев А. Макс Планк — основатель квантовой физики //Квант. — 1998. — № 4. — С. 23-24.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
Макс Планк
Журнал, который вы сейчас держите в руках, обязан своим названием немецкому физику Максу Планку (1858-1947). Понятие «квант» он ввел в 1900 году, определив тем самым XX век как век квантовой физики.
Квантовая теория возникла в связи с непреодолимыми трудностями, которые испытывала классическая теория при попытке объяснить экспериментально полученные закономерности теплового излучения твердого тела. Краткая история этого величайшего открытия в истории естествознания такова.
Еще в середине XIX века Г.Кирхгоф (1824 —1887) установил один из основных законов теплового излучения, носящий теперь его имя. Согласно этому закону, отношение излучательной способности ε какого-то тела к его поглощательной способности α не зависит от природы тела и является одинаковой для всех тел функцией частоты ν и температуры Т, равной излучательной способности ε0 абсолютно черного тела:
\(~\frac{\varepsilon(\nu, T)}{\alpha(\nu, T)} = \varepsilon_0(\nu, T)\) .Абсолютно черное тело, по определению, это тело, которое поглощает все падающее на него излучение и ничего не отражает. Таких тел в природе не существует, однако хорошим приближением является замкнутая непрозрачная полость с небольшим отверстием. Поскольку вероятность того, что попавшее в отверстие излучение в результате многочисленных отражений выйдет наружу, очень мала, оно практически полностью поглощается. Излучение, возникшее в полости и выходящее из отверстия, считается эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности черного тела.
Следующим этапом в исследовании теплового излучения было открытие закона Стефана—Больцмана. Л.Больцман (1844—1906) в 1884 году на основании теории заключил, что полная объемная плотность излучения (т.е. излучения всех частот) черного тела u пропорциональна четвертой степени температуры Т\[~u = \sigma T^4\]. Поскольку этот закон обосновывает и уточняет результат, полученный экспериментально еще в 1879 году Й.Стефаном(1835-1893), он носит имя Стефана—Больцмана; так же называется и постоянная σ = 5,67·10-8 Вт/(м2·К4). Хотя этот закон и определяет полную энергию спектра, вопрос о распределении энергии в спектре излучения (по частотам) он не рассматривает.
Первый ответ на этот вопрос дал В.Вин (1864-1928), который в 1893 году установил, что максимум излучения в спектре абсолютно черного тела с увеличением температуры смещается в сторону больших частот. В 1896 году Вин из классических соображений получил закон распределения энергии в спектре в явном виде. Оказалось, однако, что этот закон достаточно хорошо описывает излучение черного тела лишь на высоких частотах и расходится с экспериментом на низких.
Попытку преодолеть это расхождение независимо друг от друга предприняли в 1900 году Д.Рэлей (Стретт) (1842-1919) и в 1905 году Д.Джинс (1877 —1946). Исходя из классических представлений о равномерном распределении энергии по степеням свободы, они получили формулу распределения энергия излучения в спектре в зависимости от температуры. Эта формула, однако, хорошо согласовывалась с экспериментом лишь на низких частотах. С ростом частоты энергия излучения, согласно формуле Рэлея — Джинса, должна была бы неограниченно расти, достигая огромных значений в ультрафиолетовой области, что противоречило опыту. Этот явно парадоксальный вывод теории даже получил специальное название: «ультрафиолетовая катастрофа».
Такой воистину катастрофической была ситуация, когда Планк занялся теорией излучения. Первоначально он опирался на законы Кирхгофа и Вина, пытаясь связать теорию теплоты с электромагнитной теорией Максвелла, но вскоре осознал, что на основе классической теории объяснить тепловое излучение абсолютно черного тела невозможно.
К своему открытию Планк пришел не сразу. Первый шаг был сделан 19 октября 1900 года. Когда на заседании Немецкого физического общества в Берлине экспериментаторы Ф.Курлбаум и Г.Рубенс докладывали результаты своих исследований по тепловому, излучению, явно противоречившие формуле Вина, Планк (узнавший об этих результатах за несколько дней до заседания) в порядке дискуссии предложил эмпирическую формулу распределения энергии в спектре излучения, которая устраняла имеющиеся несоответствия. Экспериментаторы тщательно сверили новую формулу с данными своих измерений и получили разительное совпадение. Несмотря на несомненный успех, сам Планк рассматривал предложенную им формулу лишь как некоторое промежуточное выражение и задался целью дать формуле теоретическое обоснование, «отыскать ее подлинный физический смысл». В этом состоял его второй шаг.
Почти два месяца Планк пытался получить угаданную им формулу, оставаясь на позициях классической физики, но не достиг успеха. Тогда в поисках решения он пошел по пути Больцмана, использующего статистические методы для объяснения термодинамического равновесия. Больцман рассматривал любое состояние физической системы через вероятность этого состояния и видел содержание второго начала термодинамики в том, что при всяком изменении система переходит в более вероятное состояние.
Применяя метод Больцмана, Плате моделировал вещество набором резонаторов, испускающих и поглощающих излучение частоты ν. Основной и новый момент выдвинутой им гипотезы состоял в предположении, что каждый резонатор может обладать только таким количеством энергии, в котором содержится целое число элементарных порций энергии \(~E = h \nu\). Здесь h = 6,62·10-34 Дж·с - постоянная величина, которую Планк назвал «элементарным квантом действия», а сейчас ее называют постоянной Планка[1]. Разработка этой гипотезы привела Планка к формуле для энергии излучения абсолютно черного тела в виде
\(~u(\nu) = \frac{8 \pi h \nu^3}{c^3} \frac{1}{e^{\frac{h\nu}{kT} - 1}}\) .Сущность «парадоксальной гипотезы» Планка заключалась в том, что испускание и поглощение электромагнитной энергии атомами и молекулами происходит не непрерывно, а дискретно - порциями, или «квантами», как несколько позже предложил называть их Планк. «Это было сделанное на уровне абстрактного мышления открытие дискретности там, - говорил позже Э.Шрёдингер, — где ее меньше всего ждали», т.е. в процессах обмена энергией. «Подобные счастливые догадки, - скажет потом Х.Лоренц, - есть удел тех, кто заслужил их тяжелой работой и глубокими размышлениями».
Распределение энергии в спектре абсолютно черного тела: 1 - кривая, соответствующая формуле Рэлея—Джинса; 2 - графическое изображение формулы Планка; 3 - кривая, которую дает формула Вина
Свою «рабочую гипотезу» Планк изложил 14 декабря 1900 года на очередном заседании Немецкого физического общества. Хотя выведенная им формула включала в себя все частные законы излучения черного тела (при малых частотах она переходит в формулу Рэлея—Джинса, при больших частотах - в формулу Вина, а суммирование по всем частотам дает формулу Стефана — Больцмана) и прекрасно описывала эксперимент (см. рисунок), ни сам Планк, ни его слушатели не понимали всей грандиозности происходящего. Гениальная мысль, осенившая Планка, по-прежнему представлялась остроумной догадкой, позволявшей просто улучшить теорию одного из физических явлений.
Первым, кто принял гипотезу Планка о квантах всерьез, был А.Эйнштейн. Он быстро оценил всю глубину работы Планка и стал развивать ее в различных направлениях. В 1905 году Эйнштейн выдвинул удивительную по своей простоте теорию, согласно которой свет не только излучается и поглощается в виде квантов, но и состоит из дискретных порций - квантов света. Это была идея дискретности самого электромагнитного излучения, позволившая, в частности, объяснить явление фотоэффекта. В 1913 году идея Планка о квантах была применена Н.Бором для создания квантовой теории атома, согласно которой электроны в атоме могут находиться только на определенных энергетических уровнях, а их переход с одного уровня на другой сопровождается излучением квантов энергии.
Все дальнейшее развитие естествознания показало, что введенное Планком понятие о дискретности энергии электромагнитного излучения играет такую же фундаментальную роль в физике, как, например, представления об атомистическом строении вещества Демокрита.
В знак признания его заслуг в развитии физики благодаря «открытию кванта действия» Макс Планк был удостоен Нобелевской премии по физике за 1918 год.
Примечания
- ↑ В квантовой физике для удобства написания некоторых формул часто пользуются величиной \(~\hbar = \frac{h}{2\pi}\) = 1,054·10-34 Дж·с, которую также называют постоянной Планка.
www.physbook.ru
мы можем влиять своим сознанием на процесс омоложения
Поделиться на Facebook ВКонтакте Twitter Одноклассники
Квантовая физика радикально изменила наши представления о мире. Согласно квантовой физике мы можем влиять своим сознанием на процесс омоложения!
Почему это возможно? С точки зрения квантовой физики, наша действительность – источник чистых потенциальных возможностей, источник сырья, из которого состоит наше тело, наш разум и вся Вселенная. Универсальное энергетическое и информационное поле никогда не перестает изменяться и преобразовываться, каждую секунду превращаясь во что-то новое.
В 20 веке, во время физических экспериментов с субатомарными частицами и фотонами, было обнаружено, что факт наблюдения за течением эксперимента изменяет его результаты. То, на что мы фокусируем наше внимание — может реагировать.
Этот факт подтверждает классический эксперимент, который каждый раз удивляет ученых. Он повторялся во многих лабораториях и всегда получались одни и те же результаты.
Для этого опыта приготовили источник света и экран с двумя щелями. В качестве источника света использовалось устройство, которое «выстреливало» фотонами в виде однократных импульсов.
За ходом эксперимента велось наблюдение. После окончания опыта, на фотобумаге, которая находилась за щелями были видны две вертикальные полоски. Это следы фотонов, которые проходили сквозь щели и засвечивали фотобумагу.
Когда этот эксперимент повторяли в автоматическом режиме, без участия человека, то картина на фотобумаге изменялась:
Если исследователь включал прибор и уходил, и через 20 минут фотобумага проявлялась, то на ней обнаруживалось не две, а множество вертикальных полосок. Это были следы излучения. Но рисунок был другим.
Структура следа на фотобумаге напоминала след от волны, которая проходила сквозь щели.
Свет может проявлять свойства волны или частицы.
В результате простого факта наблюдения волна исчезает и превращается в частицы. Если не вести наблюдение, то на фотобумаге проявляется след волны. Этот физический феномен получил название «Эффект Наблюдателя».
Эти же результаты были получены и с другими частицами. Эксперименты повторялись многократно, но каждый раз они удивляли ученых. Так было обнаружено, чтона квантовом уровне материя реагирует на внимание человека. Это было новым в физике.
По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.
Материя состоит из сконцентрированной энергии — это фундаментальное открытие физики 20 века.
В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.
Для любых видов взаимодействий необходим частотный резонанс.
Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.
Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, — то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.
Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность — это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики — это творения поля.
Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?
Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:
«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.
МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ
На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.
Согласно представлениям теоретической физики — Вселенная напоминает матрешку, которая состоит из множества матрешек — слоев. Это варианты вселенных — параллельные миры. Те, что расположены рядом — очень похожи.
Но чем дальше слои друг от друга слои — тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.
Все возникает из пустоты. Все находится в движении. Предметы — иллюзия. Материя состоит из энергии.
Все создается мыслью.
Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами.
Все в мире наполнено энергией.
Вселенная реагирует на мысль.
Энергия следует за вниманием.
То, на чем ты фокусируешь свое внимание, начинает изменяться.
Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.
Наше тело – это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой.
Импульсы разума постоянно, каждую секунду придают телу новые формы для приспособления к меняющимся требованиям жизни.
С точки зрения квантовой физики, наше физическое тело под воздействием нашего разума способно совершить квантовый скачок из одного биологического возраста в другой, не проходя через все промежуточные возрасты.
Поделитесь этим постом со своими друзьями!
Источник
Жми «Нравится» и получай лучшие посты в Фейсбуке!
Поделиться на Facebook ВКонтакте Twitter Одноклассники
psyfor.life
Квантовая теория
а) Предпосылки квантовой теории
В конце XIX века выявилась несостоятельность попыток создать теорию излучения черного тела на основе законов классической физики. Из законов классической физики следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и понижать температуру до абсолютного нуля. Иными словами. тепловое равновесие между веществом и излучением было невозможно. Но это находилось в противоречии с повседневным опытом.
Более детально это можно пояснить следующим образом. Существует понятие абсолютно черного тела - тела, поглощающего электромагнитное излучение любой длины волны. Спектр его излучения определяется его температурой. В природе абсолютно черных тел нет. Наиболее точно абсолютно черному телу соответствует замкнутое непрозрачное полое тело с отверстием. Любой кусок вещества при нагревании светится и при дальнейшем повышении температуры становится сначала красным, а затем - белым. Цвет от вещества почти не зависит, для абсолютно черного тела он определяется исключительно его температурой. Представим такую замкнутую полость, которая поддерживается при постоянной температуре и которая содержит материальные тела, способные испускать и поглощать излучения. Если температура этих тел в начальный момент отличалась от температуры полости, то со временем система (полость плюс тела) будет стремиться к термодинамическому равновесию, которое характеризуется равновесием между поглощаемой и измеряемой в единицу времени энергией. Г.Кирхгоф установил, что это состояние равновесия характеризуется определенным спектральным распределением плотности энергии излучения, заключенного в полости, а также то, что функция, определяющая спектральное распределение (функция Кирхгофа), зависит от температуры полости и не зависит ни от размеров полости или ее форм, ни от свойств помещенных в нее материальных тел. Так как функция Кирхгофа универсальна, т.е. одинакова для любого черного тела, то возникло предположение, что ее вид определяется какими-то положениями термодинамики и электродинамики. Однако попытки такого рода оказались несостоятельными. Из закона Д.Рэлея следовало, что спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты, но эксперимент свидетельствовал об ином: вначале спектральная плотность с увеличением частоты возрастала, а затем падала. Решение проблемы излучения черного тела требовало принципиально нового подхода. Он был найден М.Планком.
Планк в 1900 г. сформулировал постулат, согласно которому вещество может испускать энергию излучения только конечными порциями, пропорциональными частоте этого излучения (см. раздел "Возникновение атомной и ядерной физики"). Данная концепция привела к изменению традиционных положений, лежащих в основе классической физики. Существование дискретности действия указывало на взаимосвязь между локализацией объекта в пространстве и времени и его динамическим состоянием. Л. де Бройль подчеркивал, что "с точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности." Квантовой концепции в развитии физики было суждено сыграть огромную роль.
Следующим шагом в развитии квантовой концепции было расширение А.Эйнштейном гипотезы Планка, что позволило ему объяснить закономерности фотоэффекта, не укладывающиеся в рамки классической теории. Сущность фотоэффекта заключается в испускании веществом быстрых электронов под действием электромагнитного излучения. Энергия испускаемых электронов при этом от интенсивности поглощаемого излучения не зависит и определяется его частотой и свойствами данного вещества, но от интенсивности излучения зависит число испускаемых электронов. Дать объяснение механизму освобождаемых электронов не удавалось, поскольку в соответствии с волновой теорией световая волна, падая на электрон, непрерывно передает ему энергию, причем ее количество в единицу времени должно быть пропорционально интенсивности волны, падающей на него. Эйнштейн в 1905 году высказал предположение о том, что фотоэффект свидетельствует о дискретном строении света, т.е. о том, что излучаемая электромагнитная энергия распространяется и поглощается подобно частице (названной затем фотоном). Интенсивность падающего света при этом определяется числом световых квантов, падающих на один квадратный сантиметр освещаемой плоскости в секунду. Отсюда число фотонов, которые испускаются единицей поверхности в единицу времени. должно быть пропорционально интенсивности освещения. Многократные опыты подтвердили это объяснение Эйнштейна, причем не только со светом, но и с рентгеновскими и гамма-лучами. Эффект А.Комптона, обнаруженный в 1923 году, дал новые доказательства существования фотонов - было обнаружено упругое рассеяние электромагнитного излучения малых длин волн (рентгеновского и гамма-излучения) на свободных электронах, которое сопровождается увеличением длины волны. Согласно классической теории, при таком рассеянии длина волны не должна меняться. Эффект Комптона подтвердил правильность квантовых представлений об электромагнитном излучении как о потоке фотонов - он может рассматриваться как упругое столкновение фотона и электрона, при котором фотон передает электрону часть своей энергии, а потому его частота уменьшается, а длина волны увеличивается.
Появились и другие подтверждения фотонной концепции. Особенно плодотворной оказалась теория атома Н.Бора (1913 г.), выявившая связь строения материи с существованием квантов и установившая, что энергия внутриатомных движений может меняться также лишь скачкообразно. Таким образом, признание дискретной природы света состоялось. Но ведь по сути своей это было возрождение отвергнутой ранее корпускулярной концепции света. Поэтому вполне естественно возникли проблемы: как совместить дискретность структуры света с волновой теорией (тем более, что волновая теория света подтверждалась целым рядом экспериментов), как совместить существование кванта света с явлением интерференции, как явления интерференции объяснить с позиции квантовой концепции? Таким образом, возникла потребность в концепции, которая увязывала бы корпускулярный и волновой аспекты излучения.
б) Принцип соответствия
Для устранения трудности, возникшей при использовании классической физики для обоснования устойчивости атомов (вспомним, что потеря энергии электроном приводит к его падению на ядро), Бор предположил, что атом в стационарном состоянии не излучает (см. предыдущий раздел). Это означало, что электромагнитная теория излучения для описания электронов, движущихся по стабильным орбитам, не годится. Но квантовая концепция атома, отказавшись от электромагнитной концепции, не могла объяснить свойства излучения. Возникла задача: попытаться установить определенное соответствие между квантовыми явлениями и уравнениями электродинамики с целью понять, почему классическая электромагнитная теория дает верное описание явлений большого масштаба. В классической теории движущийся в атоме электрон излучает непрерывно и одновременно свет разных частот. В квантовой же теории электрон, находящийся внутри атома на стационарной орбите, наоборот, не излучает - излучение кванта происходит лишь в момент перехода с одной орбиты на другую, т.е. излучение спектральных линий определенного элемента является дискретным процессом. Таким образом, налицо два совершенно различных представления. Можно ли их привести в соответствие и если да, то в какой форме?
Очевидно, что соответствие с классической картиной возможно лишь при одновременном испускании всех спектральных линий. В то же время очевидно, что с квантовой позиции излучение каждого кванта является актом индивидуальным, а поэтому для получения одновременного испускания всех спектральных линий необходимо рассматривать целый большой ансамбль атомов одинаковой природы, в котором осуществляются различные индивидуальные переходы, приводящие к испусканию различных спектральных линий конкретного элемента. В этом случае понятие интенсивности различных линий спектра необходимо представлять статистически. Для определения интенсивности индивидуального излучения кванта необходимо рассматривать ансамбль большого числа одинаковых атомов. Электромагнитная теория позволяет дать описание макроскопических явлений, а квантовая теория тех явлений, в которых важную роль играют множество квантов. Поэтому вполне вероятно, что результаты, полученные квантовой теорией, будут стремиться к классическим в области множества квантов. Согласование классической и квантовой теорий и следует искать в этой области. Для вычисления классических и квантовых частот необходимо выяснить, совпадают ли эти частоты для стационарных состояний, которые отвечают большим квантовым числам. Бор выдвинул предположение о том, что для приближенного вычисления реальной интенсивности и поляризации можно использовать классические оценки интенсивностей и поляризаций, экстраполируя на область малых квантовых чисел то соответствие, которое было установлено для больших квантовых чисел. Данный принцип соответствия нашел подтверждение: физические результаты квантовой теории при больших квантовых числах должны совпадать с результатами классической механики, а релятивистская механика при малых скоростях переходит в классическую механику. Обобщенная формулировка принципа соответствия может быть выражена как утверждение, согласно которому новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Использование принципа соответствия и придание ему более точной формы способствовали созданию квантовой и волновой механики.
К концу первой половины XX века в исследованиях природы света сложились две концепции - волновая и корпускулярная, которые остались не в состоянии преодолеть разделяющий их разрыв. Возникла настоятельная потребность создать новую концепцию, в которой квантовые идеи должны лечь в ее основу, а не выступать в роли некого "довеска". Реализация этой потребности была осуществлена созданием волновой механики и квантовой механики, которые по сути составили единую новую квантовую теорию - различие заключалось в используемых математических языках. Квантовая теория как нерелятивистская теория движения микрочастиц явилась самой глубокой и широкой физической концепцией, объясняющей свойства макроскопических тел. В качестве ее основы были положены идея квантования Планка-Эйнштейна-Бора и гипотеза о волнах материи де Бройля.
в) Волновая механика
Ее основные идеи появились в 1923-1924 гг., когда Л. де Бройлем была высказана мысль о том, что электрон должен обладать и волновыми свойствами, навеянная аналогией со светом. К этому времени представления о дискретной природе излучения и существовании фотонов уже достаточно укрепились, поэтому для полного описания свойств излучения надо было поочередно представлять его то как частицу, то как волну. А поскольку Эйнштейн уже показал, что дуализм излучения связан с существованием квантов, то естественно было поставить вопрос о возможности обнаружения подобного дуализма и в поведении электрона (и вообще материальных частиц). Гипотеза де Бройля о волнах материи получила подтверждение обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину. (Позже будет обнаружена дифракция и у молекул.)
Исходя из идеи де Бройля о волнах материи, Э.Шредингер в 1926 г. вывел основное уравнение механики (которую он назвал волновой), позволяющее определить возможные состояния квантовой системы и их изменение во времени. Уравнение содержало так называемую волновую функцию y (пси-функцию), описывающую волну (в абстрактном, конфигурационном пространстве). Шредингер дал общее правило преобразования данных классических уравнений в волновые, которые относятся к многомерному конфигурационному пространству, а не реальному трехмерному. Пси-функция определяла плотность вероятности нахождения частицы в данной точке. В рамках волновой механики атом можно было представить в виде ядра, окруженного своеобразным облаком вероятности. С помощью пси-функции определяется вероятность присутствия электрона в определенной области пространства.
г) Квантовая (матричная) механика.
Принцип неопределенности
В 1926 г. В.Гейзенберг разрабатывает свой вариант квантовой теории в виде матричной механики, отталкиваясь при этом от принципа соответствия. Столкнувшись с тем, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины и свести их к набору отдельных элементов, соответствующих различным возможным переходам квантового атома, он пришел к тому, чтобы каждую физическую характеристику квантовой системы представлять таблицей чисел (матрицей). При этом он сознательно руководствовался целью построить феноменологическую концепцию, чтобы исключить из нее все, что невозможно наблюдать непосредственно. В этом случае нет никакой необходимости вводить в теорию положение, скорость или траекторию электронов в атоме, поскольку мы не можем ни измерять, ни наблюдать эти характеристики. В расчеты следует вводить лишь те величины, которые связаны с реально наблюдаемыми стационарными состояниями, переходами между ними и сопровождающими их излучениями. В матрицах элементы были расположены в строки и столбцы, причем каждый из них имел два индекса, один из которых соответствовал номеру столбца, а другой - номеру строки. Диагональные элементы (т.е. элементы, индексы которых совпадают) описывают стационарное состояние, а недиагональные (элементы с разными индексами) - описывают переходы из одного стационарного состояния в другое. Величина же этих элементов связывается с величинами, характеризующими излучение при данных переходах, полученными с помощью принципа соответствия. Именно таким способом Гейзенберг строил матричную теорию, все величины которой должны описывать лишь наблюдаемые явления. И хотя наличие в аппарате его теории матриц, изображающих координаты и импульсы электронов в атомах, оставляет сомнение в полном исключении ненаблюдаемых величин, Гейзенберту удалось создать новую квантовую концепцию, составившую новую ступень в развитии квантовой теории, суть которой состоит в замене физических величин, имеющих место в атомной теории, матрицам - таблицам чисел. Результаты, к которым приводили методы, используемые в волновой и матричной механике, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные. Методы матричной механики, в силу своей большей компактности часто быстрее приводят к нужным результатам. Методы волновой механики, как считается, лучше согласуется с образом мышления физиков и их интуицией. Большинство физиков при расчетах пользуется волновым методом и использует волновые функции.
Гейзенберг сформулировал принцип неопределенности, в соответствии с которым координаты и импульс не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы важно иметь возможность точно измерять ее положение и скорость. При этом чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости.
Хотя световое излучение состоит из волн, однако в соответствии с идеей Планка, свет ведет себя как частица, ибо излучение и поглощение его осуществляется в виде квантов. Принцип неопределенности же свидетельствует о том, что частицы могут вести себя как волны - они как бы "размазаны" в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве. Таким образом, квантовая механика фиксирует корпускулярно-волновой дуализм - в одних случаях удобнее частицы считать волнами, в других, наоборот, волны частицами. Между двумя волнами-частицами можно наблюдать явление интерференции. Если гребни одной волны совпадают с впадинами другой волны, то они гасят друг друга, а если гребни и впадины одной волны совпадают с гребнями и впадинами другой волны, то они усиливают друг друга.
д) Интерпретации квантовой теории.
Принцип дополнительности
Возникновение и развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени, характере познания и т.д., что способствовало коренному преобразованию картины мира. Для классического понимания материальной частицы было характерно резкое ее выделение из окружающей среды, обладание собственным движением и местом нахождения в пространстве. В квантовой теории частица стала представляться как функциональная часть системы, в которую она включена, не имеющая одновременно координат и импульса. В классической теории движение рассматривалось как перенос частицы, остающейся тождественно самой себе, по определенной траектории. Двойственный характер движения частицы обусловил необходимость отказа от такого представления движения. Классический (динамический) детермизм уступил место вероятностному (статистическому). Если ранее целое понималось как сумма составляющий частей, то квантовая теория выявила зависимость свойств частицы от системы, в которую она включена. Классическое понимание познавательного процесса было связано с познанием материального объекта как существующего самого по себе. Квантовая теория продемонстрировала зависимость знания об объекте от исследовательских процедур. Если классическая теория претендовала на завершенность, то квантовая теория с самого начала развертывалась как незавершенная, основывающаяся на ряде гипотез, смысл которых вначале был далеко не ясен, а поэтому ее основные положения получали разное истолкование, разные интерпретации.
Разногласия выявились прежде всего по поводу физического смысла двойственности микрочастиц. Де Бройль вначале выдвинул концепцию волны-пилота, в соответствии с которой волна и частица сосуществуют, волна ведет за собой частицу. Реальным материальным образованием, сохраняющим свою устойчивость, является частица, поскольку именно она обладает энергией и импульсом. Волна, несущая частицу, управляет характером движения частицы. Амплитуда волны в каждой точке пространства определяет вероятность локализации частицы рядом с этой точкой. Шредингер проблему двойственности частицы решает по сути путем ее снятия. Для него частица выступает как чисто волновое образование. Иначе говоря, частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретации де Бройля и Шредингера представляли собой по сути попытки создать наглядные модели в духе классической физики. Однако это оказалось невозможным.
Гейзенбергом была предложена интерпретация квантовой теории, исходя (как было показано ранее) из того, что физика должна пользоваться только понятиями и величинами, основанными на измерениях. Гейзенберг поэтому и отказался от наглядного представления движения электрона в атоме. Макроприборы не могут дать описание движения частицы с одновременной фиксацией импульса и координат (т.е. в классическом смысле) по причине принципиально неполной контролируемости взаимодействия прибора с частицей - в силу соотношения неопределенностей измерение импульса не дает возможности определить координаты и наоборот. Иначе говоря, по причине принципиальной неточности измерения предсказания теории могут иметь лишь вероятностный характер, причем вероятность является следствием принципиальной неполноты информации о движении частицы. Это обстоятельство привело к выводу о крушении принципа причинности в классическом смысле, предполагавшим предсказание точных значений импульса и координаты. В рамках квантовой теории, таким образом, речь идет не об ошибках наблюдения или эксперимента, а о принципиальном недостатке знаний, которые и выражаются с помощью функции вероятности.
Интерпретация квантовой теории, осуществленная Гейзенбергом, была развита Бором и получила название копенгагенской. В рамках данной интерпретации основным положением квантовой теории выступает принцип дополнительности, означающий требование применять для получения в процессе познания целостной картины изучаемого объекта взаимоисключающие классы понятий, приборов и исследовательских процедур, которые используются в своих специфических условиях и взаимозаполняют друг друга. Данный принцип напоминает соотношение неопределенностей Гейзенберга. Если речь идет об определении импульса и координаты как взаимоисключающих и взаимодополняющих исследовательских процедур, то для отождествления этих принципов есть основания. Однако смысл принципа дополнительности шире, чем соотношения неопределенностей. Для того, чтобы объяснить устойчивость атома, Бор соединил в одной модели классические и квантовые представления о движении электрона. Принцип дополнительности, таким образом, позволил классические представления дополнить квантовыми. Выявив противоположность волновых и корпускулярных свойств света и не найдя их единства, Бор склонился к мысли о двух, эквивалентных друг другу, способах описания - волновом и корпускулярном - с последующем их совмещением. Так что точнее говорить о том, что принцип дополнительности выступает развитием соотношения неопределенности, выражающих связи координаты и импульса.
Ряд ученых истолковали нарушение принципа классического детерминизма в рамках квантовой теории в пользу индетернизма. В действительности же здесь принцип детерминизма изменял свою форму. В рамках классической физики, если в начальный момент времени известны положения и состояние движения элементов системы, можно полностью предсказать ее положение в любой будущий момент времени. Все макроскопические системы были подчинены этому принципу. Даже в тех случаях, когда приходилось вводить вероятности, всегда предполагалось, что все элементарные процессы строго детернизированы и что только их большое число и беспорядочность поведения заставляет обращаться к статистическим методам. В квантовой теории ситуация принципиально иная. Для реализации принципов детернизации здесь необходимо знать координаты и импульсы, и это соотношением неопределенности запрещается. Использование вероятности здесь имеет иной смысл по сравнению со статистической механикой: если в статистической механике вероятности использовались для описания крупномасштабных явлений, то в квантовой теории вероятности, наоборот, вводятся для описания самих элементарных процессов. Все это означает, что в мире крупномасштабных тел действует динамический принцип причинности, а в микромире - вероятностный принцип причинности.
Копенгагенская интерпретация предполагает, с одной стороны, описание экспериментов в понятиях классической физики, а с другой - признание этих понятий неточно соответствующими действительному положению вещей. Именно эта противоречивость и обусловливает вероятность квантовой теории. Понятия классической физики составляют важную составную часть естественного языка. Если мы не будем использовать этих понятий для описания проводимых экспериментов, то мы не сможем понять друг друга.
Идеалом классической физики является полная объективность знания. Но в познании мы используем приборы, а тем самым, как говорит Гейнзерберг, в описание атомных процессов вводится субъективный элемент, поскольку прибор создан наблюдателем. "Мы должны помнить, что то, что мы наблюдаем, - это не сама природа, а природа, которая выступает в том виде, в каком она выявляется благодаря нашему способу постановки вопросов научная работа в физике состоит в том, чтобы ставить вопросы о природе на языке, которым мы пользуемся, и пытаться получить ответ в эксперименте, выполненном с помощью имеющихся у нас в распоряжении средств. При этом вспоминаются слова Бора о квантовой теории: если ищут гармонии в жизни, то никогда нельзя забывать, что в игре жизни мы одновременно и зрители, и участники. Понятно, что в нашем научном отношении к природе наша собственная деятельность становится важной там, где нам приходится иметь дело с областями природы, проникнуть в которые можно только благодаря важнейшим техническим средствам"
Классические представления пространства и времени также оказалось невозможным использовать для описания атомных явлений. Вот что писал по этому поводу другой создатель квантовой теории: "существование кванта действия обнаружило совершенно непредвиденную связь между геометрией и динамикой: оказывается, что возможность локализации физических процессов в геометрическом пространстве зависит от их динамического состояния. Общая теория относительности уже научила нас рассматривать локальные свойства пространства-времени в зависимости от распределения вещества во Вселенной. Однако существование квантов требует гораздо более глубокого преобразования и больше не позволяет нам представлять движение физического объекта вдоль определенной линии в пространстве-времени (мировой линии). Теперь нельзя определить состояние движения, исходя из кривой, изображающей последовательные положения объекта в пространстве с течением времени. Теперь нужно рассматривать динамическое состояние не как следствие пространственно-временной локализации, а как независимый и дополнительный аспект физической реальности"
Дискуссии по проблеме интерпретации квантовой теории обнажили вопрос о самом статусе квантовой теории - является ли она полной теорией движения микрочастицы. Впервые вопрос таким образом был сформулирован Энштейном. Его позиция получила выражение в концепции скрытых параметров. Эйнштейн исходил из понимания квантовой теории как статистической теории, которая описывает закономерности, относящиеся к поведению не отдельной частицы, а их ансамбля. Каждая частица всегда строго локализована, одновременно обладает определенными значениями импульса и координаты. Соотношение неопределенностей отражает не реальное устройство действительности на уровне микропроцессов, а неполноту квантовой теории - просто на ее уровне мы не имеем возможности одновременно измерять импульс и координату, хотя они в действительности существуют, но как скрытые параметры (скрытые в рамках квантовой теории). Описание состояния частицы с помощью волновой функции Эйнштейн считал неполным, а потому и квантовую теорию представлял в виде неполной теории движения микрочастицы.
Бор в данной дискуссии занял противоположную позицию, исходящую из признания объективной неопределенности динамических параметров микрочастицы как причины статистического характера квантовой теории. По его мнению, отрицание Энштейном существования объективно неопределенных величин оставляет необъясненным присущие микрочастице волновые черты. Возврат к классическим представлениям движения микрочастицы Бор считал невозможным.
В 50-х гг. ХХ века Д.Бом вернулся к концепции волны-пилота де Бройля, представив пси-волну в виде реального поля, связанного с частицей. Сторонники копенгагенской интерпретации квантовой теории и даже часть ее противников позицию Бома не поддержали, однако она способствовала более углубленной проработке концепции де Бройля: частица стала рассматриваться в виде особого образования, возникающего и движущегося в пси-поле, но сохраняющего свою индивидуальность. Работы П.Вижье, Л.Яноши, разрабатывавших данную концепцию, были оценены многими физиками как слишком "классичными".
В отечественной философской литературе советского периода копенгагенская интерпретация квантовой теории была подвергнута критике за "приверженность к позитивистским установкам" в трактовке процесса познания. Однако рядом авторов отстаивалась справедливость копенгагенской интерпретации квантовой теории. Смена классического идеала научного познания неклассическим сопровождалась пониманием того, что наблюдатель, пытаясь построить картину объекта, не может отвлечься от процедуры измерения, т.е. исследователь оказывается не в состоянии измерять параметры изучаемого объекта такими, какими они были до процедуры измерения. В.Гейзенберг, Э.Шредингер и П.Дирак положили принцип неопределенности в основу квантовой теории, в рамках которой частицы уже не имели определенных и не зависящих друг от друга импульса и координат. Квантовая теория, таким образом, внесла в науку элемент непредсказуемости, случайности. И хотя Эйнштейн не смог согласиться с этим, квантовая механика согласовывалась с экспериментом, а потому стала основой многих областей знания.
е) Квантовая статистика
Одновременно с развитием волновой и квантовой механики развивалась другая составная часть квантовой теории - квантовая статистика или статистическая физика квантовых систем, состоящих из большого числа частиц. На основе классических законов движения отдельных частиц была создана теория поведения их совокупности - классическая статистика. Аналогично этому на основе квантовых законов движения частиц была создана квантовая статистика, описывающая поведение макрообъектов в случаях когда законы классической механики не применимы для описания движения составляющих их микрочастиц - в данном случае квантовые свойства проявляются в свойствах макрообъектов. Важно иметь в виду, что под системой в данном случае понимаются лишь взаимодействующие друг с другом частицы. Квантовая система при этом не может рассматриваться как совокупность частиц, сохраняющих свою индивидуальность. Иными словами, квантовая статистика требует отказа от представления различимости частиц - это получило название принципа тождественности. В атомной физике две частицы одной природы считались тождественными. Однако эта тождественность не признавалась абсолютной. Так, две частицы одной природы можно было различать хотя бы мысленно.
В квантовой статистике возможность различить две частицы одинаковой природы полностью отсутствует. Квантовая статистика исходит из того, что два состояния системы, которые отличаются друг от друга лишь перестановкой двух частиц одинаковой природы, тождественны и неразличимы. Таким образом, основное положение квантовой статистики - принцип тождественности одинаковых частиц, входящих в квантовую систему. Этим квантовые системы отличаются от классических систем.
Во взаимодействии микрочасти важная роль принадлежит спину - собственному моменту количества движения микрочастицы. (В 1925 г. Д.Уленбеком и С.Гаудсмитом впервые было открыто существование спина у электрона). Спин д электронов, протонов, нейтронов, нейтрино и др. частиц выражается полуцелой величиной, у фотонов и пи-мезонов - целочисленной величиной (1 или 0). В зависимости от спина микрочастица подчиняется одному из двух разных типов статистики. Системы тождественных частиц с целым спином (бозоны) подчиняются квантовой статистике Бозе-Эйнштейна, характерной особенностью которой является то, что в каждом квантовом состоянии может находиться произвольное число частиц. Данный тип статистики был предложен в 1924 г. Ш.Бозе и затем усовершенствована Энштейном). В 1925 г. для частиц с полуцелым спином (фермионов) Э.Ферми и П.Дирак (независимо друг от друга) предложили другой тип квантовой статики, получивший имя Ферми-Дирака. Характерной особенностью этого типа статики является то, что в каждом квантовом состоянии может находиться произвольное число частиц. Это требование называется принципом запрета В.Паули, который был открыт в 1925 г. Статистика первого типа подтверждается при исследовании таких объектов, как абсолютно черное тело, второго типа - электронный газ в металлах, нуклоны в атомных ядрах и т.д.
Принцип Паули позволил объяснить закономерности заполнения электронами оболочек в многоэлектронных атомах, дать обоснование периодической системе элементов Менделеева. Этот принцип, выражает специфическое свойство частиц, которые ему подчиняются. И сейчас трудно понять, почему две тождественные частицы взаимно запрещают друг другу занимать одно и то же состояние. Подобного типа взаимодействия в классической механике не существует. Какова его физическая природа, каковы физические источники запрета - проблема, ждущая разрешения. Сегодня ясно одно: физическая интерпретация принципа запрета в рамках классической физики невозможна.
Важным выводом квантовой статистики является положение о том, что частица, входящая в какую-либо систему, не тождественна такой же частице, но входящей в систему другого типа или свободную. Отсюда следует важность задачи выявления специфики материального носителя определенного свойства систем.
ж) Квантовая теория поля
Квантовая теория поля представляет собой распространение квантовых принципов на описание физических полей в их взаимодействиях и взаимопревращениях. Квантовая механика имеет дело с описанием взаимодействий сравнительно малой энергии, при которых число взаимодействующих частиц сохраняется. При больших энергиях взаимодействия простейших частиц (электронов, протонов и т.д.) происходит их взаимопревращение, т.е. одни частицы исчезают, другие рождаются, причем число их меняется. Большинство элементарных частиц нестабильно, спонтанно распадается до тех пор, пока не образуются стабильные частицы - протоны, электроны, фотоны и нейтроны. При столкновениях элементарных частиц, если энергия взаимодействующих частиц достаточно велика, происходит множественное рождение частиц различного спектра. Поскольку квантовая теория поля предназначена для описания процессов при высоких энергиях, поэтому должна удовлетворять требованиям теории относительности.
Современная квантовая теория поля включает три типа взаимодействия элементарных частиц: слабые взаимодействия, обусловливающие главным образом распад неустойчивых частиц, сильные и электромагнитные, ответственные за превращение частиц при их столкновении.
Квантовая теория поля, описывающая превращение элементарных частиц, в отличие от квантовой механики, описывающей их движение, не является последовательной и завершенной, она полна трудностей и противоречий. Наиболее радикальным способом их преодоления считается создание единой теории поля, в основу которой должен быть положен единый закон взаимодействия первичной материи - из общего уравнения должен выводиться спектр масс и спинов всех элементарных частиц, а также значения зарядов частиц. Таким образом, можно сказать, что квантовая теория поля ставит задачу выработки более глубокого представления об элементарной частице, возникающей за счет поля системы других элементарных частиц.
Взаимодействие электромагнитного поля с заряженными частицами (главным образом электронами, позитронами, мюонами) изучается квантовой электродинамикой, в основе которой лежит представление о дискретности электромагнитного излучения. Электромагнитное поле состоит из фотонов, обладающих корпускулярно-волновыми свойствами. Взаимодействие электромагнитного излучения с заряженными частицами квантовая электродинамика рассматривает как поглощение и испускание частицами фотонов. Частица может испустить фотоны, а затем поглотить их.
Итак, отход квантовой физики от классической заключается в отказе от того, чтобы описывать индивидуальные события, происходящие в пространстве и времени, и использовании статистического метода с его волнами вероятности. Цель классической физики заключается в описании объектов в пространстве и времени и в формировании законов, которые управляют изменением этих объектов во времени. Квантовая физика, имеющая дело с радиоактивным распадом, дифракцией, испусканием спектральных линий и тому подобными явлениями, не может удовлетвориться классическим подходом. Суждение типа "такой-то объект имеет такое-то свойство", характерное для классической механики, в квантовой физике заменяется суждением типа "такой-то объект имеет такое-то свойство с такой-то степенью вероятности". Таким образом, в квантовой физике имеют место законы, управляющие изменениями вероятности во времени, в классической же физике мы имеем дело с законами, управляющими изменениями индивидуального объекта во времени. Разные реальности подчиняются различным по характеру законам.
Квантовая физика в развитии физических идей и вообще стиля мышления занимает особое место. К числу величайших созданий человеческого ума относится, несомненно и теория относительности - специальная и общая, представляющая собой новую систему идей, объединившую механику, электродинамику и теорию тяготения и давшую новое понимание пространства и времени. Но это была теория, которая в определенном смысле была завершением и синтезом физики XIX века, т.е. она не означала полного разрыва с классическими теориями. Квантовая же теория порывала с классическими традициями, она создала новый язык и новый стиль мышления, позволяющий проникать в микромир с его дискретными энергетическими состояниями и дать его описание с помощью введения характеристик, отсутствовавших в классической физике, что в конечном счете позволило понять сущность атомных процессов. Но вместе с тем квантовая теория внесла в науку элемент непредсказуемости, случайности, чем она отличалась от классической науки.
studfiles.net
velikol.ru | 1 Квантовая физикаОсновоположник квантовой физики.
Что называется фотоэффектом?
Основоположник теории фотоэффекта.
Законы подчиняется фотоэффекта:
Объяснение явления фотоэффекта
Что такое фотон?
Как определить массу фотона?
Как определить импульс фотона?
Где применяется явление фотоэффекта?
Значение открытия фотоэффекта
|
velikol.ru