Содержание
Как образовалась Солнечная система?
Наука
Космос
Солнечная система
Земля
Как образовалась Солнечная система?
Егор Морозов
—
Нашей Солнечной системе 4.5 миллиарда лет, и мы живем в относительно спокойное время: Солнце находится в середине жизненного пути, все планеты и большая часть комет давно приобрели устойчивые орбиты, а падение на нашу планету крупного астероида — из ряда вон выходящее событие, о котором долго пишут различные СМИ.
Но как мы пришли к такому благополучию? Как образовалось Солнце и планеты рядом с ним? Как планеты приобрели свои орбиты? Формирование Солнечной системы является сложной головоломкой для современной астрономии и потрясающей демонстрацией работы чудовищных сил гравитации, действующих в огромных временных рамках. Так что давайте разбираться.
Досолнечная туманность
Разумеется, Солнечная система не возникла из ничего. Все звезды образуются в результате коллапса туманностей, которые представляют собой рыхлые облака газа и пыли, и наше Солнце — и Солнечная система — ничем в этом плане не отличаются от других звезд и планетных систем. Астрономы называют такое образование «досолнечной туманностью», и, конечно, ее давно уже нет, но ученые видели достаточно звездных систем на различных стадиях формирования по всей галактике, чтобы получить достоверную общую картину.
Однако сама по себе туманность является достаточно стабильной и не будет коллапсировать в Солнечную систему без определенного «стимула», который должен заставить ее начать сжиматься. В нашем случае мы можем поблагодарить соседний взрыв сверхновой, чья ударная волна смяла досолнечную туманность, заставив ее сжаться.
Туманности — места активного звездообразования.
При этом исследователи могут вполне обоснованно сказать, что такая сверхновая взорвалась относительно недалеко по космическим меркам, потому что при таких звездных взрывах образуется большое количество определенных радиоактивных элементов, которые обычно не обнаруживаются внутри досолнечных туманностей, однако мы их наблюдаем в нашей Солнечной системе.
В результате в какой-то момент переход от туманности к Солнечной системе стал необратимым. В течение многих миллионов лет туманность сжималась и нагревалась, в конечном итоге достигнув точки, когда протосолнце было окружено тонким, быстро вращающимся диском из газа и пыли.
И тут началось самое интересное.
Появляются планеты
Четыре с половиной миллиарда лет назад наше Солнце еще не было такой яркой звездой, как сегодня. Оно было компактное и очень, очень горячее, но все же еще не достигло критической плотности и температуры, необходимых для поддержания ядерного синтеза в его ядре.
И, пока Солнце было на этой эмбриональной стадии, планеты начали свое медленное вальсирующее формирование. Ближе к юной звезде жара и света хватало, чтобы в этих областях оставался только каменистый материал: лед испарился, а различные газы, такие как водород и гелий, просто улетели вглубь молодой Солнечной системы. Оставшимся каменистым кускам ничего не оставалось, как медленно слипаться под действием гравитации, образуя все более крупные сгустки.
Протосолнце с протопланетами на художественном изображении.
В конце концов, по прошествии достаточного количества времени (а у Вселенной возрастом больше 13 миллиардов лет свободного времени, очевидно, хватает), эти кусочки сформировали планетезимали, маленькие зародыши планет. Их было много, и это было довольно жестокое время для нашей Солнечной системы, поскольку эти планетезимали сталкивались, разрушались и преобразовывались бесчисленное количество раз. Наша собственная Земля тогда столкнулась с объектом размером почти с Марс, и обломки от этого удара в конечном итоге стали Луной.
Однако за пределами области, которая в конечном итоге стала поясом астероидов, формирование планет происходило по-другому. Там было достаточно холодно, чтобы лед мог «выжить», позволяя ядрам планет вырастать до огромных размеров за короткий промежуток времени.
Затем эти большие ядра с мощной гравитацией стали притягивать окружающий материал, в основном как раз водород и газообразный гелий, улетевшие из внутренней части Солнечной системы. В итоге эти миры стали окутываться плотной пеленой атмосферы — так и родились планеты-гиганты.
Поздняя тяжелая бомбардировка
Передвинемся на полмиллиарда лет вперед. Температура и давление в ядре Солнца наконец-то достигли достаточных значений, чтобы начался ядерный синтез, который продолжается до сих пор. При этом гравитация нашего светила стабилизировала внутренние каменистые планеты на своих орбитах.
Страшное время для внутренних планет — их буквально закидывало астероидами на протяжении сотен миллионов лет.
Но вот внешние газовые гиганты были окружены роями обломков, оставшихся от хаотического процесса строительства планет. В результате начались гравитационные танцы поистине космических масштабов.
Астрономы подозревают, что четыре планеты-гиганта нашей Солнечной системы — Юпитер, Сатурн, Уран и Нептун — изначально сформировались гораздо ближе друг к другу, чем они находятся сегодня, и гравитационные взаимодействия с оставшимися вокруг них обломками заставили их сменить орбиты. На передел нашей Солнечной системы потребовались сотни миллионов лет, и ученых есть несколько возможных объяснений, как он мог произойти.
В одном из сценариев Юпитер и Сатурн двигались внутрь, к Солнцу, что заставило Уран и Нептун наоборот отодвинуться наружу. В другом сценарии планеты внешней Солнечной системы играли в игру «гравитационное перекидывание горячей картошки» с еще одной дополнительной пятой гигантской планетой, которая в конечном итоге была или полностью выброшена из Солнечной системы, или же находится сейчас на ее задворках (и может являться Девятой планетой). Ну и в последнем сценарии Юпитер мог приблизиться к орбите Марса, прежде чем вернуться обратно, нарушив тем самым орбиты остальных внешних миров.
Каким бы способом не происходила перестановка планет-гигантов, она вызвала настоящий хаос в Солнечной системе. Астрономы считают, что мигрирующие внешние планеты дали начало эпохе, названной поздней тяжелой бомбардировкой — из-за гравитационных возмущений начались интенсивные столкновений комет и астероидов во внутренней Солнечной системе около 4 миллиардов лет назад, и продолжался этот хаос несколько сотен миллионов лет.
Смещения орбит газовых гигантов нарушили стабильность всего оставшегося «строительного материала» в Солнечной системе, либо отправив его на далекие орбиты на замерзших окраинах нашей звездной системы (откуда различные кометы временами все же прилетают ближе к Солнцу), либо наоборот «запульнув» его внутрь, тем самым создав проблемы для каменистых планет.
Мы живем во времена стабильного Солнца, и оно еще долго не будет меняться.
Несмотря на эту катастрофическую бомбардировку, на самом деле все было не так уж плохо: процессия комет, устремившихся во внутреннюю часть Солнечной системы, в изобилии доставила воду на каменистые миры, потенциально помогая создать жизнь на Земле — разумеется, уже после того, как наша звездная система снова стала стабильной.
После окончания тяжелой бомбардировки около 3.8 миллиардов лет назад наша Солнечная система пришла в практически современное состояние: Солнце стало иметь почти современный вид, только светило чуть ярче. Все планеты заняли стабильные орбиты. Разве только газовые гиганты продолжали обзаводиться спутниками, «выдергивая» нестабильные булыжники из пояса астероидов или Койпера.
Что касается будущего, то сложно предсказать поведение системы из миллионов движущихся компонентов через несколько миллиардов лет. Но, вполне возможно, наша Солнечная система останется стабильной еще очень долгое время, пока в Солнце не кончится топливо и оно не превратится в красного гиганта, тем самым убив внутренние планеты.
Однако, возможно, глобальные изменения произойдут и раньше: так, за несколько миллиардов лет орбита Марса может стать более вытянутой и заходить за орбиту Земли, что может привести к катастрофическим последствиям. Аналогичная проблема может произойти и с Меркурием: его орбита может вытянуться, из-за чего гравитационное взаимодействие с Венерой может выкинуть его из Солнечной системы.
В любом случае, все эти возможные события произойдут крайне не скоро даже по меркам Вселенной, так что нам остается только радоваться, что мы живем в спокойный отрезок существования Солнечной системы.
iGuides в Яндекс.Дзен — zen.yandex.ru/iguides.ru
iGuides в Telegram — t.me/igmedia
Рекомендации
AliExpress нагло завысил все цены. Не спешите с покупками
Как отключить подорожавшие СМС-уведомления в «Сбербанке» и ВТБ
В России обвалилась цена на MacBook Air с чипом M1. Забирайте, пока в наличии!
AliExpress определился с курсом, по которому высчитываются цены
Рекомендации
AliExpress нагло завысил все цены. Не спешите с покупками
Как отключить подорожавшие СМС-уведомления в «Сбербанке» и ВТБ
В России обвалилась цена на MacBook Air с чипом M1. Забирайте, пока в наличии!
AliExpress определился с курсом, по которому высчитываются цены
Читайте также
Бесплатные аккаунты YouTube станут гораздо круче и удобнее
YouTube
Обзор планшета realme Pad Mini: нескучный девайс для домашнего использования
realme
Как сформировалась наша Солнечная система?
С незапамятный времен человечество пытается ответить на вопрос о том, как появилась Вселенная. Однако всерьез заниматься этим вопросом стали только с началом научной революции, когда в мире стали доминировать теории, доказательства которых осуществлялось эмпирическим путем. Именно с этого момента — промежуток между 16-м и 18-м веками — астрономы и физики стали выводить доказательные объяснения того, с чего началась жизнь нашего Солнца, планет и всей Вселенной.
Есть несколько гипотез, которые могут ответить на этот вопрос.
Если речь идет о Солнечной системе, то наиболее популярным и широко признанным взглядом является небулярная гипотеза происхождения миров. Согласно этой модели, Солнце, планеты и все остальные объекты Солнечной системы образовались многие миллиарды лет назад из плотных облаков молекулярного водорода. Первоначально предложенная в качестве объяснения происхождения Солнечной системы, она по-прежнему остается наиболее широко принятой.
Содержание
- 1 Небулярная гипотеза — что это?
- 2 Как появились планеты
- 3 История небулярной гипотезы
- 4 Недостатки небулярной гипотезы
Небулярная гипотеза — что это?
Согласно данной модели, Солнце и все планеты нашей Солнечной системы начали свою историю с гигантского молекулярного облака из газа и пыли. Затем, около 4,47 миллиарда лет назад что-то произошло, что привело к коллапсу облака. Возможно, причиной стала пролетающая мимо звезда или взрывные волны сверхновой, точно никто не знает, но конечным результатом стал гравитационный коллапс в центре облака.
С этого момента из облаков газа и пыли начали формироваться более плотные сгустки. Достигнув определенной плотности, сгустки согласно закону сохранения импульса начали вращаться, а повышающееся давление их разогрело. Большая часть материи собралась в центральном сгустке, в то время как оставшаяся материя образовала вокруг этого сгустка кольцо.
Сгусток в центре со временем превратился в Солнце, а остальная материя образовала протопланетарный диск.
Планеты же образовались из материи этого диска. Притягивающиеся друг к другу частицы пыли и газа собрались в более крупные тела. Рядом с Солнцем смогли сформироваться в более плотные объекты только те сгустки, в которых присутствовала наибольшая концентрация металлов и силикатов. Так появились Меркурий, Венера, Земля и Марс. Поскольку металлические элементы слабо присутствовали в первичной солнечной туманности, планеты не смогли очень сильно вырасти.
Как появились планеты
В свою очередь такие гигантские планеты, как Юпитер, Сатурн, Уран и Нептун, образовались уже где-то в точке между орбитами Марса и Юпитера — где-то за границей отрицательных температур, где материал замерзает настолько, что позволяет летучим соединениям сохранять твердую форму в виде льда. Разнообразие этого льда оказалось гораздо шире, чем разнообразие металлов и силикатов, из которых образовались планеты внутренней части Солнечной системы. Это позволило им вырасти настолько огромными, что в конечном итоге у них появились целые атмосферы из водорода и гелия. Оставшийся материал, который так и не был использован для образования планет, сосредоточился в других регионах, сформировав в конечном итоге пояс астероидов, пояс Койпера и облако Оорта.
Ранняя Солнечная система в представлении художника. Столкновение между собой частиц в аккреционном диске привело к формированию планетоземалей и в конце концов планет
В течение следующих 50 миллионов лет давление и плотность водорода в центре протозвезды стали достаточно высокими для начала термоядерной реакции. Температура, скорость реакции, давление и плотность продолжили возрастать до тех пор, пока не было достигнуто гидростатическое равновесие. С этого момента Солнце превратилось в звезду главной последовательности. Солнечные ветра создали гелиосферу, сметав при этом оставшийся от протопланетарного диска газ и пыль в межзвездное пространство и ознаменовав завершение процесса планетарного формирования.
История небулярной гипотезы
Впервые идея о том, что Солнечная система образовалась из туманности, была предложена в 1734 году шведским ученым и теологом Эммануилом Сведенборгом. Иммануил Кант, знакомый с работой Сведенборга, занялся дальнейшим развитием теории и опубликовал результаты в своей работе «Всеобщая естественная история и теория неба» в 1755 году. В ней он заявлял, что газовые облака (туманности) медленно вращаются, постепенно разрушаются и под действием гравитации сжимаются, формируя звезды и планеты.
Аналогичная, но менее детальная модель формирования была предложена Пьером-Симоном Лапласом и описана в труде «Изложение системы мира», который был опубликован в 1796 году. Лаплас теоретизировал на тему того, что первоначально Солнце имело атмосферу, расширенную на всю Солнечную систему, и в какой-то момент это «протозвездное облако» начало охлаждаться и уменьшаться. С увеличением скорости вращения облака оно выбросило излишнюю материю, из которой впоследствии сформировались планеты.
Туманность Sh 2-106. Компактная область звездообразования в созвездии Лебедя
Небулярная модель Лапласа получала широкое признание в течение 19-го века, хотя и содержала некоторые явные нестыковки. Основной вопрос вызывало угловое распределение импульса между Солнцем и планетами, которое небулярная теория не объясняла. Помимо этого, шотландский ученый Джеймс Клерк Максвелл (1831–1879) утверждал, что разность скорости вращения между внешней и внутренней частью протопланетарного диска не позволила бы материи накапливаться. Кроме того, теория была не принята также и астрономом сэром Дэвидом Брюстером (1781–1868), который однажды сказал:
«Те, кто считают, что небулярная теория верна, и уверены в том, что наша Земля получила свою твердую форму и атмосферу из кольца, брошенного из солнечной атмосферы, которое впоследствии было заключено в твердую терраквальную сферу, вероятнее всего, считают, что Луна образовалась таким же образом. [Если рассматривать с этой точки зрения], то на Луне тоже обязательно должна иметься вода и своя атмосфера».
К концу 20-го века модель Лапласа утратила доверие в лице ученых и заставила последних начать поиск новых теорий. Началось это, правда, не раньше самого конца 60-х годов, когда появился самый современный и самый широко признанный вариант небулярной гипотезы — модель солнечного небулярного диска. Заслуга принадлежит советскому астроному Виктору Сафронову и его книге «Эволюция допланетного облака и образование Земли и планет» (1969 год). В этой книге описаны практически все основные вопросы и загадки процесса планетарного формирования, и что важнее всего — ответы на эти вопросы и загадки четко сформулированы.
Если вам интересны новости науки и технологий, подпишитесь на нас в Яндекс.Дзен, чтобы не пропускать новые материалы!
Например, модель допланетного облака успешно объясняет появление аккреционных дисков вокруг молодых звездных объектов. Множественные симуляции также показали, что аккреция вещества в этих дисках ведет к формированию нескольких тел размером с Землю. Благодаря книге Сафронова вопрос происхождения планет земной группы (или землеподобных, если хотите) можно считать решенным.
Несмотря на то, что изначально модель допланетного облака применялась только в отношении Солнечной системы, многие теоретики считают, что ее можно использовать в качестве универсальной системы мер для всей Вселенной. Поэтому ее даже сейчас нередко используют для объяснения процесса формирования многих экзопланет, которые были нами найдены.
Недостатки небулярной гипотезы
Несмотря на то, что небулярная модель имеет широкое признание, она по-прежнему содержит ряд вопросов, которые не могут решить даже современные астрономы. Например, есть вопрос, связанный с наклоном. Согласно небулярной теории, все планеты, находящиеся вокруг звезд, должны обладать одинаковым наклоном осей по отношению к плоскости эклиптики. Но нам известно, что планеты внутреннего и внешнего кругов обладают совершенно разными наклонами осей.
В то время как планеты внутреннего круга обладают углом наклона осей, составляющим от 0 градусов, оси других (Земли и Марса, например) имеют угол наклона около 23,4 и 25 градусов соответственно. Планеты внешнего круга, в свою очередь, тоже обладают разными наклонами осей. Наклон оси Юпитера, например, составляет 3,13 градуса, в то время как у Сатурна и Нептуна эти показатели составляют 26,73 и 28,32 градуса соответственно. А Уран вообще имеет экстремальный наклон оси в 97,77 градуса, что фактически заставляет один из его полюсов постоянно находиться лицом к Солнцу.
Список потенциально обитаемых экзопланет согласно Planetary Habitability Laboratory
Кроме того, изучение планет вне Солнечной системы позволило ученым отметить несоответствия, которые ставят под сомнение небулярную гипотезу. Некоторые из этих несоответствий связаны с классом планет «горячие Юпитеры», чьи орбиты близко расположены к своим звездам, и периодом в несколько дней. Астрономы скорректировали некоторые моменты гипотезы, чтобы решить эти вопросы, но всех проблем это не решило.
Вероятнее всего, неразрешенные вопросы имеют наиболее близкое значение к пониманию природы формирования, и поэтому на них так трудно ответить. Просто когда мы думаем, что нашли наиболее убедительное и логичное объяснение, всегда остаются моменты, которые объяснить мы не в состоянии. Тем не менее мы прошли немалый путь, пока не пришли к нашим текущим моделям звездообразования и планетарного формирования. Чем больше мы узнаем о соседних звездных системах и чем больше исследуем космос, тем более зрелыми и совершенными становятся наши модели.
Солнечная система: факты, размеры, числа
Солнечная система представляет собой совокупность планет, лун, астероидов, комет, пыли и газа, вращающихся вокруг нашей звезды, Солнца. Она включает в себя твёрдые планеты Меркурий, Венеру, Землю и Марс, газовых гигантов Юпитер и Сатурн и ледяных гигантов Уран и Нептун. Между Марсом и Юпитером находится группа астероидов, известная как пояс астероидов, а за Нептуном живут маленькие ледяные тела, такие как Плутон и кометы.
Полина Колесо
Спасибо Солнцу за систему!
Насколько стара наша Солнечная система?
Около 4,6 миллиарда лет назад гигантское облако пыли и газа, известное как Солнечная туманность, разрушилось само по себе и начало формировать то, что в конечном итоге станет Солнцем и планетами Солнечной системы. Метеориты, или куски космического камня, упавшие на Землю, помогли учёным выяснить возраст Солнечной системы. Некоторые из этих маленьких кусочков откололись от лун или планет, они могут дать интересную научную информацию о химии и истории их родного тела. Другие путешествовали по Солнечной системе с самого её зарождения, ещё до того, как появились планеты. Метеорит Альенде, упавший на Землю в 1969 году и сгоревший над Мексикой, является старейшим из известных метеоритов, возраст которого составляет 4,55 миллиарда лет.
Как сформировалась Солнечная система?
Учёные считают, что Солнечная система появилась из-за коллапса Солнечной туманности, который был вызван взрывом соседней сверхновой звезды. Согласно этой теории, взрыв послал в космос ударные волны, и они сблизили части туманности, что привело к коллапсу. Ранее сообщалось, что сверхновая могла даже отправить какие-то частицы в туманность. Например, учёные обнаружили, что алюминий-26, элемент, образующийся только в сердцевинах звёзд, скорее всего, возник из серии близких сверхновых.
Большинство астероидов вращаются вокруг Солнца против часовой стрелки, но недавно обнаруженный объект, который учёные прозвали Bee-Zed, ведёт себя совсем странно.
Солнце
По данным Калифорнийского университета в Сан-Диего, Солнце находится в центре Солнечной системы и является её крупнейшим объектом — на его долю приходится примерно 99,8% массы Солнечной системы. Солнце — это гигантский бушующий огненный шар, приводимый в действие ядерными реакциями. Он обеспечивает энергию, которая поддерживает жизнь на Земле. По данным НАСА, жёлтый карлик (каким на самом деле является наше светило) состоит из газа — около 91% водорода и 8,9% гелия. По сравнению с другими звёздами Солнце относительно маленькое, это лишь одна из сотен миллиардов звёзд в нашей родной галактике, Млечном Пути.
По данным НАСА, Солнце находится примерно в 26 000 световых лет от центра нашей галактики. Млечный Путь представляет собой спиральную галактику, из центра которой исходят изогнутые рукава звёзд. Солнечная система расположена в одном из меньших рукавов, называемом рукавом Ориона-Лебедя или просто рукавом Ориона.
Млечный Путь огромен по сравнению с Солнечной системой. Если бы Солнечная система была размером с вашу ладонь, Млечный Путь был бы таким же большим, как Северная Америка на «теле» вашей галактики, согласно сети Night Sky Лаборатории реактивного движения НАСА.
Почему Плутон не планета?
Плутон, когда-то считавшийся девятой планетой в Солнечной системе, был реклассифицирован как карликовая планета в 2006 году, поскольку не соответствовал одному из критериев определения планеты. Международный астрономический союз определяет планету как «небесное тело, которое вращается вокруг Солнца, обладает достаточной гравитацией, чтобы принять круглую или почти круглую форму, и очистило окрестности вокруг своей орбиты». Плутон не выполнил последний пункт, поэтому он не считается планетой.
Некоторые астрономы считают, что это исключение Плутона несправедливо и что Плутону следует восстановить статус девятой планеты Солнечной системы. Просматривая историческую литературу, Филип Мецгер, планетолог из Университета Центральной Флориды, обнаружил, что до решения 2006 года правило «очищения орбиты» появлялось только в одной статье 1801 года. Он и его коллеги пришли к выводу, что это правило, исключающее Плутон, является «произвольным и не основанным на историческом прецеденте», и что, следовательно, Плутон по-прежнему надо считать планетой.
Тут лежат удивительные факты о Плутоне!
Плутон, названный в честь римского бога подземного мира, находится в огромном поясе Койпера — регионе за пределами Нептуна, который содержит триллионы ледяных объектов.
Планета Х
Существует возможный кандидат на место Плутона в качестве девятой планеты: Планета X или Планета Девять. В статье 2016 года астрономы Калифорнийского технологического института Майк Браун и Константин Батыгин выдвинули гипотезу о том, что планета в 10 раз больше Земли может вращаться вокруг Солнца примерно в 20 раз дальше, чем Нептун.
«Все те люди, которые злятся на то, что Плутон больше не планета, могут быть взволнованы, узнав, что существует настоящая планета, которую ещё предстоит найти, — сказал тогда Браун. — Теперь мы можем пойти и найти эту планету и снова сделать так, чтобы в Солнечной системе было девять планет».
Тем не менее, существование Планеты Девять всё ещё остаётся теоретическим, поскольку, по данным НАСА, планета не наблюдалась напрямую.
Как образовалась Солнечная система?
Художественное изображение крупнейших тел Солнечной системы (не в масштабе).
(Изображение предоставлено НАСА/JPL)
Формирование Солнечной системы началось примерно 4,5 миллиарда лет назад, когда гравитация стянула вместе облако пыли и газа, образовав нашу Солнечную систему.
Ученые не могут напрямую изучить, как сформировалась наша Солнечная система, но объединение наблюдений за молодыми звездными системами в диапазоне длин волн с компьютерным моделированием привело к моделированию того, что могло произойти много лет назад.
Как образовалось солнце?
Художественное изображение газа и пыли, окружающих молодую звезду. (Изображение предоставлено НАСА)
Солнечная система опирается на наше Солнце.
Еще до появления Солнечной системы огромная концентрация межзвездного газа и пыли создала молекулярное облако, которое стало местом рождения Солнца. Низкие температуры заставляли газ слипаться, становясь все более плотным. Самые плотные части облака начали разрушаться под действием собственной гравитации, возможно, из-за взрыва соседней звезды, образуя множество молодых звездных объектов, известных как протозвезды.
Гравитация продолжала обрушивать материал на новорожденную солнечную систему, создавая звезду и диск из материала, из которого должны были сформироваться планеты. В конце концов, по данным НАСА, новорожденное солнце охватило более 99% массы Солнечной системы . Когда давление внутри звезды стало настолько сильным, что начался синтез, превращающий водород в гелий, звезда начала извергать звездный ветер, который помог убрать обломки и предотвратить их падение внутрь.
Хотя газ и пыль покрывают молодые звезды в видимом диапазоне длин волн, инфракрасные телескопы исследовали множество облаков в галактике Млечный Путь, чтобы изучить окружение других новорожденных звезд. Ученые применили то, что они видели в других системах, к нашей собственной звезде.
Как образовались планеты?
Планеты, луны, астероиды и все остальное в Солнечной системе сформировались из небольшой части материала в регионе, который не был включен в молодое солнце. Этот материал сформировал массивный диск вокруг молодой звезды, который окружал ее около 100 миллионов лет — мгновение ока по астрономическим меркам.
За это время из диска сформировались планеты и луны. Ученые утверждают, что среди планет Юпитер, вероятно, сформировался первым, возможно, уже через миллион лет жизни Солнечной системы .
Ученые разработали три разные модели, чтобы объяснить, как могли формироваться планеты в Солнечной системе и за ее пределами. Первая и наиболее широко принятая модель, аккреция ядра, хорошо работает с образованием каменистых планет земной группы, но имеет проблемы с планетами-гигантами. Второй, аккреция гальки, может позволить планетам быстро формироваться из мельчайших материалов. Третий, метод нестабильности диска, может объяснить создание планет-гигантов.
Модель аккреции ядра
Приблизительно 4,6 миллиарда лет назад Солнечная система представляла собой облако пыли и газа, известное как солнечная туманность. Гравитация разрушила материал сам по себе, когда он начал вращаться, образуя солнце в центре туманности.
С восходом солнца оставшийся материал начал слипаться. Согласно модели аккреции ядра, мелкие частицы стягивались вместе, связанные силой гравитации, в более крупные частицы. Солнечный ветер унес более легкие элементы, такие как водород и гелий, из близлежащих регионов, оставив только тяжелые каменистые материалы для создания земных миров. Но дальше солнечные ветры оказывали меньшее влияние на более легкие элементы, позволяя им сливаться в газовых гигантов. Таким образом были созданы астероиды, кометы, планеты и луны.
Некоторые наблюдения за экзопланетами подтверждают, что аккреция ядра является доминирующим процессом формирования. Звезды с большим количеством «металлов» — термин, который астрономы используют для обозначения элементов, отличных от водорода и гелия, — имеют в своих ядрах больше планет-гигантов, чем их бедные металлами собратья. По данным НАСА , аккреция ядра предполагает, что маленькие каменистые миры должны быть более распространены, чем большие газовые гиганты.
Открытие в 2005 году планеты-гиганта с массивным ядром, вращающейся вокруг солнцеподобной звезды HD 149026 является примером экзопланеты, которая помогла укрепить аргументы в пользу аккреции ядра. Ученые обнаружили, что ядро планеты примерно в 70 раз массивнее Земли; они считают, что он слишком велик, чтобы образоваться из коллапсирующего облака, согласно заявлению НАСА об исследовании .
Аккреция гальки
Самая большая проблема для аккреции ядра — это время — строительство массивных газовых гигантов достаточно быстро, чтобы захватить более легкие компоненты их атмосферы. В исследовании, опубликованном в 2015 году, изучалось, как более мелкие объекты размером с гальку сливаются вместе, создавая планеты-гиганты в 1000 раз быстрее, чем предыдущие исследования.
«Это первая известная нам модель, в которой вы начинаете с довольно простой структуры солнечной туманности, из которой формируются планеты, и заканчиваете системой планет-гигантов, которую мы видим», — ведущий автор исследования Гарольд Левисон. — сказал тогда астроном из SwRI Space.com.
В 2012 году исследователи Михиль Ламбрехтс и Андерс Йохансен из Лундского университета в Швеции предположили, что крошечные обломки, однажды списанные, содержат ключ к быстрому строительству гигантских планет. «Они показали, что оставшиеся от этого процесса формирования камешки, которые ранее считались неважными, на самом деле могут стать огромным решением проблемы формирования планет», — сказал Левисон.
В симуляциях, разработанных Левисоном и его командой, более крупные объекты действовали как хулиганы, выхватывая камешки из масс среднего размера, чтобы расти гораздо быстрее. «Более крупный парень в основном запугивает меньшего, поэтому они могут сами съесть всю гальку, и они могут продолжать расти, формируя ядра планет-гигантов», — сказала Space.com соавтор исследования Кэтрин Кретке, также из SwRI. .
Модель нестабильности диска
Другие модели пытаются объяснить образование газовых гигантов. Согласно моделям аккреции ядра, этот процесс занял бы несколько миллионов лет, дольше, чем легкие газы были доступны в ранней Солнечной системе.
«Планеты-гиганты формируются очень быстро, за несколько миллионов лет», — сказал Space.com Кевин Уолш, исследователь из Юго-Западного исследовательского института (SwRI) в Боулдере, штат Колорадо. «Это создает ограничение по времени, потому что газовый диск вокруг Солнца существует всего от 4 до 5 миллионов лет».
Эта проблема решается относительно новой теорией нестабильности диска. В модели нестабильности диска формирования планет сгустки пыли и газа связаны вместе на ранних этапах жизни Солнечной системы. Со временем эти глыбы медленно сжимаются в гигантскую планету.
Согласно моделям, планеты могут формироваться таким образом всего за 1000 лет, что позволяет им улавливать быстро исчезающие более легкие газы. Они также быстро достигают массы, стабилизирующей орбиту, которая удерживает их от смертельного марша к солнцу.
По мере того, как ученые продолжают изучать планеты внутри Солнечной системы, а также вокруг других звезд, они будут лучше понимать, как образовались газовые гиганты.
Планеты в движении
Первоначально ученые думали, что планеты формируются в их нынешних местах в Солнечной системе. Но открытие экзопланет всколыхнуло ситуацию, показав, что по крайней мере некоторые из самых массивных миров могут мигрировать через свои окрестности.
В 2005 году три статьи, опубликованные в журнале Nature , изложили идею, которую исследователи назвали моделью Ниццы , в честь города во Франции, где они впервые обсудили ее. Эта модель предполагает, что в первые дни существования Солнечной системы планеты-гиганты вращались по почти круговым орбитам, гораздо более компактным, чем сегодня. Их окружал большой диск из камней и льдов, простирающийся примерно в 35 раз больше, чем расстояние от Земли до Солнца, сразу за нынешней орбитой Нептуна.
Когда планеты взаимодействовали с более мелкими телами, они рассеивали большинство этих объектов по направлению к Солнцу. Этот процесс заставил массивные планеты обмениваться энергией с более мелкими объектами, отправив Сатурн, Нептун и Уран дальше в Солнечную систему. В конце концов маленькие объекты достигли Юпитера, что отправило их на край Солнечной системы или полностью за ее пределы.
Движение между Юпитером и Сатурном заставило Уран и Нептун выйти на еще более эксцентричные орбиты, отправив пару через оставшийся ледяной диск. Часть материала была отброшена внутрь, где он врезался в планеты земной группы во время поздней тяжелой бомбардировки. Другой материал был выброшен наружу, создавая пояс Койпера.
Медленно продвигаясь наружу, Нептун и Уран поменялись местами. В конце концов, взаимодействие с оставшимися обломками привело к тому, что пара стала двигаться по более круговым траекториям, когда они достигли своего нынешнего расстояния от солнца.
По пути наша солнечная система, возможно, потеряла членов: возможно, одна или даже две другие планеты-гиганты были выброшены из окрестностей всем этим движением. Астроном Дэвид Несворни из SwRI смоделировал раннюю Солнечную систему в поисках подсказок, которые могли бы привести к пониманию ее ранней истории.
«Раньше Солнечная система была совсем другой, с большим количеством планет, возможно, таких же массивных, как Нептун, формирующихся и разбросанных по разным местам», — сказал Несворный Space.com
Где вода?
Даже после того, как сформировались планеты, сама Солнечная система была не совсем узнаваема. Земля выделяется среди планет из-за высокого содержания воды, что, как подозревают многие ученые, способствовало эволюции жизни.
Но нынешнее местоположение планеты было слишком теплым, чтобы на ней могла собираться вода в ранней Солнечной системе, что позволяет предположить, что живительная жидкость могла быть доставлена после формирования Земли.
Одна загвоздка: ученые до сих пор не знают, откуда взялась эта вода. Первоначально исследователи подозревали, что его принесли на Землю кометы, но несколько миссий, в том числе шесть миссий, пролетевших с кометой Галлея в 1980-х годах, и более поздний космический корабль Европейского космического агентства «Розетта», показали, что состав ледяного материала с окраин Солнечной системы не не совсем соответствуют земным.
Пояс астероидов — еще один потенциальный источник воды. Несколько метеоритов продемонстрировали признаки изменения, изменения, произошедшие в начале их жизни, которые намекают на то, что вода в той или иной форме взаимодействовала с их поверхностью. Удары метеоритов могут стать еще одним источником воды для планеты.
В последнее время некоторые ученые даже оспаривают представление о том, что ранняя Земля была слишком горячей для сбора воды. Они утверждают, что если бы планета сформировалась достаточно быстро, она могла бы собрать необходимую воду из ледяных крупинок до того, как они испарились.
Какой бы процесс ни принес воду на Землю, скорее всего, это произошло и с Венерой и Марсом. Но повышение температуры на Венере и истончение атмосферы на Марсе не позволили этим мирам сохранить свою воду, что привело к появлению сухих планет, которые мы знаем сегодня.
Дополнительные ресурсы
- Прочтите описание НАСА (откроется в новой вкладке) о том, как образовалась Солнечная система, или посмотрите анимацию (откроется в новой вкладке) на эту тему.
- Прочитайте описание (откроется в новой вкладке) того, как формируются звезды и планеты с помощью ALMA, специализирующегося на наблюдении за дисками, из которых рождаются планеты.
- Ученые узнали о формировании планет, сравнив миры в нашей Солнечной системе с экзопланетами.
Следуйте за нами в Твиттере @ Spacedotcom и на Facebook .
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Нола Тейлор Тиллман — автор статей для Space.com. Она любит все, что связано с космосом и астрономией, и наслаждается возможностью узнать больше. Она имеет степень бакалавра английского языка и астрофизики в колледже Агнес Скотт и проходила стажировку в журнале Sky & Telescope. В свободное время она обучает своих четверых детей дома. Подпишитесь на нее в Твиттере @NolaTRedd
Как образовалась Солнечная система?
Художественное изображение крупнейших тел Солнечной системы (не в масштабе).
(Изображение предоставлено НАСА/JPL)
Формирование Солнечной системы началось примерно 4,5 миллиарда лет назад, когда гравитация стянула вместе облако пыли и газа, образовав нашу Солнечную систему.
Ученые не могут напрямую изучить, как сформировалась наша Солнечная система, но объединение наблюдений за молодыми звездными системами в диапазоне длин волн с компьютерным моделированием привело к моделированию того, что могло произойти много лет назад.
Как образовалось солнце?
Художественное изображение газа и пыли, окружающих молодую звезду. (Изображение предоставлено НАСА)
Солнечная система опирается на наше Солнце.
Еще до появления Солнечной системы огромная концентрация межзвездного газа и пыли создала молекулярное облако, которое стало местом рождения Солнца. Низкие температуры заставляли газ слипаться, становясь все более плотным. Самые плотные части облака начали разрушаться под действием собственной гравитации, возможно, из-за взрыва соседней звезды, образуя множество молодых звездных объектов, известных как протозвезды.
Гравитация продолжала обрушивать материал на новорожденную солнечную систему, создавая звезду и диск из материала, из которого должны были сформироваться планеты. В конце концов, по данным НАСА, новорожденное солнце охватило более 99% массы Солнечной системы . Когда давление внутри звезды стало настолько сильным, что начался синтез, превращающий водород в гелий, звезда начала извергать звездный ветер, который помог убрать обломки и предотвратить их падение внутрь.
Хотя газ и пыль покрывают молодые звезды в видимом диапазоне длин волн, инфракрасные телескопы исследовали множество облаков в галактике Млечный Путь, чтобы изучить окружение других новорожденных звезд. Ученые применили то, что они видели в других системах, к нашей собственной звезде.
Как образовались планеты?
Планеты, луны, астероиды и все остальное в Солнечной системе сформировались из небольшой части материала в регионе, который не был включен в молодое солнце. Этот материал сформировал массивный диск вокруг молодой звезды, который окружал ее около 100 миллионов лет — мгновение ока по астрономическим меркам.
За это время из диска сформировались планеты и луны. Ученые утверждают, что среди планет Юпитер, вероятно, сформировался первым, возможно, уже через миллион лет жизни Солнечной системы .
Ученые разработали три разные модели, чтобы объяснить, как могли формироваться планеты в Солнечной системе и за ее пределами. Первая и наиболее широко принятая модель, аккреция ядра, хорошо работает с образованием каменистых планет земной группы, но имеет проблемы с планетами-гигантами. Второй, аккреция гальки, может позволить планетам быстро формироваться из мельчайших материалов. Третий, метод нестабильности диска, может объяснить создание планет-гигантов.
Модель аккреции ядра
Приблизительно 4,6 миллиарда лет назад Солнечная система представляла собой облако пыли и газа, известное как солнечная туманность. Гравитация разрушила материал сам по себе, когда он начал вращаться, образуя солнце в центре туманности.
С восходом солнца оставшийся материал начал слипаться. Согласно модели аккреции ядра, мелкие частицы стягивались вместе, связанные силой гравитации, в более крупные частицы. Солнечный ветер унес более легкие элементы, такие как водород и гелий, из близлежащих регионов, оставив только тяжелые каменистые материалы для создания земных миров. Но дальше солнечные ветры оказывали меньшее влияние на более легкие элементы, позволяя им сливаться в газовых гигантов. Таким образом были созданы астероиды, кометы, планеты и луны.
Некоторые наблюдения за экзопланетами подтверждают, что аккреция ядра является доминирующим процессом формирования. Звезды с большим количеством «металлов» — термин, который астрономы используют для обозначения элементов, отличных от водорода и гелия, — имеют в своих ядрах больше планет-гигантов, чем их бедные металлами собратья. По данным НАСА , аккреция ядра предполагает, что маленькие каменистые миры должны быть более распространены, чем большие газовые гиганты.
Открытие в 2005 году планеты-гиганта с массивным ядром, вращающейся вокруг солнцеподобной звезды HD 149026 является примером экзопланеты, которая помогла укрепить аргументы в пользу аккреции ядра. Ученые обнаружили, что ядро планеты примерно в 70 раз массивнее Земли; они считают, что он слишком велик, чтобы образоваться из коллапсирующего облака, согласно заявлению НАСА об исследовании .
Аккреция гальки
Самая большая проблема для аккреции ядра — это время — строительство массивных газовых гигантов достаточно быстро, чтобы захватить более легкие компоненты их атмосферы. В исследовании, опубликованном в 2015 году, изучалось, как более мелкие объекты размером с гальку сливаются вместе, создавая планеты-гиганты в 1000 раз быстрее, чем предыдущие исследования.
«Это первая известная нам модель, в которой вы начинаете с довольно простой структуры солнечной туманности, из которой формируются планеты, и заканчиваете системой планет-гигантов, которую мы видим», — ведущий автор исследования Гарольд Левисон. — сказал тогда астроном из SwRI Space.com.
В 2012 году исследователи Михиль Ламбрехтс и Андерс Йохансен из Лундского университета в Швеции предположили, что крошечные обломки, однажды списанные, содержат ключ к быстрому строительству гигантских планет. «Они показали, что оставшиеся от этого процесса формирования камешки, которые ранее считались неважными, на самом деле могут стать огромным решением проблемы формирования планет», — сказал Левисон.
В симуляциях, разработанных Левисоном и его командой, более крупные объекты действовали как хулиганы, выхватывая камешки из масс среднего размера, чтобы расти гораздо быстрее. «Более крупный парень в основном запугивает меньшего, поэтому они могут сами съесть всю гальку, и они могут продолжать расти, формируя ядра планет-гигантов», — сказала Space.com соавтор исследования Кэтрин Кретке, также из SwRI. .
Модель нестабильности диска
Другие модели пытаются объяснить образование газовых гигантов. Согласно моделям аккреции ядра, этот процесс занял бы несколько миллионов лет, дольше, чем легкие газы были доступны в ранней Солнечной системе.
«Планеты-гиганты формируются очень быстро, за несколько миллионов лет», — сказал Space.com Кевин Уолш, исследователь из Юго-Западного исследовательского института (SwRI) в Боулдере, штат Колорадо. «Это создает ограничение по времени, потому что газовый диск вокруг Солнца существует всего от 4 до 5 миллионов лет».
Эта проблема решается относительно новой теорией нестабильности диска. В модели нестабильности диска формирования планет сгустки пыли и газа связаны вместе на ранних этапах жизни Солнечной системы. Со временем эти глыбы медленно сжимаются в гигантскую планету.
Согласно моделям, планеты могут формироваться таким образом всего за 1000 лет, что позволяет им улавливать быстро исчезающие более легкие газы. Они также быстро достигают массы, стабилизирующей орбиту, которая удерживает их от смертельного марша к солнцу.
По мере того, как ученые продолжают изучать планеты внутри Солнечной системы, а также вокруг других звезд, они будут лучше понимать, как образовались газовые гиганты.
Планеты в движении
Первоначально ученые думали, что планеты формируются в их нынешних местах в Солнечной системе. Но открытие экзопланет всколыхнуло ситуацию, показав, что по крайней мере некоторые из самых массивных миров могут мигрировать через свои окрестности.
В 2005 году три статьи, опубликованные в журнале Nature , изложили идею, которую исследователи назвали моделью Ниццы , в честь города во Франции, где они впервые обсудили ее. Эта модель предполагает, что в первые дни существования Солнечной системы планеты-гиганты вращались по почти круговым орбитам, гораздо более компактным, чем сегодня. Их окружал большой диск из камней и льдов, простирающийся примерно в 35 раз больше, чем расстояние от Земли до Солнца, сразу за нынешней орбитой Нептуна.
Когда планеты взаимодействовали с более мелкими телами, они рассеивали большинство этих объектов по направлению к Солнцу. Этот процесс заставил массивные планеты обмениваться энергией с более мелкими объектами, отправив Сатурн, Нептун и Уран дальше в Солнечную систему. В конце концов маленькие объекты достигли Юпитера, что отправило их на край Солнечной системы или полностью за ее пределы.
Движение между Юпитером и Сатурном заставило Уран и Нептун выйти на еще более эксцентричные орбиты, отправив пару через оставшийся ледяной диск. Часть материала была отброшена внутрь, где он врезался в планеты земной группы во время поздней тяжелой бомбардировки. Другой материал был выброшен наружу, создавая пояс Койпера.
Медленно продвигаясь наружу, Нептун и Уран поменялись местами. В конце концов, взаимодействие с оставшимися обломками привело к тому, что пара стала двигаться по более круговым траекториям, когда они достигли своего нынешнего расстояния от солнца.
По пути наша солнечная система, возможно, потеряла членов: возможно, одна или даже две другие планеты-гиганты были выброшены из окрестностей всем этим движением. Астроном Дэвид Несворни из SwRI смоделировал раннюю Солнечную систему в поисках подсказок, которые могли бы привести к пониманию ее ранней истории.
«Раньше Солнечная система была совсем другой, с большим количеством планет, возможно, таких же массивных, как Нептун, формирующихся и разбросанных по разным местам», — сказал Несворный Space.com
Где вода?
Даже после того, как сформировались планеты, сама Солнечная система была не совсем узнаваема. Земля выделяется среди планет из-за высокого содержания воды, что, как подозревают многие ученые, способствовало эволюции жизни.
Но нынешнее местоположение планеты было слишком теплым, чтобы на ней могла собираться вода в ранней Солнечной системе, что позволяет предположить, что живительная жидкость могла быть доставлена после формирования Земли.
Одна загвоздка: ученые до сих пор не знают, откуда взялась эта вода. Первоначально исследователи подозревали, что его принесли на Землю кометы, но несколько миссий, в том числе шесть миссий, пролетевших с кометой Галлея в 1980-х годах, и более поздний космический корабль Европейского космического агентства «Розетта», показали, что состав ледяного материала с окраин Солнечной системы не не совсем соответствуют земным.
Пояс астероидов — еще один потенциальный источник воды. Несколько метеоритов продемонстрировали признаки изменения, изменения, произошедшие в начале их жизни, которые намекают на то, что вода в той или иной форме взаимодействовала с их поверхностью. Удары метеоритов могут стать еще одним источником воды для планеты.
В последнее время некоторые ученые даже оспаривают представление о том, что ранняя Земля была слишком горячей для сбора воды. Они утверждают, что если бы планета сформировалась достаточно быстро, она могла бы собрать необходимую воду из ледяных крупинок до того, как они испарились.
Какой бы процесс ни принес воду на Землю, скорее всего, это произошло и с Венерой и Марсом. Но повышение температуры на Венере и истончение атмосферы на Марсе не позволили этим мирам сохранить свою воду, что привело к появлению сухих планет, которые мы знаем сегодня.
Дополнительные ресурсы
- Прочтите описание НАСА (откроется в новой вкладке) о том, как образовалась Солнечная система, или посмотрите анимацию (откроется в новой вкладке) на эту тему.
- Прочитайте описание (откроется в новой вкладке) того, как формируются звезды и планеты с помощью ALMA, специализирующегося на наблюдении за дисками, из которых рождаются планеты.
- Ученые узнали о формировании планет, сравнив миры в нашей Солнечной системе с экзопланетами.
Следуйте за нами в Твиттере @ Spacedotcom и на Facebook .
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Нола Тейлор Тиллман — автор статей для Space.com. Она любит все, что связано с космосом и астрономией, и наслаждается возможностью узнать больше. Она имеет степень бакалавра английского языка и астрофизики в колледже Агнес Скотт и проходила стажировку в журнале Sky & Telescope. В свободное время она обучает своих четверых детей дома. Подпишитесь на нее в Твиттере @NolaTRedd
Как образовалась Солнечная система?
Художественное изображение крупнейших тел Солнечной системы (не в масштабе).
(Изображение предоставлено НАСА/JPL)
Формирование Солнечной системы началось примерно 4,5 миллиарда лет назад, когда гравитация стянула вместе облако пыли и газа, образовав нашу Солнечную систему.
Ученые не могут напрямую изучить, как сформировалась наша Солнечная система, но объединение наблюдений за молодыми звездными системами в диапазоне длин волн с компьютерным моделированием привело к моделированию того, что могло произойти много лет назад.
Как образовалось солнце?
Художественное изображение газа и пыли, окружающих молодую звезду. (Изображение предоставлено НАСА)
Солнечная система опирается на наше Солнце.
Еще до появления Солнечной системы огромная концентрация межзвездного газа и пыли создала молекулярное облако, которое стало местом рождения Солнца. Низкие температуры заставляли газ слипаться, становясь все более плотным. Самые плотные части облака начали разрушаться под действием собственной гравитации, возможно, из-за взрыва соседней звезды, образуя множество молодых звездных объектов, известных как протозвезды.
Гравитация продолжала обрушивать материал на новорожденную солнечную систему, создавая звезду и диск из материала, из которого должны были сформироваться планеты. В конце концов, по данным НАСА, новорожденное солнце охватило более 99% массы Солнечной системы . Когда давление внутри звезды стало настолько сильным, что начался синтез, превращающий водород в гелий, звезда начала извергать звездный ветер, который помог убрать обломки и предотвратить их падение внутрь.
Хотя газ и пыль покрывают молодые звезды в видимом диапазоне длин волн, инфракрасные телескопы исследовали множество облаков в галактике Млечный Путь, чтобы изучить окружение других новорожденных звезд. Ученые применили то, что они видели в других системах, к нашей собственной звезде.
Как образовались планеты?
Планеты, луны, астероиды и все остальное в Солнечной системе сформировались из небольшой части материала в регионе, который не был включен в молодое солнце. Этот материал сформировал массивный диск вокруг молодой звезды, который окружал ее около 100 миллионов лет — мгновение ока по астрономическим меркам.
За это время из диска сформировались планеты и луны. Ученые утверждают, что среди планет Юпитер, вероятно, сформировался первым, возможно, уже через миллион лет жизни Солнечной системы .
Ученые разработали три разные модели, чтобы объяснить, как могли формироваться планеты в Солнечной системе и за ее пределами. Первая и наиболее широко принятая модель, аккреция ядра, хорошо работает с образованием каменистых планет земной группы, но имеет проблемы с планетами-гигантами. Второй, аккреция гальки, может позволить планетам быстро формироваться из мельчайших материалов. Третий, метод нестабильности диска, может объяснить создание планет-гигантов.
Модель аккреции ядра
Приблизительно 4,6 миллиарда лет назад Солнечная система представляла собой облако пыли и газа, известное как солнечная туманность. Гравитация разрушила материал сам по себе, когда он начал вращаться, образуя солнце в центре туманности.
С восходом солнца оставшийся материал начал слипаться. Согласно модели аккреции ядра, мелкие частицы стягивались вместе, связанные силой гравитации, в более крупные частицы. Солнечный ветер унес более легкие элементы, такие как водород и гелий, из близлежащих регионов, оставив только тяжелые каменистые материалы для создания земных миров. Но дальше солнечные ветры оказывали меньшее влияние на более легкие элементы, позволяя им сливаться в газовых гигантов. Таким образом были созданы астероиды, кометы, планеты и луны.
Некоторые наблюдения за экзопланетами подтверждают, что аккреция ядра является доминирующим процессом формирования. Звезды с большим количеством «металлов» — термин, который астрономы используют для обозначения элементов, отличных от водорода и гелия, — имеют в своих ядрах больше планет-гигантов, чем их бедные металлами собратья. По данным НАСА , аккреция ядра предполагает, что маленькие каменистые миры должны быть более распространены, чем большие газовые гиганты.
Открытие в 2005 году планеты-гиганта с массивным ядром, вращающейся вокруг солнцеподобной звезды HD 149026 является примером экзопланеты, которая помогла укрепить аргументы в пользу аккреции ядра. Ученые обнаружили, что ядро планеты примерно в 70 раз массивнее Земли; они считают, что он слишком велик, чтобы образоваться из коллапсирующего облака, согласно заявлению НАСА об исследовании .
Аккреция гальки
Самая большая проблема для аккреции ядра — это время — строительство массивных газовых гигантов достаточно быстро, чтобы захватить более легкие компоненты их атмосферы. В исследовании, опубликованном в 2015 году, изучалось, как более мелкие объекты размером с гальку сливаются вместе, создавая планеты-гиганты в 1000 раз быстрее, чем предыдущие исследования.
«Это первая известная нам модель, в которой вы начинаете с довольно простой структуры солнечной туманности, из которой формируются планеты, и заканчиваете системой планет-гигантов, которую мы видим», — ведущий автор исследования Гарольд Левисон. — сказал тогда астроном из SwRI Space.com.
В 2012 году исследователи Михиль Ламбрехтс и Андерс Йохансен из Лундского университета в Швеции предположили, что крошечные обломки, однажды списанные, содержат ключ к быстрому строительству гигантских планет. «Они показали, что оставшиеся от этого процесса формирования камешки, которые ранее считались неважными, на самом деле могут стать огромным решением проблемы формирования планет», — сказал Левисон.
В симуляциях, разработанных Левисоном и его командой, более крупные объекты действовали как хулиганы, выхватывая камешки из масс среднего размера, чтобы расти гораздо быстрее. «Более крупный парень в основном запугивает меньшего, поэтому они могут сами съесть всю гальку, и они могут продолжать расти, формируя ядра планет-гигантов», — сказала Space.com соавтор исследования Кэтрин Кретке, также из SwRI. .
Модель нестабильности диска
Другие модели пытаются объяснить образование газовых гигантов. Согласно моделям аккреции ядра, этот процесс занял бы несколько миллионов лет, дольше, чем легкие газы были доступны в ранней Солнечной системе.
«Планеты-гиганты формируются очень быстро, за несколько миллионов лет», — сказал Space.com Кевин Уолш, исследователь из Юго-Западного исследовательского института (SwRI) в Боулдере, штат Колорадо. «Это создает ограничение по времени, потому что газовый диск вокруг Солнца существует всего от 4 до 5 миллионов лет».
Эта проблема решается относительно новой теорией нестабильности диска. В модели нестабильности диска формирования планет сгустки пыли и газа связаны вместе на ранних этапах жизни Солнечной системы. Со временем эти глыбы медленно сжимаются в гигантскую планету.
Согласно моделям, планеты могут формироваться таким образом всего за 1000 лет, что позволяет им улавливать быстро исчезающие более легкие газы. Они также быстро достигают массы, стабилизирующей орбиту, которая удерживает их от смертельного марша к солнцу.
По мере того, как ученые продолжают изучать планеты внутри Солнечной системы, а также вокруг других звезд, они будут лучше понимать, как образовались газовые гиганты.
Планеты в движении
Первоначально ученые думали, что планеты формируются в их нынешних местах в Солнечной системе. Но открытие экзопланет всколыхнуло ситуацию, показав, что по крайней мере некоторые из самых массивных миров могут мигрировать через свои окрестности.
В 2005 году три статьи, опубликованные в журнале Nature , изложили идею, которую исследователи назвали моделью Ниццы , в честь города во Франции, где они впервые обсудили ее. Эта модель предполагает, что в первые дни существования Солнечной системы планеты-гиганты вращались по почти круговым орбитам, гораздо более компактным, чем сегодня. Их окружал большой диск из камней и льдов, простирающийся примерно в 35 раз больше, чем расстояние от Земли до Солнца, сразу за нынешней орбитой Нептуна.
Когда планеты взаимодействовали с более мелкими телами, они рассеивали большинство этих объектов по направлению к Солнцу. Этот процесс заставил массивные планеты обмениваться энергией с более мелкими объектами, отправив Сатурн, Нептун и Уран дальше в Солнечную систему. В конце концов маленькие объекты достигли Юпитера, что отправило их на край Солнечной системы или полностью за ее пределы.
Движение между Юпитером и Сатурном заставило Уран и Нептун выйти на еще более эксцентричные орбиты, отправив пару через оставшийся ледяной диск. Часть материала была отброшена внутрь, где он врезался в планеты земной группы во время поздней тяжелой бомбардировки. Другой материал был выброшен наружу, создавая пояс Койпера.
Медленно продвигаясь наружу, Нептун и Уран поменялись местами. В конце концов, взаимодействие с оставшимися обломками привело к тому, что пара стала двигаться по более круговым траекториям, когда они достигли своего нынешнего расстояния от солнца.
По пути наша солнечная система, возможно, потеряла членов: возможно, одна или даже две другие планеты-гиганты были выброшены из окрестностей всем этим движением. Астроном Дэвид Несворни из SwRI смоделировал раннюю Солнечную систему в поисках подсказок, которые могли бы привести к пониманию ее ранней истории.
«Раньше Солнечная система была совсем другой, с большим количеством планет, возможно, таких же массивных, как Нептун, формирующихся и разбросанных по разным местам», — сказал Несворный Space.com
Где вода?
Даже после того, как сформировались планеты, сама Солнечная система была не совсем узнаваема. Земля выделяется среди планет из-за высокого содержания воды, что, как подозревают многие ученые, способствовало эволюции жизни.
Но нынешнее местоположение планеты было слишком теплым, чтобы на ней могла собираться вода в ранней Солнечной системе, что позволяет предположить, что живительная жидкость могла быть доставлена после формирования Земли.
Одна загвоздка: ученые до сих пор не знают, откуда взялась эта вода. Первоначально исследователи подозревали, что его принесли на Землю кометы, но несколько миссий, в том числе шесть миссий, пролетевших с кометой Галлея в 1980-х годах, и более поздний космический корабль Европейского космического агентства «Розетта», показали, что состав ледяного материала с окраин Солнечной системы не не совсем соответствуют земным.
Пояс астероидов — еще один потенциальный источник воды. Несколько метеоритов продемонстрировали признаки изменения, изменения, произошедшие в начале их жизни, которые намекают на то, что вода в той или иной форме взаимодействовала с их поверхностью. Удары метеоритов могут стать еще одним источником воды для планеты.
В последнее время некоторые ученые даже оспаривают представление о том, что ранняя Земля была слишком горячей для сбора воды. Они утверждают, что если бы планета сформировалась достаточно быстро, она могла бы собрать необходимую воду из ледяных крупинок до того, как они испарились.
Какой бы процесс ни принес воду на Землю, скорее всего, это произошло и с Венерой и Марсом. Но повышение температуры на Венере и истончение атмосферы на Марсе не позволили этим мирам сохранить свою воду, что привело к появлению сухих планет, которые мы знаем сегодня.
Дополнительные ресурсы
- Прочтите описание НАСА (откроется в новой вкладке) о том, как образовалась Солнечная система, или посмотрите анимацию (откроется в новой вкладке) на эту тему.
- Прочитайте описание (откроется в новой вкладке) того, как формируются звезды и планеты с помощью ALMA, специализирующегося на наблюдении за дисками, из которых рождаются планеты.
- Ученые узнали о формировании планет, сравнив миры в нашей Солнечной системе с экзопланетами.
Следуйте за нами в Твиттере @ Spacedotcom и на Facebook .
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Нола Тейлор Тиллман — автор статей для Space.com. Она любит все, что связано с космосом и астрономией, и наслаждается возможностью узнать больше. Она имеет степень бакалавра английского языка и астрофизики в колледже Агнес Скотт и проходила стажировку в журнале Sky & Telescope. В свободное время она обучает своих четверых детей дома.