Crispr cas9: Редактирование генома с CRISPR/Cas9 — все самое интересное на ПостНауке

CRISPR/CAS9: что значит для человечества переход от чтения генома к его редактированию?

Как ученые модифицируют гены, какие этические вопросы это может породить и будут ли с помощью генных технологий создавать «детей на заказ»

Технология  CRISPR/Cas9, позволяющая вносить изменения в геном высших организмов (в том числе человека) стала в последние годы одной из самых обсуждаемых — не только молекулярными биологами, но и биотех-инвесторами, медиками, социологами — тем. Все дело в том, что CRISPR/Cas9 потенциально имеет перспективы применения для борьбы с многими тяжелыми заболеваниями, среди которых рак, наследственные болезни, ВИЧ. Если раньше генетические технологии применялись в первую очередь для диагностики, то теперь мы впервые подошли к новому рубежу — у нас есть инструмент редактирования ДНК, который, возможно, получит все больше внедрений в клиническую практику и программы лечения. Хотя ранее попытки редактирования генома уже были (например, для больных лейкемией) именно  CRISPR/Cas9, как более универсальный инструмент,  претендует на создание инструментов для все более активных внедрений.   Старт дан: в Китае уже делают первые шаги в клинических испытаниях технологий, основанных на CRISPR/Cas9.  Растущие возможности генной терапии ставят перед нами все больше вопросов, связанных с этикой. Чего ждать?

CRISPR/Cas9 — «ножницы» вместо «ножа» для ДНК

Способы редактирования генов в геномах живых существ изучаются с начала XX века – еще с открытия механизма индуцированного мутагенеза (то есть вызванного воздействием каких-нибудь внешних агентов – например, радиоактивного излучения или химических веществ). И если для бактерий механизмы достаточно точного модифицирования генов разработаны еще в середине XX века, то для более сложных организмов, в частности, человека, подходы появились лишь в конце прошлого века. Например, целое семейство вирусов, называемое ретровирусами (к которым относится и ВИЧ, вызывающий СПИД у человека), от природы получило механизм, согласно которому для функционирования вируса требуется встраивание его генома в геном организма-хозяина. Путем введения модификаций в геном ретровируса, то есть вставки измененных человеческих генов, можно добиться внедрения в геном хозяина таких квазичеловеческих элементов – вот и готовый механизм геномного редактирования. Существенным его недостатком является отсутствие специфичности встраивания, то есть вирусный геном может попасть в любой участок генома хозяина, а может и вообще не попасть. Для научных изысканий это нестрашно – всегда можно повторить эксперимент. Но для целей лечения конкретных пациентов подход с «повторить», как правило, не работает.

Другие способы модификаций генома связаны с технологиями ZFN и TALEN, активно обсуждаемые начиная с 2000-х годов. Идея этих подходов основана также на природных свойствах определенных белков, называемых нуклеазами. Эти активные белки (ферменты) умеют проводить специфическое, неслучайное вырезание участка исходного генома и встраивание в место разреза привнесенного с собой кусочка исправленной ДНК. Такой способ позволяет проводить целевую, гораздо более точную, чем просто ретровирусная, модификацию «сломанных» генов. Отличие ZFN и TALEN заключается в использовании разных видов ферментов, но итог их работы примерно одинаков.

В 2015 году технологию ZFN удалось успешно применить для терапии ВИЧ: в стволовых клетках донора был отредактирован участок, отвечающий за восприимчивость ВИЧ, затем они были трансплантированы пациенту. Стоит отметить, что примерно у каждого тысячного европейца имеется такой генотип, который гарантирует невозможность внедрения вириона (активной вирусной частицы, которая осуществляет заражение) внутрь клеток организма-хозяина, то есть невозможность инфицирования.

Если разрезать последовательность ДНК в двух местах, то можно воспользоваться естественными механизмами репарации ее цепочки  — не дать ей соединиться с другой ДНК или просто «сшить» два конца, а добавить в место разрыва нужный, введенный заранее, фрагмент.  Место надреза помогают локализировать специальные белки, которые привязаны к определенным последовательностям генов и связывающие участки генома. Оказалось, что у таких белков есть участки с ионом цинка, которые делают их еще более специфичными фрагменту ДНК — соотносит их только с тремя нуклеотидами. Если прикрепить эти «цинковые пальцы» генно-инженерных белков в качестве идентификаторов к «ножницам» (их роль выполняет специальный вид нуклеазы, фермента для реакций между нуклеиновыми кислотами) — можно достаточно точно выявить последовательности генов с обеих сторон от места нужного «разреза». Так работает технология ZFN (Zinc finger nuclease). В основе технологии TALEN (Transcription Activator-Like Effector Nuclease) — схожие принципы, только для создания ДНК-связывающего участка белка, «знающего» нужную последовательность генов, используются TAL-белки.

Но ZFN и TALEN оказались далеки от массового применения в медицине. Ученые пытались научить их узнавать специфическую, в идеале — любую заданную последовательность ДНК для «кусания». Иногда это работало, но для каждой последовательности приходилось создавать свой отдельный белок, а это кропотливая и долгая работа.

Иное дело  — редактирование  генома с помощью системы CRISPR/Cas9. В ней используется один белок (комплексы белков CAS), а «путеводитель»  для  нахождения участка ДНК для необходимых модификаций  можно сделать очень быстро и дешево.   Благодаря определенным участкам генома CRISPR, которые хранят генетические последовательности вирусов, белок CAS разрезает соответствующие последовательности. С этим могут работать очень и очень многие хорошо оборудованные лаборатории. Именно поэтому технология   CRISPR/Cas9, изначально открытая как защитный механизм бактерий от вирусов в конце 1980-х, вызвала такой ажиотаж.

Пока неочевидно, какие технологии геномного редактирования будут наиболее активно применяться в медицине уже через 10 лет. Возможно, это будет CRISPR/Cas9 или текущие аналоги, а может быть, будет открыта новая технология, которая возникнет так же неожиданно и ярко, как CRISPR/Cas9.

А пока между двумя научными группами, которые в 2012 году одновременно нашли способ применения CRISPR/Cas9 для точечного редактирования геномов сложных организмов, идет патентная война. Группа в Калифорнийском университете в Беркли и группа  из MIT и Broad Institute (институт MIT и Гарварда), подавшие заявки на патент в разное время в 2013 году, тратят  десятки миллионов долларов на юристов  и  вряд ли остановятся —  на кону миллиарды долларов, которые может принести технология. По прогнозам, патентный офис примет решение в 2017 году.

Венчурные инвесторы уже активно инвестируют в компании, развивающие CRISPR/Cas9. Только за 2016 год три такие компании вышли на IPO. Капитализация первой, Editas Medicine,  составляет $542 млн, а среди ее инвесторов до выхода на NASDAQ  —  Билл Гейтс. Вторая, Intellia Therapeutics, достигла капитализации $600 млн, а среди ее первых инвесторов  оказался швейцарский фармацевтический гигант Novartis (№ 47 в глобальном списке Forbes). Третья,  CRISPR Therapeutics, пока прошла отметку в капитализации лишь в $107 млн, в ее финансировании участвует фармкомпания Bayer (№97 в глобальном списке Forbes).

Применение и этические вопросы

Среди потенциальных применений новой технологии — лечение наследственных заболеваний (гемофилия, бета-талассемия, мышечная дистрофия), терапия онкологии и вирусных инфекций, включая ВИЧ.

Но есть и более экзотические потенциальные применения. Например, борьба с мультифакторными заболеваниями (диабет, шизофрения и др.) или  редактирование эмбрионов при искусственном оплодотворении для подбора определенной внешности у детей. Именно здесь возникает  множество этических вопросов, которые начали обсуждаться, но пока так и не получили консенсусного  решения у мирового сообщества. Когда же можно, а когда нельзя применять редактирование генома? Пока, в отсутствие у человечества единой позиции,  каждая из стран решает это по-своему.  

Например, мир потрясли уже два исследования китайских ученых. В 2015 году группа китайских ученых применила геномное редактирование на 86 человеческих эмбрионах для того, чтобы изменить мутации, вызывающие тяжелую наследственную патологию бета-талассемию. Это тяжелая наследственная патология, которая связана с нарушением синтеза гемоглобина и разрушением эритроцитов, средняя продолжительность  жизни носителей мутации — 17 лет. Несмотря на серьезную научную значимость исследования китайских ученых, два главных научных журнала Nature (Великобритания) и Science (США) отказались публиковать результаты, в частности из-за этических вопросов.  Также это исследование показало неидеальность технологии CRISPR/Cas9, по крайней мере на данный момент. Из 86 эмбрионов точно поменять желаемый участок ДНК получилось только у 28. Процент ошибки оказался больше, чем ожидали исследователи исходя из опытов над эмбрионами животных. Какой участок ДНК нужно редактировать, определяется при помощи синтетической последовательности РНК (так называемый «гид»).  Она комплементарна нужному участку ДНК. Но может оказаться, что в другой части генома также есть аналогичная последовательность нуклеотидов.

Исследование вызвало  множество дискуссий. Должны ли западные страны очень аккуратно относиться к этическим вопросам при применении новых технологий геномного редактирования, либо же это приведет только к отставанию от Китая? По всей видимости, пока Запад рассматривает возможность терпимее относиться к генетическим модификациям —  менее чем через полгода после скандальной публикации китайских исследователей в Великобритании были официально разрешены первые опыты по геномному редактированию эмбрионов человека, в Лондоне новые группы ученых уже ведут работу над дизайном новых экспериментов.

А в середине ноября группа китайских ученых анонсировала применение генной модификации клеток при помощи CRISPR/Cas9 для лечения пациента с агрессивным раком легкого. В журнале Nature эта статья анонсирована с  подзаголовком: «Шаг китайских ученых может разжечь борьбу между Китаем и США в сфере биомедицины».  Мир ждет результатов второго исследования китайских ученых.

Однако  в будущем этических вопросов, связанных с новыми технологиями в области генетики и репродукции, будет еще больше.  Биоэтика становится все более важной дисциплиной.

Например, у некоторых европейцев  есть мутации в гене CCR5 —  ее носители  практически невосприимчивы к ВИЧ. В рамках генетического тестирования эти мутации могут быть исследованы. Но этично, корректно ли рассказывать человеку о наличии такой мутации? Мы, как компания, которая занимается генетическими тестами, решили, что нет.

Другие проблемы связаны с тем, что возможности генетического редактирования меняют само понятие семьи.  С появлением искусственного оплодотворения и суррогатного материнства в принципе понимание института семьи усложнилось. Теперь у некоторых детей помимо отца могут быть две матери: суррогатная и «юридическая».  А если  для зачатия используются яйцеклетка и сперматозоид пары, которые затем переносятся в суррогатную мать, у ребенка тоже две матери — генетическая и суррогатная. Теоретически возможны ситуации, когда юридическая, генетическая и суррогатная мать — это три разных человека.

Юридические нюансы, возникающие в подобных случаях,  уже получают оценки. Например,  «Baby M Case»: у Элизабет Стерн  был рассеянный склероз, который несет много  рисков при беременности, поэтому семья Стерн обратилась в один из медицинских центров в Нью-Йорке для суррогатного материнства.  Использовался генетический материал отца. Между сторонами был подписан договор, что юридическими родителями будут Стерны. Но вскоре после рождения суррогатная мать Мэри Бет Вайтхед  под угрозой суицида потребовала вернуть ей ребенка. В дело включились полиция и суд. В итоге суд признал Стернов официальными родителями ребенка, но дал суррогатной матери  возможность посещения ребенка. Интересно, что основной мотивацией суда было преследование «лучших интересов ребенка».  В другой схожей истории, тоже произошедшей в Нью-Йорке,  суд рассудил иначе:  двое родителей  лучше трех, решил суд, отказав в правах посещения ребенка суррогатной матери. Есть деталь: во втором случае пара использовала собственные яйцеклетку и сперму, которые были перенесены в суррогатную мать.

«Офшоры» для геномного редактирования

Недавно мир потрясло рождение ребенка от трех генетических родителей: в апреле 2016 года появился на свет ребенок, зачатие которого происходило с использованием митохондриальной ДНК третьего человека. Такая процедура была необходима, так как у матери ребенка есть патогенные мутации в митохондриях (органеллы внутри клеток человека,  отвечающие за обеспечение клеток энергией, обладают собственным небольшим геномом, передаются ребенку от матери), которые могли привести к появлению у ребенка синдрома Лея, наследственному заболеванию, связанному с поражением ЦНС и энцефалопатией. Два первых ребенка матери погибли от синдрома Лея. Американский врач Джон Чанг, из клиники в Нью-Йорке вместе с родителями из Иордании прибыли в Мексику.  И в Иордании, и в США  подобные модификации генетического материала были запрещены.

Получается, в современном мире  появляются «биомедицинские офшоры». Люди едут в страны с лояльным законодательством для осуществления процедур, неоднозначных с точки зрения этики и допустимости законодательством той или иной страны. Генная терапия уже становится в центре подобных «спорных» случаев. Например,  американка Лиз Пэрриш утверждает, что прошла в Колумбии процедуру по   редактированию специальных участков ДНК-теломер при помощи вируса. Длина теломер коррелирует со старением. Пэрриш стала первым человеком, решившимся на генетическую терапию для борьбы со старением, до нее эксперименты проводились только на животных. Научное сообщество отнеслось к самовольным клиническим испытаниям Пэрриш неоднозначно, многие подвергли ее действия критике.

В целом на данный момент мировое сообщество с очень большой осторожностью относится к редактированию генома, когда оно не связано напрямую с лечением тяжелых заболеваний, которые нельзя вылечить иным способом. Дело в том, что технологии еще несовершенны и не  максимально специфичны.  Так, в уже упомянутом  эксперименте китайских ученых над эмбрионами в ДНК многих эмбрионов изменились не только участки, которые планировали изменить ученые, но и другие, случайные. Или, например, когда во Франции генную терапию решили применить для лечения врожденного X-сцепленного иммунодефицита, в ходе клинического испытания неожиданно в качестве побочного эффекта у больного развилась лейкемия.  

Ребенок на заказ

В целом медицинское и научное сообщество сейчас более лояльно к генной терапии, которая будет влиять только на генетический материал самого человека. Генные модификации, которые передавались бы детям,  все еще изучены недостаточно и остаются в «серой зоне». Но в определенной степени выбор определенных черт ребенка с помощью генетических технологий доступен уже сейчас.

В ходе искусственного оплодотворения можно пройти процедуру преимплантационной генетической диагностики или преимплантационного генетического скрининга.  При ЭКО (искусственном оплодотворении, вне тела матери, с последующим переносом 2-5-дневного эмбриона в полость матки) на сегодняшний день оплодотворяется несколько яйцеклеток. Можно исследовать  геном каждой из них и выбрать наиболее «подходящие» эмбрионы. Такая процедура уже довольно активно используется для профилактики тяжелых наследственных патологий у семей с соответствующими рисками. Однако данная технология, очевидно, может быть применена для выбора черт, не связанных со здоровьем —  например, цвета глаз или волос. Это, безусловно, несколько пугающая ситуация, заставляет задуматься о способах применения новых генетических технологий для евгеники, для других манипуляций, описанных фантастами в антиутопиях.  Разные страны уже вырабатывают позицию по влиянию родителей на генетические данные своих  детей.

В Китае, например, запрещено использование преимплантационной генетической диагностики для выбора пола будущего ребенка. Но такая процедура не запрещена в Штатах. Но волнуют китайцев этические вопросы или для  подобного законодательного регулирования важнее демографические причины — большой вопрос.

Но важно, чтобы свои взгляды на границы генетических вмешательств сформировали не только правительства, но и обычные люди.  Иначе мы рискуем оказаться в ситуации неосведомленности населения о базовых принципах генетических технологий и распространения предрассудков. Недавняя волна заявлений об опасности ГМО для человека — яркое тому подтверждение. Один из опросов  в Казани, например, показал, что почти половина респондентов считают, что «любые пищевые продукты, содержащие гены», должны быть изъяты из продажи и не должны импортироваться или производиться в стране. Очевидно, что гены есть в любом живом организме, так что такие результаты исследования просто плачевны.  Впрочем, 15% опрошенных честно признались, что не  представляют себе, что такое ГМО. Ученым, биомедикам и просто тем, кто верит в то, что технологии делают нашу жизнь лучше, теперь нужно сделать все, чтобы генетическое редактирование человека не столкнулось с той же волной необоснованной паники,  а стало действительно эффективным инструментом в борьбе с болезнями.

Просто о сложном: CRISPR/Cas

Инфографика на конкурс «био/мол/текст»: CRISPR/Cas — система адаптивного иммунитета бактерий и архей, которая пригодилась и эукариотам. Мы попытались предельно ясно отразить этот механизм, породивший взрыв в биологическом сообществе и, вероятно, сильно изменивший будущее науки и человечества. Из этой инфографики вы узнаете краткую историю изучения, механизм и возможные применения системы CRISPR/Cas.

Эта работа заслужила приз зрительских симпатий конкурса «био/мол/текст»-2016.

В конкурсе участвовала только инфографика!
Текст написала Ольга Волкова.


Генеральным спонсором конкурса, согласно нашему краудфандингу, стал предприниматель Константин Синюшин, за что ему огромный человеческий респект!


Спонсором приза зрительских симпатий выступила фирма «Атлас».


Спонсор публикации этой статьи — Дмитрий Геннадиевич Калашников.

Как устроена иммунная система прокариот?

Системы CRISPR-Cas обнаружены почти у всех известных архей и половины бактерий. Чаще они находятся на хромосоме, реже — в составе фагов (вирусов бактерий) и других мобильных генетических элементов. Эти системы состоят из двух основных блоков: CRISPR-кассеты и прилегающего к ней кластера генов cas. Кассета — это блок прямых почти палиндромных («зеркальных», взаимокомплементарных последовательностей, способных складываться в шпильки) повторов размером 24–48 пар нуклеотидов. Эти повторы перемежаются спейсерами — уникальными вставками примерно такой же длины. Спейсеры идентичны различным участкам фагов и других мобильных элементов, когда-либо проникавших в эту клетку или ее предков. Число повторов в разных системах варьирует от единиц до сотен.

Таким образом, CRISPR можно считать коллекцией разделенных повторами «фотографий» нарушителей клеточных границ. Составляется эта коллекция простым заимствованием их кусочков, а чтобы противостоять новой инвазии этих же молекулярных агентов, коллекция должна регулярно «просматриваться» и обновляться. Для этой функции нужна лидерная последовательность, предшествующая череде повторов. Она богата «легкоплавкими» АТ-пáрами и содержит промотор, контролирующий транскрипцию CRISPR-кассеты («просмотр коллекции»).

Гены cas кодируют белки, берущие на себя всю тяжесть работы по встраиванию спейсеров и уничтожению агентов с идентичными последовательностями (протоспейсерами) и помогающие процессировать CRISPR-транскрипт: разделять фото-гирлянду на отдельные портреты. Функцию уничтожения выполняют Cas-белки, называемые эффекторными. В зависимости от типа эффекторов все CRISPR-системы разделяют на два класса: у I класса мишень уничтожается мультибелковым комплексом, а у II — одним крупным белком. Далее эти классы подразделяются на шесть типов. Большинство эффекторов атакует ДНК, лишь один — исключительно РНК [10], редкие — обе молекулы. Один организм может содержать несколько разных систем, а спейсеры различаются в разных клетках даже одной популяции .

К чему это приводит, можно узнать из конкурсной статьи о бактериофагах и вечной гонке вооружений в фаговом и бактериальном мирах: «Пожиратели бактерий: убийцы в роли спасителей» [11]. Кстати, там много интересных авторских электронных изображений фагов.

Для решения инженерных задач больше всего подходит система II типа, относящаяся ко II классу, — она самая простая. Именно ее эффекторный белок называется Cas9 — то самое обозначение, что фигурирует в современных системах редактирования генома.

Как формируется CRISPR-опосредованный иммунитет?

Если в бактерию или архею, снабженную CRISPR-системой, проникает вирус, включается адаптационный функциональный модуль системы: специфические Cas-белки — у всех систем это как минимум Cas1 и Cas2 — вырезают из чужака понравившиеся фрагменты. Подобрать протоспейсер в некоторых случаях помогает и эффекторный белок. Белки выбирают участки рядом с особой последовательностью PAM (protospacer adjacent motif) — всего несколько нуклеотидов, но неодинаковых для разных CRISPR-систем. Затем эти же адаптационные белки встраивают фрагмент в CRISPR-кассету, всегда с одной стороны — у лидерной последовательности. Так образуется новый спейсер, а заодно с ним — и новый повтор. Весь этот процесс называют адаптацией, или приобретением, а по сути это — запоминание врага. Информацию обо всех запомнившихся врагах получает при делениях всё потомство клетки.

Как реализуется CRISPR-опосредованный иммунитет?

Для поиска повторно вторгающихся агентов CRISPR-кассета должна экспрессироваться. В результате ее транскрипции образуется длинная молекула РНК — pre-crРНК. С помощью РНКазы III и, как правило, Cas-белков транскрипт нарезается по повторам на отдельные crРНК — молекулы, содержащие один спейсер и кусочки окружающих его повторов (один из них длиннее). В системах II типа для этого процесса, называемого созреванием, необходим еще один участник — tracrРНК (trans-activating CRISPR RNA), которая закодирована рядом с cas-кластером [12].

Далее у систем I класса crРНК взаимодействует с комплексом Cas-белков, а у систем II класса crРНК либо дуплексы tracrРНК-crРНК связываются с одним белком-эффектором, например Cas9. Так образуется интерференционный функциональный модуль — рабочая иммунная единица, состоящая из направляющей РНК и эффекторного белка (или комплекса). Совокупность таких единиц «сканирует» клетку в поисках интервентов.

При обнаружении комплементарной crРНК последовательности, то есть протоспейсера, модуль «слипается» с ней и определяет, не помечена ли она как «своя», клеточная. Если нет, и если к ней прилегает тот самый PAM, то эффекторный белок, который представляет собой эндонуклеазу, разрезает обе цепи ДНК в строго определенных местах. Весь процесс называется интерференцией. В особом случае, у системы VI типа, происходит РНК-интерференция, потому что эффекторный белок является рибонуклеазой и разрушает РНК. Так или иначе, атакованные фаги или плазмиды выводятся из строя. Ну и появляется лишняя возможность «наворовать» новые спейсеры.

Какие проблемы могут возникнуть при реализации иммунного ответа? Не исключено, что по мере удаления от лидерной последовательности, то есть от CRISPR-промотора, шансы спейсера транскрибироваться и созреть уменьшаются. Кроме того, есть мнение, что удаленные спейсеры со временем могут накапливать мутации, препятствующие эффективной интерференции с мишенью, или вовсе удаляться. Но раз адаптация новых спейсеров происходит вблизи промотора, удаленные спейсеры представляют собой фото агентов, давно не нападавших на эту клеточную линию, и в постоянной боеготовности по отношению к ним клетка не нуждается. Настоящей же проблемой могут стать даже однонуклеотидные мутации мишени. В общем, комплементарность в этом деле превыше всего.

А не приручить ли нам чужой иммунитет?

Детально изучив принципы работы стрептококковой системы CRISPR-Cas9 (II тип), ученые подумали: а почему бы не попробовать с ее помощью корректировать геномы других организмов? Появились новые надежды относительно лечения генетических (и не только) заболеваний человека, ведь этот способ редактирования in vivo мог оказаться эффективнее уже вовсю тестируемых в то время нуклеаз ZFN и TALEN [13].

Всё, что требовалось для новой технологии, — это разместить на векторах ген белка Cas9 и CRISPR-кассету, где спейсеры сделать идентичными местам генома, которые нужно изменить. Меняя число и тип спейсеров, можно модифицировать сразу несколько разных участков генома. Довольно быстро поняли, что tracrРНК и crРНК можно безболезненно объединить в одну химерную молекулу sgРНК (single-guide RNA), а РНКазу III в эукариотических клетках спокойно подменяют другие рибонуклеазы. Ну и еще потребовалось оптимизировать систему для эукариотических клеток: подправить кодонный состав и добавить ядерный «адрес», чтобы она четко следовала к месту работы — хромосомам.

Получилась простая и, что немаловажно, дешевая двухкомпонентная система: ген cas9 и CRISPR-кассета транскрибируются в клеточном ядре выбранного организма, CRISPR-транскрипт нарезается на отдельные sgРНК, которые объединяются с белками Cas9 и ищут цель. Когда sgРНК находит комплементарный участок в геноме организма, Cas9 разрезает «натупо» обе цепи ДНК. Всё, работа CRISPR-системы на этом окончена. Теперь эстафета передается репарационным системам самогό организма. Они решают, как лучше залатать разрез: то ли просто сшить куски (это будет негомологичное соединение концов, NHEJ), то ли, если есть подходящая матрица с флангами, комплементарными участкам ДНК с двух сторон от разрыва, поставить «заплатку» (это будет гомологичная рекомбинация). Так вот, первый вариант выгоден, если нужно что-то вырезать, второй — если нужно что-то вставить или заменить дефектный участок ДНК на нормальный, который просто вводят на подходящем векторе. Иногда используют гомологию с парной хромосомой, если на ней нужный локус не дефектный.

Разумеется, технология пока не лишена недостатков. Cas9, например, может проявлять нецелевую активность, «закрывая глаза» на мелкие несоответствия между sgРНК и мишенью. По словам К. Северинова, основная проблема — это биоинформатическое предсказание мишеней, поскольку, помимо наличия участка PAM, необходимо учитывать массу факторов, включая состояние хроматина. Кроме того, сценарий, по которому пойдет репарация разреза, не всегда соответствует желаемому, поэтому сейчас активно ищут факторы, влияющие на выбор этого сценария клеткой. Помимо оптимизации CRISPR-Cas9 и механизмов ее доставки в нужные клетки, ведется апробирование других типов CRISPR-систем [14].

Спектр применений CRISPR-Cas9 и ее модификаций

Точки приложения CRISPR-технологии можно условно объединить в три крупные группы: «CRISPR — для исследований», «CRISPR — для биотехнологий» и «CRISPR — для терапии».

1. «CRISPR — для исследований». Технология позволяет изучать роль конкретных генов в процессах развития и жизнедеятельности организмов. Как вариант — устанавливать роль генов и их перестроек в возникновении и прогрессировании генетических болезней и рака: этот инструмент позволяет создавать прекрасные модельные системы [15].

Если Cas9 лишают одного нуклеазного домена, то белок становится никазой (nCas9) — режет только одну цепь ДНК, — а если лишают сразу двух, то белок становится инактивированным, или «мертвым» (dead, dCas9). Такой белок ничего не режет, зато систему CRISPR-dCas9 можно использовать для репрессии целых наборов генов или как платформу для конструирования более сложных регуляторных и модифицирующих комплексов. Например, если к ней привязать активирующий домен, то экспрессия целевых генов активируется. Для эпигенетической модификации нужных зон достаточно добавить модифицирующий домен. А пометив dCas9 флюоресцентными белками [16], можно визуализировать разные области хромосом. Ясно, что регуляторные возможности системы будут востребованы и в медицине. Кроме того, разные варианты CRISPR-Cas открывают новые возможности для скрининга мишеней лекарств [1].

2. «CRISPR — для биотехнологий». Здесь речь идет о применении CRISPR-Cas9 как минимум для трех целей:

  • для улучшения свойств сельскохозяйственных животных и растений. Уже создали и протестировали CRISPR-системы для риса, пшеницы, кукурузы, сорго и многих других культур. Детально эта кухня разобрана в обзоре [17]. Помимо улучшения пищевых качеств, такими инструментами легко наделять культуры устойчивостью к вредителям и химикалиям, а животных — избавлять от нежелательных генов. Например, недавно в свиных клетках инактивировали эндогенных ретровирусов (не то чтобы здоровья свиньи ради, а держа в голове планы по трансплантации ее органов человеку) [18];
  • для контроля распространения инфекций, переносимых животными. Например, уже всерьез размышляют о «заносе» в природные популяции малярийных комаров генов устойчивости к плазмодию или генов популяционного контроля [19]. Это стало принципиально возможным благодаря технологии «gene drive» (что-то типа «продвижения гена»), основанной на изменении классического наследования. С ее помощью встроенный в одну особь ген быстро распространяется по всей популяции. Принцип технологии иллюстрирует нашумевшая мутагенная цепная реакция у дрозофил [20];
  • для конструирования новых метаболических путей и осуществления направленной эволюции биомолекул. Новые или оптимизированные ферментные системы бактерий и грибов, получаемые так легко и дешево, — предел мечтаний технологов из целого ряда отраслей промышленности. Но даже простое встраивание в промышленно важные штаммы бактерий систем CRISPR-Cas с заданными свойствами может защитить их от бактериофагов и нежелательных плазмид.

3. «CRISPR — для терапии». Здесь пределов для фантазии, кажется, и вовсе нет. Если говорить о наследственных заболеваниях, то CRISPR-Cas9 в культурах клеток или животных моделях уже «примерили» для серповидноклеточной анемии и β-талассемии, M2DS-синдрома и миодистрофии Дюшенна, муковисцидоза (исправили мутантный CFTR-локус в кишечных стволовых клетках человека) и тирозинемии, катаракты (у мышей устранили доминантную мутацию в гене Crygc) и пигментного ретинита. Вообще, болезни глаз сейчас в центре внимания, потому что в глаза генетические конструкции легко доставлять [14].

Преимущества коррекции генома в зародышевой линии (как совокупности любых генеративных клеток, связывающих друг с другом поколения организмов) и стволовых клетках очевидны, но даже изменения, вносимые в соматические клетки уже развитых органов, дают эффект. Особенно если речь идет о борьбе с болезнями печени и мышц. О результатах терапевтического применения CRISPR-Cas9 в разных типах клеток рассказывает свежий обзор [21].

Отдельное перспективное направление — борьба с хроническими вирусными заболеваниями типа гепатитов и ВИЧ-инфекции. Если возбудитель сохраняется в организме в виде провируса (вирусной ДНК, встроенной в клеточный геном), то его можно просто вырезать. Именно так и поступил коллектив биологов из США, избавив лимфоциты человека от ВИЧ (об этом сообщили сразу две «биомолекулярные» статьи: «Битва века: CRISPR VS ВИЧ» [22] и «CRISPR/Cas9 как помощник в борьбе с ВИЧ» [23]). Правда, ВИЧ — объект крайне изменчивый, и с ним еще придется поломать копья.

Можно помечтать, что в терапии опухолей найдут применение варианты недавно описанной CRISPR-системы VI типа — той, что уничтожает только РНК, причем, как оказалось, любую клеточную РНК без разбора: запустить такую систему в раковую клетку — это как наслать на нее проклятье [14].

CRISPR-Cas — это не только иммунитет

Оказывается, для бактерий и их эволюции эта система значит намного больше.

Неканонические активности CRISPR-систем или их отдельных компонентов возникали как побочные продукты их иммунной функции либо как самостоятельно отбираемые признаки. Скорее всего, CRISPR-кассеты и Cas-белки когда-то работали порознь, причем исходная задача последних состояла в регуляции экспрессии генов и репарации ДНК [7]. Современные компоненты CRISPR-Cas замечены:

  • в регуляции активности генов. Эти системы могут вмешиваться в общение бактерий по типу quorum sensing («чувство кворума») [24] и регулировать таким образом групповое поведение: формирование плодовых тел и спор у миксококков и биопленок у синегнойной палочки. Белки Cas9 (систем II типа) регулируют вирулентность патогенов Legionella pneumophila, Francisella novicida, Campylobacter jejuni и, возможно, Neisseria meningitidis;
  • в репарации ДНК. Cпособность к разрезанию CRISPR-кассеты для встраивания новых спейсеров, скорее всего, вторичное функциональное приобретение Cas1. Исходно он резал типичные рекомбинационные/репарационные интермедиаты и пока что не разучился это делать. Поэтому экспрессия генов cas повышает устойчивость некоторых бактерий к радиации, а отключение CRISPR-системы ведет к повышению их чувствительности к повреждающим ДНК факторам и нарушению расхождения хромосом;
  • в ремоделировании (реорганизации) генома. Cas-белки иногда ошибаются и вместо вражеской ДНК делают спейсерами фрагменты своего генома. Если последовавшие за этим «аутоиммунные» реакции не приводят к гибели клетки, то чаще всего происходят крупные перестройки, направленные на частичное или полное избавление от «проштрафившейся» CRISPR-системы. Иногда перестройки могут повысить приспособленность хозяина к нише — например, за счет дупликации полезных генов;
  • в конкуренции мобильных генетических элементов друг с другом, если они несут эти самые CRISPR-Cas-системы;
  • во введении бактерий в «спящее», неактивное состояние. Функция эта по сути тоже иммунная, но экстремальная. Предполагают, что в избранных CRISPR-системах один из Cas-белков может служить «токсином», а его партнер — «антитоксином», и когда в клетку проникает фаг, «токсин» высвобождается и начинает крушить любую РНК. Но у «замирающей» при этом клетки есть время лихорадочно насобирать спейсеры. Если это не получается, то разбушевавшийся Cas-токсин доводит клетку до самоубийства. Доказать этот принцип пока не удалось [7]. Зато подобный драматический финал мы уже где-то видели: именно так поступает система VI типа. Такой исход фаговой инвазии называется абортивной инфекцией. Для клетки плохо, для популяции — хорошо…
  1. J. A. Doudna, E. Charpentier. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science. 346, 1258096-1258096;
  2. Ruud. Jansen, Jan. D. A. van Embden, Wim. Gaastra, Leo. M. Schouls. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 43, 1565-1575;
  3. Puping Liang, Yanwen Xu, Xiya Zhang, Chenhui Ding, Rui Huang, et. al.. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 6, 363-372;
  4. Erik J. Sontheimer, Rodolphe Barrangou. (2015). The Bacterial Origins of the CRISPR Genome-Editing Revolution. Human Gene Therapy. 26, 413-424;
  5. Jennifer L. Gori, Patrick D. Hsu, Morgan L. Maeder, Shen Shen, G. Grant Welstead, David Bumcrot. (2015). Delivery and Specificity of CRISPR/Cas9 Genome Editing Technologies for Human Gene Therapy. Human Gene Therapy. 26, 443-451;
  6. CRISPR-системы: иммунизация прокариот;
  7. Edze R. Westra, Angus Buckling, Peter C. Fineran. (2014). CRISPR–Cas systems: beyond adaptive immunity. Nat Rev Micro. 12, 317-326;
  8. Eric S. Lander. (2016). The Heroes of CRISPR. Cell. 164, 18-28;
  9. Rongxue Peng, Guigao Lin, Jinming Li. (2016). Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 283, 1218-1231;
  10. Omar O. Abudayyeh, Jonathan S. Gootenberg, Silvana Konermann, Julia Joung, Ian M. Slaymaker, et. al.. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353, aaf5573;
  11. Пожиратели бактерий: убийцы в роли спасителей;
  12. Элементы: «Прокариотическая система иммунитета поможет редактировать геном»;
  13. А не замахнуться ли нам на… изменение генома?;
  14. Ершов А. (2016). «Просто это очень красиво». Константин Северинов о новом типе CRISPR-систем и последних трендах в редактировании геномов. Сайт N+1;
  15. Andrea Pellagatti, Hamid Dolatshad, Simona Valletta, Jacqueline Boultwood. (2015). Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Arch Toxicol. 89, 1023-1034;
  16. Флуоресцентные белки: разнообразнее, чем вы думали!;
  17. Xingliang Ma, Qinlong Zhu, Yuanling Chen, Yao-Guang Liu. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant. 9, 961-974;
  18. L. Yang, M. Guell, D. Niu, H. George, E. Lesha, et. al.. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 350, 1101-1104;
  19. Kyle Jarrod McLean, Marcelo Jacobs-Lorena. (2016). Genetic Control Of Malaria Mosquitoes. Trends in Parasitology. 32, 174-176;
  20. Мутагенная цепная реакция: редактирование геномов на грани фантастики;
  21. Nataša Savić, Gerald Schwank. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research. 168, 15-21;
  22. Битва века: CRISPR vs ВИЧ;
  23. CRISPR/Cas9 как помощник в борьбе с ВИЧ;
  24. Бактерии, молчать! Как и зачем вносить помехи в межклеточное общение.

CRISPR/Cas9 | КРИСПР

КРИСПР/Cas9 | КРИСПР

CRISPR/Cas9 — особая, эффективная и универсальная технология редактирования генов, которую мы можем использовать для модификации, удаления или исправления определенных участков нашей ДНК.

Доктор Эммануэль Шарпантье, один из наших научных основателей, стала одним из изобретателей редактирования генов CRISPR/Cas9. До этого люди знали «CRISPR» только как аббревиатуру для кластерных регулярно расположенных коротких палиндромных повторов генетической информации, которую некоторые виды бактерий используют как часть противовирусного механизма. Теперь, как инструмент редактирования генов, CRISPR/Cas9произвела революцию в биомедицинских исследованиях и вскоре может привести к прорыву в медицине, чего раньше не удавалось сделать немногим биологическим инновациям.

CRISPR/Cas9 редактирует гены, точно разрезая ДНК, а затем позволяя естественным процессам восстановления ДНК вступить во владение. Система состоит из двух частей: фермента Cas9 и направляющей РНК.

Быстрое воплощение революционной технологии в трансформирующую терапию.


CRISPR Lexicon

  • CRISPR: Сгруппированные Короткие палиндромные повторы с регулярными интервалами Генетическая информация, которую некоторые виды бактерий используют как часть противовирусной системы. Группа ученых, в том числе наш соучредитель доктор Эммануэль Шарпантье, открыла, как использовать эту систему в качестве инструмента редактирования генов (Jinek, et al. Science 2012)
  • Cas9: CRISPR-ассоциированный (Cas ) эндонуклеаза или фермент, который действует как «молекулярные ножницы» для разрезания ДНК в месте, указанном направляющей РНК
  • Дезоксирибонуклеиновая кислота (ДНК): молекула, которую большинство организмов используют для хранения генетической информации, которая содержит «инструкции для жизни»
  • Рибонуклеиновая кислота (РНК): молекула, родственная ДНК, которую живые существа используют целей, включая транспортировку и чтение «инструкций» ДНК
  • Направляющая РНК (гРНК): тип молекулы РНК, которая связывается с Cas9 и определяет, на основе последовательности гРНК, место, в котором Cas9разрезает ДНК

С помощью CRISPR/Cas9 можно выполнять три основные категории генетических изменений:

Генное редактирование CRISPR/Cas9

РАЗРУШЕНИЕ

гомологичное соединение концов может привести к добавлению или удалению пар оснований, нарушению исходной последовательности ДНК и инактивации генов места. После расщепления в каждом сайте негомологичное соединение концов объединяет отдельные концы, удаляя промежуточную последовательность

ИСПРАВИТЬ ИЛИ ВСТАВИТЬ

Добавление матрицы ДНК вместе с механизмом CRISPR/Cas9 позволяет клетке исправить ген или даже вставить новый ген, используя процесс, называемый репарацией, направленной по гомологии

«Если ученые могут мечтать о генетических манипуляциях, теперь CRISPR может это осуществить»


Наша программа Exa-cel при гемоглобинопатиях использует разрушение для достижения целевого редактирования генов

Узнать больше

Наша программа CTX110 CAR-T использует разрушение и вставку для создания желаемой аллогенной CAR-T клетки

Узнать больше

Вы покидаете веб-сайт CRISPR Therapeutics.

CRISPR Therapeutics не несет ответственности за содержание или доступность сторонних сайтов.

Продолжить

Что такое редактирование генома и CRISPR-Cas9?: MedlinePlus Genetics

Редактирование генома (также называемое редактированием генов) — это группа технологий, которые дают ученым возможность изменять ДНК организма. Эти технологии позволяют добавлять, удалять или изменять генетический материал в определенных местах генома. Было разработано несколько подходов к редактированию генома. Самый известный из них называется CRISPR-Cas9., что является сокращением от сгруппированных коротких палиндромных повторов с регулярными интервалами и CRISPR-ассоциированного белка 9. Система CRISPR-Cas9 вызвала большой интерес в научном сообществе, потому что она быстрее, дешевле, точнее и эффективнее, чем другие виды редактирования генома. методы.

CRISPR-Cas9 был адаптирован из естественной системы редактирования генома, которую бактерии используют в качестве иммунной защиты. При заражении вирусами бактерии захватывают небольшие фрагменты ДНК вирусов и вставляют их в свою собственную ДНК по определенному образцу, чтобы создать сегменты, известные как массивы CRISPR. Массивы CRISPR позволяют бактериям «запоминать» вирусы (или близкородственные). Если вирусы атакуют снова, бактерии производят сегменты РНК из массивов CRISPR, которые распознают и прикрепляются к определенным областям ДНК вирусов. Затем бактерии используют Cas9или аналогичный фермент, чтобы разрезать ДНК, что отключает вирус.

Исследователи адаптировали эту систему иммунной защиты для редактирования ДНК. Они создают небольшой фрагмент РНК с короткой «направляющей» последовательностью, которая прикрепляется (связывается) к определенной последовательности-мишени в клеточной ДНК, подобно сегментам РНК, которые бактерии производят из массива CRISPR. Эта направляющая РНК также присоединяется к ферменту Cas9. При введении в клетки направляющая РНК распознает предполагаемую последовательность ДНК, а фермент Cas9 разрезает ДНК в целевом месте, отражая процесс в бактериях. Хотя Cas9является наиболее часто используемым ферментом, также можно использовать другие ферменты (например, Cpf1). После разрезания ДНК исследователи используют собственный механизм репарации ДНК клетки, чтобы добавлять или удалять фрагменты генетического материала или вносить изменения в ДНК, заменяя существующий сегмент индивидуальной последовательностью ДНК.

Редактирование генома представляет большой интерес для профилактики и лечения заболеваний человека. В настоящее время редактирование генома используется в клетках и моделях животных в исследовательских лабораториях для понимания болезней. Ученые все еще работают над тем, чтобы определить, является ли этот подход безопасным и эффективным для использования на людях. Он изучается в исследованиях и клинических испытаниях для широкого спектра заболеваний, включая моногенные расстройства, такие как муковисцидоз, гемофилия и серповидно-клеточная анемия. Он также обещает лечение и профилактику более сложных заболеваний, таких как рак, болезни сердца, психические заболевания и инфекция, вызванная вирусом иммунодефицита человека (ВИЧ).

Этические проблемы возникают, когда редактирование генома с использованием таких технологий, как CRISPR-Cas9, используется для изменения геномов человека. Большинство изменений, вносимых при редактировании генома, ограничиваются соматическими клетками, которые представляют собой клетки, отличные от яйцеклеток и сперматозоидов (клетки зародышевой линии). Эти изменения изолированы только в определенных тканях и не передаются из поколения в поколение. Однако изменения, внесенные в гены яйцеклеток или сперматозоидов или в гены эмбриона, могут быть переданы будущим поколениям. Редактирование генома зародышевых клеток и эмбрионов поднимает ряд этических проблем, в том числе вопрос о том, допустимо ли использовать эту технологию для улучшения нормальных человеческих черт (таких как рост или интеллект). Из соображений этики и безопасности редактирование генома зародышевых клеток и эмбрионов в настоящее время является незаконным в США и многих других странах.

Ормонд К.Е.(1), Мортлок Д.П.(2), Скоулз Д.Т.(3), Бомбард И.(4), Броди Л.К.(5), Фосетт В.А.(6), Гарнизон Н.А.(7), Герчер Л.(8), Исаси Р. (9), Миддлтон А. (10), Мусунуру К. (11), Шрайнер Д. (12), Вирани А. (13), Янг К.Э. (3). Редактирование генома зародышевой линии человека. Am J Hum Genet. 2017 3 августа; 101 (2): 167-176. PubMed: 28777929. Бесплатный полный текст доступен в PubMed Central: PMC5544380.