Атомная бомба как устроена: Как устроена атомная бомба. Как устроена и работает ядерная боеголовка

Содержание

Принцип работы атомной бомбы

Взрыв атомной бомбы является одним из самых удивительных, загадочных и страшных процессов. Ядра некоторых изотопов радиоактивных элементов способны распадаться, при этом захватывая нейтрон. После этого выделяется ещё два или три нейтрона. Разрушение ядра одного атома при идеальных условиях может привести к распаду ещё двух или трех.

  • Чем водородная бомба отличается от атомной
  • Первое испытание
  • Ударная волна
  • Тепловой эффект
  • Огненный шар
  • Радиационное заражение
  • Царь-бомба
  • Создание атомной бомбы
  • Как устроена ядерная бомба?
  • Принцип работы
  • Поражающие факторы
  • Предыстория создания советской ядерной бомбы
  • Техническое задание
  • Испытания
  • «Ядерный клуб» мира
  • Нейтронная бомба
  • Конструкция и принцип действия нейтронной бомбы
  • Политические и исторические последствия
  • Зоны очага ядерного взрыва
  • Принципы устройства и действия ядерных боеприпасов
  • Принцип устройства ядерного заряда деления
  • Принцип устройства термоядерных зарядов
  • Как «ржавеют» термоядерные бомбы

Происходит лавинообразный процесс разрушения все большего числа ядер с высвобождением гигантского количества энергии разрыва атомных связей. При взрыве огромные энергии высвобождаются за сверхмалый промежуток времени. Происходит это в одной точке. Поэтому взрыв атомной бомбы является настолько мощным и разрушительным.

Первое ядерное испытание было проведено в июле 1945 года в США, недалеко от Алмогордо. В августе того же года американцы применили это оружие против японских городов Хиросима и Нагасаки. Взрыв атомной бомбы в городе привел к ужасным разрушениям и гибели большей части населения. 

Чем водородная бомба отличается от атомной

Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии.

Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.

Первое испытание

Советский Союз вновь опередил многих участников гонки холодной войны.

Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска.

Ударная волна

Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна.

Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда.

Тепловой эффект

Водородная бомба всего в 20 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда.

В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки.

Огненный шар

Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала.

Радиационное заражение

Самым опасным последствием взрыва станет радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли.

Царь-бомба

58 мегатонн — вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля.

Ударная волна три раза обогнула земной шар, заставив противников СССР лишний раз увериться в огромной разрушительной силе этого оружия. 

Создание атомной бомбы

Годом создания атомной бомбы стал 1896 год. Именно тогда французский физик А. Беккерель открыл радиоактивность урана. Впоследствии цепная реакция урана стала рассматриваться как источник огромной энергии и легла в основу разработки самого опасного оружия в мире. 

На протяжении нескольких последующих десятилетий учеными были обнаружены альфа, бета и гамма лучи. Тогда же было открыто большое количество радиоактивных изотопов, сформулирован закон радиоактивного распада и заложено начало исследования ядерной изомерии.

В 1940-х ученые обнаружили нейрон и позитрон и впервые провели расщепление ядра атома урана, сопровождающееся поглощением нейронов. Именно это открытие стало переломным моментом в истории.

В 1939 году французский физик Фредерик Жолио-Кюри запатентовал первую в мире ядерную бомбу.

В

Как устроена ядерная бомба?

В ее состав входят:

  1. Аварийный подрыв.
  2. Устройства взведения и предохранения.
  3. Источник питания.
  4. Различные датчики.

Транспортировка атомных бомб к месту атаки производится с помощью ракет. Ядерный боеприпас может входить в состав фугаса, торпеды, авиационный бомбы и прочих элементов. Для атомных бомб используют различные системы детонирования. 

Ядерное оружие может иметь большой, средний и малый калибр. Мощность взрыва обычно выражается в тротиловом эквиваленте. 

Принцип работы

Принцип действия ядерной бомбы основан на использовании энергии, выделяющейся при протекании цепной ядерной реакции. Во время этого процесса, тяжелые частицы делятся, а легкие – синтезируются.

При взрыве атомной бомбы, за кратчайший промежуток времени, на небольшой площади, выделяется огромное количество энергии.  В центре взрыва, непосредственно протекает процесс высвобождения энергии.

 Энергия ядерного взрыва, проецируясь на землю, может привести к сейсмическим толчкам, которые распространяются на значительное расстояние. 

Поражающие факторы

Атомное оружие имеет такие факторы поражения:

  1. Радиоактивное заражение.
  2. Световое излучение.
  3. Ударная волна.
  4. Электромагнитный импульс.
  5. Проникающая радиация.

Взрыв ядерного снаряда сопровождается яркой вспышкой. По мощности эта вспышка в несколько раз сильнее, чем солнечные лучи, поэтому опасность поражения световым и тепловым излучение есть в радиусе нескольких километров от точки взрыва.

Образующаяся при взрыве радиация действует всего минуту после взрыва, но имеет максимальную проникающую способность. У людей она вызывает развитие лучевой болезни.

Предыстория создания советской ядерной бомбы

После бомбардировки японских городов И. В. Сталин понял, что создание советской атомной бомбы является вопросом национальной безопасности. 20 августа 1945 года в СССР был создан комитет по ядерной энергетике во главе с Берия.

В 1943 году разведчики СССР передали из Англии материалы закрытых научных трудов в области атомной энергетики. Эти материалы проиллюстрировали, что работа заграничных ученых над созданием атомной бомбы серьезно продвинулась вперед.

Техническое задание

Согласно заданию, конструкторам необходимо было построить РДС двух моделей:

  1. РДС-1. Бомба с плутониевым зарядом, которая подрывается путем сферического обжатия. Устройство было позаимствовано у американцев.
  2. РДС-2. Пушечная бомба с двумя урановыми зарядами, сближающимися в стволе пушки, прежде чем создастся критическая масса.

Когда Америка узнала о том, что Советский Союз владеет секретами создания ядерного оружия, у нее появилось стремление к скорейшей эскалации превентивной войны.

Летом 1949 года появился план «Троян», по данным которого 1 января 1950 года планировалось начать боевые действия против СССР.  

Испытания

29 августа на полигоне в Семипалатинске было подорвано устройство РДС-1. Первая атомная бомба в СССР взорвалась с мощность 22 Кт.

«Ядерный клуб» мира

В него входят:

  1. Америка
  2. Россия 
  3. Англия 
  4. Франция
  5. Китай 
  6. Индия 
  7. Пакистан
  8. Корея 

Ядерное оружие есть также у Израиля, хотя руководство страны отказывается комментировать его наличие. 

Украина, Белоруссия и Казахстан, которые владели частью ядерного оружия СССР, после распада Союза передали свои бомбы России. 

Нейтронная бомба

Первый взрыв нейтронного оружия под индексом W-63 произошел в 1963 году в одной из шахт на полигоне в Неваде. 

В 1976 году на том же полигоне были выполнены испытания обновленного нейтронного заряда. Результаты испытаний настолько превзошли все ожидания военных, что решение о серийном производстве данного боеприпаса приняли за пару дней на самом высоком уровне.

Конструкция и принцип действия нейтронной бомбы

Нейтронная бомба – это вид тактического ядерного оружия мощностью от 1 до 10 кт, где поражающим фактором является поток нейтронного излучения.

К первому типу относятся маломощные заряды весом до 50 кг, которые используются в качестве боеприпасов к безоткатному или артиллерийскому орудию. В центральной части бомбы располагается полый шар из делящегося вещества. Внутри его полости находится «бустинг», усиливающий деление. Снаружи шар экранирован бериллиевым отражателем нейтронов.

Реакция термоядерного синтеза в таком снаряде запускается разогревом действующего вещества до миллиона градусов путем подрыва атомной взрывчатки. 

Второй тип нейтронного заряда используется в основном в крылатых ракетах или авиабомбах. Шар с «бустингом» вместо бериллиевого отражателя окружен небольшим слоем из дейтерий-тритиевой смеси.

Также существует и другой тип конструкции, когда дейтерий-тритиевая смесь выведена наружу атомной взрывчатки.

Еще одним поражающим фактором при взрыве нейтронной бомбы является наведенная радиоактивность. При захвате нейтронов веществом происходит частичное преобразование стабильных ядер в радиоактивные изотопы. Они в течении некоторого времени испускают собственное ядерное излучение, которое также становится опасным для живой силы противника.

Закатом нейтронного оружия стал 1992 год. В СССР, а затем и России, был разработан гениальный по своей простоте и эффективности способ защиты ракет – в состав материала корпуса ввели бор и обедненный уран. 

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-х годах XX века в США. На данный момент такой технологией обладают Россия и Франция.

В 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. 

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений характеризуется массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными разрушениями зданий и сооружений, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений характеризуется безвозвратными потерями среди населения (до 20 %), средними разрушениями зданий и сооружений, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений характеризуется слабыми и средними разрушениями зданий и сооружений.

 







Степень лучевой болезни

Доза излучения, вызывающая заболевание, рад

людей

животных

Легкая (I)

100-200

150-250

Средняя (II)

200-400

250-400

Тяжелая (III)

400-600

400-750

Крайне тяжелая (IV)

Более 600

Более 750

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

Принципы устройства и действия ядерных боеприпасов

Ядерными боеприпасами называются авиабомбы, торпеды, боевые части ракет, артиллерийские снаряды и специальные ин­женерные мины, снаряженные ядерными зарядами.

Отли­чительные особенности ядерных боеприпасов обусловлены:

— типом носителя, определяющим форму, габаритные и ве­совые характеристики боеприпаса;

— калибром боеприпаса, который характеризуется тротиловым эквивалентом;

надежностью действия и безопасностью при хранении, транспортировке и боевом применении;

— экономичностью конструкции боеприпаса. 


Ядерный боеприпас состоит из ядерного заряда, датчиков подрыва, системы автома­тики и источников питания, размещенных в корпусе.

Ядерный заряд представляет собой устройство для осуществления взрывного про­цесса освобождения внутри­ядерной энергии.

По характе­ру происходящих в них взрыв­ных реакций ядерные заряды подразделяются на три вида:

— ядерные заряды деле­ния, энергия взрыва которых обусловлена только реакцией деления плутония-239, урана-235, урана-233;

— ядерные заряды, у ко­торых кроме реакции деления плутония или урана, происхо­дит реакция синтеза легких ядер; эти заряды еще называ­ются термоядерными зарядами типа „деление—синтез»;

— ядерные заряды, энергия взрыва которых освобождается в результате развития трех ядерных реакций. Такие заряды на­зываются комбинированными зарядами или термоядерными заря­дами типа «деление — синтез — деление».

Принцип устройства ядерного заряда деления

Ядерные заряды деления в зависимости от способа создания надкритической массы подразделяются на заряды пушечного и имплозивного типов.

В ядерном заряде пушечного типа делящееся вещест­во до момента взрыва разделено на несколько частей.

Перевод частей ядерного заряда в надкритическое состояние осуществляется взрывом обыч­ных взрывчатых веществ. В резуль­тате этого в делящемся веществе протекает цепная ядерная реакция деления и происходит ядерный взрыв.

В ядерном заряде имплозивного типа делящееся ве­щество до момента взрыва представляет единое целое, но раз­меры и плотность его таковы, что системна находится в подкритическом состоянии. Перевод ядерного заряда в надкритическое состояние также осуществляется взрывом заряда обыч­ного ВВ. 

Принцип устройства термоядерных зарядов

Термоядерные боеприпасы могут снаряжаться термоядерными зарядами типа «деление — синтез»  или «деление — синтез—деление». В термоядерных зарядах обоих типов вслед за взрывной реакцией деления, которая вызывает нагрев термоядерного ВВ, происходит реакция синтеза.

Термоядерную реакцию синтеза оказалось проще осуще­ствить, используя в качестве термоядерного горючего дейтерид лития — твердое вещество, представляющее собой соединение литая с дейтерием.

При взаимодействии нейтронов с ядрами лития образуется тритий, который вступает в реакцию с дейтерием.

Как «ржавеют» термоядерные бомбы

Изготовители ядерных боеголовок дают одинаковый гарантийный срок на свои изделия – 30 лет.

Сегодня из всего трехтысячного арсенала “в живых” осталось: 150 “стратегических” и около 400 “тактических” бомб, а также еще примерно 200 “тактических” изделий находятся на хранении в резерве.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 8 чел.
Средний рейтинг: 4.5 из 5.

Как устроена атомная бомба. Как устроено ядерное оружие

Взорвалась вблизи Нагасаки. Смерть и разрушения сопровождаемые этими взрывами были беспрецедентными. Страх и ужас охватил все Японское население, вынудив сдаться их меньше чем через месяц.

Однако после завершения второй мировой войны атомное оружие не отошло на второй план. Начавшаяся холодная война стала огромным психологическим фактором давления между СССР и США. Обе стороны инвестировали огромные средства в разработку и создание новых атомных . Таким образом, на нашей планете за 50 лет накопилось несколько тысяч атомных снарядов. Этого вполне достаточно, чтобы несколько раз уничтожить все живое на . По этой причине в конце 90-х годов между США и Россией был подписан первый договор по разоружению, чтобы снизить опасность всемирной катастрофы. Не смотря на это, в настоящее время 9 стран обладают ядерным оружием, ставя свою оборону на иной уровень. В этой статье мы рассмотрим, из-за чего атомное оружие получило свою разрушительную мощь и как устроена атомная .

Для того, чтобы понять всю мощь атомных бомб необходимо разобраться с понятием радиоактивности. Как известно, наименьшей структурной единицей материи, из которой состоит весь мир вокруг нас, является атом. Атом в свою очередь состоит из ядра и вращающихся вокруг него . Ядро состоит из нейтронов и протонов. Электроны имеют отрицательный заряд, а протоны положительный. Нейтроны, как следует из их названия, – нейтральны. Обычно число нейтронов и протонов равно числу электронов в одном атоме. Однако под действием внешних сил число частиц в атомах вещества может измениться.

Нас интересует лишь вариант, когда изменяется число нейтронов, при этом образуется изотоп вещества. Некоторые изотопы вещества устойчивы и встречаются в природе, а некоторые – нестабильны и стремятся распасться. Например, углерод имеет 6 нейтронов. Также, встречается изотоп углерода с 7 нейтронами – достаточно устойчивый элемент, встречающий в природе. Изотоп углерода с 8 нейтронами – это уже нестабильный элемент и стремиться распасться. Это и есть радиоактивный распад. При этом нестабильные ядра, излучают лучи трех видов:

1. Альфа-лучи – достаточно безобидное в виде потока альфа-частиц, которое можно остановить с помощью тонкого листа бумаги и оно не может причинить вред

Даже если живые организмы смогли перенести первые две , то волна радиации вызывает очень скоротечную лучевую болезнь, убивающую за считанные минуты. Такое поражение возможно в радиусе нескольких сотен метров от взрыва. До нескольких километров от взрыва лучевая болезнь убьет человека за несколько часов или дней. Те, кто находился за пределами непосредственного взрыва, также могут получить дозу радиации, употребляя в пищу продукты и , а также вдыхая из зараженной зоны. Причем радиация не улетучивается мгновенно. Она накапливается в окружающей среде и может отравлять живые организмы еще долгие десятилетия после взрыва.

Вред от ядерного оружия слишком опасен, чтобы использовать его в любых условиях. От него неизбежно страдает мирное население и природе наносится непоправимый ущерб. Поэтому главное применение ядерных бомб в наше время – это сдерживание от нападения. Даже испытания ядерного оружия в настоящее время запрещены на большей части нашей планеты.

Является одним из самых удивительных, загадочных и страшных процессов. Принцип действия ядерного оружия основан на цепной реакции. Это такой процесс, сам ход которого инициирует его продолжение. Принцип действия водородной бомбы основывается на синтеза.

Атомная бомба

Ядра некоторых изотопов радиоактивных элементов (плутоний, калифорний, уран и других) способны распадаться, при этом захватывая нейтрон. После этого выделяется ещё два или три нейтрона. Разрушение ядра одного атома при идеальных условиях может привести к распаду ещё двух или трех, которые, в свою очередь, могут инициировать другие атомы. И так далее. Происходит лавинообразный процесс разрушения все большего числа ядер с высвобождением гигантского количества энергии разрыва атомных связей. При взрыве огромные энергии высвобождаются за сверхмалый промежуток времени. Происходит это в одной точке. Поэтому взрыв атомной бомбы является настолько мощным и разрушительным.

Чтобы инициировать начало цепной реакции, необходимо, чтобы количество радиоактивного вещества превысило критическую массу. Очевидно, что нужно взять несколько частей урана или плутония и соединить в одно целое. Однако чтобы вызвать взрыв атомной бомбы, этого недостаточно, потому что реакция прекратится раньше, чем выделится достаточное количество энергии, или процесс будет протекать медленно. Для того чтобы достичь успеха, необходимо не просто превысить критическую массу вещества, а сделать это в крайне малый промежуток времени. Лучше всего использовать несколько Этого достигают с помощью применения других Причем чередуют быструю и медленную взрывчатки.

Первое ядерное испытание было проведено в июле 1945 года в США недалеко от местечка Алмогордо. В августе того же года американцы применили это оружие против Хиросима и Нагасаки. Взрыв атомной бомбы в городе привел к ужасным разрушениям и гибели большей части населения. В СССР атомное оружие было создано и испытано в 1949 году.

Водородная бомба

Является оружием с очень большой разрушительной силой. Принцип её действия основывается на которая представляет собой синтез из более легких атомов водорода тяжелых ядер гелия. При этом происходит высвобождение очень большого количества энергии. Эта реакция аналогична процессам, которые протекают на Солнце и других звездах. легче всего проходит с использованием изотопов водорода (трития, дейтерия) и лития.

Испытание первого водородного боезаряда провели американцы в 1952 году. В современном понимании это устройство сложно назвать бомбой. Это было трехэтажное здание, заполненное жидким дейтерием. Первый взрыв водородной бомбы в СССР был произведен на полгода позже. Советский термоядерный боеприпас РДС-6 взорвали в августе 1953 года под Семипалатинском. Самую большую водородную бомбу мощностью 50 мегатонн (Царь-бомба) СССР испытал в 1961 году. Волна после взрыва боеприпаса обогнула планету три раза.

Атомная бомба — снаряд для получения взрыва большой силы в результате весьма быстрого выделения ядерной (атомной) энергии.

Принцип действия атомных бомб

Ядерный заряд разделён на несколько частей до критических размеров, чтобы в каждой из них не могла начаться саморазвивающаяся неуправляемая цепная реакция делений атомов делящегося вещества. Такая реакция возникнет лишь тогда, когда все части заряда будут быстро соединены в одно целое. От скорости сближения отдельных частей в сильной степени зависит полнота протекания реакции и в конечном счёте мощность взрыва. Для сообщения большой скорости частям заряда можно использовать взрыв обычного взрывчатого вещества. Если части ядерного заряда расположить по радиальным направлениям на некотором расстоянии от центра, а с внешней стороны поместить заряды тротила, то можно осуществить взрыв обычных зарядов, направленный к центру ядерного заряда. Все части ядерного заряда не только с огромной скоростью соединяться в единое целое, но и окажутся на некоторое время сжатыми со всех сторон огромным давлением продуктов взрыва и не смогут разделиться сразу, как только начнётся в заряде цепная ядерная реакция. В результате этого произойдёт значительно большее деление, чем без такого сжатия, и, следовательно, повысится мощность взрыва. Увеличению мощности взрыва при том же количестве делящегося вещества способствует также отражатель нейтронов (наиболее эффективными отражателями являются бериллий , графит, тяжёлая вода ). Для первого деления, которое положило бы начало цепной реакции, нужен, по меньшей мере, один нейтрон. Рассчитывать на своевременное начало цепной реакции под действием нейтронов, появляющихся при самопроизвольном (спонтанном) делении ядер, нельзя, т.к. оно происходит сравнительно редко: для U-235 — 1 распад в час на 1 гр. вещества. Нейтронов, существующих в свободном виде в атмосфере, также очень мало: через S = 1см/кв. за секунду пролетает в среднем около 6 нейтронов. По этой причине в ядерном заряде применяют искусственный источник нейтронов — своеобразный ядерный капсюль-детонатор. Он обеспечивает также множество начинающихся одновременно делений, поэтому реакция протекает в виде ядерного взрыва.

Варианты детонации (Пушечная и имплозивная схемы)

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой — неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится надкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (т. н. «шипучка», англ. Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Имплозивная схема. Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток — ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками)

Интерес к истории возникновения и значению для человечества ядерного оружия определяется значением целого ряда факторов, среди которых, пожалуй, первый ряд занимают проблемы обеспечения баланса сил на мировой арене и актуальности построения системы ядерного сдерживания военной угрозы для государства. Определённое влияние, прямое или косвенное, наличие ядерного оружия всегда оказывает на социально-экономическую ситуацию и политическую расстановку сил в «странах-владельцах» таковым вооружением, Этим, в том числе, и обусловлена актуальность выбранной нами проблемы исследования. Проблема разработки и актуальности использования ядерного оружия в целях обеспечения национальной безопасности государства является достаточно актуальной в отечественной науке уже не первое десятилетие, и эта тема, до сих пор, не исчерпала себя.

Объектом данного исследования является атомное оружие в современном мире, предметом исследования — история создания атомной бомбы и её технологическое устройство. Новизна работы состоит в том, что проблема атомного оружия освещается с позиции целого ряда направлений: ядерной физики, национальной безопасности, истории, внешней политики и разведки.

Цель данной работы состоит в исследовании истории создания и роли атомной (ядерной) бомбы в обеспечении мира и порядка на нашей планете.

Для достижения поставленной цели в работе решены следующие задачи:

охарактеризовано понятие «атомная бомба», «ядерное оружие» и др.;

рассмотрены предпосылки возникновения атомного оружия;

выявлены причины, побудившие человечество к созданию атомного оружия и его использованию.

проанализировано строение и состав атомной бомбы.

Поставленные цель и задачи обусловили структуру и логику исследования, которое состоит из введения, двух разделов, заключения и списка использованных источников.

Прежде чем начать изучение строения атомной бомбы, необходимо разобраться в терминологии по данной проблеме. Итак, в научных кругах, существуют специальные термины, отображающие характеристики атомного оружия. Среди них, особо отметим следующие:

Атомная бомба — первоначальное название авиационной ядерной бомбы, действие которой основано на взрывной цепной ядерной реакции деления. С появлением так называемой водородной бомбы, основанной на термоядерной реакции синтеза, утвердился общий для них термин — ядерная бомба.

Ядерная бомба — авиационная бомба с ядерным зарядом, обладает большой разрушительной силой. Первые две ядерные бомбы с тротиловым эквивалентом около 20 кт каждая были сброшены американской авиацией на японские города Хиросима и Нагасаки, соответственно 6 и 9 августа 1945, и вызвали огромные жертвы и разрушения. Современные ядерные бомбы имеют тротиловый эквивалент от десятков до миллионов тонн.

Ядерное или атомное оружие — оружие взрывного действия, основанного на использовании ядерной энергии, освобождающейся при цепной ядерной реакции деления тяжёлых ядер или термоядерной реакции синтеза лёгких ядер.

Относится к оружию массового поражения (ОМП) наряду с биологическим и химическим.

Ядерное оружие — совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения; обладает громадной разрушительной силой. По выше указанной причине, США и СССР вкладывали огромные средства в разработку ядерного оружия. По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое. Применение ядерного оружия в войне гибельно для всего человечества.

Ядерный взрыв — это процесс мгновенного выделения большого количества внутриядерной энергии в ограниченном объеме.

Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и, в отдельных случаях, уран-233).

Уран-235 используют в ядерном оружии потому, что в отличие от наиболее распространённого изотопа урана-238, в нём возможна самоподдерживающаяся цепная ядерная реакция.

Плутоний-239 также называют «оружейным плутонием», т.к. он предназначен для создания ядерного оружия и содержание изотопа 239Pu должно быть, не менее 93,5 %.

Для отражения строения и состава атомной бомбы, в качестве прототипа проанализируем плутониевую бомбу «Толстяк» (рис. 1) сброшенную 9 августа 1945 года на японский город Нагасаки.

атомный ядерный бомба взрыв

Рисунок 1 — Атомная бомба «Толстяк»

Схема этой бомбы (типичная для плутониевых однофазных боеприпасов) примерно следующая:

Нейтронный инициатор — шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 — первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время помимо данного типа инициирования, больше распространено термоядерное инициирование (ТИ). Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревается сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции (рис. 2).

Плутоний. Используют максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.

Оболочка (обычно из урана), служащая отражателем нейтронов.

Обжимающая оболочка из алюминия. Обеспечивает бомльшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток.

Корпус, изготовленный из дюралевых штампованных элементов — две сферических крышки и пояс, соединяемые болтами.

Рисунок 2 — Принцип действия плутониевой бомбы

Центр ядерного взрыва — точка, в которой происходит вспышка или находится центр огненного шара, а эпицентром — проекцию центра взрыва на земную или водную поверхность.

Ядерное оружие является самым мощным и опасным видом оружия массового поражения, угрожающим всему человечеству невиданными разрушениями и уничтожением миллионов людей.

Если взрыв происходит на земле или довольно близко от ее поверхности, то часть энергии взрыва передается поверхности Земли в виде сейсмических колебаний. Возникает явление, которое по своим особенностям напоминает землетрясение. В результате такого взрыва образуются сейсмические волны, которые через толщу земли распространяется на весьма большие расстояния. Разрушительное действие волны ограничивается радиусом в несколько сот метров.

В результате чрезвычайно высокой температуры взрыва возникает яркая вспышка света, интенсивность которой в сотни раз превосходит интенсивность солнечных лучей, падающих на Землю. При вспышке выделяется огромное количество тепла и света. Световое излучение вызывает самовозгорание воспламеняющихся материалов и ожоги кожи у людей в радиусе многих километров.

При ядерном взрыве возникает радиация. Она продолжается около минуты и обладает настолько высокой проникающей способностью, что для защиты от нее на близких расстояниях требуются мощные и надежные укрытия.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение местности;

электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда (Pu-239, U-235) и не прореагировавшей частью заряда, выпадающими из облака взрыва, а также радиоактивные изотопы, образующиеся в грунте и других материалах под воздействием нейтронов — наведённая активность. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

В области ядерного взрыва выделяют два ключевых участка: центр и эпицентр. В центре взрыва, непосредственно протекает процесс высвобождения энергии. Эпицентр является проекцией этого процесса на земную или водную поверхность. Энергия ядерного взрыва, проецируясь на землю, может привести к сейсмическим толчкам, которые распространяются на значительное расстояние. Вред окружающей среде эти толчки приносят лишь в радиусе нескольких сотен метров от точки взрыва.

Поражающие факторы

Атомное оружие имеет такие факторы поражения:

  1. Радиоактивное заражение.
  2. Световое излучение.
  3. Ударная волна.
  4. Электромагнитный импульс.
  5. Проникающая радиация.

Последствия взрыва атомной бомбы губительны для всего живого. Из-за высвобождения огромного количества световой и теплой энергии взрыв ядерного снаряда сопровождается яркой вспышкой. По мощности эта вспышка в несколько раз сильнее, чем солнечные лучи, поэтому опасность поражения световым и тепловым излучение есть в радиусе нескольких километров от точки взрыва.

Еще одним опаснейшим поражающим фактором атомного оружия является образующаяся при взрыве радиация. Она действует всего минуту после взрыва, но имеет максимальную проникающую способность.

Ударная волна обладает сильнейшим разрушающим действием. Она буквально стирает с лица земли все, что стоит у нее на пути. Проникающая радиация несет опасность для всех живых существ. У людей она вызывает развитие лучевой болезни. Ну а электромагнитный импульс наносит вред только технике. В совокупности же поражающие факторы атомного взрыва несут в себе огромную опасность.

Первые испытания

На протяжении всей истории атомной бомбы наибольшую заинтересованность в ее создании проявляла Америка. В конце 1941 года руководство страны выделило на это направление огромное количество денег и ресурсов. Руководителем проекта был назначен Роберт Оппенгеймер, которого многие считают создателем атомной бомбы. По сути, он был первым, кто смог воплотить идею ученых в жизнь. В результате 16 июля 1945 года в пустыне штата Нью-Мексико состоялось первое испытание атомной бомбы. Тогда Америка решила, что для полного окончания войны ей необходимо разгромить Японию — союзника гитлеровской Германии. Пентагон быстро выбрал цели для первых ядерных атак, которые должны были стать яркой иллюстрацией мощности американского вооружения.

6 августа 1945 год атомная бомба США, цинично названная «Малышом», была сброшена на город Хиросима. Выстрел получился просто идеальным — бомба взорвалась на высоте 200 метров от земли, благодаря чему ее взрывная волна нанесла городу ужасающий ущерб. В районах, отдаленных от центра, были опрокинуты печи с углем, что привело к сильным пожарам.

Следом за яркой вспышкой последовала тепловая волна, которая за 4 секунды действия успела расплавить черепицу на крышах домов и испепелить телеграфные столбы. За тепловой волной последовала ударная. Ветер, пронесшийся по городу со скоростью порядка 800 км/ч, сносил все на своем пути. Из 76 000 зданий, расположенных в городе до взрыва, полностью разрушено было около 70 000. Спустя несколько минут после взрыва с неба пошел дождь, крупные капли которого имели черный цвет. Дождь выпал из-за образования в холодных слоях атмосферы огромного количества конденсата, состоящего из пара и пепла.

Люди, которые попали под действие огненного шара в радиусе 800 метров от точки взрыва, превратились в пыль. У тех, кто находился немного дальше от взрыва, обгорела кожа, остатки который сорвала ударная волна. Черный радиоактивный дождь оставлял на коже уцелевших неизлечимые ожоги. У тех, кто чудом сумел спастись, вскоре стали проявляться признаки лучевой болезни: тошнота, лихорадка и приступы слабости.

Спустя три дня после бомбардировки Хиросимы, Америка атаковала еще один японский город — Нагасаки. Второй взрыв имел такие же пагубные последствия, как и первый.

За считаные секунды, две атомные бомбы уничтожили сотни тысяч человек. Ударная волна практически стерла с лица земли Хиросиму. Более половины местных жителей (около 240 тысяч человек) погибло сразу же от полученных ранений. В городе Нагасаки, от взрыва погибло порядка 73 тысяч человек. Многие из тех, кто уцелел, подверглись сильнейшему облучению, которое вызывало бесплодие, лучевую болезнь и рак. В результате часть из уцелевших умерла в страшных муках. Использование атомной бомбы в Хиросиме и Нагасаки проиллюстрировало ужасную силу этого оружия.

Мы с вами уже знаем, кто изобрел атомную бомбу, как она работает и какие к каким последствия может привести. Теперь узнаем, как с ядерным оружием обстояли дела в СССР.

После бомбардировки японских городов, И. В. Сталин понял, что создание советской атомной бомбы является вопросом национальной безопасности. 20 августа 1945 года, в СССР был создан комитет по ядерной энергетике, главой которого назначили Л. Берию.

Стоит отметить, что работы в данном направлении велись в Советском Союзе еще с 1918 года, а в 1938 году, была создана специальная комиссия по атомному ядру при Академии наук. С началом Второй мировой войны, все работы в этом направлении были заморожены.

В 1943 году, разведчики СССР передали из Англии материалы закрытых научных трудов в области атомной энергетики. Эти материалы проиллюстрировали, что работа заграничных ученых над созданием атомной бомбы серьезно продвинулась вперед. В то же время американские резиденты поспособствовали внедрению надежных советских агентов в основные центры ядерных исследований США. Агенты передавали информацию о новых разработках советским ученым и инженерам.

Техническое задание

Когда в 1945 году вопрос о создании советской ядерной бомбы стал едва ли не приоритетным, один из руководителей проекта Ю. Харитон составил план разработки двух вариантов снаряда. 1 июня 1946 года план был подписан высшим руководством.

Согласно заданию, конструкторам необходимо было построить РДС (Реактивный двигатель специальный) двух моделей:

  1. РДС-1. Бомба с плутониевым зарядом, которая подрывается путем сферического обжатия. Устройство было позаимствовано у американцев.
  2. РДС-2. Пушечная бомба с двумя урановыми зарядами, сближающимися в стволе пушки, прежде чем создастся критическая масса.

В истории пресловутого РДС, самой распространенной, хоть и шуточной формулировкой, была фраза «Россия делает сама». Ее придумал заместитель Ю. Харитона, К. Щелкин. Данная фраза очень точно передает суть работы, по крайней мере, для РДС-2.

Когда Америка узнала о том, что Советский Союз владеет секретами создания ядерного оружия, у нее появилось стремление к скорейшей эскалации превентивной войны. Летом 1949 года появился план «Троян», по данным которого 1 января 1950 года планировалось начать боевые действия против СССР. Затем дату нападения перенесли на начало 1957 года, но с условием, что к нему присоединяться все страны НАТО.

Испытания

Когда сведения о планах Америки поступили по разведывательным каналам в СССР, работа советских ученых значительно ускорилась. Западные специалисты полагали, что в СССР атомное оружие будет создано не ранее чем в 1954-1955 году. На самом же деле испытания первой атомной бомбы в СССР состоялись уже в августе 1949 года. 29 августа на полигоне в Семипалатинске было подорвано устройство РДС-1. В его создании поучаствовал большой коллектив ученых, во главе которого стал Курчатов Игорь Васильевич. Конструкция заряда принадлежала американцам, а электронное оснащение было создано с нуля. Первая атомная бомба в СССР взорвалась с мощность 22 Кт.

Из-за вероятности ответного удара план «Троян», который предполагал ядерную атаку 70 советских городов, был сорван. Испытания на Семипалатинском стали концом американской монополии на владение атомным оружием. Изобретение Игоря Васильевича Курчатова полностью разрушило военные планы Америки и НАТО и предупредило развитие очередной мировой войны. Так началась эпоха мира на Земле, который существует под угрозой абсолютного уничтожения.

«Ядерный клуб» мира

На сегодняшний день атомное вооружение иметься не только у Америки и России, но и у ряда других государств. Совокупность стран, владеющих таким оружием, условно называют «ядерным клубом».

В него входят:

  1. Америка (с 1945 г.).
  2. СССР, а теперь Россия (с 1949 г.).
  3. Англия (с 1952 г.).
  4. Франция (с 1960 г.).
  5. Китай (с 1964 г.).
  6. Индия (с 1974 г.).
  7. Пакистан (с 1998 г.).
  8. Корея (с 2006 г.).

Ядерное оружие есть также у Израиля, хотя руководство страны отказывается комментировать его наличие. Кроме того, на территории стран НАТО (Италия, Германия, Турция, Бельгия, Нидерланды, Канада) и союзников (Япония, Южная Корея, невзирая на официальный отказ), находится американское ядерное оружие.

Украина, Белоруссия и Казахстан, которые владели частью ядерного оружия СССР, после распада Союза передали свои бомбы России. Она стала единственным наследником ядерного арсенала СССР.

Заключение

Сегодня мы с вами узнали, кто изобрел атомную бомбу и что она собой представляет. Резюмируя вышесказанное, можно сделать вывод, что ядерное оружие на сегодняшний день является мощнейшим инструментом глобальной политики, твердо вошедшим в отношения между странами. Оно, с одной стороны, является действенным средством устрашения, а с другой — убедительным аргументом для предотвращения военного противостояния и укрепления мирных отношений между государствами. Атомное оружие является символом целой эпохи, который требует особо бережного обращения.

Самая опасная бомба — грязная бомба: что это и как она устроена

В своем недавнем выступлении Владимир Путин намекнул на то, что Украина могла заниматься созданием «грязной» бомбы. История знает случаи, когда военные предполагали делать ставку именно на последний поражающий фактор, применив оружие, способное сделать любую территорию непригодной для жизни на очень, очень долгое время. Рассказываем, как оно устроено и какими могут быть реальные последствия взрыва такой бомбы.

Александр Петров

Впрочем, первым, кого посетила подобная идея, был не ученый-маньяк, не диктатор маленькой страны третьего мира и даже не генерал из Пентагона. В 1940 году начинающий, но уже подающий большие надежды американский фантаст Роберт Хайнлайн написал рассказ «Никудышное решение». В Европе уже раскачивался маховик Второй мировой, и мир, содрогаясь от предчувствия грядущей войны, спешно вооружался; Хайнлайн же интересовался физикой, и потому его творческая мысль потекла по очевидному руслу: какими новейшими методами человекоубийства могут обернуться последние достижения науки, в частности расщепление ядра урана, открытое в 1939 году Отто Ганом и Фрицем Штрассманом.

Интересный факт: в своем рассказе Роберт Хайнлайн за три года до Манхэттенского проекта предугадал его создание. Но если результатом исследований, осуществленных в рамках реального Манхэттенского проекта, стали атомные бомбы, сброшенные на японские города, то ученые, задействованные в вымышленном Специальном оборонном проекте №347, так и не смогли решить проблему управления ядерной реакцией — а потому решили пойти другим путем и воспользоваться убийственными свойствами радиоактивности неустойчивых изотопов. В альтернативной вселенной рассказа, чтобы принудить Германию к капитуляции, Соединенные Штаты Америки в 1945 году сбросили на Берлин несколько десятков компактных бомб с радиоактивной пылью — город не пострадал, но полностью обезлюдел, — а после взяли курс на мировое господство демократических ценностей, подкрепленных «грязными бомбами».

«Фантастика», — скажет читатель. Увы, но то, о чем писал Роберт Хайнлайн, вполне было возможно в годы Второй мировой войны и тем более может стать реальностью сегодня.

Радиоактивная пыль

Радиологическому оружию, как еще называют «грязные бомбы», вовсе не обязательно быть собственно бомбой. В рассказе Хайнлайна, например, русские (создавшие подобное оружие практически одновременно с американцами) рассеивали радиоактивную пыль над американскими городами прямо с самолетов, как инсектицид на поля (кстати, еще одно меткое предвиденье автора: задолго до начала холодной войны он предугадал, что именно СССР станет основным соперником Соединенных Штатов в области сверхоружия). Даже выполненное в форме бомбы, подобное оружие не наносит существенных материальных разрушений — небольшой заряд взрывчатого вещества используется для того, чтобы рассеять в воздухе радиоактивную пыль.

При ядерном взрыве образуется значительное количество разнообразных неустойчивых изотопов, помимо того, происходит заражение наведенной радиоактивностью, возникающей вследствие нейтронного ионизирующего облучения почвы и объектов. Однако уровень радиации после ядерного взрыва относительно быстро падает, поэтому самый опасный период можно переждать в бомбоубежище, а зараженная территория спустя несколько лет становится пригодна для использования в хозяйственных целях и для проживания. Так, например, Хиросима, пострадавшая от урановой бомбы, и Нагасаки, где была взорвана бомба из плутония, начали отстраиваться заново через четыре года после взрывов.

Совсем иначе бывает, когда взрывается достаточно мощная «грязная бомба», специально предназначенная для максимального загрязнения территории и превращения ее в подобие Чернобыльской зоны отчуждения. Различные радиоактивные изотопы имеют разный период полураспада — от микросекунд до миллиардов лет. Наиболее неприятны из них те, полураспад которых происходит за годы — время, существенное относительно продолжительности человеческой жизни: их не пересидишь в бомбоубежище, при достаточном загрязнении ими местность остается радиоактивно опасной на протяжении нескольких десятилетий, и поколения успеют смениться несколько раз, прежде чем в разрушенном городе (или на другой территории) снова можно будет работать и жить.

К числу самых опасных для человека изотопов относятся стронций-90 и стронций-89, цезий-137, цинк-64, тантал-181. Следует иметь в виду, что разные изотопы по-разному влияют на организм. Например, йод-131, хоть и имеет относительно короткий период полураспада в восемь дней, представляет серьезную опасность, так как быстро накапливается в щитовидной железе. Радиоактивный стронций накапливается в костях, цезий — в мышечных тканях, углерод распределяется по всему организму.

Несмотря на то, что грязные бомбы никогда не производились и не использовались в реальных боевых действиях, журналистские «утки», связанные и этой темой, регулярно появлялись в печати, вызывая неоднозначную реакцию как у общественности, так и у спецслужб. Например, 1955 по 1963 гг. британцы испытывали атомные заряды в Маралинге (Южная Австралия). В рамках этой программы была проведена операция под кодовым названием Antler, цель которой заключалась в испытаниях термоядерного оружия. Программа включала три теста с зарядами разной мощности (0. 93, 5.67 и 26.6 килотонн), причём в первом случае (кодовое имя – Tadje, 14 сентября 1957 года) на полигоне располагались радиохимические метки из обычного кобальта (Co-59), который под воздействием нейтронов превращается в кобальт-60. Измеряя интенсивность гамма-излучения меток после испытаний, можно довольно точно судить об интенсивности нейтронного потока при взрыве. Слово «кобальт» просочилось в прессу, и это послужило причиной слухов о том, что Великобритания не только построила «грязную» кобальтовую бомбу, но и испытывает её. Слухи не подтвердились, но «утка» серьёзно навредила международному имиджу Британии – вплоть до того, что в Маралингу выезжала Королевская комиссия для проверки того, чем всё-таки занимаются в Австралии британские ядерщики.  

Единицы измерения поглощенной организмом радиации — зиверт (Зв) и устаревший, но еще встречающийся в публикациях бэр («биологический эквивалент рентгена», 1 бэр = 0,01 Зв). Нормальная доза радиоактивного облучения, получаемая человеком от природных источников в течение года, составляет 0,0035−0,005 Зв. Облучение в 1Зв — это нижний порог развития лучевой болезни: существенно слабеет иммунитет, ухудшается самочувствие, возможны кровотечения, выпадение волос и возникновение мужского бесплодия. При дозе в 3−5 Зв без серьезной медицинской помощи половина пострадавших умирает в течение 1−2 месяцев, у выживших так или иначе высока вероятность развития раковых заболеваний. При 6−10 Зв у человека практически полностью отмирает костный мозг, без полной его пересадки вероятности выжить нет, смерть наступает через 1- 4 недели. Если человек получил более 10 Зв, спасти его невозможно.

Кроме соматических (то есть возникающих непосредственно у облученного человека) последствий имеют место еще и генетические — проявляющиеся у его потомства. Следует иметь в виду, что уже при относительно небольшой дозе радиоактивного облучения в 0,1 Зв вероятность генных мутаций удваивается.

Кобальтовая бомба

В 1952 году Лео Силард, ученый, двумя десятилетиями ранее открывший цепную ядерную реакцию, бывший участник Манхэттенского проекта, в общих чертах предложил следующую идею: если водородную бомбу окружить оболочкой из обычного кобальта-59, то при взрыве он превратится в неустойчивый изотоп кобальт-60 с периодом полураспада около 5,5 года, — мощнейший источник гамма-излучения. Распространено (в том числе и в художественной литературе) заблуждение, что кобальтовая бомба — чрезвычайно мощное взрывное устройство, «суперъядерная бомба», — но это не так. Основным поражающим фактором кобальтовой бомбы является вовсе не ядерный взрыв, а максимально возможное радиационное загрязнение местности, так что эта бомба — самая что ни на есть «грязная», если угодно, «супергрязная». К чести Силарда следует сказать, что он сделал свое предложение не из милитаристских побуждений и не в состоянии наивной оторванности от реальности, часто свойственном жрецам науки, а исключительно для того, чтобы продемонстрировать абсурдность, самоубийственную бессмысленность гонки за сверхоружием. Но впоследствии другие ученые провели точные расчеты и пришли к выводу, что при достаточной (и вполне реальной для изготовления) величине кобальтовой бомбы она (либо совокупность подобных бомб) уничтожит все живое на Земле. И как сейчас знать, делали они эти расчеты из собственного любопытства или по звонку из Пентагона: «рассчитать возможность, эффективность, стоимость, к вечеру отчитаться»?. .

Никто и никогда прежде не предлагал реализуемый вариант оружия (сколь бы массовым ни был его поражающий эффект), способного стерилизовать всю планету. В 1950-х годах аналитиком исследовательского центра RAND Германом Каном было введено понятие «Машины Страшного суда». Обладающее таким устройством государство способно диктовать свою волю всему миру, но это будет воля смертника, сжимающего в руке гранату без чеки.

«TechInsider» задалась вопросом, сколько датчиков дыма нужно «расковырять», чтобы добытого таким образом америция хватило для создания «грязной бомбы» в домашних условиях. Итак, в современно датчике дыма HIS-07 содержится примерно 0,25 мкг америция-241 (0,9 мкКи). В древнем советском датчике дыма РИД-1 содержится два источника по 0,57 мКи плутония-239, что соответствует примерно 8 мг (суммарно 16 мг на датчик). В относительно новом советском датчике дыма РИД-6М содержится два источника по 5,7 мкКи плутония-239, что соответствует примерно по 80 мкГ (итого 160 мкг на датчик – уже неплохо!). 2.
Это, конечно, условные цифры. Разные изотопы имеют разную опасность, что именно считать опасным, а что вредным — весьма спорный вопрос. Плюс к тому малые количества распыляются неравномерно, так что реальные площади загрязнения будут куда меньше.

Как сказал Харрисон Браун в радиодискуссии с Лео Силардом, «с помощью такой бомбы гораздо проще уничтожить все человечество, чем какую-то определенную его часть».

Вероятно, поэтому до настоящего времени кобальтовая бомба — насколько нам известно — так и остается «гипотетическим» оружием, как и «грязные бомбы» вообще. Но угроза их применения высока, выше, чем угроза ядерной войны. Особенно в наше напряженное время. К слову, по иронии судьбы, Силард, подобно предсказавшему «грязную бомбу» Хайнлайну, был известен также как писатель-фантаст, автор ряда научно-фантастических рассказов, в том числе переведенных на русский язык еще в советское время.

Кому это выгодно?

Насколько известно, официально ни одно государство не имеет радиологического оружия. Оно невыгодно для традиционных войн: «грязная бомба» не позволяет уничтожать врага мгновенно, как другие виды оружия, ее эффект растянут во времени, кроме того, на долгие годы она делает территорию непригодной для захвата и использования — и даже для ввода войск. В качестве оружия сдерживания «грязная бомба» тоже не лучший вариант, когда есть ракеты с ядерными боеголовками.

Однако, в то время как «грязная бомба» не подходит ни для «горячего», ни для «холодного» вооруженного противостояния, она вполне годится для группировок, ведущих войны нетрадиционными методами, в первую очередь террористических. Радиологическое оружие позволяет наносить максимальный урон мирному населению — следовательно, это идеальное средство устрашения. 11 сентября 2001 года во время крупнейшего теракта под руинами «башен-близнецов» погибли без малого 3000 человек. Если бы в том же самом месте взорвалась средней мощности «грязная бомба» — счет пострадавших пошел бы на миллионы. Канал National Geographic снял 40-минутный видеофильм, демонстрирующий последствия гипотетического взрыва небольшой америциево-стронциевой «грязной бомбы» посреди американского городка — там наглядно смоделированы последствия подобного взрыва.

Еще одно сомнительное преимущество такого вида оружия — его доступность. В одной из публикаций на эту тему «грязную бомбу» неверно, но очень метко назвали «атомной бомбой для бедных». Всего восемь стран мира имеют ядерное вооружение. Для того чтобы сделать настоящую атомную бомбу, нужны ресурсы, которые есть только у развитых государств: исследовательские лаборатории, высокотехнологичное производство, наконец, оружейный уран или плутоний, которые так просто не достанешь. «Грязную» же бомбу можно изготовить буквально «на коленке». Радиоактивные изотопы сейчас применяются весьма широко: в промышленности и энергетике, в медицине, в науке и даже в быту (например, детекторы дыма часто делаются на основе америция-241), поэтому при желании добыть достаточное для изготовления бомбы количество радиоактивных веществ не составляет проблемы. Не случайно в ходе боевых действий США на Ближнем Востоке и в лагерях чеченских боевиков, как пишет пресса, не раз находили чертежи «грязных бомб» (впрочем, последнее может быть и «уткой»).

Есть и еще один неприятный сценарий, аналогичный по эффекту использованию радиологического оружия: террористический акт с обыкновенным взрывом на атомной электростанции.

Сегодня, когда опасность террористических актов высока, людям необходимо знать, что происходит и как следует себя вести при взрывах, в том числе при взрывах «грязных бомб». Видимо, тут стоит адресовать читателей к фильму National Geographic, который так и называется — «Грязная бомба» (Dirty Bomb). И хотя фильм демонстрирует действия американской системы гражданской обороны, российский зритель также может почерпнуть из него немало полезной информации.

Наука за атомной бомбой

История Тип страницы: 

Наука

Дата: 

Четверг, 5 июня 2014 г. делящиеся элементы, составляющие ядро ​​бомб. США разработали два типа атомных бомб во время Второй мировой войны. Первый, Little Boy, представлял собой оружие пушечного типа с урановым сердечником. Маленький мальчик был сброшен на Хиросиму. Второе оружие, сброшенное на Нагасаки, называлось «Толстяк» и представляло собой устройство имплозивного типа с плутониевым сердечником.

 

Деление

Изотопы урана-235 и плутония-239 были выбраны учеными-атомщиками, потому что они легко подвергаются делению. Деление происходит, когда нейтрон ударяется о ядро ​​любого изотопа, раскалывая ядро ​​на фрагменты и высвобождая огромное количество энергии. Процесс деления становится самоподдерживающимся, поскольку нейтроны, образующиеся при расщеплении атома, ударяются о близлежащие ядра и вызывают большее деление. Это называется цепной реакцией и вызывает атомный взрыв.

Когда атом урана-235 поглощает нейтрон и делится на два новых атома, он высвобождает три новых нейтрона и некоторую энергию связи. Два нейтрона не продолжают реакцию, потому что они теряются или поглощаются атомом урана-238. Однако один нейтрон сталкивается с атомом урана-235, который затем делится и высвобождает два нейтрона и некоторую энергию связи. Оба этих нейтрона сталкиваются с атомами урана-235, каждый из которых делится и выделяет от одного до трех нейтронов и так далее. Это вызывает цепную ядерную реакцию. Для получения дополнительной информации по этой теме см. Ядерное деление.

 

Критичность

Чтобы взорвать атомное оружие, необходима критическая масса расщепляющегося материала. Это означает, что вам нужно достаточное количество U-235 или Pu-239, чтобы нейтроны, высвобождаемые при делении, попадали в другое ядро, вызывая цепную реакцию. Чем больше у вас расщепляющегося материала, тем больше шансов, что такое событие произойдет. Критическая масса определяется как количество материала, при котором нейтрон, произведенный в процессе деления, в среднем вызовет другое событие деления.

 

Разница между бомбами

Маленький Мальчик и Толстяк использовали разные элементы и совершенно разные методы конструкции, чтобы функционировать как ядерное оружие. Маленький мальчик взорвался из-за цепной реакции деления с участием изотопа U-235 урана, а Толстяк использовал форму плутония Pu-239.

 

Маленький мальчик

Маленький мальчик питался от изотопа урана U-235 в процессе, который не давался многим ученым Манхэттенского проекта, работавшим над процессом извлечения и обогащения урана. Большая часть урана, обнаруженного в природе в мире, существует в виде урана-238, и только 0,7% природного урана приходится на изотоп U-235. Когда нейтрон бомбардирует U-238, изотоп часто захватывает нейтрон, превращаясь в U-239., не способный к делению и, таким образом, не способный спровоцировать цепную реакцию, которая взорвала бы бомбу. Таким образом, первая задача проекта заключалась в том, чтобы определить наиболее эффективный способ отделения и очистки урана-235 от чрезмерно распространенного урана-238 — стандартные методы разделения нельзя было использовать из-за сильного химического сходства между двумя изотопами. Чтобы не тратить время на один новый метод, который впоследствии может оказаться недостаточным для производства достаточного количества U-235, чтобы позволить атомной бомбе достичь критической массы, генерал Лесли Гроувс проконсультировался с ведущими учеными проекта и согласился исследовать одновременно четыре отдельных метода. разделение и очистка урана-235: газодиффузионная, центрифужная, электромагнитная сепарация и жидкостная термодиффузия.

Как только было получено достаточное количество U-235 для питания бомбы, Little Boy был сконструирован с использованием конструкции пушечного типа, которая стреляла одним количеством U-235 в другое, чтобы объединить две массы. Эта комбинация создала критическую массу, которая вызвала цепную реакцию деления, которая в конечном итоге взорвала бомбу. Две массы U-235 должны были соединиться друг с другом достаточно быстро, чтобы избежать самопроизвольного деления атомов, из-за которого бомба взорвется и, следовательно, не взорвется.

 

Толстяк

Приведенный в действие плутонием, Толстяк не мог использовать ту же конструкцию типа пушки, которая позволяла Малышу эффективно взорваться — форма плутония, собранного из ядерных реакторов в Хэнфорде, штат Вашингтон, для бомбы не позволяла использовать эту стратегию. Хэнфордский плутоний вышел из реакторов менее чистым, чем исходный плутоний, извлеченный из лаборатории Эрнеста О. Лоуренса в Беркли, вместо этого содержащий следы изотопа плутония-240, в отличие от желаемого плутония-239. Более высокая скорость деления плутония-240 заставит атомы подвергнуться спонтанному делению до того, как конструкция пушечного типа сможет соединить две массы плутония, что снизит энергию, необходимую для фактического взрыва бомбы.

Таким образом, потребовался новый дизайн. Физик Сет Неддермейер из Лос-Аламоса разработал конструкцию плутониевой бомбы, в которой использовались обычные взрывчатые вещества вокруг центральной массы плутония для быстрого сжатия и консолидации плутония, увеличения давления и плотности вещества. Повышенная плотность позволила плутонию достичь своей критической массы, выпустив нейтроны и позволив протекать цепной реакции деления. Для детонации бомбы поджигалась взрывчатка, высвобождающая ударную волну, которая сжимала внутренний плутоний и приводила к его взрыву.

Атомный глоссарий
Атом : строительные блоки материи; состоит из небольшого плотного ядра, окруженного облаком электронов (отрицательно заряженных частиц)
Ядро : составляет центр атома; состоит из ряда положительно заряженных протонов и нейтральных (незаряженных) нейтронов. Атом классифицируется по количеству протонов и нейтронов в его ядре. Количество протонов определяет, каким химическим элементом является атом (например, уран), а количество нейтронов определяет, каким изотопа этого элемента является атом (например, уран-235).
Изотоп : Изотопы элемента имеют одинаковое количество протонов в ядрах, но разное количество нейтронов.
Деление : процесс, при котором ядро ​​атома расщепляется на более мелкие частицы; приводит к высвобождению нейтронов и большого количества энергии.
E=mc 2 : Уравнение, ставшее знаменитым благодаря Альберту Эйнштейну. Объясняет, как крошечное количество материи содержит огромное количество энергии.

 

Видео по теме: 

Учитель естественных наук Джей Шелтон обсуждает географию и науку об атомной бомбе на семинаре для учителей Фонда атомного наследия 2009 года, посвященном Манхэттенскому проекту в Нью-Мексико.

Послушайте истории о Манхэттенском проекте

Просмотрите нашу коллекцию устных историй с рабочими, семьями, военнослужащими и многое другое об их опыте в Манхэттенском проекте.

Экскурсия по местам Манхэттенского проекта

Совершите поездку по ключевым местам Манхэттенского проекта с аудиогидом.

Читать последние новости и статьи

Национальный исторический парк «5 лет Манхэттенскому проекту»

Присоединяйтесь сегодня в качестве покровителя атомной истории

Наука о ядерном оружии, визуализация

Объяснение карты: Кавказский регион

Кавказский регион уже несколько десятилетий находится в территориальном споре между Арменией и Азербайджаном из-за Нагорного Карабаха. Хотя вспышки конфликта произошли недавно, корень насилия восходит к 1980-е годы.

Но эта карта позволяет нам сделать шаг назад и посмотреть на регион в более широком контексте.

В то время как большинство средств массовой информации сосредоточились на напряженности, эта карта показывает весь кавказский регион, предоставляя ключевые факты и информацию. Какие страны входят в регион? Какая основная хозяйственная деятельность в районе? Как распределено население? Давайте начнем.

Основы

Кавказский регион характеризуется далеко простирающимися горными хребтами, которые долгое время разделяли людей и создавали различные этнические, языковые и религиозные идентичности на протяжении тысячелетий. Сегодня регион охватывает три основные страны: Армения, Азербайджан и Грузия , граничит с Россией, Турцией и Ираном.

Сосредоточившись на трех основных, вот некоторые основные демографические данные:

  • 🇦🇿 Азербайджан Население: 10,4 миллиона
  • 🇦🇲 Армения Население: 3,0 миллиона
  • 🇬🇪 Грузия Население: 4,1 миллиона

Проживает около 20 миллион , Кавказский регион граничит с Каспийским морем на востоке и Черным морем на западе. Это территория, четко расположенная между Европой, Азией и Ближним Востоком, но определяемая большинством категорий как Центральноазиатская.

🇦🇿 Азербайджан

Азербайджан — самая большая страна в регионе, как по территории, так и по населению. Район Нагорный Карабах расположен в пределах официальных границ Азербайджана и почти полностью населен этническими армянами.

Большинство азербайджанцев исповедуют ислам, однако страна считается одной из самых светских мусульманских стран мира. Азербайджанский или азербайджанский язык является наиболее распространенным языком с более чем 92% людей, говорящих на нем. Чуть более 1% в стране говорят на русском как на родном языке, а еще 1% говорят на армянском как на родном языке. Возможно, неудивительно, что аналогичная процентная доля определяет количество этнических русских и армян в Азербайджане: 1,5% и 1,3% соответственно.

🇦🇲 Армения

Как и обе ее соседи, Армения получила независимость после распада Советского Союза в 1991 году. Однако, в отличие от своих соседей, она не имеет выхода к морю.

В стране преобладает христианская нация с этническим составом около 98% Армяне, и, по данным правительства, наиболее распространенным языком является армянский. Численность населения упала после распада СССР и в последние годы оставалась относительно неизменной.

🇬🇪 Грузия

Грузия немного меньше Азербайджана по размерам; страна имеет протяженную границу с Россией на севере и имеет длинную береговую линию на Черном море.

Рост населения Грузии похож на историю многих других бывших советских республик. В то время как общая численность населения за последние годы немного уменьшилась, прирост этнических граждан (грузин) фактически увеличился. В стране преобладает христианское население, а самым популярным языком является грузинский.

Где живут люди на Кавказе?

Так как же эти популяции сконцентрированы по всему региону? Эти картограммы из World Mapper с разбивкой по странам:

Азербайджан

Большинство людей живут в столице и ее окрестностях Баку, портовом городе на Каспийском море. Однако некоторые люди также живут внутри страны ближе к границам Армении и Грузии.

Армения

В Армении население сильно смещено в сторону ее столицы Еревана, население которого составляет 9 человек.0062 1,1 миллиона .

Грузия

Распределение населения Грузии несколько более равномерное, чем у ее соседей, с преобладанием столицы Тбилиси.

Экономика Кавказского региона

Теперь давайте углубимся в экономическую деятельность на Кавказе. В некоторых частях регион богат нефтью и имеет доступ к таким ресурсам, как обширные нефтяные месторождения в Каспийском море у побережья Азербайджана. Фактически, по трубопроводу Баку-Тбилиси-Джейхан проходит почти 1 миллион баррелей нефти  с нефтяных месторождений в Турцию каждый день.

Отступив назад, взглянем на региональные ВВП:

  • 🇦🇿 ВВП Азербайджана: 42,6 млрд долларов
  • 🇬🇪 Грузия: 15,9 млрд долларов
  • 🇦🇲 ВВП Армении: $12,7 млрд

Азербайджан является крупнейшей экономикой Кавказского региона. Это самая экономически развитая страна из трех, в которой наблюдается быстрый рост ВВП с момента ее перехода из советской республики. На пике своего развития в начале 2000-х национальный ВВП рос ежегодными темпами 25%-35% . Сегодня ее экспорт нефти и газа оказывается чрезвычайно прибыльным, учитывая энергетический кризис в Европе из-за войны на Украине. Ископаемые виды топлива составляют около 95% экспортной выручки страны.

Экономика Армении и Грузии считается развивающейся/развивающейся и зависит от многих видов российского импорта. Однако, по данным Европейского банка реконструкции и развития, ожидается, что в этом году обе экономики вырастут на 8% .

Экономика Грузии восстанавливается после пандемии благодаря бурно развивающейся индустрии туризма, которая в основном привлекает посетителей из России. Кроме того, как в Грузии, так и в Армении приток российских компаний и технических специалистов способствовал росту экономики.

Краткая предыстория

Три страны, составляющие регион, Армения, Азербайджан и Грузия, были республиками в составе Советского Союза до его распада в 1991 году. Кроме того, регионы Дагестан и Чечня в России, также расположенные в географической сфере Кавказа, каждая из которых сохраняет свою идентичность с Россией. Оба региона в большинстве своем этнически нерусские и до сих пор регулярно сталкиваются с насилием из-за борьбы за власть с региональным тяжеловесом.

На самом деле, по мнению экспертов, большая часть напряженности в регионе может быть связана с российским притеснением.

«Подавление Россией национального сопротивления на Кавказе поощряет фундаменталистские движения».
– Доктор Джеймс В. Верч (специалист по Кавказу, Вашингтонский университет, Сент-Луис)

В недавней истории Россия вторглась в Грузию через несколько часов после начала летних Олимпийских игр 2008 года в Пекине, вызвав конфликт в Осетии и Абхазские регионы. Русско-грузинская война считается первой европейской войной 21 века.

Хотя история Кавказа уходит в далекое прошлое⁠ — например, Армянское царство восходит к 331 г. до н. э. — более поздние события были сформированы холодной войной и последующими последствиями распада СССР.

Нагорно-карабахский конфликт

Напряженность вокруг Нагорно-Карабахского региона началась в конце 1980-х годов и переросла в полномасштабную войну в 1990-е годы. В первые годы конфликта погибло около 30 000 человек. С тех пор периодически возникали перемирия и насилие⁠ — последний раз боевые действия прекратились в 2020 году. С тех пор было убито не менее 243 человек.

Конфликт впервые начался, когда недавно получившая независимость Армения потребовала вернуть этот регион Азербайджану, который в то время был еще советским государством, поскольку население там было (и остается) преимущественно армянским. Хотя это и не получило международного признания, отколовшаяся группа объявила часть Нагорного Карабаха независимым государством под названием Республика Арцах.

Вот очень краткая хронология:

  • 1988-1994: Первая Нагорно-Карабахская война
  • Апрель 2016: Четыре дня насилия на линии разграничения
  • Сентябрь-ноябрь 2020 г. : Война возобновилась, пока Россия не договорилась о прекращении огня
  • Сентябрь 2022: Вспыхнули новые столкновения, в результате которых погибли сотни человек

Конфликт выплеснулся в регион — Россия на стороне Армении, Турция на стороне Азербайджана. Но на сцену могут выйти новые союзники, о чем свидетельствует визит Нэнси Пелоси в Армению в середине сентября. Сегодня регион поделен между Азербайджаном, Арменией и российскими миротворцами, но официально остается азербайджанским.

Примечание редактора: в предыдущей версии этой статьи говорилось, что вторжение России в 2008 году произошло во время церемонии открытия Олимпийских игр в Пекине. С тех пор мы изменили это значение на «в течение нескольких часов после начала» игр, поскольку точное время варьируется в зависимости от источников.

Описание первого ядерного реактора

Серия объяснений

Узнайте больше о прорывах, впервые осуществленных в Чикагском университете

По

Луиза Лернер

В 1942 году Манхэттенский проект должен был создать цепную реакцию — решающий шаг к доказательству возможности создания атомной бомбы. Ученые добились этой устойчивой ядерной реакции, первой созданной людьми, 2 декабря 1942 года на корте для сквоша под трибунами Stagg Field в Чикагском университете.

По прозвищу «Чикагская свая-1», первый в мире ядерный реактор положил начало атомному веку и имеет сложное наследие, в том числе рост как ядерной энергии, так и ядерного оружия.

Перейти к разделу:

  • Как появился первый ядерный реактор?
  • Как выглядел первый ядерный реактор?
  • Как работал первый ядерный реактор?
  • Что произошло в день первой цепной ядерной реакции?
  • Что случилось с реактором потом?
  • Как реактор привел к созданию первой атомной бомбы?
  • Каково наследие первого ядерного реактора?
  • Сможете ли вы посетить место первой ядерной реакции?

Как появился первый ядерный реактор?

По мере того, как физики приближались к пониманию природы атома в 1930-х годах, становилось все более очевидным, что при расщеплении атомов может высвобождаться большое количество энергии. В 1939 году Альберт Эйнштейн и Лео Силард в соавторстве написали письмо президенту США Франклину Д. Рузвельту, в котором объясняли, что открытие может быть превращено в мощное оружие и что у нацистских ученых, вероятно, есть для этого инструменты.

Это положило начало Манхэттенскому проекту Соединенных Штатов, сверхсекретной научной миссии, целью которой было узнать, как расщепить атом и использовать его энергию. Но одним из первых пунктов в списке было выяснить, возможно ли вообще создать и контролировать цепную ядерную реакцию.

Проект решил объединить эти усилия в одном месте. Поскольку в Чикаго проживало большое количество ведущих физиков и химиков, он располагался в центре, вдали от обоих побережий, и имел пространство и жилье для проекта, штаб-квартира проекта ядерного реактора находилась в Чикагском университете и носила кодовое название «Металлургическая лаборатория».

Металлургической лабораторией руководил профессор Артур Холли Комптон, лауреат Нобелевской премии и декан факультета физических наук Калифорнийского университета в Чикаго. Сотни людей были завербованы, чтобы «помочь военным действиям», хотя большинству из них очень мало рассказали о деталях.

После серии небольших экспериментов для проверки концепции началась работа над реактором, который фактически поддерживал бы цепную реакцию. Первоначально планировалось построить его к западу от города Чикаго, но трудности со строительством замедлили прогресс, поэтому Комптон решил, что они будут строить реактор там, где до этого момента проводились многие эксперименты — старое поле для игры в сквош под ним. заброшенные футбольные трибуны Stagg Field в Чикагском университете.

Обсуждается, знал ли президент Чикагского университета Роберт Мейнард Хатчинс о проведении эксперимента, хотя Комптон сказал, что не сказал ему об этом. Мэр Чикаго и другие выборные должностные лица не были уведомлены.

Как выглядел первый ядерный реактор?

Сам реактор, получивший прозвище «Чикагская свая-1» или сокращенно СР-1, представлял собой груду графитовых блоков высотой 20 футов, усеянную сотнями более мелких блоков урана.

Бригады

работали круглосуточно в течение двух недель, очищая графит и уран, укладывая блоки в 57 слоев в точных положениях и подгоняя отверстия под кадмиевые регулирующие стержни. Закончили вечером 1 декабря 1942.

Как работал первый ядерный реактор?

Ядерный реактор предназначен для расщепления атомов. Некоторые элементы, такие как уран, со временем естественным образом испускают частицы, называемые нейтронами. Принцип работы ядерного реактора заключается в размещении урана в правильных положениях, чтобы побудить нейтроны урана столкнуться с 90 264 другими 90 265 атомами урана и заставить их расщепляться и выбрасывать больше нейтронов, которые расщепляют другие атомы. Вот почему это называется цепной реакцией. Но все должно быть расположено под правильным углом, чтобы реакция продолжалась.

Инженеры могут управлять реакцией, вставляя стержни из вещества, поглощающего нейтроны, что замедляет или останавливает цепную реакцию.

Что произошло в день первой цепной реакции?

2 декабря 1942 года группа из 49 ученых собралась для проведения теста на критичность. По словам тех, кто там был, это был медленный и тихий процесс: Ферми приказал операторам медленно перемещать управляющие стержни, и их инструменты щелкнули, чтобы записать количество нейтронов.

В 15:53 ​​они зафиксировали, что впервые в истории была достигнута самоподдерживающаяся цепная ядерная реакция. Это заняло 28 минут.

В честь праздника пили вино Кьянти из бумажных стаканчиков, и многие из присутствующих расписывались на соломенной обертке пустой бутылки.

Что случилось с реактором потом?

После эксперимента реактор был разобран и перевезен в более удаленное место в лесном заповеднике за пределами Чикаго. После войны ученые и оборудование Металлургической лаборатории были реорганизованы и направлены на изучение мирного использования атомной энергии, став первой в стране национальной лабораторией — Аргоннской национальной лабораторией.

Как реактор привел к первой атомной бомбе?

Чтобы создать атомную бомбу, Манхэттенскому проекту сначала нужно было доказать, что цепная реакция действительно работает так, как они предполагали.

Во-вторых, им нужно было построить больше и больше реакторов, чтобы создать правильный вид плутония и урана для использования в атомных бомбах. С этой целью Манхэттенский проект демонтировал Чикагский блок-1 и быстро перешел к строительству более крупных реакторов в Хэнфорде, штат Вашингтон, и Ок-Ридже, штат Теннесси, для производства урана и плутония. Основное научное руководство переместилось в Лос-Аламос, штат Нью-Мексико, где собрали и испытали бомбы.

В конечном итоге США сбросили на Японию две атомные бомбы: Хиросиму 6 августа 1945 года и Нагасаки 9 августа. Считается, что в результате двух взрывов погибло более 200 000 человек.

Что осталось от первого ядерного реактора?

Хотя сам эксперимент был недолгим, Чикагская куча-1 имела сложные и долговременные последствия во всем мире. Ядерное оружие изменило глобальную политику и альянсы; ядерная энергия в настоящее время производит 10 процентов электроэнергии в мире; и новые области исследований были открыты, поскольку исследователи использовали радиоактивные изотопы для лечения болезней и понимания того, как работает тело.

  • Ядерное оружие:  В годы после Манхэттенского проекта США и Советский Союз потратили миллиарды долларов на создание тысяч ядерных бомб. На пике, в 1986 году, в шести странах мира насчитывалось около 70 000 единиц атомного оружия. Около 500 бомб были взорваны над землей для испытаний, прежде чем они были перемещены под землю в соответствии с договором 1963 года. Ядерное оружие продолжает сильно влиять на глобальную политику и альянсы; по состоянию на 2020 год в мире осталось около 13000 человек.
  • Часы судного дня и Бюллетень ученых-атомщиков: Группа ученых из Манхэттенского проекта, которые возражали против использования бомбы на людях, сформировали Бюллетень ученых-атомщиков , , который устанавливает обратный отсчет часов Судного дня до полуночи как метафора того, насколько человечество близко к гибели от собственной руки. Сегодня он вырос, чтобы включить в свои расчеты, среди прочего, изменение климата и биологические угрозы.
  • Ядерная энергия:  Другим непосредственным применением ядерных реакторов было производство электроэнергии. Правительство США быстро создало национальные лаборатории для разработки ядерных реакторов для получения энергии. Реактор, построенный Аргоннской национальной лабораторией, произвел первое в мире полезное количество электроэнергии из ядерной энергии 20 декабря 1951 года, зажег цепочку из четырех лампочек. Сегодня около 20% электроэнергии в США вырабатывается ядерными реакторами, а во всем мире — 10%. Хотя разработка новых ядерных реакторов в Соединенных Штатах замедлилась в конце 20-го века, ядерная энергетика в последнее время стала вызывать больший интерес как источник безуглеродной электроэнергии.
  • Химия и биология:  Появление ядерных реакторов помогло исследователям понять химию и биологию, создать новые виды материалов и лечить болезни человека. Реакторы могут производить радиоактивные изотопы, которые ученые использовали в качестве индикаторов для понимания метаболизма, того, как питательные вещества перемещаются в экосистемах и, среди прочего, как клетки создают ДНК. Реакторы также производят нейтроны, которые ученые могут использовать в качестве метода визуализации, чтобы видеть в мельчайших масштабах.
  • Политика в области науки:  Чикагская свая-1 и Манхэттенский проект ознаменовали начало кардинальных изменений в том, как ведётся наука. После войны финансирование научных исследований и разработок в США стало поступать в основном от федерального правительства через Национальный научный фонд и Министерство энергетики, а не от отдельных благотворителей. Он также заложил основу для крупных совместных проектов, таких как Большой адронный коллайдер, LIGO и НАСА, на которые сегодня приходится большая часть расходов на научные исследования.
  • Медицина:  Помимо открытий, касающихся фундаментальной природы биологии, исследователи сразу же увидели пользу для медицины. В начале 1950-х годов Комиссия по атомной энергии финансировала Аргоннскую онкологическую исследовательскую больницу (которая в 1973 году стала Институтом Франклина Маклина при Чикагском университете). Больница успешно стала пионером в использовании радиации для лечения рака, а позже усилия были расширены за счет включения радиологических инноваций в диагностику и лечение других заболеваний. Изотоп технеций-99 используется в миллионах процедур каждый год.

Сможете ли вы посетить место первой ядерной реакции?

Реактор был демонтирован вскоре после экспериментов Чикагской сваи-1 и перемещен к западу от города. Площадка для сквоша и старые футбольные трибуны, на которых она размещалась, были снесены несколько десятилетий назад и заменены библиотекой Джозефа Э. Регенштейна Чикагского университета и библиотекой Джо и Рики Мансуэто. (Люди иногда спрашивают, есть ли еще какой-либо риск радиоактивности, но это место было тщательно проверено, и никаких следов не осталось.