Содержание
Общая теория относительности
На выступлении 27 апреля 1900 года в королевском институте Великобритании лорд Кельвин сказал: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка – это постоянство скорости света и кривая интенсивности излучения в зависимости от длины волны. Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать.» Лорд Кельвин оказался абсолютно прав с указанием ключевых направлений исследований в физике, но не верно оценил их важность: родившиеся из них теория относительности и квантовая теория оказались бескрайними просторами для исследований, занимающих учёные умы вот уже на протяжении более сотни лет.
Содержание:
- 1 Формирование теории
- 2 Основы теории
- 3 Статус теории
- 4 Теория относительности и квантовая теория
Формирование теории
3D-модель искривления пространства-времени под действием Солнца и Земли
Так как специальная теория относительности не описывала гравитационное взаимодействие, Эйнштейн вскоре после её завершения приступил к разработке общей версии этой теории, за созданием которой он провёл 1907-1915 годы. Теория была прекрасной в своей простоте и согласованности с природными явлениями за исключением единственного момента: во времена составления теории Эйнштейном ещё не было известно об расширении Вселенной и даже о существовании других галактик, поэтому учёными того времени считалось что Вселенная существовала бесконечно долго и была стационарна. При этом из закона всемирного тяготения Ньютона следовало, что неподвижные звёзды должны были в какой-то момент просто быть стянуты в одну точку.
Не найдя для этого явления лучшего объяснения, Эйнштейн ввёл в свои уравнения космологическую постоянную, которая численно компенсировала гравитационное притяжение и позволяла таким образом стационарной Вселенной существовать без нарушения законов физики. Впоследствии Эйнштейн стал считать введение космологической постоянной в свои уравнения своей самой большой ошибкой, так как она не была необходима для теории и ничем кроме выглядящей на тот момент стационарной Вселенной не подтверждалось. А в 1965 году было обнаружено реликтовое излучение, что означало что Вселенная имела начало и постоянная в уравнениях Эйнштейна оказалось и вовсе не нужна. Тем не менее космологическая постоянная всё-таки была найдена в 1998 году: по полученным телескопом «Хаббл» данным, далёкие галактики не тормозили свой разлёт вследствие притяжения гравитацией, а даже ускоряли свой разлёт.
Основы теории
Процесс движения лучей света по геодезическим линиям под действием массивных тел
«Крест Эйнштейна» (вверху) и «Космическая подкова» (внизу)
Кроме основных постулатов специальной теории относительности, здесь добавилось и новое: механика Ньютона давала численную оценку гравитационного взаимодействия материальных тел, но не объясняла физику этого процесса. Эйнштейну же удалось описать это посредством искривления массивным телом 4-мерного пространства-времени: тело создаёт вокруг себя возмущение, в результате которого окружающие тела начинают двигаться по геодезическим линиям (примерами таких линий являются линии земной широты и долготы, которые для внутреннего наблюдателя кажутся прямыми линиями, но в реальности немного искривлены). Таким же образом откланяются и лучи света, что искажает видимую картину за массивным объектом. При удачном совпадении положений и масс объектов это приводит к эффекту гравитационного линзирования (когда искривление пространства-времени выступает в роли огромной линзы, делающей источник далёкого света намного ярче). Если же параметры совпадают не идеально – это может приводить к образованию «креста Эйнштейна» или «круга Эйнштейна» на астрономических снимках далёких объектов.
Среди предсказаний теории также было гравитационное замедление времени, (которое при приближении к массивному объекту действовало на тело точно также, как и замедление времени в следствии ускорения), гравитационное красное смещение (когда луч света, испущенный массивным телом, уходит в красную часть спектра в следствии потери им энергии на работу выхода из «гравитационного колодца»), а также гравитационные волны (возмущение пространства-времени, которое производит любое тело имеющее массу в процессе своего движения).
Статус теории
Первое подтверждение общей теории относительности было получено самим Эйнштейном в том же 1915 году, когда она и была опубликована: теория с абсолютной точностью описывала смещение перигелия Меркурия, которое до этого никак не могли объяснить при помощи ньютоновской механики. С того момента было открыто множество других явлений, которые предсказывались теорией, но на момент её публикации были слишком слабы чтобы их можно было засечь. Последним таким открытием на данный момент стало открытие гравитационных волн 14 сентября 2015 года.
Теория относительности и квантовая теория
Несмотря на то, что теория относительности замечательно описывает процессы в макромире, но миром микромира всё же правит квантовая теория. Сам Эйнштейн в последние годы жизни пытался объединить две эти теории в одну объединённую теорию, которая уже получила название «теории всего». Однако в этот раз он потерпел неудачу также, как и множество учёных пытавшихся это сделать после него. Примерно до начала 2000-х годов казалось, что с появлением теории струн решение уже почти найдено, однако примирить в ней все виды взаимодействий и элементарных частиц так до сих пор и не удалось: если при одном числе измерений в этой теории хорошо описываются одни частицы, то другие из них никак не вписываются, при другом же их числе теорией замечательно описываются противоположные частицы, но уже не вписываются первые. Таким образом поиски объединённой теории всё ещё продолжаются.
Понравилась запись? Расскажи о ней друзьям!
Просмотров записи: 20397
Запись опубликована: 07.02.2014
Автор: Максим Заболоцкий
Эйнштейн и общая теория относительности: к загадке «пространства-времени»
Рубрики : Наука, Последние статьи
Нашли у нас полезный материал? Помогите нам оставаться свободными, независимыми и бесплатными, сделав любое пожертвование:
Donate
25 ноября 1915 года Альберт Эйнштейн объявил исчерпывающие математические подробности своей общей теории относительности (ОТО).
Мы перевели эссе астронома Национального аэрокосмического института Стена Оденвальда (Sten Odenwald), который рассказыват, какие вопросы эйнштейновская теория продолжает ставить перед нами и почему гравитация и природа пространства остаются сегодня такими же загадочными, какими были и 100 лет назад.
Сегодня все мы привыкли слышать о том, что общая теория относительности описывает гравитацию как «искажение пространства» и что эта теория привела к ряду сенсационных открытий и объяснений – например, космологической гипотезы Большого Взрыва, черных дыр и замедления хода времени под влиянием гравитации.
Мы даже слышали об эффекте Лензе — Тирринга, предсказанном в 1918 году, согласно которому вращающиеся тела могут «стягивать» само пространство и вызывать удивительные, но очень слабые изменения поведения вращающихся гироскопов в гравитационном поле. Этот причудливый феномен был детально изучен спутником NASA Gravity Probe B.
Если вы хотите узнать больше об общей теории относительности, достаточно выйти в Интернет, где есть сотни ресурсов, рассказывающих о ней. Но, несмотря на её популярность и тот прогресс, толчком которого она стала, остаются весьма колючие детали, которые требуют разработки или непосредственного наблюдения.
ОСНОВНЫЕ ИДЕИ
Искажение пространства-времени, вызванное вращением Земли (Фото: NASA / GP-B)
Теория относительности базируется на идее, что пространство и время образуют единую физическую сущность под названием «пространство-время». Каждый раз, когда вы пытаетесь описать поведение чего-то, вам необходимо описывать его эффекты не только в связи с тремя измерениями пространства, но и четвертым временным измерением. Они тесно связаны друг с другом, особенно когда вы математически описываете физические процессы. Вы не можете просто путешествовать из одной точки в другую с определенной скоростью, вы должны учитывать, как это движение меняется с течением времени. Всё это элементарные вещи — написано множество статей о том, как «замедляется ход времени» и «объекты сжимаются по направлению движения». Но общая теория относительности добавляет ещё одну странную деталь к описанию четырехмерного пространства-времени.
В первую очередь ОТО утверждает, что пространство-время и гравитационные поля — одно и то же. Они описываются одним и тем же математическим символом в теории. Гравитация — это не сила вообще, а констатация того, как объекты движутся в пространстве-времени. Если они движутся по прямой, то не будет вообще никакой гравитационной силы. Вот что вы почувствовали бы в совершенно пустом пространстве. Но в присутствии материи (или энергии) пространство-время искажается геометрически, так что самые прямые линии из возможных в четырех измерениях становятся искаженными. Мы испытываем это искривление в четырех измерениях как изменение ускорения или гравитационную силу между этими объектами. Но что касается того, почему объекты (и энергия) могут искажать пространство-время, этот вопрос до сих пор остаётся без ответа.
В других ситуациях, как, например, с электромагнитной силой, мы имеем дело с полем, которое растягивается через пространство и расширяется со скоростью света из своего источника. Это силовое поле встраивается в пространство, подобно краске, оставшейся в мазке краски на вашей стене. Но общая теория относительности говорит, что гравитация совсем не такая. То, что мы называем пространством-временем, само по себе является гравитацией. В отличие от электромагнитного поля, гравитация не «окрашивает» поверхность пространства-времени. Чтобы понять в полной мере, что такое гравитация, вам нужно хорошо усвоить, что такое пространство и время как физические вещи, а не математические абстракции! Эйнштейн оставил две таких цитаты:
Пространство и время являются принципами нашего мышления, а не условиями, в которых мы живём.
…
Пространство-время не претендует на собственное существование как таковое, только на роль структурного качества [гравитационного] поля.
НЕ ВСЕ СИЛЫ ОДИНАКОВЫ
Искаженное пространство вокруг скопления галактик CL0024 (Фото: Большой (синоптический обзорный телескоп Консорциум)
За последние 100 лет мы усвоили из многочисленных экспериментов, что гравитация принципиально отличается от других трёх сил. Эти три силы — электромагнетизм, сильное и слабое ядерное взаимодействие – всё, что нам нужно для описания природы материи и её взаимодействия. Это описание называется Стандартной моделью и является удивительно точной математической моделью, способной объяснить самые сложные эксперименты, проводимые в настоящее время на Большом адронном коллайдере в CERN.
Хотя физики пытались описать гравитацию (пространство-время) тем же математическим языком, что используется в Стандартной модели, это привело к массе технических проблем. Не потому, что математики недостаточно изобретательны (ведь в результате этих попыток у нас появилась теория струн и петлевой квантовой гравитации), а потому, что по-прежнему всё это не доказывает, что гравитация (пространство-время) является того же рода «квантовым полем», что и поля Стандартной модели. Лауреат Нобелевской премии Фримен Дайсон отмечал:
…Теории квантовой гравитации [могут быть] непроверяемы и научно бессмысленны. В таком случае классическая вселенная и квантовая вселенная могли бы сосуществовать тихо и мирно.
Не было бы никакого несоответствия между двумя этими картинами. Обе картины вселенной могут быть верными, и поиск теории объединения может оказаться иллюзией.
Ричард Фейнман также отметил в 1962 году:
Крайняя слабость квантовых гравитационных эффектов в настоящее время представляет некоторые философские проблемы. Может быть, природа пытается сказать нам что-то новое, может, мы не должны пытаться квантовать гравитацию. Все еще возможно, что квантовая теория не гарантирует нам, что гравитация должна квантоваться.
Сегодня мы знаем о теории струн и других математических моделях пространства-времени и гравитации, но они не отражают картины того, как на самом деле может выглядеть гравитация или пространство-время. Так же, как схематические диаграммы, используемые для сборки радиоприемников, которые не описывают движение электронов через цепь компонентов, струны и петли просто могут быть нашими математическими инструментами, которые помогают делать определённые расчёты. Они также похожи на символические диаграммы Фейнмана, используемые для описания электромагнитных квантовых взаимодействий. Однако эти вычисления не востребованы на практике, поскольку в настоящее время нет данных, которые сообщали бы о необходимости «квантовать» гравитацию для объяснения известных наблюдаемых измерений.
Мы можем утверждать, что физика была бы проще, если бы пространство-время квантовалось, но нет никаких свидетельств того, что наша особая тяга к объединению действительно необходима реальному миру. Природа могла бы быть математически более красивой, если пространство-время оказалось бы полем, состоящим из гравитонов или других квантовых элементов, но эти требования подгоняются математическими интересами, а не очевидными или необходимыми потребностями физики. И всё же поиск стоит всех усилий, поскольку общая теория относительности в свои 100 лет продолжает задавать нам вопрос, как материя может «генерировать» пространство-время вокруг нас, или, наоборот, как пространство-время может генерировать вселенную и её физическое содержание. В теории Эйнштейна есть решения, в которых пространство-время не содержит материи вообще и, соответственно, вообще не требует его источника. Существуют также новейшие теории, которые и вовсе указывают на то, что информация более фундаментальна, чем само пространство-время.
Всё это сводится к одному: если мы не знаем, чем является пространство-время с точки зрения физического агента, как мы вообще можем пытаться понять гравитацию или манипулировать ей искусственно, не говоря уж о создании «варп-двигателей»?
Возможно, когда ОТО исполнится 200, мы всё это поймем. Или нет?..
Источник: «Happy Birthday Einstein! 100 years of General Relativity», Huffington Post
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
времянаукафизика
Похожие статьи
Общая теория относительности Эйнштейна
Одним из проявлений общей теории относительности являются гравитационные волны, изображенные здесь как создаваемые двумя сталкивающимися черными дырами.
(Изображение предоставлено Р. Хёртом/Caltech-JPL)
Общая теория относительности — это понимание физиком Альбертом Эйнштейном того, как гравитация влияет на ткань пространства-времени.
Теория, которую Эйнштейн опубликовал в 1915 году, расширила специальную теорию относительности, которую он опубликовал 10 лет назад. Специальная теория относительности утверждала, что пространство и время неразрывно связаны, но эта теория не признавала существование гравитации .
Эйнштейн провел десятилетие между двумя публикациями, определяя, что особенно массивные объекты искажают ткань пространства-времени , искажение, которое проявляется как гравитация, согласно НАСА .
Связанный: Охота на червоточины: как ученые ищут туннели пространства-времени
Как работает общая теория относительности?
Чтобы понять общую теорию относительности, начнем с гравитации, силы притяжения, с которой два объекта действуют друг на друга. Сэр Исаак Ньютон количественно определил гравитацию в том же тексте, в котором он сформулировал свои три закона движения, «Начала».
По данным НАСА, гравитационная сила, действующая между двумя телами, зависит от того, насколько массивно каждое из них и как далеко друг от друга они расположены . Даже когда центр Земли притягивает вас к себе (удерживая вас прочно закрепленным на земле), ваш центр масс притягивается к Земле. Но более массивное тело почти не чувствует рывка от вас, в то время как с вашей гораздо меньшей массой вы оказываетесь прочно укоренившимся благодаря той же самой силе. Тем не менее законы Ньютона предполагают, что гравитация — это врожденная сила объекта, которая может действовать на расстоянии.
Альберт Эйнштейн в своей специальной теории относительности определил, что законы физики одинаковы для всех неускоряющихся наблюдателей, и показал, что скорость света в вакууме одинакова независимо от скорости, с которой движется наблюдатель. путешествует, согласно Wired (открывается в новой вкладке).
В результате он обнаружил, что пространство и время переплелись в единый континуум, известный как пространство-время. И события, происходящие в одно и то же время для одного наблюдателя, могут происходить в разное время для другого.
Связанный: Что произошло бы, если бы скорость света была намного меньше?
Разрабатывая уравнения своей общей теории относительности, Эйнштейн понял, что массивные объекты вызывают искажение пространства-времени. Представьте, что вы устанавливаете большой объект в центре батута. Объект вдавливался в ткань, вызывая появление ямочек. Если затем вы попытаетесь катить шарик по краю батута, шарик будет двигаться по спирали внутрь к телу, притягиваясь почти так же, как гравитация планеты притягивает камни в космосе.
За десятилетия, прошедшие с тех пор, как Эйнштейн опубликовал свои теории, ученые наблюдали бесчисленное количество явлений, соответствующих предсказаниям теории относительности.
Гравитационное линзирование
Свет огибает массивный объект, например черную дыру, заставляя его действовать как линза для объектов, находящихся за ним. Астрономы обычно используют этот метод для изучения звезд и галактик за массивными объектами.
Крест Эйнштейна, квазар в созвездии Пегаса, по данным Европейского космического агентства (ESA), является прекрасным примером гравитационного линзирования. Квазар виден таким, каким он был около 11 миллиардов лет назад; 9Галактика 0005 , за которой она находится, примерно в 10 раз ближе к Земле. Поскольку два объекта выровнены так точно, четыре изображения квазара появляются вокруг галактики, потому что сильная гравитация галактики искривляет свет, исходящий от квазара.
Связанный: Что такое квантовая гравитация?
В случаях, подобных кресту Эйнштейна, различные изображения гравитационно-линзированного объекта появляются одновременно, но это не всегда так. Ученым также удалось наблюдать примеры линзирования, в которых, поскольку свет, проходящий вокруг линзы, проходит по разным путям разной длины, разные изображения появляются в разное время, как в случае одного особенно интересного 9.0005 сверхновая .
Крест Эйнштейна — пример гравитационного линзирования. (Изображение предоставлено НАСА и Европейским космическим агентством (ЕКА))
Изменения орбиты Меркурия
Орбита Меркурия очень постепенно смещается с течением времени из-за искривления пространства-времени вокруг массивного Солнца, согласно НАСА (открывается в новой вкладке).
Меркурий, ближайшая к Солнцу планета, перигелий Меркурия (точка на его орбите, ближайшая к Солнцу), по прогнозам, с течением времени будет двигаться в несколько ином направлении. Согласно предсказаниям Ньютона, гравитационные силы в Солнечной системе должны опережать прецессию Меркурия (изменение его орбитальной ориентации), измеряемую в 5600 угловых секунд за столетие (1 угловая секунда равна 1/3600 градуса). Однако существует расхождение в 43 угловых секунды за столетие, что объясняет общая теория относительности Эйнштейна. Используя теорию Эйнштейна об искривленном пространстве-времени, прецессия перигелия Меркурия должна опережать немного больше, чем согласно предсказаниям Ньютона, поскольку планеты не вращаются вокруг Солнца по статической эллиптической орбите.
Действительно, несколько исследовательских работ, опубликованных с середины 20-го века, подтвердили точность расчетов Эйнштейна прецессии перигелия Меркурия.
Через несколько миллиардов лет это колебание может привести даже к столкновению самой внутренней планеты с Солнцем или планетой.
Перетаскивание рамки пространства-времени вокруг вращающихся тел
Вращение тяжелого объекта, такого как Земля, должно скручивать и искажать пространство-время вокруг него. В 2004 году НАСА запустило гравитационный зонд B (GP-B). По данным НАСА , оси точно откалиброванных гироскопов спутника со временем немного сместились, что соответствует теории Эйнштейна.
«Представьте, что Земля погружена в мед», — сказал главный исследователь Gravity Probe-B Фрэнсис Эверитт из Стэнфордского университета в заявлении НАСА о миссии.
«Когда планета вращается, мед вокруг нее будет кружиться, и то же самое с пространством и временем. GP-B подтвердил два самых глубоких предсказания Вселенной Эйнштейна, имеющих далеко идущие последствия для астрофизических исследований.»
Гравитационное красное смещение
электромагнитное излучение объекта слегка растянуто внутри гравитационного поля. Подумайте о звуковых волнах, исходящих от сирены в машине скорой помощи; когда транспортное средство движется к наблюдателю, звуковые волны сжимаются, но когда оно удаляется, они растягиваются или смещаются в красную сторону. То же явление, известное как эффект Доплера, происходит со световыми волнами на всех частотах.
В 1960-х годах, по данным Американского физического общества , физики Роберт Паунд и Глен Ребка выстрелили гамма-лучами сначала вниз, а затем вверх по стене башни Гарвардского университета. Паунд и Ребка обнаружили, что гамма-лучи немного изменили частоту из-за искажений, вызванных гравитацией.
Гравитационные волны
Эйнштейн предсказал, что сильные события, такие как столкновение двух черных дыр, создают рябь в пространстве-времени, известную как гравитационные волны. А в 2016 году Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) объявила, что впервые обнаружила такой сигнал.
Это обнаружение произошло 14 сентября 2015 года. LIGO, состоящая из двух объектов в Луизиане и Вашингтоне, недавно была модернизирована и находилась в процессе калибровки, прежде чем они были подключены к сети. Первое обнаружение было настолько большим, что, по словам тогдашнего представителя LIGO Габриэлы Гонсалес, команде потребовалось несколько месяцев анализа, чтобы убедить себя, что это был настоящий сигнал, а не сбой.
Связанный: Фантомная энергия и темная гравитация: объяснение темной стороны Вселенной
«Нам очень повезло с первым обнаружением, которое было настолько очевидным», — сказала она во время 228-го собрания Американского астрономического общества в июне. 2016.
С тех пор ученые начали быстро ловить гравитационные волны. В общей сложности LIGO и ее европейский аналог Virgo обнаружили в общей сложности 50 гравитационно-волновых событий, по словам официальных лиц программы, по данным Лазерной интерферометрической гравитационно-волновой обсерватории.
Эти столкновения включали в себя необычные события, такие как столкновение с объектом, который ученые не могут окончательно идентифицировать как черную дыру или нейтронную звезду, слияние нейтронных звезд, сопровождаемое ярким взрывом, столкновение несовпадающих черных дыр и многое другое.
Наблюдение за нейтронными звездами
Представление художника о вращающемся пульсаре. (Изображение предоставлено NASA/JPL-Caltech)
В 2021 году исследование, опубликованное в журнале Physical Review X , поставило под сомнение несколько предсказаний Эйнштейна, наблюдая систему двойных пульсаров на расстоянии около 2400 световых лет от Земли. Каждое из семи предсказаний общей теории относительности было подтверждено исследованием.
Пульсары — тип нейтронных звезд, которые пульсируют из-за лучей электромагнитного излучения, исходящих от их магнитных полюсов.
Подопытные пульсары вращаются очень быстро — около 44 раз в секунду — и на 30% массивнее Солнца, но имеют диаметр всего 15 миль (около 24 километров), что делает их невероятно плотными. Это означает, что их гравитационное притяжение огромно, например, на поверхности нейтронной звезды гравитация примерно в 1 миллиард раз сильнее, чем ее притяжение на Земле. Это делает нейтронные звезды отличным объектом для проверки предсказаний теории Эйнштейна, таких как способность гравитации преломлять свет.
«Мы следим за распространением радиофотонов, испускаемых космическим маяком, пульсаром, и отслеживаем их движение в сильном гравитационном поле пульсара-компаньона», — говорится в заявлении профессора Ингрид Стейрс из Университета Британской Колумбии в Ванкувере.
«Впервые мы видим, как свет не только задерживается из-за сильного искривления пространства-времени вокруг спутника, но и что свет отклоняется на небольшой угол в 0,04 градуса, который мы можем обнаружить. Никогда прежде не было такого был проведен эксперимент с такой большой кривизной пространства-времени», — добавляет Лестница.
Дополнительные ресурсы
- Относительность: Специальная и общая теория — 100-летие издания (открывается в новой вкладке)
- Природа пространства и времени (Серия лекций Института Исаака Ньютона, 3) (открывается в новой вкладке)
- Книга по физике: простое объяснение больших идей (открывается в новой вкладке)
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Нола Тейлор Тиллман — автор статей для Space.com. Она любит все, что связано с космосом и астрономией, и наслаждается возможностью узнать больше. Она имеет степень бакалавра английского языка и астрофизики в колледже Агнес Скотт и проходила стажировку в журнале Sky & Telescope. В свободное время она обучает своих четверых детей дома. Подпишитесь на нее в Twitter на @NolaTRedd
.
Общая теория относительности Эйнштейна
Одним из проявлений общей теории относительности являются гравитационные волны, изображенные здесь как создаваемые двумя сталкивающимися черными дырами.
(Изображение предоставлено Р. Хёртом/Caltech-JPL)
Общая теория относительности — это понимание физиком Альбертом Эйнштейном того, как гравитация влияет на ткань пространства-времени.
Теория, которую Эйнштейн опубликовал в 1915 году, расширила специальную теорию относительности, которую он опубликовал 10 лет назад. Специальная теория относительности утверждала, что пространство и время неразрывно связаны, но эта теория не признавала существование гравитации .
Эйнштейн провел десятилетие между двумя публикациями, определяя, что особенно массивные объекты деформируют ткань пространство-время , искажение, которое проявляется как гравитация, согласно НАСА (открывается в новой вкладке).
Связанный: Охота на червоточины: как ученые ищут туннели пространства-времени
Как работает общая теория относительности?
Чтобы понять общую теорию относительности, давайте начнем с гравитации, силы притяжения двух объектов друг к другу. Сэр Исаак Ньютон количественно определил гравитацию в том же тексте, в котором он сформулировал свои три закона движения, «Начала».
По данным НАСА, гравитационная сила, действующая между двумя телами, зависит от того, насколько массивно каждое из них и как далеко друг от друга они расположены . Даже когда центр Земли притягивает вас к себе (удерживая вас прочно закрепленным на земле), ваш центр масс притягивается к Земле. Но более массивное тело почти не чувствует рывка от вас, в то время как с вашей гораздо меньшей массой вы оказываетесь прочно укоренившимся благодаря той же самой силе. Тем не менее законы Ньютона предполагают, что гравитация — это врожденная сила объекта, которая может действовать на расстоянии.
Альберт Эйнштейн в своей специальной теории относительности определил, что законы физики одинаковы для всех неускоряющихся наблюдателей, и показал, что скорость света в вакууме одинакова независимо от скорости, с которой движется наблюдатель. путешествует, согласно Wired (открывается в новой вкладке).
В результате он обнаружил, что пространство и время переплелись в единый континуум, известный как пространство-время. И события, происходящие в одно и то же время для одного наблюдателя, могут происходить в разное время для другого.
Связанный: Что произошло бы, если бы скорость света была намного меньше?
Разрабатывая уравнения своей общей теории относительности, Эйнштейн понял, что массивные объекты вызывают искажение пространства-времени. Представьте, что вы устанавливаете большой объект в центре батута. Объект вдавливался в ткань, вызывая появление ямочек. Если затем вы попытаетесь катить шарик по краю батута, шарик будет двигаться по спирали внутрь к телу, притягиваясь почти так же, как гравитация планеты притягивает камни в космосе.
За десятилетия, прошедшие с тех пор, как Эйнштейн опубликовал свои теории, ученые наблюдали бесчисленное количество явлений, соответствующих предсказаниям теории относительности.
Гравитационное линзирование
Свет огибает массивный объект, например черную дыру, заставляя его действовать как линза для объектов, находящихся за ним. Астрономы обычно используют этот метод для изучения звезд и галактик за массивными объектами.
Крест Эйнштейна, квазар в созвездии Пегаса, по данным Европейского космического агентства (ESA), является прекрасным примером гравитационного линзирования. Квазар виден таким, каким он был около 11 миллиардов лет назад; 9Галактика 0005 , за которой она находится, примерно в 10 раз ближе к Земле. Поскольку два объекта выровнены так точно, четыре изображения квазара появляются вокруг галактики, потому что сильная гравитация галактики искривляет свет, исходящий от квазара.
Связанный: Что такое квантовая гравитация?
В случаях, подобных кресту Эйнштейна, различные изображения гравитационно-линзированного объекта появляются одновременно, но это не всегда так. Ученым также удалось наблюдать примеры линзирования, в которых, поскольку свет, проходящий вокруг линзы, проходит по разным путям разной длины, разные изображения появляются в разное время, как в случае одного особенно интересного 9.0005 сверхновая .
Крест Эйнштейна — пример гравитационного линзирования. (Изображение предоставлено НАСА и Европейским космическим агентством (ЕКА))
Изменения орбиты Меркурия
Орбита Меркурия очень постепенно смещается с течением времени из-за искривления пространства-времени вокруг массивного Солнца, согласно НАСА (открывается в новой вкладке).
Меркурий, ближайшая к Солнцу планета, перигелий Меркурия (точка на его орбите, ближайшая к Солнцу), по прогнозам, с течением времени будет двигаться в несколько ином направлении. Согласно предсказаниям Ньютона, гравитационные силы в Солнечной системе должны опережать прецессию Меркурия (изменение его орбитальной ориентации), измеряемую в 5600 угловых секунд за столетие (1 угловая секунда равна 1/3600 градуса). Однако существует расхождение в 43 угловых секунды за столетие, что объясняет общая теория относительности Эйнштейна. Используя теорию Эйнштейна об искривленном пространстве-времени, прецессия перигелия Меркурия должна опережать немного больше, чем согласно предсказаниям Ньютона, поскольку планеты не вращаются вокруг Солнца по статической эллиптической орбите.
Действительно, несколько исследовательских работ, опубликованных с середины 20-го века, подтвердили точность расчетов Эйнштейна прецессии перигелия Меркурия.
Через несколько миллиардов лет это колебание может привести даже к столкновению самой внутренней планеты с Солнцем или планетой.
Перетаскивание рамки пространства-времени вокруг вращающихся тел
Вращение тяжелого объекта, такого как Земля, должно скручивать и искажать пространство-время вокруг него. В 2004 году НАСА запустило гравитационный зонд B (GP-B). По данным НАСА , оси точно откалиброванных гироскопов спутника со временем немного сместились, что соответствует теории Эйнштейна.
«Представьте, что Земля погружена в мед», — сказал главный исследователь Gravity Probe-B Фрэнсис Эверитт из Стэнфордского университета в заявлении НАСА о миссии.
«Когда планета вращается, мед вокруг нее будет кружиться, и то же самое с пространством и временем. GP-B подтвердил два самых глубоких предсказания Вселенной Эйнштейна, имеющих далеко идущие последствия для астрофизических исследований.»
Гравитационное красное смещение
электромагнитное излучение объекта слегка растянуто внутри гравитационного поля. Подумайте о звуковых волнах, исходящих от сирены в машине скорой помощи; когда транспортное средство движется к наблюдателю, звуковые волны сжимаются, но когда оно удаляется, они растягиваются или смещаются в красную сторону. То же явление, известное как эффект Доплера, происходит со световыми волнами на всех частотах.
В 1960-х годах, по данным Американского физического общества , физики Роберт Паунд и Глен Ребка выстрелили гамма-лучами сначала вниз, а затем вверх по стене башни Гарвардского университета. Паунд и Ребка обнаружили, что гамма-лучи немного изменили частоту из-за искажений, вызванных гравитацией.
Гравитационные волны
Эйнштейн предсказал, что сильные события, такие как столкновение двух черных дыр, создают рябь в пространстве-времени, известную как гравитационные волны. А в 2016 году Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) объявила, что впервые обнаружила такой сигнал.
Это обнаружение произошло 14 сентября 2015 года. LIGO, состоящая из двух объектов в Луизиане и Вашингтоне, недавно была модернизирована и находилась в процессе калибровки, прежде чем они были подключены к сети. Первое обнаружение было настолько большим, что, по словам тогдашнего представителя LIGO Габриэлы Гонсалес, команде потребовалось несколько месяцев анализа, чтобы убедить себя, что это был настоящий сигнал, а не сбой.
Связанный: Фантомная энергия и темная гравитация: объяснение темной стороны Вселенной
«Нам очень повезло с первым обнаружением, которое было настолько очевидным», — сказала она во время 228-го собрания Американского астрономического общества в июне. 2016.
С тех пор ученые начали быстро ловить гравитационные волны. В общей сложности LIGO и ее европейский аналог Virgo обнаружили в общей сложности 50 гравитационно-волновых событий, по словам официальных лиц программы, по данным Лазерной интерферометрической гравитационно-волновой обсерватории.
Эти столкновения включали в себя необычные события, такие как столкновение с объектом, который ученые не могут окончательно идентифицировать как черную дыру или нейтронную звезду, слияние нейтронных звезд, сопровождаемое ярким взрывом, столкновение несовпадающих черных дыр и многое другое.
Наблюдение за нейтронными звездами
Представление художника о вращающемся пульсаре. (Изображение предоставлено NASA/JPL-Caltech)
В 2021 году исследование, опубликованное в журнале Physical Review X , поставило под сомнение несколько предсказаний Эйнштейна, наблюдая систему двойных пульсаров на расстоянии около 2400 световых лет от Земли. Каждое из семи предсказаний общей теории относительности было подтверждено исследованием.
Пульсары — тип нейтронных звезд, которые пульсируют из-за лучей электромагнитного излучения, исходящих от их магнитных полюсов.
Подопытные пульсары вращаются очень быстро — около 44 раз в секунду — и на 30% массивнее Солнца, но имеют диаметр всего 15 миль (около 24 километров), что делает их невероятно плотными. Это означает, что их гравитационное притяжение огромно, например, на поверхности нейтронной звезды гравитация примерно в 1 миллиард раз сильнее, чем ее притяжение на Земле. Это делает нейтронные звезды отличным объектом для проверки предсказаний теории Эйнштейна, таких как способность гравитации преломлять свет.
«Мы следим за распространением радиофотонов, испускаемых космическим маяком, пульсаром, и отслеживаем их движение в сильном гравитационном поле пульсара-компаньона», — говорится в заявлении профессора Ингрид Стейрс из Университета Британской Колумбии в Ванкувере.
«Впервые мы видим, как свет не только задерживается из-за сильного искривления пространства-времени вокруг спутника, но и что свет отклоняется на небольшой угол в 0,04 градуса, который мы можем обнаружить.