Сверхновые звезды. Фото сверхновая звезда


Сверхновые звезды

В сверхтуманности одной из карликовых галактик - NGC 5253, находится которая в созвездии Центавра, как удалось выяснить группе молодых астрономов, формируется больше миллиона новых звезд. Это происходит в облаке молекулярного газа, богатом пылью и по соседству расположенном с нашей галактикой, т.е. Млечным Путем. Светимость звезд общая в звездном скоплении больше светимости Солнца в миллиарды раз, однако, его разглядеть их в обычный телескоп из-за масс «собственного производства» раскаленных газов невозможно.

Ученые наблюдают за звездами, движущимися на огромных скоростях – порядка 700 километров в секунду, которые называются гиперзвуковыми. Наблюдают давно, но пока нет понимания механизма, вызывающего эти явления.

При взрыве, обломки сверхновых, имеют очень высокую температуру. Кроме того, они всегда ярко светятся в рентгеновском диапазоне. Обсерватория «Чандра» помогла ученым сделать новый снимок, который предлагается к просмотру. Это остатки сверхновой, названной G299.2-2.9, которые похожи на земной цветок необыкновенной красоты.

В нашей галактике наиболее изученным остатком сверхновой является хорошо известная «Кассиопея А». Тем не менее, сюрпризов Cas A хранит еще великое множество. Например, астрономы из Дартмутского колледжа и астрофизического Гарвард-Смитсоновского центра обнаружили в ней полдюжины «пузырей» - крупных полостей, применим хорошо известный в медицине метод спектроскопии магнитного ядерного резонанса, с помощью которого делают томограммы.

Два десятилетия ученые трудились, чтобы обнаружить звезду компаньона, относящуюся к редкому виду сверхновой. Указывало ученым на существование ее большое количество излучаемого ультрафиолета. Но из-за того, что область сверхновой заселена необычайно густо, ученые сомневались в правильности измерений звезды.

alt

Долгое время ученые считали, что взрыв сверхновых вызывает термоядерный синтез. Однако сегодня они имеют все доказательства того, что причиной является распад радиоактивных изотопов, приводящий в выбросам гамма-излучений, которые зафиксированы спутником INTEGRAL при наблюдении за четыре месяца назад взорвавшейся звездой в соседней с нашей галактикой М82.

"Звезды - зомби", как выяснила при помощи Hubble Space Telescope группа астрономов, могут образовываться в звездных системах после очень слабой мощности взрывов, происшедших в них. Обычно, белые карлики полностью разрушаются взрывами сверхновых, но, считают ученые, при небольшой силе взрыва, остается вероятность того, что звезды выживут.

Еще один двойник Солнечной системы

Объект Торна-Житков может сформироваться, если красный гигант проглотит нейтронную звезду (справа)

Коричневый карлик в представлении художника

Сверхновая SN 1987A. Фото  NASA, ESA, K. France (University of Colorado, Boulder), and P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics).

Взрыв сверхновой. Иллюстрация NASA/Swift/Skyworks Digital/Dana Berry.

Остаток сверхновой SN 1572. В левой части снимка четко видна рентгеновская дуга. Иллюстрация NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

Сверхновая SN2010lt открытая Кэтрин Авророй Грэй. Фото Kathryn Aurora Gray, Paul Gray, Dave Lane .

Остатки сверхновой SN 1572 в рентгеновском диапазоне. Отдельно выделены регионы с «полосами» ответственных за происхождение высокоэнергетичных космических лучей. Иллюстрация NASA/CXC/Rutgers/K.Eriksen et al.

planetologia.ru

GISMETEO.RU: Тридцать лет светового шоу сверхновой — фото, видео, анимация - 25 февраля 2017 | События

Тридцать лет назад астрономы заметили одну из самых ярких взрывающихся звезд за четыре столетия. Колоссальная сверхновая звезда 1987A (SN 1987A) взорвалась с мощностью 100 млн солнц на несколько месяцев сразу после ее открытия 23 февраля 1987 года.

С первого случая наблюдения SN 1987A продолжала удивлять астрономов своим зрелищным световым шоу. Взрыв сверхновой в Большом Магеллановом облаке продолжался сотни лет и дал астрономам возможность изучить разные фазы жизни звезды — до и после ее смерти.

В честь тридцатой годовщины открытия SN 1987A были опубликованы новые фотографии, тайм-лапс видео, анимация и трехразмерная модель.

«Хаббл» постоянно наблюдал за SN 1987A с 1990 года, накопив сотни изображений, «Чандра» — с 1999 года. ALMA, мощный комплекс из 66 антенн, собирал миллиметровую и субмиллиметровую информацию о SN 1987A с ее рождения.

Последняя информация от этих мощных телескопов указывает, что SN 1987A преодолела важный порог. Ударная волна сверхновой продвигается за пределы плотного кольца газа, образованного, когда звезда была в статусе предсверхновой. Формирование началось, когда быстрый ветер из звезды столкнулся с медленным ветром, созданным в фазу красного гиганта, ранний период эволюции звезды.

f8ed3aff.jpg

© NASA

Сверхновые, подобные SN 1987A, могут «взбалтывать» окружающий газ и вызывать формирование новых звезд и планет. Газ, благодаря которому эти звезды и планеты образуются, обогащен углеродом, азотом, кислородом и железом — базовыми жизненными компонентами. Эти элементы образуются внутри предсверхновой звезды и во время самого взрыва сверхновой, а потом рассеиваются по галактике.

Исследования «Хаббла» показали, что плотное кольцо газа вокруг сверхновой сияет в оптическом свете и достигает в диаметре примерно одного светового года. Кольцо существовало за 20 тысяч лет до взрыва сверхновой. Вспышка ультрафиолетового света от взрыва зарядила газ в кольце энергией, заставив его сиять десятилетиями.

Центральная структура, видимая внутри кольца на изображении «Хаббла», сейчас достигла 0,5 светового года в диаметре. Заметнее всего — два пузыря осколков в центре останков сверхновой, несущиеся друг от друга на скорости 32 млн км/ч.

С 1999 по 2013 гг. данные «Чандры» показывали растущее кольцо рентгеновских выбросов, которое стабильно становилось ярче. Взрывная волна от оригинального взрыва разрывается и нагревает кольцо газа, окружающее сверхновую, производя рентгеновский выброс.

db2199e7.jpg

© NASA

За последние несколько лет кольцо перестало становиться ярче. С февраля 2013 года до последнего наблюдения «Чандры» в сентябре 2015 года общий объем низкоэнергетичных рентгеновских лучей оставался постоянным. Верхняя левая часть кольца начала тускнеть. Эти изменения доказывают то, что взрывная волна покинула пределы кольца и оказалась в области с менее плотным газом. Это ознаменовало конец эры SN 1987A.

Астрономы все еще ищут доказательства наличия черной дыры или нейтронной звезды, оставшихся после взрыва. Они наблюдали вспышку нейтрино, когда звезда взорвалась, и уверены в том, что компактный объект, сформированный в центре звезды, — нейтронная звезда или черная дыра. Но телескопы еще ничего конкретного не разглядели.

www.gismeteo.ru

самый сильный взрыв во Вселенной

Содержание страницы:

Сверхновая звезда, или взрыв сверхновой — процесс колоссального взрыва звезды в конце ее жизни. При этом освобождается огромная энергия, а светимость возрастает в миллиарды раз. Оболочка звезды выбрасывается в космос, образуя туманность. А ядро сжимается настолько, что становится либо нейтронной звездой, либо чёрной дырой.

Химическая эволюция вселенной протекает именно благодаря сверхновым. Во время взрыва в пространство выбрасываются тяжелые элементы, образующиеся во время термоядерной реакции при жизни звезды. Далее из этих остатков формируются протозвёзды с планетарными туманностями, из которых в свою очередь образуются звёзды с планетами.

Крабовидная туманность

Так же возникла и Земля, все вещество которое нас окружает и из которого мы состоим, зародилось в недрах звёзд, еще до образования Солнца.

SN 1987A - Сверхновая, вспыхнувшая в 1987 году

Сверхновую трудно не заметить — вспышка при взрыве настолько сильна, что затмевает свет всех остальных звезд в галактике.

Как происходит взрыв

Как известно, звезда выделяет огромную энергию благодаря термоядерной реакции, происходящей в ядре. Термоядерная реакция — это процесс превращения водорода в гелий и более тяжелые элементы с выделением энергии. Но вот когда водород в недрах заканчивается, верхние слои звезды начинают обрушиваться к центру. После достижения критической отметки вещество буквально взрывается, всё сильнее сжимая ядро и унося верхние слои звезды ударной волной.

В довольно малом объеме пространства образуется при этом столько энергии, что часть ее вынуждено уносить нейтрино, у которой практически нет массы.

Сверхновая типа Ia

Этот вид сверхновых рождается не из звезд, а из белых карликов. Интересная особенность — светимость всех этих объектов одинакова. А зная светимость и тип объекта, можно вычислить его скорость по красному смещению. Поиск сверхновых типа Ia очень важен, ведь именно с их помощью обнаружили и доказали ускоряющееся расширение вселенной.

Сверхновая типа Ia - Кеплер

Возможно, завтра они вспыхнут

Существует целый список, в который включены кандидаты в сверхновые звёзды. Конечно, достаточно сложно определить, когда именно произойдет взрыв. Вот ближайшие из известных:

  • IK Пегаса. Двойная звезда расположена в созвездии Пегас на удалении от нас до 150 световых лет. Её спутник – массивный белый карлик, который уже перестал производить энергию посредством термоядерного синтеза. Когда главная звезда превратится в красный гигант и увеличит свой радиус, карлик начнёт увеличивать массу за счёт неё. Когда его масса достигнет 1,44 солнечной, может произойти взрыв сверхновой.
  • Антарес. Красный сверхгигант в созвездие Скорпиона, от нас до него 600 световых лет. Компанию Антаресу составляет горячая голубая звезда.
  • Бетельгейзе. Подобный Антаресу объект, находится в созвездии Орион. Расстояние до Солнца от 495 до 640 световых лет. Это молодое светило (около 10 миллионов лет), но считается, что оно достигло фазы выгорания углерода. Уже в течение одного-двух тысячелетий мы сможем полюбоваться взрывом сверхновой.

Влияние на Землю

Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне. Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты. Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.

Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.

comments powered by HyperComments

light-science.ru

Сверхновая звезда

Объекты глубокого космоса > Звезды > Сверхновая звезда

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые?

Очень часто их можно заметить в других галактиках. Но в нашей это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в Млечном Пути была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад.

Сверхновая – это огромный взрыв, которым завершают свое существование некоторые звезды

Что приводит к сверхновой?

Сверхновая рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двоичные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Сверхновая 1987А после взрыва (слева) и до этого момента (справа)

Почему исследователи интересуются сверхновыми?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету.

Как их найти?

Для этого исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Снимки получают при помощи телескопов Хаббл и Чандра.

Крабовидная туманность - результат взрыва сверхновой

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Чем вы можете помочь?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую!

v-kosmose.com

Сверхновая звезда — википедия фото

Сверхновая звезда или вспышка сверхновой — явление, в ходе которого звезда резко увеличивает свою яркость на 4—8 порядков (на 10-20 звёздных величин) с последующим сравнительно медленным затуханием вспышки[1][2]. Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромной энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект — нейтронная звезда, если масса звезды до взрыва составляла более 8 солнечных масс (M☉), либо чёрная дыра при массе звезды свыше 20 M☉ (масса оставшегося после взрыва ядра — свыше 5 M☉). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд.

Имя составляется из метки SN, после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z. Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab, и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Современная классификация сверхновых[3] Класс Подкласс Механизм
IЛинии водорода отсутствуют Сильные линии ионизированного кремния (Si II) на 6150 A Ia Термоядерный взрыв
Iax[4]В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют IbПрисутствуют линии гелия (He I). Гравитационный коллапс
IcЛинии гелия слабые или отсутствуют
IIПрисутствуют линии водорода II-P/L/NСпектр постоянен II-P/LНет узких линий II-PКривая блеска имеет плато
II-LЗвёздная величина линейно уменьшается со временем[5]
IInПрисутствуют узкие линии
IIbСпектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска

Кривые блеска для I типа в высокой степени сходны: 2—3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25—40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет MB=−19.5m{\textstyle M_{B}=-19.5^{m}} , для Ib\c — MB=−18m{\textstyle M_{B}=-18^{m}} .

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от −20m{\textstyle -20^{m}}  до −13m{\textstyle -13^{m}} . Среднее значение для IIp — MB=−18m{\textstyle M_{B}=-18^{m}} , для II-L MB=−17m{\textstyle M_{B}=-17^{m}} .

Спектры

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров — основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии [NIII], [NIV], [CIII], [CIV] наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона

Частота вспышек

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu[6]:

1SNu=1SN1010L⊙(B)∗100year,{\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}},} 

где L⊙(B){\textstyle L_{\odot }(B)}  — светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет[6]:

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых

Каноническая схема молодого остатка следующая[7]:

  1. Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра.
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе.
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 107 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1—20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и тому подобных указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Волокна в Кассиопее A дают понять, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000—9000 км/с и излучают только в линиях O, S, Si — то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100—400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной.

Синхротронное радиоизлучение релятивистских частиц в сильном магнитном поле является основным наблюдательным признаком для всего остатка. Область его локализации — прифронтовые области внешней и возвратной волн. Наблюдается синхротронное излучение и в рентгеновском диапазоне[7].

Теоретическое описание

Декомпозиция наблюдений

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 1010 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M⊙[6].

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика — 1M⊙, преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный[8].

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой-прародителем являются короткоживущие O-звёзды с массой 8-10M⊙.

Термоядерный взрыв
  Доминирующий сценарий

Один из способов высвободить требуемое количество энергии — резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции — белые карлики. Однако сам по себе последний — устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара. Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах.

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

Первая[8]:

  • Второй компаньон — обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон — такой же белый карлик. Такой сценарий называет двойным вырождением.

Вторая:

  • Взрыв происходит при превышении предела Чандрасекара.
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции[9]:

12C + 16O → 28Si + γ (Q=16,76 MeV),{\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16,76~MeV),}  28Si + 28Si → 56Ni + γ (Q=10,92 MeV).{\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10,92~MeV).} 

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 1051 эрг[10].

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада[9]:

56Ni → 56Co → 56Fe.{\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe.} 

Изотоп 56Ni нестабилен и имеет период полураспада 6,1 дня. Далее e-захват приводит к образованию ядра 56Co преимущественно в возбуждённом состоянии с энергией 1,72 МэВ. Этот уровень нестабилен, и переход ядра в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0,163 МэВ до 1,56 МэВ. Эти кванты испытывают комптоновское рассеяние и их энергия быстро уменьшается до ~100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56Ni уже распался, и энерговыделение идёт за счёт β-распада 56Co до 56Fe(T1/2 = 77 дней) с энергиями возбуждения вплоть до 4,2 МэВ.

Гравитационный коллапс ядра

Второй сценарий выделения необходимой энергии — это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка — нейтронной звезды, подставив типичные значения получаем[11]:

Etot∼GM2R∼1053{\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}}  эрг,

где M = 0, а R = 10 км, G — гравитационная постоянная. Характерное время при этом:

τff∼1Gρ 4⋅10−3⋅ρ12−0,5{\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}} c,

где ρ12 — плотность звезды, нормированная на 1012г/см3.

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой — не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия — процесс нейтронизации[11]:

3He+e−→3H+νe,{\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e},} 4He+e−→3H+n+νe,{\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e},} 56Fe+e−→56Mn+νe.{\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}.} 

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

e++n→ν~e+p,{\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p,} e−+p→νe+n.{\displaystyle e^{-}+p\to \nu _{e}+n.} 

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

e−+(A,Z)→(A,Z−1)+νe,{\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},} (A,Z−1)→(A,Z)+e−+ν~e.{\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.} 

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρnuc=2,8⋅1014{\textstyle \rho _{nuc}=2,8\cdot 10^{14}} г/см3.

Заметим, что процессы нейтронизации идут только при плотностях 1011/см3, достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой
Теория эволюции остатка сверхновой

Выделяется три этапа эволюции остатка сверхновой:

  1. Свободный разлёт. Заканчивается в тот момент, когда масса сгребённого вещества сравняется с массой выброса: Rs=(3M04πνmHn0)≃2{\displaystyle R_{s}=\left({\frac {3M_{0}}{4\pi \nu m_{H}n_{0}}}\right)\simeq 2}  пк, t=RsVs≃200{\displaystyle t={\frac {R_{s}}{V_{s}}}\simeq 200}  лет.
  2. Адиабатическое расширение (стадия Седова). Вспышка сверхновой на этой стадии представляется как сильный точечный взрыв в среде с постоянной теплоёмкостью. К этой задаче применимо автомодальное решение Седова, проверенное на ядерных взрывах в земной атмосфере: RS=13,5(E51n0)0.2(t104year)0,4{\displaystyle R_{S}=13,5\left({\frac {E_{51}}{n_{0}}}\right)^{0.2}\left({\frac {t}{10^{4}year}}\right)^{0,4}}  пк TS=1,5(E51n0)RS,(pc)−31010{\displaystyle T_{S}=1,5\left({\frac {E_{51}}{n_{0}}}\right)R_{S,(pc)}^{-3}10^{10}}  К
  3. Стадия интенсивного высвечивания. Начинается когда температура за фронтом достигает максимума на кривой радиационных потерь. Согласно численным расчётам это происходит в момент: tcool=2,7E510,24n0−0,52∗104{\displaystyle t_{cool}=2,7E_{51}^{0,24}n_{0}^{-0,52}*10^{4}}  лет Соответствующие радиус внешней ударной волны и её скорость: Rcool=20E510,29n0−0,41{\displaystyle R_{cool}=20E_{51}^{0},29n_{0}^{-0,41}}  пк, Vcool=280E510,055n00,11{\displaystyle V_{cool}=280E_{51}^{0,055}n_{0}^{0,11}}  км\с

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

tmax=7E510,32n00,34P~0,4−0,7{\displaystyle t_{max}=7E_{51}^{0,32}n_{0}^{0,34}{\tilde {P}}_{0,4}^{-0,7}}  лет
Теория возникновения синхротронного излучения

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа

Взрывы сверхновых — основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее) He. Однако процессы их породившие для различных групп элементов и даже изотопов свои.

  1. Практически все элементы тяжелее He и до Fe — результат классического термоядерного синтеза, проистекающего, например в недрах звёзд или при взрыве сверхновых в ходе p-процесса. Тут стоит оговориться, что крайне малая часть всё же была получена в ходе первичного нуклеосинтеза.
  2. Все элементы тяжелее 209Bi — это результат r-процесса
  3. Происхождение же прочих является предметом дискуссии, в качестве возможных механизмов предлагаются s-, r-, ν-, и rp-процессы[13].
  Структура и процессы нуклеосинтеза в предсверхновой и в следующее мгновение после вспышки для звезды 25M☉, масштаб не соблюдён[13].
R-процесс

r-проце́сс — это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β−-распада изотопа. Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ(n,γ)≈1nτβ,{\displaystyle \tau (n,\gamma )\approx {\frac {1}{n}}\tau _{\beta },} 

где τβ — среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, так как:

τ(n,γ)≈(ρ(σnγ,vn)¯)−1{\displaystyle \tau (n,\gamma )\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}} 

где (σnγ,vn)¯{\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}}  — произведение сечения реакции (n,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0,1 с < τβ < 100 с, то для n ~ 10 и температуры среды T = 109K, получим характерную плотность

ρ≈2⋅1017{\displaystyle \rho \approx 2\cdot 10^{17}}  нейтронов/см3.

Такие условия достигаются в:

  • ударной волне, которая, проходя по гелиевому и неоновому слоям, вызывает реакцию 22Ne+4He→25Mg+1n{\displaystyle \mathrm {^{22}Ne} +\mathrm {^{4}He} \rightarrow \mathrm {^{25}Mg} +\mathrm {^{1}n} }  с требуемой концентрацией нейтронов.
  • центральной части массивной звезды, находящейся в стадии предсверхновой. Там образуется большое количество нейтронов и α{\displaystyle \displaystyle \mathrm {\alpha } } -частиц, при фоторасщеплении железа 56Fe+γ→134He+41n{\displaystyle \mathrm {^{56}Fe} +\mathrm {\gamma } \rightarrow 13\,\mathrm {^{4}He} +4\,\mathrm {^{1}n} }  на заключительной стадии эволюции.
ν-процесс

Основная статья: ν-процесс

ν-процесс — это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7Li, 11B, 19F, 138La и 180Ta[13]

Влияние на крупномасштабную структуру межзвёздного газа галактики

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185 (англ.), была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054, породившая Крабовидную туманность. Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году. В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи, следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности, в то время как возраст остатка сверхновой RX J0852.0-4622 (англ.) оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты, соответствующие времени взрыва сверхновой.

  Остаток сверхновой SN 1987A, снимок телескопа «Хаббл», опубликованный 19 мая 1994 года[14]

23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A, самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA, «Хаббла» и «Чандры». Ни нейтронная звезда, ни чёрная дыра, которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

22 января 2014 года в галактике M82, расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J. Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

В апреле 2018 года английскими учёными из Саутгемптонского университета Британского королевского астрономического общества на конференции EWASS (Европейская неделя астрономии и космических исследований (англ.)русск.) были озвучены данные[15] о возможном открытии в ходе своих наблюдений нового, до сих пор неизученного, третьего типа сверхновых. Во время этих наблюдений, в рамках программы Dark Energy Survey Supernova Programme (DES-SN), были зафиксированы 72 кратковременные вспышки с температурой от 10 до 30 тыс.°C и размерами от нескольких единиц до нескольких сотен а.е. Основная особенность этих космических событий заключается в их относительной кратковременности — всего несколько недель, а не несколько месяцев как у обычных сверхновых.[16]

org-wikipediya.ru

Сверхновая звезда

Объекты глубокого космоса > Звезды > Сверхновая звезда

Рождение сверхновой – это процесс взрыва звезды. В один момент, звезда с массой, во многой раз превышающей массу Солнца, может детонировать с энергией миллионов Солнц. И затем, всего лишь за несколько часов или по прошествии нескольких дней она уменьшиться до исходных размеров. Некоторые образуют после взрыва скопление газа и пыли, в тот момент, как прочие становятся редкими объектами типа нейтронных звезд или еще более редких черных дыр.

Графическое представление взрыва сверхновой

Астрономы определили для сверхновых два обширных класса – Тип I и Тип II. Сверхновые Типа I это двухкомпонентные системы, когда одна звезда вытягивает массу из другой звезды до достижения определенной величины. Что является причиной для вспышки сверхновой? Сверхновые Типа II это вспышки на звездах, которые достигли предела своего срока существования.

Все элементы, которые тяжелее железа, были созданы в процессе вспышек сверхновых. Когда запас водорода в самой звезде подходит к концу, она начинает пережигать все более и более тяжелые элементы. К примеру гелий с водородом и кислородом. А затем запускается в реакцию горения кислород с более тяжелыми элементами. И процесс продвигается последовательно вверх по таблице Менделеева, пока в реакцию не вступит железо. Когда в процесс горения внутри звезды включается железо, исчезает возможность получать энергию от самого процесса. Ядро сворачивается в черную дыру, и материал вокруг него сплавляется в элементы, тяжелее железа. Если вы носите золотую цепочку, то знайте, что она была создана вспышкой сверхновой.

Крабовидная туманность - результат взрыва сверхновой

В 1054 году китайские астрономы наблюдали вспышку сверхновой, яркость которой позволяла беспрепятственно видеть ее даже при дневном свете. Результат взрыва в виде  газа и пыли, теперь является Крабовидной Туманностью. Самой мощной из недавних, является вспышка сверхновой в 1987 году, когда произошел взрыв звезды в Большом Магеллановом Облаке.

Астрономы используют вспышки сверхновых Типа I чтобы оценивать расстояния во Вселенной. Это возможно по той причине, что при взрыве они практически всегда выделяют одинаковое количество энергии. Когда звезда типа «белый карлик» достигает массы в 1.4 раза больше, чем масса Солнца, она больше не может поддерживать собственную массу и сворачивается. Эта величина названа пределом Чандрасекара. Когда астроном видит вспышку сверхновой Типа I, они знают его яркость, и могут рассчитать расстояние до вспышки.

Строение Звезд

Типы звезд

o-kosmose.net

Сверхновые звезды | Галактические новости

Как много впечатлений связанно у любителей и профессионалов — исследователей космоса с этими словами. Само слово «новые» несет в себе положительный смысл, а «сверх» -суперположительный, но, к сожалению, обманывает саму суть. Сверхновые скорее можно назвать сверхстарым звездами, потому что это практически последняя стадия развития Звезды. Так сказать яркий эксцентричный апофеоз звездной жизни. Вспышка порой затмевает всю галактику, в которой находиться умирающая звезда, и заканчивается полным ее угасанием.Ученые выделили 2 типа Сверхновых. Один ласково прозвали взрывом белого карлика (тип I) который по сравнению с нашим солнцем более плотный, и при этом гораздо меньший в радиусе. Маленький, тяжелы Белый карлик – предпоследняя нормальная стадия эволюции многих звезд. В нем уже практически нет водорода в оптическом спектре. И если белый карлик существует в симбиозе двойной системы с другой звездой, он перетягивает ее вещество до тех пор, пока не превышает свой передел. С. Чандресекар в 30-х годах 20 века сказал, что у каждого карлика есть четки предел плотности и массы, превышая который происходит коллапс. Бесконечно сжиматься невозможно и рано или поздно должен случиться взрыв! Второй тип образования сверхновой звезды вызван процессом термоядерного синтеза, который образуя тяжелые металлы, сжимается в себя, от чего начинает повышаться температура в центре звезды. Ядро звезды сжимается все сильней и в нем начинают происходить процессы нейтронизации («терки» протонов и электронов, в ходе которых оба превращаются в нейтроны), что приводит к потере энергии и остыванию центра звезды. Все это провоцирует разряженную атмосферу, и оболочка устремляется к ядру. Взрыв! Мириады маленьких кусочков звезды разлетаются по всему космосу, а яркое свечение из далекой галактики, где миллионы лет назад (количество нулей в годах видимости звезды, зависит от ее удаленности от Земли) взорвалась звезда, видна сегодня ученым планеты Земля. Весточка трагедии прошлого, еще одна оборвавшаяся жизнь, печальная красота, которую иногда мы можем наблюдать веками.

Так, например, Крабовидная туманность, которую можно увидеть в глазок телескопа современных обсерваторий — это последствия взрыва сверхновой, которую видели китайский астрономы в 1054 году. Так интересно осознавать, что то, на что сегодня смотришь ты, почти 1000 лет восхищался человек, уже давным-давно не существующий на Земле. В этом вся таинственность Вселенной, ее медленное тянущееся существование, которое делает нашу жизнь — вспышкой искры костра, она поражает и приводит в некоторый трепет. Ученые выделили несколько наиболее известных взрывов сверхновых звезд, обозначение которых ведется по четкой оговоренной схеме. Латинская SuperNova сократилась до символов SN, затем следует запись года наблюдения и в конце записывается порядковый номер в году. Таким образом, можно увидеть следующие названия известных сверхновых:Крабовидная туманность – как и говорилось ранее, она является итогом взрыва сверхновой, которая находиться на расстоянии 6500 световых лет от Земли, с диаметром на сегодняшний день 6 000 световых лет. Эта туманность продолжает разлетаться в разные стороны, хотя взрыв произошел чуть менее 1000 лет назад. А в центре ее находить нейтронная звезда-пульсар, который вращается вокруг своей оси. Интересно то, что при большой яркости эта туманность имеет постоянный поток энергии, что позволяет ставить ее ориентиром при калибровке рентгеновской астрономии. Другой находкой стала сверхновая SN1572, как уже видно из названия, вспышку ученые наблюдали в 1572 году в ноябре. По всем признаком это звезда была белым карликом. В 1604 году в течение целого года китайские, корейские, а затем европейские астрологи могли наблюдать взрыв-свечение сверхновой SN1604, которая находиться в созвездии Змееносца. Иоган Кеплер посвятил ее изучению свою основную работу «О новой звезде в созвездии Змееносца» в связи, с чем сверхновая была названа именем ученого – SuperNova Kepler. Самой близкой вспышкой сверхновой стало свечение в 1987 году — SN1987A, находящаяся в Большом Магеллановом Облаке в 50 парсеках от нашего Солнца, карликовой галактике – спутнике Млечного пути. Этот взрыв перевернул некоторые положение уже устоявшейся теории звездной эволюции. Так полагалось, что вспыхивать могут только красные гиганты, а тут, так некстати взял и взорвался голубой! Голубой сверхгигант (масса более 17 масс Солнца) Sanduleak. Очень красивые остатки планеты образуют два необычных соединяющихся кольца, изучением которых сегодня занимаются ученые. Следующая сверхновая поразили ученых в 1993 году — SN1993J, которая до взрыва была красным сверхгигантом. Но удивительно то, что остатки, которые обязаны гаснуть после взрыва, наоборот начали набирать яркость. Почему?

Через несколько лет была обнаружена планета — спутник, которая не пострадала от взрыва сверхновой соседки и создавала условия свечения сорванной незадолго до взрыва оболочки звезды-компаньона (соседки соседками , а с гравитацией не поспоришь…), наблюдаемые учеными. Этой звезде так же пророчиться стать красным гигантом и сверхновой. Взрыв следующей сверхновой в 2006 году (SN206gy) признан самым ярким свечением во всей истории наблюдения за этими явлениями. Это позволило ученым выдвинуть новые теории взрывов сверхновых (такие как кварковые звезды, столкновение двух массивных планет и другие) и назвать этот взрыв — взрывом гиперновой! И последняя интересная сверхновая G1.9+0.3. Первый раз ее сигналы, как радиоисточника Галактики, поймал радиотелескоп VLA. А сегодня ее изучением занимается обсерватория Чандра. Удивительна скорость расширения остатков взорванной звезды, она составляет 15 000 км в час! Что является 5% от скорости света!Кроме этих самых интересных взрывов сверхновых и их остатков, конечно, существуют и другие «будничные» события космоса. Но факт остается фактом все, что нас сегодня окружает это итог вспышек сверхновых. Ведь в теории в начале существования Вселенная состояла из легких газов гелия и водорода, которые в процессе горения звезд превращались в другие «строительные» элементы для всех существующих ныне планет. Другими словами Звезды отдавали жизнь за рождение новой жизни!

Похожие статьи о космосе

www.galacticnews.ru


Читайте также
  • Гиперскоростная звезда – более 1.000.000 миль в час
    Гиперскоростная звезда – более 1.000.000 миль в час
  • Астрономы обнаружили самую большую спиральную галактику
    Астрономы обнаружили самую большую спиральную галактику
  • Млечный путь содержит десятки миллиардов планет, схожих с Землей
    Млечный путь содержит десятки миллиардов планет, схожих с Землей
  • Млечный путь разорвал своего спутника на четыре отдельных хвоста
    Млечный путь разорвал своего спутника на четыре отдельных хвоста
  • Найден источник водородных газов для нашей Галактики
    Найден источник водородных газов для нашей Галактики