Содержание
комиксы, гиф анимация, видео, лучший интеллектуальный юмор.
«Проект, которым можно гордиться» Астрофизик Сергей Попов — о важности запуска телескопа «Спектр-РГ» для России и мировой науки
13 июля с космодрома Байконур стартовала ракета-носитель «Протон-М» с космической обсерваторией «Спектр-РГ». Эту миссию готовили с конца 1980-х годов — ученые надеются, что аппарат поможет лучше понять законы Вселенной. «Медуза» попросила астрофизика, ведущего научного сотрудника Государственного астрономического института МГУ Сергея Попова рассказать о том, почему «Спектр-РГ» так важен для мировой науки.
— «Спектр-РГ» — это орбитальная обсерватория. Зачем такие обсерватории нужны?
— Главное, для чего нужна орбитальная обсерватория, — наблюдения в диапазонах спектра, в которых земная атмосфера все полностью поглощает. «Спектр-РГ» работает с рентгеновским диапазоном, а рентгеновские лучи с поверхности Земли наблюдать просто невозможно. Поэтому до 1960-х годов, когда в космос начали отправлять первые рентгеновские детекторы, не было никаких данных об излучении астрономических объектов в рентгеновских диапазонах.
— Почему важно работать именно в рентгеновском диапазоне?
— Моя любимая аналогия: вы приходите к врачу, который вам говорит сделать рентген. Вы говорите, что только что сделали УЗИ, зачем еще и рентген? Но дело в том, что рентген показывает другое.
Допустим, вы просто посмотрели вокруг. В видимом диапазоне вы увидите только то, что видите. Если посмотрите радиодиапазон, то увидите точки вайфая в соседних комнатах, радиостанции и так далее. А в инфракрасном диапазоне обнаружите, что в офисе живет крыса, которую никто никогда не видел. Вы получите принципиально новую информацию. Сделаете важное открытие.
Так и в космосе. Если мы хотим изучать, как формируются звезды и планеты, — нужно наблюдать в инфракрасном диапазоне, так как они еще не разогрелись. Изучаем обычные звезды — используем в первую очередь обычный видимый диапазон. А если у нас, например, вещество течет на поверхность нейтронной звезды, то там оно разогревается до гигантской температуры и основную долю энергии излучает в рентгеновском диапазоне. Соответственно, если мы хотим изучать, например, черные дыры в двойных системах, то нам в первую очередь необходим рентгеновский инструмент.
— Указывают, что это первый российский телескоп с оптикой косого падения. Что это значит?
— Рентгеновские лучи плохо отражаются. С похожими ситуациями все мы сталкивались. Посмотрите сверху на поверхность воды — и увидите дно. Затем посмотрите вдоль воды — вы увидите почти идеальное отражение. Мы видим, что в случае косого падения и у поверхности воды отражение лучше. А в случае рентгена вообще возможно только косое падение. Ничего не получится, если вы попробуете отразить рентгеновский луч, просто поставив источник перед зеркалом, — зеркало целиком поглотит его. Поэтому нужно запускать луч под очень косым углом, из-за этого такие телескопы получаются очень необычными — очень длинными. Без зеркал косого падения в рентгеновском диапазоне просто не сделать нормальный снимок.
— История «Спектра-РГ» началась еще в 1980-е. Почему так много времени заняла его разработка?
— Нужно сделать небольшую преамбулу — большая советская космонавтика в большой степени игнорировала астрофизические исследования. Если сравнить количество астрофизических приборов, которые наша страна вывела на орбиту до 1990 года, то мы проигрываем даже Европе, не говоря уже о США.
Но было несколько успешных проектов. Из-за того что они были — в первую очередь спутник «Гранат», — люди хотели большего. Сложились группы, которые умели и делать аппаратуру, и работать с данными. Были хорошие астрофизики, которые могли ставить задачи.
Но проект затягивался. Главная причина — кризис конца 1980-х — начала 1990-х. Как раз на это время пришлось бы ожидаемое время запуска первого варианта «Спектра-РГ». Люди пытались что-то делать, но денег не было. Потом деньги появились, но начались другие сложности. Полностью менялись начинка и оборудование, потому что кто-то входил в коллаборацию [создателей проекта], а кто-то выходил. Ставились новые научные задачи, так как старые оказывались уже решенными. Наконец, несколько лет назад сложился современный дизайн аппарата — его тоже долго согласовывали.
Долго делали рентгеновские телескопы — и [сделанный в Германии и являющийся частью обсерватории «Спектр-РГ»] eROSITA, и российский ART-XC. Были задержки по разработке спутника, на который все это устанавливается. Потом пошел длительный процесс сведения всего вместе. В последние годы один раз даже санкции повлияли — нужно было купить микросхему в Штатах, а они ее не продали. Но в итоге все довели до ума.
В целом если посмотреть на историю, то вообще сложно вспомнить аппарат, который полетел в сроки, которые четко указывали пятью годами ранее. Обычно всегда начинаются сдвиги и переносы.
— Это российско-немецкий проект. Какой вклад в его создание сделали стороны?
— Все очень четко делится. Спутник — российский, запуск — российский. На спутнике два телескопа: основной — немецкий, а сопутствующий, дополнительный, — российский.
— А полученные результаты тоже как-то будут делиться между сторонами?
— Люди всегда хихикают, когда узнают, как все будет происходить. Данные с российского телескопа будут целиком российскими — это понятно. Далее — изначально было решено, что данные с eROSITA будут делиться поровну. Вопрос был в том, как поделить поровну? Дело в том, что первые четыре года спутник делает обзор неба — крутится и сканирует все небо. Делает это восемь раз за четыре года, то есть один скан в полгода. Поэтому делить можно было по-разному. В итоге решили, что оптимальный вариант — поделить небо пополам. Есть российская половина неба, есть — немецкая. Всегда очень смешно видеть карту неба, где на одной половине немецкий флаг, а на второй — российский. Соответственно, данные за все четыре года по одной стороне будут принадлежать российской стороне, по второй — немецкой. Дальше они уже будут сами решать, с кем этими данными делиться.
Весь последний год идет разговор о том, как будут обмениваться данными российская и немецкая сторона, потому что есть небольшие источники, которые попадают на границу. Например, часть объекта может лежать на немецкой стороне, а часть — на российской. Соответственно, люди создают совместные группы и детализируют процесс обмена данными. К этому подходят очень серьезно. В открытый доступ эти данные быстро попадать не будут.
— А российский телескоп захватывает все небо?
— В конечном счете да.
— Тогда зачем на спутнике два телескопа?
— Они совершенно разные. Они работают в разных диапазонах, там разные приборы, и видят они все по-разному.
Опять же представьте, что вы сделали человеку одновременно МРТ и УЗИ. Данные по УЗИ целиком — ваши, данные по МРТ выше пояса тоже отдали вам, а данные ниже пояса — другому врачу. Вот и телескопы не дублируют друг друга. Никто не стал бы тратить большие деньги ради дубля.
— Это первый подобный российский проект?
— Если говорить о рентгеновском, то да. Но в нашей истории был один космический астрофизический проект, который известен по названию «Радиоастрон». На самом деле название спутника — «Спектр-Р». Это был первый запуск в рамках программы из четырех спутников с названием «Спектр», работающих в разных диапазонах. «Спектр-Р» — первый спутник, где работали с радиодиапазоном, «Спектр-Рентген-Гамма» («Спектр-РГ») — второй, «Спектр-Ультрафиолет» — по плану третий, и он тоже безумно долго делается. Есть очень отдаленные планы делать и четвертый «Спектр» для работы в миллиметровом инфракрасном диапазоне.
Ясно, что обзоры неба в рентгеновском диапазоне в мире раньше делались. Но в космической астрофизике для серьезных проектов есть жесткое требование: каждый следующий должен быть в десять раз лучше предыдущего по всем параметрам. Поэтому ситуация примерно следующая: двадцать лет назад вы купили ноутбук, а сейчас купили еще один. Новый ноутбук чем-то лучше? Он лучше всем, хотя стоит столько же.
— Как дела с подобными проектами в других странах? Этот проект важен для мировой науки?
— Да, это обсерватория мирового уровня. В своем классе она выполняет вот это требование — быть в десять раз лучше предыдущего в мире. Был немецкий спутник, который делал обзор неба в 1990-е годы, и с тех пор ничего подобного не было.
— Что в США с подобными проектами?
— Они не запускали рентгеновские обзорные миссии много лет. Они развиваются немного по-другому — как какая-нибудь страна может не делать трамваи, но при этом производить скоростные поезда. Американцы запускают много рентгеновских аппаратов разных типов, но они не делают рентгеновские обзоры неба.
— Когда телескопы сделают свою работу, что эти снимки дадут ученым?
— Основная задача — это обзор неба, соответственно, телескоп увидит все, что есть на небе. Это огромное количество самых разных источников [излучения], поэтому потенциально есть огромное количество задач, которые можно решать. По сути, данные будут получены по всем классам астрономических объектов, которые только существуют.
Но есть приоритетные задачи. Для eROSITA это наблюдение скоплений галактик в рентгеновском диапазоне. Скопления галактик — это самые большие структуры во Вселенной. И наблюдая их на разных расстояниях, мы видим их в разные эпохи жизни Вселенной. Скопление галактик хорошо отражает [процесс] формирования крупномасштабной структуры, а это, в свою очередь, один из столпов современной космологии.
Чуть-чуть утрируя — eROSITA сможет увидеть все скопления галактик до края Вселенной. Какое-то фантастическое число, около 100 тысяч [скоплений] галактик. Для сравнения: хорошо изучено сейчас около тысячи. Так что как минимум это важно для уточнения космологических параметров, а потенциально и для решения космологических задач. Для понимания нашей Вселенной в целом.
— Что помимо скопления галактик будет изучаться?
— Много всего. Сложно выстроить все в порядке значимости, но, например, это активные ядра галактик. Те самые сверхмассивные черные дыры в центрах галактик — по ним будет собрана очень большая база новых данных.
Уже традиционно все рентгеновские аппараты исследуют двойные системы с нейтронными звездами и черными дырами. Здесь тоже можно ожидать много интересных результатов.
У меня есть главный личный запрос к eROSITA, а может быть, и ко второму телескопу — открыть одиночные аккрецирующиенейтронные звезды, которых в нашей Галактике должно быть примерно миллиард. Они летают в межзвездной среде и могут эту среду притягивать.
[Рентген] это единственный способ увидеть и наблюдать такую нейтронную звезду. Это было понято еще в 1970 году, и было бы красиво к 50-летию впервые увидеть старые одиночные нейтронные звезды. Это очень важно для понимания того, как они живут и эволюционируют. Пока мы изучаем в основном молодые нейтронные звезды. Или старые, но в двойных системах, а у них немного по-другому устроена жизнь.
— Почему это важно?
— Нам интересна эволюция. Представьте, вы — инопланетянин, который прилетел на Землю и смотрит на маленького ребенка. Вы понятия не имеете, что с ним дальше происходит. Вы не поймете, что ребенок потом может выучить общую теорию относительности, а, например, щенок, который тоже не говорит и куда-то карабкается, — нет. Априори это понять довольно трудно, если вы инопланетянин и прилетели на пять минут. Узнать это можно, только увидев объекты предельного возраста. Про нейтронные звезды мы не знаем, как они эволюционируют, — это довольно большой кусок физики и астрофизики.
— Точно не известно, что мы получим от «Спектра-РГ»?
— Ну да. По-хорошему, выводы можно будет делать после окончания обзоров. Где-то через год будут первые данные, потом, как всегда, люди будут учиться работать с ними. Оптимистично я бы сказал, что через пару лет что-то начнет появляться, а лет через пять люди потихонечку начнут давать полные данные.
— Теоретически мы можем получить какие-то прорывные результаты?
— Если говорить без преувеличений, которые так любят СМИ, то предсказать такое в принципе невозможно. Если результат гарантирован и предсказуем, как с гравитационными волнами, то он заведомо не будет прорывом, потому что это плановая вещь. Интересные открытия всегда неожиданны. В этом и смысл делать приборы в десять раз лучше. Всегда есть большая вероятность увидеть то, что никогда не видели. То есть ответ на вопрос: может быть, а может быть, и нет.
— У нас есть пример, предшественник «Спектра-РГ» — «Спектр-Р», который запускали в 2011 году. Мы получили что-то важное от него?
— Трудно ранжировать результаты, но я бы выделил получение очень детальных изображений ярких астрономических радиоисточников. Ученые смогли рассмотреть важные детали в струях [плазмы], которые бьют из центров активных галактик, выбрасываются из окрестностей сверхмассивных черных дыр. Для понимания того, как работают активные ядра галактики, это очень важно. С Земли такой результат принципиально нельзя получить.
Я бы не сказал, что это был совсем тестовый проект, но никто и никогда до этого не делал такой проект такого масштаба. Скажем так — это пионерский проект, в котором было много вещей, которые нужно было попробовать. Проект оправдал ожидания с этой точки зрения, плюс дал много хороших научных результатов. Но каких-то прорывных не было, на мой взгляд. Но этого и не планировалось.
— Запуск «Спектра-РГ» будет полезен только с точки зрения науки? Не будет какого-то прикладного применения?
— О практическом применении чего-либо часто спрашивают неправильно. Например, учительница физкультуры говорит детям присесть 50 раз, а о они спрашивают, где это во взрослой жизни может понадобиться присесть 50 раз. Ответ: нигде и никогда не понадобится, это было бы странно. Но в приседаниях есть большой толк. Потом от кого-то можно убежать, можно кому-то двинуть ногой, и вообще поясница просто не будет болеть.
С научными исследованиями часто так же. Напрямую действие не нужно, но то, с чем оно связано, полезно. В случае рентгена есть несколько примеров. Рентгеновские сканеры, с которыми мы сталкиваемся в аэропорту или на вокзале, в 1960-х разработала фирма, которая фактически была создана для работы над первыми рентгеновскими детекторами для астрофизических исследований.
В целом длительное развитие рентгеновской астрономии привело к тому, что сейчас уже не на чертежах, а в железе существуют перспективные системы навигации спутников в Солнечной системе — они именно рентгеновские. То есть следующее поколение межпланетных станций будет бороздить просторы Солнечной системы, ориентируясь по рентгеновским источникам — используя маленькие рентгеновские телескопы на борту и все наработки, созданные в рамках исследований.
И это гораздо лучше, потому что спутник сможет определять не только свое положение, но и скорость без связи с Землей. Это очень важно. Станции будут полностью автономные и не будут тратить ресурсы на связь с Землей.
— Люди со стороны часто скептически относятся к российским космическим инициативам — ругают и критикуют тот же «Роскосмос». «Спектр-РГ» — это проект, которым можно гордиться?
— Я уже перестал видеть людей, которые ругают сами космические инициативы. Это было модно в перестроечные годы — я помню плакат, где колбаса улетает в космос, в конце 1980-х. Но вроде бы с тех пор люди поняли пользу исследований.
«Роскосмос» — принципиально другое. Аналогично — мы ругаем выборы или именно российские выборы? Мы ругаем систему законности или российскую систему законности? Это принципиально разные вещи.
Думаю, этим проектом можно гордиться, и он далеко не единственный такой у нас. Поэтому мне кажется, что сейчас в целом люди понимают: космическими исследованиями надо заниматься. Другое дело, что не надо деньги воровать, а надо дело делать. Если с этим все хорошо, то люди вроде бы понимают, что космос скорее полезен, чем вреден.
Космическая съемка Земли высокого и сверхвысокого разрешения
Выделяют два направления получения пространственной информации о земной поверхности из космоса: съемка в видимом и инфракрасном диапазонах длин электромагнитных волн (оптико-электронные системы) и съемка в сантиметровом радиодиапазоне (радарные системы).
- Оптико-электронные спутники
- Радарные спутники
- Суперфильтр
Оптико-электронные спутниковые системы дистанционного зондирования Земли (ДЗЗ) позволяют получать пространственную информацию о земной поверхности в видимом и инфракрасном диапазонах длин электромагнтных волн. Они способны распознавать пассивное отраженное излучение земной поверхности в видимом и ближнем инфракрасном диапазонах. В таких системах излучение попадает на соответсвующие датчики, генерирующие, электрические сигналы в зависимости от интенсивности излучения. Подробнее
В оптико-электронных системах ДЗЗ, как правило, используются датчики с постоянным построчным сканированием. Можно выделить линейное, поперечное и продольное сканирование.
Полный угол сканирования поперек маршрута называется углом обзора, а соответствующая величина на поверхности Земли — шириной полосы съемки.
Часть принимаемого со спутника потока данных называется сценой. Схемы нарезки потока на сцены, равно как и их размер для разных спутников, имеют отличия.
Оптико-электронные системы ДЗЗ проводят съемку в оптическом диапазоне электромагнитных волн.
Панхроматические изображения занимают практически весь видимый диапазон электромагнитного спектра (0,45–0,90 мкм), поэтому являются черно-белыми.
Мультиспектральные (многозональные) съемочные системы формируют несколько отдельных изображений для широких спектральных зон в диапазоне от видимого до инфракрасного электромагнитного излучения. Наибольший практический интерес в настоящий момент представляют мультиспектральные данные с космических аппаратов нового поколения, среди которых RapidEye (5 спектральных зон) и WorldView-2 (8 зон).
Спутники нового поколения высокого и сверхвысокого разрешения, как правило, ведут съемку в панхроматическом и мультиспектральном режимах.
Гиперспектральныесъемочные системы формируют изображения одновременно для узких спектральных зон на всех участках спектрального диапазона. Для гиперспектральной съемки важно не количество спектральных зон (каналов), а ширина зоны (чем меньше, тем лучше) и последовательность измерений. Так, съемочная система с 20-тью каналами будет гиперспектральной, если она покрывает диапазон 0,50–070 мкм, при этом ширина каждой спектральной зоны не более 0,01 мкм, а съемочная система с 20-тью отдельными каналами, покрывающими видимую область спектра, ближнюю, коротковолновую, среднюю и длинноволновую инфракрасные области, будет считаться мультиспектральной.
Пространственное разрешение — величина, характеризующая размер наименьших объектов, различимых на изображении. Факторами, влияющими на пространственное разрешение, являются параметры оптико-электронной или радарной системы, а также высота орбиты, то есть расстояние от спутника до снимаемого объекта. Наилучшее пространственное разрешение достигается при съемке в надир, при отклонении от надира разрешение ухудшается. Космические снимки могут иметь низкое (более 10 м), среднее (от 10 до 2,5 м), высокое (от 2,5 до 1 м), и сверхвысокое (менее 1 м) разрешение.
Радиометрическое разрешение определяется чувствительностью сенсора к изменениям интенсивности электромагнитного излучения. Оно определяется количеством градаций значений цвета, соответствующих переходу от яркости абсолютно «черного» к абсолютно «белому», и выражается в количестве бит на пиксель изображения. Это означает, что в случае радиометрического разрешения 6 бит/пиксель, мы имеем всего 64 градации цвета, 8 бит/пиксель — 256 градаций, 11 бит/пиксель — 2048 градаций.
Радарная космическая съемка выполняется в ультракоротковолновой (сверхвысокочастотной) области радиоволн, подразделяемой на X-, C- и L-диапазоны. Радиолокатор направляет луч электромагнитных импульсов на объект. Часть импульсов отражается от объекта, и датчик измеряет характеристики отраженного сигнала и расстояние до объекта. Все современные космические радарные системы — это радиолокаторы с синтезированной апертурой (SAR). Подробнее
Радиолокатор испускает собственный сигнал определенной частоты и регистрирует его (в отличие от оптических сенсоров, регистрирующих отраженное солнечное излучение), а поэтому не зависит от освещенности. Радиоволны сантиметрового диапазона проникают сквозь облака, поэтому радарные снимки не зависят и от облачности.
Большинство радарных космических систем работают с длинами волн от 0,5 до 75 см:
- X-диапазон: от 2,4 до 3,75 см (от 12,5 до 8 ГГц). Данные этого диапазона широко используются для решения задач военной разведки и широкого ряда гражданских задач, в том числе для изучения и классификации льдов.
- C-диапазон: от 3,75 до 7,5 см (от 8 до 4 ГГц). Данные этого диапазона находят наиболее широкое применение для решения огромного числа задач в гражданском секторе, в том числе для построения цифровых моделей местности (ЦММ) и цифровых моделей рельефа (ЦМР), мониторинга смещений земной поверхности.
- S-диапазон: от 7,5 до 15 см (от 4 до 2 ГГц). Диапазон интересен для ряда военных и гражданских приложений.
- L-диапазон: от 15 до 30 см (от 2 до 1 ГГц). Просвечивает растительность, в том числе не слишком плотный лес. Излучение данного диапазона может частично (на глубину до нескольких метров) проникать в сухой снег, лед, в сухую почву.
- P-диапазон: от 30 до 100 см (от 1 до 0,3 ГГц). Просвечивает растительность, в том числе плотную, сухую почву, сухой снег, лед на глубину до нескольких метров. Используются для оценки биомассы. Реализован только на авиа-носителях.
Проникающая способность радиолокационных лучей увеличивается с возрастанием длины волны. Радары с длиной волны более 2 см просвечивают облачность, но при этом дождь и снег являются серьезными осложняющими факторами для радарных систем с длинами волн до 4 см.
Интерферометрическая обработка пар и серий снимков с целью построения ЦММ либо определения просадок земной поверхности является одним из уникальных и перспективных направлений в использовании радарных снимков. Радарная интерферометрия — метод измерений, использующий эффект интерференции электромагнитных волн. Техника интерферометрической обработки радиолокационных данных предполагает получение нескольких когерентных измерений одного и того же района земной поверхности со сдвигом в пространстве приемной антенны радиолокатора.
Важной тенденцией в развитии спутниковых радарных систем, помимо повышения пространственного разрешения и увеличения числа режимов съемки, является расширение поляризационных возможностей, в особенности, одновременная съемка в четырех поляризациях. Уникальная особенность полностью поляриметрических данных состоит в возможности классификации объектов на снимке по физическому типу отражения.
По типу съемочной аппаратуры
оптико-электронная
радарная
По актуальности
функционирующие
планируемые
выведенные из эксплуатации
Страна-оператор
АлжирАргентинаБеларусьБразилияВеликобританияВенесуэлаВьетнамГерманияЕвропейское космическое агентствоЕгипетИзраильИндияИспанияИталияКазахстанКанадаКитайНигерияОАЭПеруРеспублика КореяРоссияСШАСингапурТаиландТайваньТурцияУкраинаФинляндияФранцияЧилиЯпониявсе страныПо пространственному разрешению
сверхвысокое (1 м и выше)
высокое (от 1 до 2,5 м)
среднее (от 2,5 до 10 м)
низкое (ниже 10 м)
По возможности съемки в разных спектральных каналах
только в панхроматическом режиме
в мультиспектральном режиме (до 4 каналов)
в мультиспектральном режиме (5–8 каналов)
в гиперспектральном режиме
Возможность стереосъемки
да
нет Возможность видеосъемки
да
нет
Сбросить фильтр
невероятных снимков, сделанных из космоса Фото
Christina Koch/NASA/AFP/Getty Images
Северное сияние освещает Южный полюс
Фоторедакторы ABC News собрали коллекцию самых потрясающих снимков, сделанных из пространство.
Фотография южного сияния или южного сияния, сделанная на борту Международной космической станции 13 июня 2019 года.0007
Большое Магелланово Облако, галактика-спутник Млечного Пути, изображено на этой рекламной фотографии, выпущенной 25 апреля 2019 года. Когда гравитация Млечного Пути притягивает газовые облака соседних галактик, они коллапсируют, образуя новые звезды.
Джош Лейк/НАСА/ЕКА Космический телескоп Хаббл/Getty Images
Первое изображение черной дыры
Ученые представили первое изображение черной дыры после сбора данных, собранных сетью радиотелескопов по всему миру , 10 апреля 2019 г., Телескоп Event Horizon.
Event Horizon Telescope Collaboration/Обсерватории Маунакеа через AP
Бури Юпитера
Это изображение турбулентного южного полушария Юпитера было получено космическим кораблем НАСА «Юнона» во время пролета над газовой планетой-гигантом 20 декабря 181, 20. На этом ракурсе запечатлено примечательное Большое Красное Пятно, а также массивный шторм под названием Овал BA.
Шторм достиг своих нынешних размеров, когда в 2000 году столкнулись и слились три меньших пятна. Большое Красное Пятно, которое примерно в два раза шире Овала BA, могло образоваться в результате того же процесса много веков назад.
NASA
Самый глубокий вид Вселенной
Это изображение под названием eXtreme Deep Field, или XDF, было опубликовано 25 сентября 2012 года. Фотография была собрана путем объединения фотографий космического телескопа Хаббл НАСА за 10 лет.
Собирая слабый свет в течение многих часов наблюдений, он обнаружил тысячи галактик, как близких, так и очень далеких, что сделало его самым глубоким изображением Вселенной, когда-либо сделанным в то время.
НАСА/ЕКА
Крабовидная туманность
Крабовидная туманность является остатком сверхновой, взорвавшейся звезды, видимой на этом снимке, сделанном 7 июля 2016 года. Вторые по величине спутники, Титан и Рея, кажутся наложенными друг на друга на этой цветной сцене, сделанной космическим кораблем НАСА «Кассини» 16 июня 2011 года. галактика
NGC 6814 — промежуточная спиральная галактика в созвездии Орла. В центре водоворота, вероятно, находится черная дыра.
ESA/Hubble/NASA
Туманность Конус
Туманность Конус, изображенная здесь в апреле 2002 г., представляет собой столб газа и пыли. Ультрафиолетовый свет нагревает края темного облака, высвобождая газ в относительно пустую область окружающего пространства.
Там дополнительное ультрафиолетовое излучение заставляет газообразный водород светиться, что создает красный ореол света, видимый вокруг столба.
Научная группа ACS и ЕКА/НАСА
Туманность Маленькая жемчужина
Телескоп Хаббла НАСА сфотографировал эту планетарную туманность под названием NGC 6818, также известную как туманность Маленькая жемчужина, расположенную в созвездии Стрельца, примерно в 6000 световых ярдов. лет от Земли.
ESA/Hubble/NASA
Туманность Медуза
Телескоп ESO сделал самое детальное изображение туманности Медуза из когда-либо сделанных. Когда звезда в центре этой туманности совершила свой окончательный уход на пенсию, она сбросила свои внешние слои в космос, сформировав это красочное облако.
ESO
Галактика Маленькое Сомбреро
Космический телескоп Хаббл зафиксировал NGC 7814, галактику, известную как «Маленькое Сомбреро». NGC 7814 — спиральная галактика в 40 миллионах световых лет от Земли в созвездии Пегаса.
Хаббл и НАСА/ЕКА
Рука Бога Космическая глобула
CG4, изображенная на этой фотографии, опубликованной 30 января 2015 г., обычно упоминается как Рука Бога. CG4 — это кометная глобула, область звездообразования, состоящая из небольших облаков газа и пыли.
ESO
Солнце выпускает солнечную вспышку
Обсерватория солнечной динамики опубликовала это изображение солнечной вспышки на Солнце 12 января 2015 г. A Солнечные вспышки — это внезапные вспышки повышенной яркости на Солнце, вызванные мощные всплески радиации.
SDO/NASA
Столпы Творения
Точно названные Столпы Творения, показанные на этом потрясающем снимке Хаббла, сделанном 1 апреля 1995 года, являются частью активной области звездообразования, которая находится в центре M16. или туманность Орла.
НАСА
Земля видна с поверхности Луны
На этой фотографии, сделанной астронавтом Аполлона-8 Биллом Андерсом 24 декабря, в отличие от суровой лунной поверхности с кратерами, Земля затмевается Луной. , 1968.
Билл Андерс/НАСА
Последствия столкновения спутника НАСА с астероидом. Фото:
НАСА, ЕКА, Цзянь-Ян Ли, Алисса Пэган
В четверг НАСА поделилось первыми изображениями, сделанными космическими телескопами Джеймса Уэбба и Хаббла, на которых космический корабль врезался в астероид в ходе первого в своем роде эксперимента ранее на этой неделе. .
Почему это важно: Начинание НАСА, получившее название «Испытание двойного астероидного перенаправления» (DART), ознаменовало собой первый случай, когда люди изменили курс небесного тела, и стало важной вехой в миссии космического агентства по планетарной защите.
- Технология, проверенная в ходе миссии DART, однажды может быть использована для перенаправления астероида на курс столкновения с Землей.
- Удары астероидов случаются редко, но столкновение с большим космическим камнем может нанести значительный ущерб городу или региону.
Как это работает: Цель крушения состояла в том, чтобы изменить орбиту лунного астероида по имени Диморфос вокруг более крупного космического камня по имени Дидимос. Ни один из них не представляет непосредственной угрозы для Земли.
- Два астероида находятся на расстоянии примерно 11 миллионов километров от Земли.
Общая картина: Многие фотографии были сделаны миниатюрным спутником LICIACube, оснащенным двумя камерами и запущенным DART за несколько дней до удара.
- Небольшой спутник, созданный Итальянским космическим агентством, пролетел мимо Диморфоса всего через несколько минут после крушения, чтобы сделать снимки. Итальянское космическое агентство опубликовало первые изображения с LICIACube во вторник.
- На изображениях видны большие полосы поверхностного материала Диморфоса, также называемые выбросами, а также нечто похожее на кратер.
- Перед столкновением ученые подсчитали, что в результате крушения DART на астероиде образовался кратер и выброс в космос от 22 000 до 220 000 фунтов (от 9 979 до 99 790 кг) выбросов.
Что дальше: Потребуются недели наблюдения за парой астероидов, чтобы точно определить, насколько удар изменил орбиту Диморфоса вокруг Дидима.
- Космический телескоп Хаббла планирует провести мониторинг системы Дидимос-Диморфос еще 10 раз в течение следующих трех недель, чтобы понять, как облако выброса ведет себя с течением времени, поэтому могут быть опубликованы дополнительные изображения последствий.
На фотографиях:
Изображение, полученное космическим телескопом Джеймса Уэбба НАСА, показывает Диморфоса в ближнем инфракрасном диапазоне через 4 часа после удара.