Петлевая квантовая гравитация. Петлевая квантовая теория гравитации


Петлевая квантовая гравитация Википедия

Петлевая квантовая гравитация — одна из теорий квантовой гравитации, основанная на концепции дискретного пространства-времени[1][2] и предположении об одномерности физических возбуждений пространства-времени на планковских масштабах[3]. Делает возможной космологическую гипотезу пульсирующей Вселенной[4].

История возникновения

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин, Абэй Аштекар, Тэд Джекобсон (англ.) и Карло Ровелли (англ.). Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время.

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года[5], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова[6][7]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к пониманию электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации[8].

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей[8].

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций[9].

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время[9]. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона[10].

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны[11] и гравитоны[12][13] — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены[11], фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов[8] (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований[14].

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью[15], отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн.[16].

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины, смешивание Кабиббо, а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи[17] описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves).

См. также

Источники

Литература

  • Lee Smolin, Three Roads to Quantum Gravity, Basic Books, 2001.
  • John Baez, The Quantum of Area?, Nature, vol.421, pp. 702–703; February 2003.
  • Lee Smolin, How Far Are We from the Quantum Theory of Gravity?, arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27–50; November 2003.
  • Lee Smolin, Loop Quantum Gravity, The third culture.
  • Олег Фейгин. Парадоксы квантового мира. — М.: Эксмо, 2012. — 288 с. — (Тайны мироздания). — 3000 экз. — ISBN 9785699530168.

Примечания

wikiredia.ru

Петлевая квантовая гравитация — Википедия

Петлевая квантовая гравитация — одна из теорий квантовой гравитации, основанная на концепции дискретного пространства-времени[1][2] и предположении об одномерности физических возбуждений пространства-времени на планковских масштабах[3]. Делает возможной космологическую гипотезу пульсирующей Вселенной[4].

История возникновения

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин, Абэй Аштекар, Тэд Джекобсон (англ.) и Карло Ровелли (англ.). Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время.

Видео по теме

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года[5], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова[6][7]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к пониманию электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации[8].

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей[8].

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций[9].

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время[9]. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона[10].

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны[11] и гравитоны[12][13] — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены[11], фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов[8] (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований[14].

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью[15], отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн.[16].

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины, смешивание Кабиббо, а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи[17] описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves).

См. также

Источники

Литература

  • Lee Smolin, Three Roads to Quantum Gravity, Basic Books, 2001.
  • John Baez, The Quantum of Area?, Nature, vol.421, pp. 702–703; February 2003.
  • Lee Smolin, How Far Are We from the Quantum Theory of Gravity?, arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27–50; November 2003.
  • Lee Smolin, Loop Quantum Gravity, The third culture.
  • Олег Фейгин. Парадоксы квантового мира. — М.: Эксмо, 2012. — 288 с. — (Тайны мироздания). — 3000 экз. — ISBN 9785699530168.

Примечания

wikipedia.green

Петлевая квантовая гравитация - Познавательный интернет-журнал

Петлевая квантовая гравитация — одна из теорий квантовой гравитации.История возникновенияРодоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин, Абэй Аштекар, Тэд Джекобсон и Карло Ровелли. Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время.Петлевая гравитация и физика элементарных частицОдним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.В своей статье 2005 года, С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому, основанную на более общей теории брэдов (математических кос) М. Хованова), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации.Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей.В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций.Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона.Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны и гравитоны — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо’льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены, фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований.В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью, отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели, скорее всего, можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

bigproof.ru

Петлевая квантовая гравитация

Петлевая квантовая гравитация  — одна из теорий квантовой гравитации , основанная на концепции дискретного пространства-времени [1] [2] и предположении об одномерности физических возбуждений пространства-времени на планковских масштабах [3] . Делает возможной космологическую гипотезу пульсирующей Вселенной [4] .

История возникновения

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин , Абэй Аштекар , Тэд Джекобсон ( англ. ) и Карло Ровелли ( англ. ) . Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года [5] , С. Бильсон-Томпсон ( Sundance Bilson-Thompson ) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова [6] [7] ), в которой ришоны Харари ( Harari ) были преобразованы в протяжённые лентообразные объекты, называемые риббонами . Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда , в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к пониманию электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу ( Fotini Markopolou ) и Л. Смолиным ( Lee Smolin ) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации [8] .

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов ( кварков и лептонов ) с более-менее правильным воспроизведением их зарядов и четностей [8] .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения.Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций [9] .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время [9] . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель ( L. Freidel ), Дж. Ковальский-Гликман ( J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона [10] .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны [11] и гравитоны [12] [13]  — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены [11] , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов [8] (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований [14] .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью [15] , отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн. [16] .

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи [17] описывается динамика брэдов с помощью переходов Пачнера ( англ.   Pachner moves ).

См. также

Источники

Литература

  • Lee Smolin, Three Roads to Quantum Gravity , Basic Books, 2001.
  • John Baez, The Quantum of Area? , Nature, vol.421, pp. 702–703; February 2003.
  • Lee Smolin, How Far Are We from the Quantum Theory of Gravity? , arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27–50; November 2003.
  • Lee Smolin, Loop Quantum Gravity , The third culture.
  • Олег Фейгин. Парадоксы квантового мира . — М. : Эксмо, 2012. — 288 с. — (Тайны мироздания). — 3000 экз.  — ISBN 9785699530168 .

Примечания

www.cruer.com

Петлевая квантовая гравитация — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Петлевая квантовая гравитация — одна из теорий квантовой гравитации, основанная на концепции дискретного пространства-времени[1][2] и предположении об одномерности физических возбуждений пространства-времени на планковских масштабах[3]. Делает возможным космологическую гипотезу пульсирующей Вселенной[4].

История возникновения

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин, Абэй Аштекар, Тэд Джекобсон (англ.) и Карло Ровелли (англ.). Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время.

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года[5], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова[6][7]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к пониманию электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации[8].

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей[8].

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций[9].

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время[9]. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона[10].

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны[11] и гравитоны[12][13] — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены[11], фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов[8] (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований[14].

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью[15], отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн.[16].

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины, смешивание Кабиббо, а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи[17] описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves).

См. также

Источники

  • [elementy.ru/news/430207 «Что было до Большого взрыва и откуда взялось время»], «Элементы большой науки»
  • [www.chronos.msu.ru/old/RREPORTS/smolin_atomy/smolin_atomy.htm «Атомы пространства и времени»]
  • [www.scientific.ru/journal/news/n250501.html «Воспламеняющаяся Вселенная»]

Напишите отзыв о статье "Петлевая квантовая гравитация"

Литература

  • Lee Smolin, Three Roads to Quantum Gravity, Basic Books, 2001.
  • John Baez, The Quantum of Area?, Nature, vol.421, pp. 702–703; February 2003.
  • Lee Smolin, [arxiv.org/abs/hep-th/0303185 How Far Are We from the Quantum Theory of Gravity?], arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27–50; November 2003.
  • [www.edge.org/3rd_culture/smolin03/smolin03_index.html Lee Smolin, Loop Quantum Gravity, The third culture.]
  • Олег Фейгин. [books.google.ru/books?id=2ay4kQEACAAJ Парадоксы квантового мира]. — М.: Эксмо, 2012. — 288 с. — (Тайны мироздания). — 3000 экз. — ISBN 9785699530168.

Примечания

  1. ↑ Смолин Л. Атомы пространства и времени // В мире науки. — 2004. — № 4. — С. 18—25. — URL: www.chronos.msu.ru/RREPORTS/smolin_atomy/smolin_atomy.htm
  2. ↑ Фейгин, 2012, с. 219.
  3. ↑ С. Ю. Александров Лоренц-ковариантная петлевая квантовая гравитация // ТМФ. — 2004. — т. 139, № 3. — c. 363–380. — URL: dx.doi.org/10.4213/tmf62
  4. ↑ Боджовальд М. В погоне за скачущей Вселенной // В мире науки. — 2009. — № 1. — С. 18—25. — URL: sciam.ru/catalog/details/1-2009
  5. ↑ [es.arxiv.org/abs/hep-ph/0503213 A topological model of composite preons] es.arXiv.org
  6. ↑ [es.arxiv.org/abs/math.QA/0103190 A functor-valued invariant of tangles] es.arXiv.org
  7. ↑ [es.arxiv.org/abs/math.QA/0207264 An invariant of tangle cobordisms] es.arXiv.org
  8. ↑ 1 2 3 [arxiv.org/abs/hep-th/0603022 Quantum gravity and the standard model] arXiv.org
  9. ↑ 1 2 [www.newscientist.com/channel/fundamentals/mg19125645.800-you-are-made-of-spacetime.html You are made of space-time] New Scientist
  10. ↑ [arxiv.org/abs/gr-qc/0607014 Particles as Wilson lines of gravitational field] arXiv.org
  11. ↑ 1 2 [arxiv.org/abs/hep-th/0610237 Analytic derivation of dual gluons and monopoles from SU(2) lattice Yang-Mills theory. II. Spin foam representation ] arXiv.org
  12. ↑ [arxiv.org/abs/gr-qc/0604044 Graviton propagator in loop quantum gravity] arXiv.org
  13. ↑ [arxiv.org/abs/gr-qc/0605123 Towards the graviton from spinfoams: higher order corrections in the 3d toy model] arXiv.org
  14. ↑ [arxiv.org/abs/gr-qc/0609040 Fermions in three-dimensional spinfoam quantum gravity] arXiv.org
  15. ↑ [arxiv.org/abs/hep-ph/0503213 A topological model of composite preons] arXiv.org
  16. ↑ www.quantamagazine.org/20160112-string-theory-meets-loop-quantum-gravity/
  17. ↑ relativity.phys.lsu.edu/ilqgs/smolin030307.pdf

Отрывок, характеризующий Петлевая квантовая гравитация

В Лысых Горах, имении князя Николая Андреевича Болконского, ожидали с каждым днем приезда молодого князя Андрея с княгиней; но ожидание не нарушало стройного порядка, по которому шла жизнь в доме старого князя. Генерал аншеф князь Николай Андреевич, по прозванию в обществе le roi de Prusse, [король прусский,] с того времени, как при Павле был сослан в деревню, жил безвыездно в своих Лысых Горах с дочерью, княжною Марьей, и при ней компаньонкой, m lle Bourienne. [мадмуазель Бурьен.] И в новое царствование, хотя ему и был разрешен въезд в столицы, он также продолжал безвыездно жить в деревне, говоря, что ежели кому его нужно, то тот и от Москвы полтораста верст доедет до Лысых Гор, а что ему никого и ничего не нужно. Он говорил, что есть только два источника людских пороков: праздность и суеверие, и что есть только две добродетели: деятельность и ум. Он сам занимался воспитанием своей дочери и, чтобы развивать в ней обе главные добродетели, до двадцати лет давал ей уроки алгебры и геометрии и распределял всю ее жизнь в беспрерывных занятиях. Сам он постоянно был занят то писанием своих мемуаров, то выкладками из высшей математики, то точением табакерок на станке, то работой в саду и наблюдением над постройками, которые не прекращались в его имении. Так как главное условие для деятельности есть порядок, то и порядок в его образе жизни был доведен до последней степени точности. Его выходы к столу совершались при одних и тех же неизменных условиях, и не только в один и тот же час, но и минуту. С людьми, окружавшими его, от дочери до слуг, князь был резок и неизменно требователен, и потому, не быв жестоким, он возбуждал к себе страх и почтительность, каких не легко мог бы добиться самый жестокий человек. Несмотря на то, что он был в отставке и не имел теперь никакого значения в государственных делах, каждый начальник той губернии, где было имение князя, считал своим долгом являться к нему и точно так же, как архитектор, садовник или княжна Марья, дожидался назначенного часа выхода князя в высокой официантской. И каждый в этой официантской испытывал то же чувство почтительности и даже страха, в то время как отворялась громадно высокая дверь кабинета и показывалась в напудренном парике невысокая фигурка старика, с маленькими сухими ручками и серыми висячими бровями, иногда, как он насупливался, застилавшими блеск умных и точно молодых блестящих глаз. В день приезда молодых, утром, по обыкновению, княжна Марья в урочный час входила для утреннего приветствия в официантскую и со страхом крестилась и читала внутренно молитву. Каждый день она входила и каждый день молилась о том, чтобы это ежедневное свидание сошло благополучно. Сидевший в официантской пудреный старик слуга тихим движением встал и шопотом доложил: «Пожалуйте». Из за двери слышались равномерные звуки станка. Княжна робко потянула за легко и плавно отворяющуюся дверь и остановилась у входа. Князь работал за станком и, оглянувшись, продолжал свое дело. Огромный кабинет был наполнен вещами, очевидно, беспрестанно употребляемыми. Большой стол, на котором лежали книги и планы, высокие стеклянные шкафы библиотеки с ключами в дверцах, высокий стол для писания в стоячем положении, на котором лежала открытая тетрадь, токарный станок, с разложенными инструментами и с рассыпанными кругом стружками, – всё выказывало постоянную, разнообразную и порядочную деятельность. По движениям небольшой ноги, обутой в татарский, шитый серебром, сапожок, по твердому налеганию жилистой, сухощавой руки видна была в князе еще упорная и много выдерживающая сила свежей старости. Сделав несколько кругов, он снял ногу с педали станка, обтер стамеску, кинул ее в кожаный карман, приделанный к станку, и, подойдя к столу, подозвал дочь. Он никогда не благословлял своих детей и только, подставив ей щетинистую, еще небритую нынче щеку, сказал, строго и вместе с тем внимательно нежно оглядев ее: – Здорова?… ну, так садись! Он взял тетрадь геометрии, писанную его рукой, и подвинул ногой свое кресло. – На завтра! – сказал он, быстро отыскивая страницу и от параграфа до другого отмечая жестким ногтем. Княжна пригнулась к столу над тетрадью. – Постой, письмо тебе, – вдруг сказал старик, доставая из приделанного над столом кармана конверт, надписанный женскою рукой, и кидая его на стол. Лицо княжны покрылось красными пятнами при виде письма. Она торопливо взяла его и пригнулась к нему. – От Элоизы? – спросил князь, холодною улыбкой выказывая еще крепкие и желтоватые зубы. – Да, от Жюли, – сказала княжна, робко взглядывая и робко улыбаясь. – Еще два письма пропущу, а третье прочту, – строго сказал князь, – боюсь, много вздору пишете. Третье прочту. – Прочтите хоть это, mon pere, [батюшка,] – отвечала княжна, краснея еще более и подавая ему письмо. – Третье, я сказал, третье, – коротко крикнул князь, отталкивая письмо, и, облокотившись на стол, пододвинул тетрадь с чертежами геометрии. – Ну, сударыня, – начал старик, пригнувшись близко к дочери над тетрадью и положив одну руку на спинку кресла, на котором сидела княжна, так что княжна чувствовала себя со всех сторон окруженною тем табачным и старчески едким запахом отца, который она так давно знала. – Ну, сударыня, треугольники эти подобны; изволишь видеть, угол abc… Княжна испуганно взглядывала на близко от нее блестящие глаза отца; красные пятна переливались по ее лицу, и видно было, что она ничего не понимает и так боится, что страх помешает ей понять все дальнейшие толкования отца, как бы ясны они ни были. Виноват ли был учитель или виновата была ученица, но каждый день повторялось одно и то же: у княжны мутилось в глазах, она ничего не видела, не слышала, только чувствовала близко подле себя сухое лицо строгого отца, чувствовала его дыхание и запах и только думала о том, как бы ей уйти поскорее из кабинета и у себя на просторе понять задачу. Старик выходил из себя: с грохотом отодвигал и придвигал кресло, на котором сам сидел, делал усилия над собой, чтобы не разгорячиться, и почти всякий раз горячился, бранился, а иногда швырял тетрадью. Княжна ошиблась ответом. – Ну, как же не дура! – крикнул князь, оттолкнув тетрадь и быстро отвернувшись, но тотчас же встал, прошелся, дотронулся руками до волос княжны и снова сел. Он придвинулся и продолжал толкование. – Нельзя, княжна, нельзя, – сказал он, когда княжна, взяв и закрыв тетрадь с заданными уроками, уже готовилась уходить, – математика великое дело, моя сударыня. А чтобы ты была похожа на наших глупых барынь, я не хочу. Стерпится слюбится. – Он потрепал ее рукой по щеке. – Дурь из головы выскочит. Она хотела выйти, он остановил ее жестом и достал с высокого стола новую неразрезанную книгу. – Вот еще какой то Ключ таинства тебе твоя Элоиза посылает. Религиозная. А я ни в чью веру не вмешиваюсь… Просмотрел. Возьми. Ну, ступай, ступай! Он потрепал ее по плечу и сам запер за нею дверь. Княжна Марья возвратилась в свою комнату с грустным, испуганным выражением, которое редко покидало ее и делало ее некрасивое, болезненное лицо еще более некрасивым, села за свой письменный стол, уставленный миниатюрными портретами и заваленный тетрадями и книгами. Княжна была столь же беспорядочная, как отец ее порядочен. Она положила тетрадь геометрии и нетерпеливо распечатала письмо. Письмо было от ближайшего с детства друга княжны; друг этот была та самая Жюли Карагина, которая была на именинах у Ростовых: Жюли писала: «Chere et excellente amie, quelle chose terrible et effrayante que l'absence! J'ai beau me dire que la moitie de mon existence et de mon bonheur est en vous, que malgre la distance qui nous separe, nos coeurs sont unis par des liens indissolubles; le mien se revolte contre la destinee, et je ne puis, malgre les plaisirs et les distractions qui m'entourent, vaincre une certaine tristesse cachee que je ressens au fond du coeur depuis notre separation. Pourquoi ne sommes nous pas reunies, comme cet ete dans votre grand cabinet sur le canape bleu, le canape a confidences? Pourquoi ne puis je, comme il y a trois mois, puiser de nouvelles forces morales dans votre regard si doux, si calme et si penetrant, regard que j'aimais tant et que je crois voir devant moi, quand je vous ecris». [Милый и бесценный друг, какая страшная и ужасная вещь разлука! Сколько ни твержу себе, что половина моего существования и моего счастия в вас, что, несмотря на расстояние, которое нас разлучает, сердца наши соединены неразрывными узами, мое сердце возмущается против судьбы, и, несмотря на удовольствия и рассеяния, которые меня окружают, я не могу подавить некоторую скрытую грусть, которую испытываю в глубине сердца со времени нашей разлуки. Отчего мы не вместе, как в прошлое лето, в вашем большом кабинете, на голубом диване, на диване «признаний»? Отчего я не могу, как три месяца тому назад, почерпать новые нравственные силы в вашем взгляде, кротком, спокойном и проницательном, который я так любила и который я вижу перед собой в ту минуту, как пишу вам?] Прочтя до этого места, княжна Марья вздохнула и оглянулась в трюмо, которое стояло направо от нее. Зеркало отразило некрасивое слабое тело и худое лицо. Глаза, всегда грустные, теперь особенно безнадежно смотрели на себя в зеркало. «Она мне льстит», подумала княжна, отвернулась и продолжала читать. Жюли, однако, не льстила своему другу: действительно, и глаза княжны, большие, глубокие и лучистые (как будто лучи теплого света иногда снопами выходили из них), были так хороши, что очень часто, несмотря на некрасивость всего лица, глаза эти делались привлекательнее красоты. Но княжна никогда не видала хорошего выражения своих глаз, того выражения, которое они принимали в те минуты, когда она не думала о себе. Как и у всех людей, лицо ее принимало натянуто неестественное, дурное выражение, как скоро она смотрелась в зеркало. Она продолжала читать: 211

wiki-org.ru

Петлевая квантовая гравитация — Википедия РУ

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года[5], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова[6][7]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к пониманию электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации[8].

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей[8].

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций[9].

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время[9]. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона[10].

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны[11] и гравитоны[12][13] — независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены[11], фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов[8] (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований[14].

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью[15], отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн.[16].

http-wikipediya.ru

Петлевая квантовая гравитация Википедия

Петлевая квантовая гравитация — одна из теорий квантовой гравитации, основанная на концепции дискретного пространства-времени[1][2] и предположении об одномерности физических возбуждений пространства-времени на планковских масштабах[3]. Делает возможной космологическую гипотезу пульсирующей Вселенной[4].

История возникновения[ | код]

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин, Абэй Аштекар, Тэд Джекобсон (англ.) и Карло Ровелли (англ.). Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время.

Петлевая гравитация и физика элементарных частиц[ | код]

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года[5], С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова[6][7]), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к пониманию электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации[8].

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей[8].

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций[9].

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время[9]. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона — базовым объектам теории петлевой кван

ru-wiki.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики