Орбита космическая: Космическая орбита Космическая орбита

Космическая орбита Космическая орбита

Орбита — термин, введенный Иоганном Кеплером в 1609 году, которым с тех пор обозначается траектория движения тела в наперёд заданной системе пространственных координат для заданной в этих координатах конфигурации поля сил, которые на неё действуют. Орбита есть у Земли вокруг Солнца, у Международной космической станции вокруг Земли, у балерины, которую крутит вокруг себя артист балета. По геометрической форме орбиты делятся на круговые и эллиптические, с тем или иным эксцентриситетом.

Самое обсуждаемое по теме Космическая орбита

Человечество начало активно изучать космос при помощи сложной техники примерно в середине XX века. Сначала на околоземную орбиту каждый год запускались сотни, а потом начали запускаться тысячи различных объектов. Речь идет не только о ракетах, но и о погруженных в них спутниках и другом исследовательском оборудовании. Как и у любой другой техники, у них есть срок службы и после его истечения они продолжают летать вокруг нашей планеты в качестве космического мусора. На сегодняшний день мы буквально окружены маленькими и большими частями уже неиспользуемых ракет и спутников. Все эти обломки представляют большую опасность для находящейся на высоте 408 километров Международной космической станции (МКС). В ночь на 23 сентября возник риск столкновения станции с неопознанным космическим объектом, но экипажу удалось от него увернуться. Но что из себя представлял этот объект и как станция избежала столкновения?

Читать далее

На орбите нашей планеты сегодня находится более тысячи искусственных спутников, большинство из которых уже давно вышли из строя и считаются космическим мусором. Ими уже невозможно управлять с земных станций, поэтому они всегда рискуют столкнуться друг с другом. Так, в начале 2019 года военно-воздушные силы США сообщили о риске столкновения двух крупных космических аппаратов, но этого удалось избежать. Однако, на этот раз о возможном столкновении рассказала служба по слежению за космическим мусором LeoLabs. Ее представители считают, что авария может произойти уже 29 января и у нее могут быть весьма нежелательные последствия. Неужели один из спутников может упасть на Землю?

Читать далее

За все время своего существования, человечество превратило планету Земля в гигантскую мусорную свалку. Масштаб загрязнения настолько огромен, что на данный момент мусор можно найти не только на суше и водных глубинах, но и на околоземной орбите. Только вдумайтесь — за полвека существования космонавтики, люди отправили в космос сотни тысяч различных спутников, большинство из которых до сих пор летает вокруг нашей планеты. Если мы не очистим это пространство, через 100-200 лет космонавты попросту не смогут вылететь в космос, потому что вокруг Земли образуется плотный слой из обломков старых спутников.

Читать далее

Прямо сейчас на орбите Земли работает тысяча искусственных спутников, практически каждый из которых передвигается при помощи дорогостоящих ионных двигателей со сроком службы не более трех лет. Если эти двигатели такие дорогие и недолговечные, почему бы ученым не разработать более дешевый и надежный вариант управления спутниками? Многих это удивит, но он уже создан и применен в тестовом спутнике LightSail 2 — он движется вокруг планеты за счет солнечных частиц, которые толкают прикрепленный к спутнику парус. Огромное и блестящее полотно было развернуто 23 июля, и его вполне можно разглядеть с Земли.

Читать далее

Практически все космическое оборудование стоит миллионы долларов, и при этом является одноразовым — именно поэтому компании Blue Origin и SpaceX серьезно взялись за создание многоразовых ракет, и воплотили их в реальность. В ту же сторону направлены и усилия Европейского космического агентства ESA, которое в общих чертах обрисовало многоразовую капсулу, которая сможет доставлять на околоземную орбиту разные типы грузов, благополучно возвращаться на Землю и использоваться повторно.

Читать далее

Как удалось выяснить группе исследователей из Ратгерского университета, каждые 405 тысяч лет орбита Земли удлиняется. По заявлению ученых, это происходит из-за гравитационного влияния на нашу планету Юпитера и Венеры. Более того, если прогнозы ученых окажутся верными, удлинение орбиты может привести к резкой смене климата.

Читать далее

Китайская космическая орбитальная станция «Тяньгун-1» совершила неконтролируемое падение в южной части Тихого океана. Большая часть обломков станции сгорела при повторном прохождении через атмосферу планеты. Согласно имеющейся информации, станция упала в безлюдном месте.

Читать далее

Обычно конфигурацию спутника задают ещё в процессе отладки на Земле, а на орбите он просто выполняет заложенные в него перед запуском функции. Разработчики из британской компании Eutelsat хотят изменить подход, создав спутник, который можно подстраивать прямо на орбите.

Читать далее

Компания Qtum Foundation считает, что обслуживать блокчейн-сети довольно дорого, но если отправить вычислительные мощности на орбиту, то можно сэкономить электроэнергию и деньги. За космическим майнингом будущее — решили в Qtum, поэтому уже начали разработку специальных платформ, способных эффективно функционировать в космосе.

Читать далее

Компания SpaceX только что осуществила первый и успешный запуск своей сверхтяжелой ракеты Falcon Heavy. В качестве первой «полезной нагрузки» носитель отправил в космос пожертвованный самим Илоном Маском электрический родстер Tesla, а в качестве первого пассажира – манекен, получивший имя Starman, который вместе с машиной сейчас летит в сторону марсианской орбиты.

Читать далее

Выведение спутника на орбиту

Выведение спутника BELINTERSAT-1 на целевую орбиту 

Представленный видеоматериал был создан на основе симуляции выведения космического аппарата BELINTERSAT-1 на геостационарную орбиту в позицию 51.5 Е. Модель спутника и симуляция полета были созданы специалистами службы баллистико-навигационного обеспечения ЦУП НКУ.

 

Низкая околоземная орбита (НОО) – космическая орбита вокруг Земли, имеющая высоту над поверхностью планеты в диапазоне от 160 км (период обращения около 88 минут) до 2 000 км (период около 127 минут). Объекты, находящиеся на более низких высотах, чем 160 км, испытывают существенное влияние атмосферы и сами по себе нестабильны. Все космические полеты человека проходили либо в области НОО, либо являлись суборбитальными. На данный момент все обитаемые космические станции и большая часть искусственных спутников Земли находились или находятся на НОО.     

Средняя околоземная орбита (СОO) – орбита, иногда называемая промежуточной круговой, является областью космического пространства выше низкой околоземной орбиты (высота 2 000 километров) и ниже геостационарной орбиты (высота 35 786 километров).

Наиболее распространенные аппараты на этой орбите – спутники навигации, коммуникационные и геодезические спутники. Как правило, высота составляет порядка 20 200 километров, обеспечивая период обращения 12 часов (используется, в частности, Системой глобального позиционирования). Также на средней околоземной орбите находятся спутники ГЛОНАСС (высота 19 100 километров) и Galileo (высота 23 222 километров. Спутники связи, покрывающие территорию Северного и Южного полюсов, также находятся на СОО.  

Геосинхронная орбита (ГСО) – орбита обращающегося вокруг Земли спутника, на которой период обращения равен звёздному периоду вращения Земли — 23 час. 56 мин. 4,1 сек. Частным случаем является Геостационарная орбита — круговая орбита, лежащая в плоскости земного экватора, следуя по которой спутник (для земного «наблюдателя») фактически неподвижен. Геостационарная орбита имеет радиус 42 164 км с центром, совпадающим с центром Земли, что соответствует высоте над уровнем моря 35 786 км.

Геостационарная орбита (ГСО) – круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. В горизонтальной системе координат направление на спутник не изменяется ни по азимуту, ни по высоте над горизонтом: спутник как бы «висит» неподвижно. Поэтому спутниковая антенна, однажды направленная на такой спутник, всё время остаётся направленной на него. Геостационарная орбита является разновидностью геосинхронной и используется для размещения на ней искусственных спутников (в частности, телекоммуникационных).  

 

ESA — Типы орбит

Включение и поддержка

30.03.2020
520817 просмотра
1676 лайков

Наше понимание орбит восходит к Иоганну Кеплеру в 17 веке. В настоящее время Европа использует семейство ракет на Европейском космодроме для запуска спутников на различные типы орбит.

Масса влияет на орбитальные тела

Что такое орбита?

Орбита — это изогнутый путь, по которому объект в космосе (например, звезда, планета, луна, астероид или космический корабль) движется вокруг другого объекта под действием силы тяжести.

Гравитация заставляет космические объекты, обладающие массой, притягиваться к другим близлежащим объектам. Если это притяжение сводит их вместе с достаточным импульсом, они иногда могут начать вращаться вокруг друг друга.

Объекты одинаковой массы вращаются вокруг друг друга, при этом ни один объект не находится в центре, в то время как маленькие объекты вращаются вокруг более крупных объектов. В нашей Солнечной системе Луна вращается вокруг Земли, а Земля вращается вокруг Солнца, но это не означает, что более крупный объект остается совершенно неподвижным. Из-за гравитации Земля слегка оттягивается от своего центра Луной (поэтому в наших океанах образуются приливы), а наше Солнце слегка оттягивается от своего центра Землей и другими планетами.

Во время раннего создания нашей Солнечной системы пыль, газ и лед путешествовали в космосе со скоростью и импульсом, окружая Солнце облаком. Поскольку Солнце было намного больше, чем эти маленькие частицы пыли и газа, его гравитация притягивала эти частицы на орбиту вокруг себя, превращая облако в своего рода кольцо вокруг Солнца.

В конце концов, эти частицы начали оседать и слипаться (или «слипаться»), становясь все больше, как катящиеся снежки, пока не образовали то, что мы сейчас видим как планеты, луны и астероиды. Тот факт, что все планеты сформировались таким образом, объясняет, почему все планеты обращаются вокруг Солнца в одном направлении, примерно в одной плоскости.

Выход на орбиту

Когда ракеты запускают наши спутники, они выводят их на космическую орбиту. Там гравитация удерживает спутник на требуемой орбите — точно так же, как гравитация удерживает Луну на орбите вокруг Земли.

Это происходит так же, как выбрасывание мяча из окна высокой башни – чтобы мяч полетел, вам нужно сначала дать ему «толчок», бросив его, чтобы мяч упал на землю на кривой дорожке. В то время как именно ваш бросок придает мячу начальную скорость, только сила тяжести удерживает мяч в движении к земле после того, как вы его отпустили.

Аналогичным образом спутник выводится на орбиту, размещая его на высоте сотен или тысяч километров над поверхностью Земли (как будто в очень высокой башне), а затем двигатели ракеты «толкают» его, чтобы он стартовал. его орбита.

Как показано на рисунке, разница в том, что при броске предмет упадет на землю по кривой траектории, но действительно сильный бросок будет означать, что земля начнет изгибаться еще до того, как ваш предмет достигнет земли. Ваш объект будет бесконечно падать «по направлению» к Земле, заставляя его многократно вращаться вокруг планеты. Поздравляем! Вы достигли орбиты.

В космосе нет воздуха и, следовательно, нет трения о воздух, поэтому гравитация позволяет спутнику вращаться вокруг Земли почти без дополнительной помощи. Вывод спутников на орбиту позволяет нам использовать технологии для телекоммуникаций, навигации, прогноза погоды и астрономических наблюдений.

Взгляд художника на европейское семейство пусковых установок

Запуск на орбиту

Европейское семейство ракет работает с европейского космодрома в Куру, Французская Гвиана. В каждой миссии ракета выводит один или несколько спутников на их индивидуальные орбиты.

Выбор используемой ракеты-носителя зависит в первую очередь от массы полезной нагрузки, а также от того, насколько далеко она должна уйти от Земли. Тяжелая полезная нагрузка или высокая орбита требуют большей мощности для борьбы с гравитацией Земли, чем более легкая полезная нагрузка на более низкой высоте.

Ariane 5 — самая мощная в Европе ракета-носитель, способная вывести один, два или несколько спутников на требуемые орбиты. В зависимости от того, на какую орбиту выходит Ariane 5, он может вывести в космос примерно от 10 до 20 тонн — это 10 000—20 000 кг, что примерно равно весу городского автобуса.

Vega меньше, чем Ariane 5, способна запускать примерно 1,5 тонны за раз, что делает ее идеальной ракетой-носителем для многих научных миссий и миссий по наблюдению за Землей. И Ariane 5, и Vega могут одновременно запускать несколько спутников.

Следующее поколение ракет ЕКА включает Ariane 6 и Vega-C. Эти ракеты будут более гибкими и расширят возможности Европы по выводу на орбиту, а также смогут доставлять полезные грузы на несколько разных орбит за один полет — как автобус с несколькими остановками.

Типы орбит

При запуске спутник или космический корабль чаще всего размещается на одной из нескольких определенных орбит вокруг Земли или может быть отправлен в межпланетное путешествие, что означает, что он больше не вращается вокруг Земли, а вместо этого вращается вокруг Земли. Солнца до его прибытия в конечный пункт назначения, такой как Марс или Юпитер.

Существует множество факторов, определяющих оптимальную орбиту для использования спутника, в зависимости от того, для чего он предназначен.

  • Геостационарная орбита (GEO)
  • Низкая околоземная орбита (НОО)
  • Средняя околоземная орбита (MEO)
  • Полярная орбита и солнечно-синхронная орбита (ССО)
  • Переходные орбиты и геостационарная переходная орбита (GTO)
  • Точки Лагранжа (L-точки)

Геостационарная орбита

Геостационарная орбита (GEO)

Спутники на геостационарной орбите (GEO) вращаются вокруг Земли над экватором с запада на восток, следуя за вращением Земли, которое занимает 23 часа 56 минут и 4 секунды, перемещаясь точно с той же скоростью, что и Земля. Из-за этого спутники в GEO кажутся «неподвижными» над фиксированным положением. Чтобы точно соответствовать вращению Земли, скорость спутников GEO должна быть около 3 км в секунду на высоте 35 786 км. Это намного дальше от поверхности Земли по сравнению со многими спутниками.

GEO используется спутниками, которым необходимо постоянно находиться над одним конкретным местом над Землей, например, телекоммуникационными спутниками. Таким образом, антенну на Земле можно зафиксировать так, чтобы она всегда оставалась направленной на этот спутник, не двигаясь. Его также могут использовать спутники мониторинга погоды, потому что они могут постоянно наблюдать за определенными районами, чтобы увидеть, как там проявляются погодные тенденции.

Спутники на геостационарной орбите охватывают большую часть Земли, так что всего три равноудаленных спутника могут обеспечить практически глобальное покрытие. Это потому, что когда спутник находится так далеко от Земли, он может одновременно охватывать большие участки. Это похоже на то, что вы можете видеть больше карты с расстояния в метр по сравнению с тем, если бы вы были в сантиметре от нее. Таким образом, чтобы увидеть всю Землю сразу с ГСО, требуется гораздо меньше спутников, чем на более низкой высоте.

Программа ESA European Data Relay System (EDRS) поместила спутники на геостационарную орбиту, где они передают информацию на негеографические спутники и другие станции, которые в противном случае не могут постоянно передавать или получать данные. Это означает, что Европа всегда может оставаться на связи и онлайн.

Низкая околоземная орбита

Низкая околоземная орбита (НОО)

Низкая околоземная орбита (НОО) — это, как следует из названия, орбита, расположенная относительно близко к поверхности Земли. Обычно она находится на высоте менее 1000 км, но может быть и на высоте 160 км над Землей, что мало по сравнению с другими орбитами, но все же очень далеко от поверхности Земли.

Для сравнения, большинство коммерческих самолетов не летают на высотах, намного превышающих примерно 14 км, так что даже самый низкий LEO более чем в десять раз выше этого.

В отличие от спутников на GEO, которые всегда должны вращаться вокруг экватора Земли, спутники LEO не всегда должны следовать по определенному пути вокруг Земли одинаковым образом — их плоскость может быть наклонена. Это означает, что на НОО больше доступных маршрутов для спутников, что является одной из причин, почему НОО является очень часто используемой орбитой.

Непосредственная близость LEO к Земле делает его полезным по нескольким причинам. Это орбита, наиболее часто используемая для спутниковых снимков, поскольку близость к поверхности позволяет получать изображения с более высоким разрешением. Это также орбита, используемая для Международной космической станции (МКС), поскольку астронавтам легче путешествовать к ней и обратно на более короткое расстояние. Спутники на этой орбите движутся со скоростью около 7,8 км в секунду; на этой скорости спутнику требуется примерно 90 минут, чтобы облететь Землю, а это означает, что МКС облетает Землю примерно 16 раз в день.

Однако отдельные низкоорбитальные спутники менее полезны для таких задач, как телекоммуникации, поскольку они очень быстро перемещаются по небу и поэтому требуют больших усилий для отслеживания с наземных станций.

Вместо этого спутники связи на низкой околоземной орбите часто работают как часть большой комбинации или созвездия нескольких спутников для обеспечения постоянного покрытия. Чтобы увеличить охват, иногда такие созвездия, состоящие из нескольких одинаковых или похожих спутников, запускаются вместе, чтобы создать «сеть» вокруг Земли. Это позволяет им одновременно покрывать большие площади Земли, работая вместе.

«Ариан-5» доставил свою самую тяжелую 20-тонную полезную нагрузку, автоматизированный транспортный корабль (ATV), на Международную космическую станцию, расположенную на низкой околоземной орбите.

Созвездие Галилея

Средняя околоземная орбита (MEO)

Средняя околоземная орбита включает широкий диапазон орбит в любом месте между LEO и GEO. Он похож на LEO тем, что ему также не нужно двигаться по определенному пути вокруг Земли, и он используется множеством спутников для самых разных приложений.

Очень часто используется навигационными спутниками, такими как европейская система Galileo (на фото). Galileo обеспечивает навигационную связь по всей Европе и используется для многих видов навигации, от отслеживания больших самолетов до получения указаний на ваш смартфон. Galileo использует группировку из нескольких спутников для одновременного покрытия больших частей мира.

Полярная и солнечно-синхронная орбита

Полярная орбита и солнечно-синхронная орбита (SSO)

Спутники на полярных орбитах обычно проходят мимо Земли с севера на юг, а не с запада на восток, проходя примерно над полюсами Земли.

Спутники на полярной орбите не должны точно проходить Северный и Южный полюса; даже отклонение в пределах 20-30 градусов по-прежнему классифицируется как полярная орбита. Полярные орбиты — это тип низкой околоземной орбиты, так как они находятся на малых высотах от 200 до 1000 км.

Солнечно-синхронная орбита (ССО) — это особый вид полярной орбиты. Спутники в ССО, путешествующие над полярными районами, синхронны с Солнцем. Это означает, что они синхронизированы, чтобы всегда находиться в одном и том же «фиксированном» положении относительно Солнца. Это означает, что спутник всегда посещает одно и то же место в одно и то же местное время, например, пролетая над Парижем каждый день ровно в полдень.

Это означает, что спутник всегда будет наблюдать за точкой на Земле как бы постоянно в одно и то же время суток, что служит ряду приложений; например, это означает, что ученые и те, кто использует спутниковые снимки, могут сравнить, как что-то меняется с течением времени.

Это потому, что если вы хотите наблюдать за областью, делая серию изображений определенного места через много дней, недель, месяцев или даже лет, то было бы не очень полезно сравнивать где-то в полночь, а затем в полдень — нужно сделать каждый снимок максимально похожим на предыдущий. Поэтому ученые используют такие серии изображений, чтобы исследовать, как возникают погодные условия, чтобы помочь предсказать погоду или штормы; при наблюдении за чрезвычайными ситуациями, такими как лесные пожары или наводнения; или для накопления данных о долгосрочных проблемах, таких как вырубка лесов или повышение уровня моря.

Часто спутники в SSO синхронизируются таким образом, что они постоянно находятся на рассвете или в сумерках — это потому, что, постоянно перемещаясь на закате или восходе солнца, они никогда не будут иметь Солнце под углом, где их затеняет Земля. Спутник на солнечно-синхронной орбите обычно находится на высоте от 600 до 800 км. На расстоянии 800 км он будет двигаться со скоростью примерно 7,5 км в секунду.

Запуск и подъем в космос (желтая линия) становится переходной геостационарной орбитой (синяя линия), когда ракета выводит спутник в космос на пути к геостационарной орбите (красная линия).

Переходные орбиты и геостационарные переходные орбиты (GTO)

Переходные орбиты — это особый вид орбит, используемый для перехода с одной орбиты на другую. Когда спутники запускаются с Земли и доставляются в космос с помощью таких ракет-носителей, как Ariane 5, спутники не всегда размещаются непосредственно на своей конечной орбите. Часто вместо этого спутники размещают на переходной орбите: орбите, на которой, используя относительно небольшую энергию встроенных двигателей, спутник или космический корабль могут перемещаться с одной орбиты на другую.

Это позволяет спутнику достичь, например, такой высокой орбиты, как GEO, фактически не нуждаясь в ракете-носителе, чтобы пройти весь путь до этой высоты, что потребует больше усилий — это все равно, что срезать путь. Достижение GEO таким образом является примером одной из наиболее распространенных переходных орбит, называемой геостационарной переходной орбитой (GTO).

Орбиты имеют разные эксцентриситеты – мера того, насколько круглой (круглой) или эллиптической (сплющенной) является орбита. На идеально круглой орбите спутник всегда находится на одном и том же расстоянии от поверхности Земли, но на орбите с большим эксцентриситетом траектория выглядит как эллипс.

На орбите с большим эксцентриситетом, подобной этой, спутник может быстро уйти от очень далекого к очень близкому к поверхности Земли в зависимости от того, где находится спутник на орбите. На переходных орбитах полезная нагрузка использует двигатели для перехода с орбиты с одним эксцентриситетом на другую, что переводит ее на более высокие или более низкие орбиты.

После старта ракета-носитель направляется в космос по пути, показанному на рисунке желтой линией. В пункте назначения ракета выпускает полезную нагрузку, которая выводит ее на эллиптическую орбиту, следуя синей линии, которая отправляет полезную нагрузку дальше от Земли. Самая удаленная от Земли точка на синей эллиптической орбите называется апогеем, а ближайшая точка называется перигеем.

Когда полезная нагрузка достигает апогея на высоте 35 786 км на геостационарной орбите, она запускает свои двигатели таким образом, что выходит на круговую геоорбиту и остается там, как показано красной линией на диаграмме. Итак, в частности, GTO — это синий путь от желтой орбиты к красной орбите.

Телескоп ESA Gaia вращается вокруг точки L. Точка находится точно за Землей, поэтому в этот момент Гайя будет находиться в тени Земли и не сможет получать солнечный свет, необходимый для питания ее солнечных батарей. Каждые несколько лет Gaia использует свои двигатели для корректировки своего положения, чтобы поддерживать эту орбиту.

Точки Лагранжа

Для многих космических аппаратов, выводимых на орбиту, нахождение слишком близко к Земле может помешать их миссии — даже на более дальних орбитах, таких как GEO.

Например, для космических обсерваторий и телескопов, задачей которых является фотографирование глубокого темного космоса, нахождение рядом с Землей чрезвычайно вредно, потому что Земля естественным образом излучает видимый свет и инфракрасное излучение, которые не позволяют телескопу обнаруживать любые слабые огни, такие как далекие галактики. Фотографировать темное пространство с помощью телескопа рядом с нашей светящейся Землей было бы так же безнадежно, как пытаться фотографировать звезды с Земли средь бела дня.

Точки Лагранжа, или L-точки, позволяют двигаться по орбитам намного дальше (более миллиона километров) и не вращаются непосредственно вокруг Земли. Это определенные точки далеко в космосе, где гравитационные поля Земли и Солнца объединяются таким образом, что космические аппараты, вращающиеся вокруг них, остаются стабильными и, таким образом, могут быть «привязаны» относительно Земли. Если бы космический корабль был запущен в другие точки космоса, очень удаленные от Земли, они естественным образом попали бы на орбиту вокруг Солнца, и эти космические корабли вскоре оказались бы далеко от Земли, что затруднило бы связь. Вместо этого космический корабль, запущенный в эти специальные L-точки, остается неподвижным и остается рядом с Землей с минимальными усилиями, не переходя на другую орбиту.

Наиболее часто используемыми L-точками являются L1 и L2. Оба они находятся в четыре раза дальше от Земли, чем Луна — 1,5 миллиона км по сравнению с 36 000 км на ГСО — но это все равно лишь примерно 1% расстояния Земли от Солнца.

Многие наблюдательные и научные миссии ЕКА были, есть или будут выходить на орбиту вокруг L-точки. Например, солнечный телескоп SOHO и LISA Pathfinder в точке Солнце-Земля L1; Гершель, Планк, Гайя, Евклид, Платон, Ариэль, JWST и телескоп Афина находятся или будут находиться в точке L2 Солнце-Земля.

Спасибо за лайк

Вам уже понравилась эта страница, вы можете поставить лайк только один раз!

Что такое низкая околоземная орбита?

Спутник на низкой околоземной орбите
(Изображение предоставлено: Getty Images)

Проще говоря, низкая околоземная орбита (НОО) — это именно то, на что это похоже: орбита вокруг Земли с высотой, лежащей ближе к нижнему пределу диапазона возможных орбит. Это около 1200 миль (2000 километров) или меньше. Большинство спутников находятся на НОО, как и Международная космическая станция (МКС).

Чтобы оставаться на этой орбите, спутник должен двигаться со скоростью около 17 500 миль в час (7,8 км в секунду), при которой ему требуется около 90 минут, чтобы совершить полный оборот вокруг планеты.

Теория низкой околоземной орбиты

Орбиты возможны благодаря силе гравитации — той самой силе, которая удерживает нас на поверхности планеты. Точно так же, как мы уплыли бы в космос, если бы гравитации не существовало, так и спутник улетел бы по касательной, если бы не было силы, поддерживающей его движение вокруг Земли.

Это действительно происходит с космическим кораблем, который летит очень быстро — быстрее, чем стартовая скорость Земли, которая составляет 25 000 миль в час (11,2 км/с). С другой стороны, если объект движется намного медленнее, например, суборбитальная ракета Blue Origin New Shepard, он упадет обратно на Землю так же уверенно, как и вы, подпрыгнув в воздух.

Связанный: Космическая собака Лайка: первое живое существо на орбите0159 гравитация  предотвращает отлет объекта по касательной. В результате объект, движущийся с такой скоростью, будет просто вращаться вокруг Земли . Это горизонтальная скорость, параллельная поверхности планеты.

Это может показаться запутанным, если вы когда-либо наблюдали за космическим запуском, потому что ракеты обычно взлетают вертикально вверх, когда они стартуют. Но это потому, что им нужно как можно быстрее подняться над атмосферой или большей ее частью, чтобы избежать сил сопротивления. Но как только они оказываются над атмосферой, они переходят к горизонтальному движению. Когда спутник достигает орбитальной скорости, он официально находится на орбите.

Спутники на низкой околоземной орбите

Орбитальная скорость 7,8 км/с (17 500 миль/ч) относится к режиму НОО чуть выше атмосферы Земли . На больших высотах скорость, необходимая для удержания спутника на орбите, меняется. На самом деле, это фактически уменьшается с увеличением высоты.

Однако это не означает, что ракете нужно затратить меньше энергии, чтобы вывести спутник на более высокую орбиту. Это потому, что требуется огромное количество энергии только для того, чтобы достичь этой большей высоты. Это дополнительное усилие для достижения больших высот является одной из причин, по которой большинство спутников размещается на НОО, наряду с другими соображениями, такими как изображения с более высоким разрешением, которые спутники наблюдения за Землей могут получать с более близкого расстояния.

Истории по теме

Однако есть одна особая высотная орбита, на которую стоит приложить дополнительные усилия, — это геосинхронная орбита (GEO).

Спутник на низкой околоземной орбите совершает около 16 оборотов в день или за каждый полный оборот самой Земли. Однако GEO находится на высоте около 22 000 миль (36 000 км), и в этот момент орбитальная скорость замедлилась, поэтому одна орбита соответствует ровно одному обороту Земли.

Это означает, что спутник на такой высоте эффективно зависает над одной точкой на поверхности Земли, что делает его особенно полезным для спутникового телевидения и других систем связи.

Орбиты спутников обычно следуют по траектории овального типа, называемой эллипсом, длина и ширина которого известны как большая и малая оси.

Когда эти две оси равны по размеру, орбита представляет собой идеальный круг, который является частным случаем эллипса. Большинство спутников имеют почти круговые орбиты, но в некоторых случаях эллипс может быть гораздо более вытянутым, при этом большая ось намного длиннее малой оси.

Орбита «Молния», например, используемая для связи в северных широтах, имеет нижнюю точку около 308 миль (495 км), но высшая точка составляет около 25 000 миль (40 000 км).

НОО — самый распространенный тип орбиты, но не единственный; вот некоторые другие.

Дополнительные ресурсы

Для получения дополнительной информации о низкой околоземной орбите и разработке спутников ознакомьтесь с «Проектированием низкоорбитальных спутников (Библиотека космических технологий, книга 36) (открывается в новой вкладке)» Джорджа Себастьена и др.